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Abstract—Development, maintenance and operation of com-
plex IT–systems, involving various stakeholders are chal-
lenging tasks. Managing such IT–systems with model–based
approaches can help to cope with this complexity. As IT–
systems are changing during their lifetime, as do the models
describing certain aspects of such systems. Document and
model versioning repositories are the preferred infrastructure
to maintain the documents and models, reflecting the evolution
of the IT–system. However, there are more complex require-
ments to model versioning compared to classical source code
or document versioning: Depending on the types of models
different modelling tools may be employed and must interface
to the repository. The consistency between models must be
ensured, and finally, since various stakeholders are involved,
changes must be propagated between models. In this paper, we
analyse these requirements and present the basic architectural
concepts for a Living Models infrastructure that supports the
evolution of models.

Keywords-model versioning; model evolution; software en-
gineering; change based process; tool integration; automated
change management.

I. INTRODUCTION

This paper is based on an initial presentation in [1]. Model
engineering is a widely accepted engineering discipline [2],
and a lot of models are developed in manifold contexts in
practice.

Within software projects models form a basis for (manual
or automatised) development of software. In addition models
may also be used in broader context, e.g., security models
help to analyse and document security concepts in critical
IT–systems, business process models document interleaved
business processes and IT–landscape models help to manage
IT–landscapes in the context of business processes and
organisational structures.

Our own engineering experience in commercial projects
shows that it is hard to keep models up–to–date, if no active
continuous maintenance process is in force. After the initial
development phase (or after a radical renovation), a system
evolves step-by-step through change requests. Quite often
models die slowly in such a process, i.e., they are getting
gradually out–dated, since the physical systems are evolving,
without further maintenance of the model.

The reasons for dying models are manifold. One major
reason is that model management is in many cases cen-
tralised to a designated stakeholder. Thus only a limited
set of persons can maintain it. In real life there are various
stakeholders, that have the knowledge to maintain a model,
but do not have the authorisation to update the model or no
tool access. Also if the modelling tool supports multiple
users, concurrent maintenance of a model is not always
well supported. Neither do classical version management
systems like subversion support adequate conflict resolution
for structured data like models. Finally, models can become
quite complex, dependencies between modelled elements
may be intricate, which makes it difficult to maintain the
consistency of a model.

Facing this problem, [3] proposes ten principles to ensure
an agile and flexible way to maintain models embedded in
a change–driven engineering process. In this publication we
discuss the requirements for and impacts of these principles
on the implementation of an Living Models infrastructure.

Since the ten principles of Living Models [3] are the major
motivation for this work, and to make the presentation self–
contained, we recapitulate these ten principles shortly in the
following:

Persistence Models should be stored persistently and their
further evolution shall be supported.

Common System View All models of a current revision
should be related by a common system view. I.e., each model
maintained in the repository is considered part of a common
system model. Such a system model may not exist as an
explicit artifact, rather it may exist as an abstraction of the
maintained models, ensured by consistency rules between
these models.

Information Consistency and Retrieval Based on the
common system meta–model consistency rules can be de-
fined. Also new views on the information stored in the
system model should be retrievable.

Bidirectional Information Flow between Models and
Code and/or the Runtime System Code should be aware
of the models and there should be an information flow from
the code and the runtime system back to the models in order
to enable monitoring and analysis. For source code this is
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quite often also known as “round trip engineering”.
Close Coupling of Models and Code Changes to code

artifacts should be reflected back to the model, in order to
keep them consistent.

Model Element States Each model element can have a
state that reflects certain aspects in its life cycle (e.g., a
risk assessment may have the states draft, under review and
final, or a hardware component may have the states under
acquisition, operative, faulty and decommissioned).

Change and Change Propagation The state of a model
element can change between one system model version and
the following. A state change may trigger other changes to
the model, e.g., if an risk assessment element in a final state
depends on another element that has changed, its state may
be also changed and be reset to draft.

Change–Driven Process The software and system devel-
opment process in a Living Models environment is driven
by change events, the states of the model elements and
their interrelationships. These change events may either
trigger further internal changes or may be forwarded to the
resonsible stakeholders to react on such changes.

Stakeholder–Centric Modelling Environments The en-
vironment should involve all relevant stakeholders with
different goals (and different expectations on the type and
abstraction–level of the models, as e.g., an aggregated IT–
landscape model, a risk model, or a database model).

Domains and Responsibilities A variety of stakeholders
operates on the system model. In order to coordinate the
work on the models in an organised way, there should be
assigned responsibilities for each model element.

For details about the Ten Principles we would like to
refer the reader to the original publication. In this paper,
we outline an infrastructure that supports those principles.

The rest of this publication is structured as follows: In
the next section, we will discuss related research approaches
that cover aspects of the ten principles. In the main section
we introduce the major concepts and requirements of an
infrastructure for Living Models, its basic architecture, and
discuss the most important use cases for (meta–) model
versioning and state management. We report on first expe-
riences on a case study carried out in the context of the
SecureChange project. A discussion on some collaboration
aspects and conflict reduction strategies follows, before we
conclude with an overview of the implementation of the
initial infrastructure prototype.

II. RELATED APPROACHES

The ten principles embrace research topics that are already
part of intensive research such as model versioning and
merging, and meta model management.

Model repositories with versioning support are a major
topic of academic and industrial research projects as, e.g.,
ModelBus [4], or AMOR [5] show. Both projects try to
establish a central repository where models and meta models

can be stored and retrieved via adaptors from various tools.
Bëzivin et al. [6] coined the term MegaModel for the registry
of models and meta models.

Versioning models in a distributed environment leads
to the problem of conflicts due to concurrent commits.
Thus adequate model merging algorithms are an important
topic. Kolovos et al. [7] has compared the most important
algorithms, as e.g., EMF Compare [8] or UMLDiff [9].
However there is still ongoing research in this area (see e.g.,
[10], [11]).

Related to the context of model repositories is the concept
of model integration as a basis for (modelling) tool integra-
tion, as shown e.g., in Unicase [12], iRM [13], MOFLON
[14], or (again) ModelBus [4], AMMA [6] and AMOR [5].
Mainly the integration is achieved by the implementation of
suitable adaptors that connect the tools with a model repos-
itory. The category of model integration also comprises the
concept of model transformation as ATL [6] or as discussed
by Strommer at al. [15] and round trip engineering, which
is already well established in many modelling tools, as e.g.,
Eclipse MDT [16] MagicDraw [17], or Rational Software
Architect [18].

Atkinson and Stoll [19] choose a different solution by
managing a common system view together with derived
views.

Managing a common system model also includes the
aspect of meta model management as e.g., proposed by
[20]. Since also meta models may evolve there is a need
for tools that allow for the co–evolution of meta models
together with the associated models as e.g., COPE [21], or
the work concerned by EMF Refactor [22].

A topic that is not yet sufficiently covered by research
is the topic of change–driven modelling. There are certain
(industrial–scale) tools that include aspects of change–driven
requirements engineering, as e.g., DOORS [23] or in–Step
change management [24].

These tools allow the requirements engineer to define
state–based transition systems to model changes and their
consequences to requirements.

The project MoVE (Model Versioning and Evolution)
aims to establish an infrastructure to maintain Living Mod-
els. It does not concentrate on a single research topic, rather
it strives to combine existing techniques (partially still under
research, partially well established mechanisms). MoVE is
based on a novel model based approach to implement a
change–driven process.

III. REQUIREMENTS FOR A LIVING MODELS
INFRASTUCTURE

In this section, we will map the generic principles for
Living Models of Section I to requirements of a working
Living Models infrastructure.
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A. Concepts
Before going into details we define some concepts, that

we need for the precise definition of the requirements.
A model captures a view of a physical system. It is an

abstraction of the physical system, with a certain purpose.
This purpose determines what is to be included in the model
and what is irrelevant. Thus the model completely describes
those aspects of the physical system that are relevant to
the purpose of the model, at the appropriate level of detail.
(Taken from [25] Section 17.3.1). Models are expressed in
specific concrete syntax, which can be graphical, textual or
other suitable notation. Examples are state charts, business
process diagrams, lists, trees or graph presentations, or any
other domain specific language.

So MoVE does not require models to be expressed in
specific representation (as e.g., UML notation). However,
as we see later in Section V, UML/EMOF or ecore are the
main candidates for the MoVE internal model representation
in our prototype. All external representations are mapped to
these internal representations.

A model element is an atomic constituent of a model [26].
A system model is an abstraction of all relevant concepts

and their relationships in a system. Thus a system model can
be seen as a set of consistent models, or vice versa, a model
represents a specific perspective on the system model. We
speak of a partial model, if we want to emphasise that a
model is part of the overall system model.

A meta model is a model that defines model element
(types) and their relationships for expressing a model [27]. In
extension to this definition a MoVE meta model additionally
associates state machines to model elements, in order to
model an event driven process.

Expressing it in terms of the MOF layer model [28], the
meta model refers to layer M2, the system model and the
(partial) models refer to layer M1.

Being a little bit more formal we consider
a MoVE meta model as a tuple (MM, C,SM,
m:SM→Attributes(MM)), where

• MM is a meta model expressed as EMOF–model [26],
together with

• a set C of OCL statements,
• a set SM of state machines (expressed as UML–based

behavioural state machines [25]), and
• a mapping m that maps each state machine to a

distinguished state attribute in the meta model.
Set C defines additional OCL constraints that cannot be
expressed in a standard EMOF-model (as e.g., logical depen-
dencies of model elements). SM and m form the definition
of a change–driven model maintenance process, which will
be explained in Section III-D.

B. Basic Conceptual Architecture
One of the major principles of a Living Models infra-

structure is that various stakeholders can cooperate through

Figure 1. The Living Models infrastructure MoVE: Various tools interact
with a common model repository

a set of tools via the common system model. The common
system model reflects the actual state of the physical system.
Each stakeholder has its own tool (set) to express and to
maintain his/her own view of the complete picture. Figure
1 depicts this interaction.

Partial models from different stakeholders may overlap,
e.g., in the security model risks elements are related to
model elements in the enterprise model, i.e., two views onto
the system model may overlap. As long as this view is
generated from the system model it can be easily handled as
a projection on the relevant concepts of the system model,
i.e., by just ignoring irrelevant concepts of the system model.

However, we accept that partial models are the basic
artefacts to collect information about the real system, we
have to merge modified partial models into the common
system model. Depending on the type of underlying meta–
meta–model as e.g., EMOF, UML, XML different options
for merging algorithms exist as explained in [29].

Merging of models leads to the problem of merge conflicts
that need to be resolved manually. In Section VI we propose
some heuristics how to reduce such conflicts.

C. Model Versioning

The use case diagram in Figure 2 shows a high level view
on the major use cases of a MoVE infrastructure. We can
roughly group the use cases into model versioning use cases
and change management use cases.

The actors are typically (human) stakeholders, that are in
charge either to maintain the meta model as a meta model
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Figure 2. The actors and use cases of MoVE

designer, or to maintain his/her partial model.
Besides human stakeholders there may also be special

(automatised) processes that monitor the physical system and
forward system data automatically into models. An example
could be an inventory process that monitors the state of all
IT–applications running on a component and reports these
states back into the enterprise model.

One major use case is Define/Update Model, where the
model can be either a partial model or the meta model.

Updating a partial model may cause conflicts with the
system model. Conflicts may result from classical versioning
conflicts that are related to concurrent changes by differ-
ent stakeholders. In this case, classical conflict resolution
techniques, e.g., EMF Compare [8], may be applied. Other
conflicts may result from the fact that constraints C from
the MoVE meta–model are violated. The most consequent
option for handling constraint violations would be, not to
allow the commit of the partial model into the system model
unless the conflicts are resolved. Since a violation is not
necessarily restricted to a single partial model, or requires
the interaction of several stakeholders (e.g., a cascading
delete crossing model boundaries), we will just notify the
concerned stakeholders that commits the change about this
violation.

Partial models typically exist both in a proprietary repre-
sentation used by the specific tool and as a part of the system
model. So the tool adaptor must manage the mapping of the

proprietary representation to the system model, support con-
flict resolution, and must keep the proprietary representation
in synchrony with changes in the system model.

Besides the system model, also the meta model may
evolve over time. In this case, mechanisms have to be
provided to propagate changes in the meta model to the
model layer. This is related to the large field of model
migration, co–adaptation and co–evolution.

D. State Management

The second major functionality of a Living Models in-
frastructure is the change identification, propagation and
notification.

Each class may have one or more distinguished attributes
that represent the state of each instance. State transitions
of such an instance are governed by an associated state
machine. The set of state machines SM and the map-
ping m of the state machine to the distinguished at-
tributes are defined in the MoVE meta model (MM, C,SM,
m:SM→Attributes(MM)).

The MoVE repository monitors state changes of that
dedicated model element attributes in a currently committed
partial model and identifies an corresponding transaction in
the associated state machine. The transaction may result in
further transactions that changes the state of other model
element (change propagation). Not all consequences of a
change may be carried out automatically. Thus transactions
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may also trigger a notification of the responsible stakeholder.
This stakeholder is then in charge of reacting on the change
and to take further actions.

In order to illustrate these concepts, we present a case
study in the following section.

IV. ATM CASE STUDY

In this section, we present one of our actual case studies
to give a clearer picture of how MoVE works and how it
supports its users. The presented case study is taken from
the area of Air Traffic Management (ATM) initiated by the
EU project SecureChange [30]. It is concerned with the
operational processes of managing air traffic in terminal
areas, focusing on risk assessment and security analysis.

A. General Parts of the ATM Case Study

Within the SecureChange project three relevent types of
models were designed, developed and maintained. In the
following we will introduce the different types:

• Enterprise Model. This model defines the business
processes, the information, the organisational units,
etc. of the SecureChange project. The meta model is
depicted as the bottom part of Figure 3.

• Security Model. This model defines all security (analy-
sis) related objects. It contains risks, threats, security
controls, security requirements and business security
objectives. The (simplified) meta model is depicted as
the upper part of Figure 3.

• Common Meta Model. This meta model describes as
well the concepts of the Enterprise and the Security
Model, as the interrelations between them (see Figure
3). Each element of the Enterprise Model is a general-
isation of the “ModelElement”1 of the Security Meta
Model. This means that each object of an instance
specification has a “state” attribute, which will be
important in case security analysis started.

Both the common meta model and the enterprise model
were documented with MagicDraw. The security model was
documented with a project specific tool and persisted in a
MySQL database. Based on the principle ”Information Con-
sistency and Retrieval” (see Section I), the Living Models
infrastructure helps to keep the consistency across different
models and modelling tools.

The usage of different tools in this project not only orig-
inated from different requirements of each model–purpose,
but also from the different stakeholders involved, such as the
maintainer of the system meta model, the responsible for IT–
systems (typically the organisation’s CIO or his/her deputy)
and the responsible for security (e.g., the organisation’s

1Unfortunately the SecureChange meta model also used the term Mod-
elElement as a type in its meta model, which is a slight inconsistency with
the concept of model element in [26].

EnterpriseMetaModel

OrganisationalUnit

BusinessProcessInformation

ComponentNode

Role

-state
BusinessSecurityObjective

-state
SecurityRequirement

-state
ModelElement

SecurityControl

Threat

-state
Risk

addresses

**

affects

-affectedBy
*

-affects
*

forME
*1..*

fullf illed
*

*

forRisk *
1

of 1
*

Figure 3. Enterprise Meta Model related to Security Meta Model

CSO). This is a consequence of the principle “Stakeholder–
Centric Modelling Environments”.

The security analysis conducted in the SecureChange
project is based on regular system checks as soon as an
element of one of the above mentioned models changes or is
initially added. These checks may change the (security) state,
attached to each model element. To support this security
analysis the principles “Model Element States”, “Change
and Change Propagation” and “Change–Driven Process”
have to be encompassed in the underlying infrastructure.

B. Change Management in Action

One of the main requirements of MoVE is to sup-
port Change Management and Propagation accross different
models and their elements (see Section I). To fullfill this
requirement we introduced the following three concepts:

• “state” attribute: Each model element has an attribute
called “state”. This attribute will be set and changed by
the MoVE framework automatically (more details will
follow in Section IV-C).

• state machine definition (graphical and textual): For
each class of the Security Meta Model, a UML state
machine is defined. These state machines define the
possible state transitions from each model element from
one state to another. To make the state machines more
easy to process for MoVE, we translate them into
SCXML [31], which is an XML representation, using
OCL [32] for conditional expressions.
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EVALUATED
[forAll(SecurityRequirement.state = EVALUATED)]

ADDED
[exists(ModelElement)]

COMPLETE
[forAll(ModelElement.state = COMPLETE)]

 [related ME in 
state pending]

 [new  SR added]

 [all SRs of BSO-graph evaluated]

addBSO

 [all ModelElements in BSO-Graph in state complete]

Figure 4. Example state machine for a SecureChange Business Security
Objective (BSO) with informal description

• set of states: For each class of the Security Meta
Model, a set of possible states is defined. For exam-
ple, a BusinessSecurityObjective can have the states
“ADDED”, “COMPLETE” and “EVALUATED”.

Figure 4 shows the UML state machine for the model
element BusinessSecurityObjective.

Each BusinessSecurityObjective is in one of the following
states:

• ADDED: This business security objective is identified
by somebody, but not yet evaluated.

• COMPLETE: All model element instances in the
enterprise model associated (indirectly by SecurityRe-
quirements) with this BusinessSecurityObjective are
identified.

• EVALUATED: the implementation of the security ob-
jective is evaluated.

As you can see, the conditions for entering a certain state,
do not only depend on BusinessSecurityObjectives, but also
on various other model elements, such as SecurityRequire-
ments. This means that changes of one model element, can
enhance changes of many other model elements, triggered
by the state machines.

The same state machine as in Figure 4, is given in the
following Listing 1. This textual representation is written
with the language SCXML (State Chart XML), an XML
dialect to define state machines.
1<scxml v e r s i o n = ” 1 . 0 ” i n i t i a l s t a t e =” i n i t s t a t e ”>

<s t a t e i d =” i n i t s t a t e ”>
3 < i n i t i a l />

< t r a n s i t i o n e v e n t =”addBSO” t a r g e t =”ADDED”
5 cond =” l e t r e s u l t : Boolean = s e l f . forME−>a s S e t ( )−>

notEmpty ( ) ”/>
</ s t a t e>

7
<s t a t e i d =”ADDED”>

9 < t r a n s i t i o n e v e n t =” a l l ModelElements i n BSO−Graph i n
s t a t e c o m p l e t e ” t a r g e t =”COMPLETE”

cond =”
11

p u b l i c d e f i n i t i o n s c o n t e x t EObjec t
13 d e f t r e e I t e r a t o r : . . .

d e f g e t A t t r i b u t e V a l u e B y N a m e : . . .
15 e n d d e f i n i t i o n s

17 p u b l i c q u e r i e s c o n t e x t EObjec t
r e s u l t : Boolean = t r e e I t e r a t o r ( s e l f )−>f o r A l l ( o1 |

19 o1 . e C l a s s ( ) . name = ’SR ’ i m p l i e s
g e t A t t r i b u t e B y N a m e ( o1 , ’ S t a t e ’ ) = ’COMPLETE’ )

21 e n d q u e r i e s
</ s t a t e>

23
<s t a t e i d =”COMPLETE”>

25 < t r a n s i t i o n e v e n t =” a l l SRs of BSO−graph e v a l u a t e d ”
t a r g e t =”EVALUATED”

cond =” . . . ”/>
27 < t r a n s i t i o n e v e n t =” r e l a t e d ME i n s t a t e pend ing ” t a r g e t

=”ADDED” cond =”
l e t r e s u l t : Boolean = s e l f . forME−>a s S e t ( )−>e x i s t s (

ModelElement me | me . s t a t e = ’ pend ing ’ ) ”/>
29 < t r a n s i t i o n e v e n t =”new SR added ” t a r g e t =”ADDED” cond =”

l e t r e s u l t : Boolean = s e l f . f u l f i l l e d −>
a s S e t ( )−>e x i s t s ( S e c u r i t y R e q u i r e m e n t r | r . s t a t e = ’

ADDED’ ) ”/>
31 </ s t a t e>

33 <s t a t e i d =”EVALUATED”>
< t r a n s i t i o n e v e n t =” r e l a t e d ME i n s t a t e pend ing ” t a r g e t

=”ADDED” cond =”
35 l e t r e s u l t : Boolean = s e l f . forME−>a s S e t ( )−>e x i s t s (

ModelElement me | me . s t a t e = ’ pend ing ’ ) ”/>
</ s t a t e>

37</scxml>

Listing 1. SCXML version of Business Security Objective state machine

The structure of Listing 1 looks as follows. Except of the
SCML root element, the outermost elements are identified
with the tags “state” (see Lines 2, 8, 24 and 33). These
states have an ID, which represents the name of the states
(compare Figure 4). Within each state element, we can define
several “transition” elements. Each transition has two to
three attributes:

• event: This attribute denotes the name of the transition,
e.g., compare Line 25 of the above SCXML and
the name of the transition between the states “COM-
PLETE” and “EVALUATED” in Figure 4, named [all
SRs of BSO-graph evaluated].

• target: The target attribute denotes the destination state
after transition, or also called transition target.

• cond: This attribute is optional. In case of existence,
it contains valid OCL code, incorporating the guard
condition to follow a transition. In case of absence,
the transition is an “immediate” transition. It is also
possible to build more complex OCL statements in-
cluding “definitions” and “queries”. Whith the help
of these constructs (see Lines 12-21). The definitions
“treeIterator” and “getAttributeValueByName” describe
helping functions to parse the commited model. The
OCL queries are invoked to gather the target ModelEle-
ments and the transitions to be triggered. For example,
the query starting in Line 17 uses the functions defined
above to check if all ModelElements attached to the
actual Business Security Objective are in the state
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state = "COMPLETE"

SO2 : 
BusinessSecurityObje

ctive

state = "EVALUATED"

SR1 : 
SecurityRequirement

state = "EVALUATED"

SR7 : 
SecurityRequirement

state = "EVALUATED"

SR2 : 
SecurityRequirement

state = "EVALUATED"
R5 : Risk

state = "EVALUATED"
R7 : Risk

state = "EVALUATED"

SO1 : 
BusinessSecurityObj

ective

state = "EVALUATED"
R6 : Risk

state = "EVALUATED"

Radar Data : 
Information

state = "EVALUATED"

SR9 : 
SecurityRequirement

state = "EVALUATED"

Arrival Management 
: GBusinessProcess

state = "COMPLETE"
ADS-B : Node

state = "COMPLETE"

A/C position : 
Information : fullf illed

 : affects

 : fullf illed

 : affects

 : fullf illed

 : affects

Figure 5. Commited instance model of a possible ATM case

“EVALUATED”. In case the query returns the boolean
value “TRUE”, the transition is fired and the Business
Security Objective is now in the state “COMPLETE”.

Based on the state machines defined in SCXML, MoVE
can check after each commit whether new state transitions
are possible or not.

It may be the case that there are more than one possible
transition (e.g., several model elements can change their
state). In this case the out–come of the change propagation
is non–deterministic. It depends on the selected sequencing
of changes by the change propagation algorithm. It is in the
responsibility of the meta model designer to define the state
machines, such that this non–determinism does not lead to
undesired results or even into circular state change loops.

C. Example Models

In this section, we introduce an example instance model of
the ATM Case Study. Although the security model is stored
in a relation MySQL database, the respective management
tool synchronizes the content with the MoVE repository.
MoVE represents the contents of the database internally by
instance specifications with relationships modelled as slots
[25]. Figure 5 shows a possible instance model (already
converted into an internal representation) that will be com-
mited by the user to the MoVE repository. Having a look
at the states of all elements of this model, we can see that
within the state machine “Business Security Objective” the
condition for one transition is fulfilled. The according event
is called “all SRs of BSO-graph evaluated”, which means
that in case of the Business Security Objective “S02”, all
attached Security Requirements (namely “SR1”, “SR2” and
“SR9”) are in the state “EVALUATED”. As soon as MoVE
receives the instance model via a commit by the user, it
triggers the according state transition. The resulting instance
model after the transition is depicted in Figure 6. As soon

state = "EVALUATED"

SO2 : 
BusinessSecurityObje

ctive

state = "EVALUATED"

SR1 : 
SecurityRequirement

state = "EVALUATED"

SR7 : 
SecurityRequirement

state = "EVALUATED"

SR2 : 
SecurityRequirement

state = "EVALUATED"
R5 : Risk

state = "EVALUATED"
R7 : Risk

state = "EVALUATED"

SO1 : 
BusinessSecurityObj

ective

state = "EVALUATED"
R6 : Risk

state = "EVALUATED"

Radar Data : 
Information

state = "EVALUATED"

SR9 : 
SecurityRequirement

state = "EVALUATED"

Arrival Management 
: GBusinessProcess

state = "COMPLETE"
ADS-B : Node

state = "COMPLETE"

A/C position : 
Information : fullf illed

 : affects

 : fullf illed

 : affects

 : fullf illed

 : affects

Figure 6. Instance model of Figure 5 after automatic state changes

as the transition finished its execution, MoVE parses the
model element states again for possible transitions. Only
if no further changes are possible and the set of model
element states is stable, change propagation is finished and
this version of the model will be stored in the repository.

V. CURRENT PROTOTYPE

We have implemented an initial prototype in order to
study the usage scenarios of Living Models.

The analysis of requirements presented in Section III im-
plies a flexible architecture with exchangeable components.
Therefore MoVE consists only of a small number of core
components and a large number of exchangeable and ex-
tendible components. The architecture of MoVE is twofold:
it consists of client–side and server–side components (see
Figure 7).

To provide typical features of a standard VCS (version
control system) and a stable and well tested communication
protocol, Subversion (SVN) [34] is used as a core compo-
nent on the client– and server–side.

The MoVE repository is built on top of an SVN server
to update and commit models and meta–models. The main
advantage of this decision is that both MoVE models and
other artifacts can be versioned in the same repository.
We use SVN properties to tag artifacts that are models,
which need special handling by the MoVE infrastructure.
MoVE hooks onto subversion by a subversion pre–commit
hook, that invokes the dedicated MoVE functionality on the
repository contents.

Conflict resolution is based on EMF Compare. State
machine support is included based on SCXML.

In context of our case study (see Section IV) we have
implemented three adaptors on the client–side, one for Mag-
icDraw, one for Eclipse and another one for a proprietary
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Client

Server

«script»
SVN-Hook

«component»
MoVE Server

«Plugin»
ModelConsistency

Plugin

«component»
MoVEClient

«SVN Component»
SVN-Server

«component»
MagicDrawAdapter

«Plugin»
Statemachine

Plugin

«Plugin»
MetaModelEvolution

Plugin

«SVN Component»
SVN-Connector

«component»
ProjectSpecificA

dapter

«component»
EclipseAdapter

PluginInterface

«Plugin»
ProjectSpecific

Plugins

calls

provides

use use

checkout/commit/update

use

Figure 7. The MoVE Architecture [33]

application developed on top of a MySQL data base. A
somewhat arbitrary decision was, to use the UML meta
model as a representational base for the partial models. This
was the best choice for a research prototype, because a
lot of UML–support is available in the context of eclipse
EMF. Model instances of the SecureChange Security Model
were mapped from the database to instance specifications
in UML. However the performance issues of handling a
UML–model, compared to navigating through an optimized
relational database, would not be acceptable in a professional
application context.

VI. CONFLICT REDUCTION STRATEGIES

Naturally when working jointly in a team on a set of
documents (or partial models), concurrent conflicting mod-
ification of versioned items may occur.

Finding differences (and conflicts) between models is not
as simple as in linearly structured documents as e.g., text
files [35]. There exist also algorithms [7] to find differences
and conflicts in models (as e.g., EMF Compare). However
it turns out that in practical applications conflict resolution
in models can be fairly cumbersome, if changes are quite
complex. This get’s even more complex if a system model
is represented in various partial models.

In order to reduce the complexity of changes to the system
model, we propose some rules to constrain most changes
locally to partial changes and to manage changes that cross
the boundaries between partial models.

MoVE currently uses the UML/EMOF meta model as
its internal meta meta model. A MoVE meta model (e.g.,
as in Figure 3 is an instance of the EMOF meta model.
The elements in the partial models are typically on the
instance level, e.g., instances of SecurityRequirements or
BusinessSecurityObjectives. The main elements for change
on the instance level are instances of classes, attributes and
associations. In Table I we identify atomic operations on
this instances that can be sequentially combined to a more
complex change.

object type change type
class create a new instance is created

change basic type attributes (e.g., the
name) are changed

delete the instance is removed (together
with its attributes and associations
to other class instances)

attribute create an attribute is added to a class
instance

change an attribute value is changed
delete an attribute is removed from a class

instance
association create an association instance is added

between two class instances
change not relevant
delete an association instance is deleted

between two class instances

Table I
ATOMIC CHANGES TO A (PARTIAL) MODEL

The main rule is, that each class, attribute, and association
has its owner tool. Changes to instances of classes, attributes,
and/or associations are only allowed by the tool that “owns”
this class or attribute.

Such a rule is not unusual in practical applications,
because every model element typically has its stakeholder
that manages all instances of this type. A security objective
instance is maintained by the CSO in his/her tool to maintain
the security model, a service instance is maintained by the
CIO in his/her tool.

However there may be situations where changes to some
object type may inflict immediate inconsistencies, as e.g., an
class instance cannot be deleted, because it would result in
a constraint violation of the multiplicity of an association.
A simple example could be that the class instance is partner
in an association that must hold exactly one object of this
type. Such a constraint can be compared to a foreign key
constraint violation in a relational database.

A simple example could be that every BusinessSecu-
rityObjective instance must be assigned to at least one
ModelElement instance as in association forME shown in
Figure 3. Since BusinessSecurityObjectives are managed by
a stakeholder A, who is different from stakeholer B in charge
for ModelElements, a ModelElement could never be deleted
by B, before the stakeholder B deletes the corresponding
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BusinessSecurityObjective. This would be very unfunctional
and counter–intuitive.

This type of problem can occur with any consistency con-
straint that crosses model boundaries (i.e., involves instances
from several partial models). The solution is to “extend” the
final state of the class’ state machine by adding a extra
state named “toBeDeleted” (see Figure 8) into the state
machine of a ModelElement. A plug–in that is in charge for
maintaining the consistency between partial models, converts
the deleted instance into an object of state “toBeDeleted”.

EVALUATED
[forAll(SecurityRequirement.state = EVALUATED)]

COMPLETE
[forAll(SecurityRequirement.state = ADDED)]

PENDING
[exists(BusinessSecurityObjective.state = ADDED)]

toBeDeleted

ADDED

 [new  associated BSO
or new  SR added] at (time passed)

 [all SR of ModelElement evaluated]

 [BSO added to same/superior ModelElement]

complete

 [No BSO is referencing]

addEnterpriseObject

Figure 8. Extended state machine for ModelElement

Due to the notification mechanisms in the MoVE infras-
tructure the relevant stakeholder can be notified that he has
to correct his partial model, in order to allow for the final
deletion of this instance.

VII. CONCLUSION AND FUTURE WORK

Managing IT systems with Living Models and to keep
them alive, requires a rigorous development and main-
tainance process. This process must be change driven, in
order to effectively coordinate the interaction of various
stakeholders, taking jointly the responsibility for a complex
system.

We have shown the major requirements and architectural
implications for a Living Models infrastructure. Modelling
relevant aspects of an IT–system and keep them up–to–date,
needs an appropriate tool and cooperation support.

It strongly depends on the project or system context
how comprehensive such a common system model can be.
Establishing a “universal” system model where all tools
describing any aspect of a system can contribute, will be

doomed to failure. Our experience is that one should find
a level of detail in the common system model, which is
enough to control the relationships between domains and
responsibilities of the stakeholders.

The central issues are model versioning and change–
driven model evolution. Especially the second issue needs
excellent tool support in order to ensure a lively modelling
culture. Manual checks would fail, because models and their
interdependencies tend to become more and more complex.

The challenge is to both combine results from different
model research areas, and from well established software
engineering disciplines, as e.g., classical versioning, flexible
plug–in architectures together. The MoVE infrastructure
represents an initial prototype that implements a working
environment.

The prototype allowed us to study first impacts of a
change–driven system management process based on mod-
els. We are sure that this is a natural evolution of the ideas
of “model driven software engineering”. Besides technical
challenges like scalability, and extendibility, we still see a
lot of open research questions. Challenges are:

• The implementation of adapters for various modelling
tools is still a tedious work. The reason for this is,
that not all tools technically provide usable interfaces
to implement adapters, but also that the semantic gap
between the tool’s modelling representation and the
chosen internal MoVE representation in EMOF can be
quite huge.

• Change propagation can only be done partially auto-
matic. I.e., efficient change notification mechanisms
are needed to forward required actions to the relevant
stakeholders. So MoVE should interface to work flow
systems, which have a lot of mechnisms to handle event
notification, and process control.

• A change–driven process also has social implications.
It is a cultural shift from a capability based process to
a change–driven process. What is the best way to bring
such a process into an existing organisation?

This will be the starting point for further research on
“Living Models”.

This work is partially sponsored by the projects Se-
cureChange (EU Prj. No. ICT-FET-231101), QELaB, and
COSEMA (funded by the Tiroler Zukunftsstiftung).
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