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Abstract—This paper proposes an algorithm for accurate 

detection of salient areas from a given scene. We used a 

complex model for the human visual system, in order to 

simulate the visual perception mechanisms. Human visual 

system modelling requires accurate knowledge about the entire 

visual pathways. This work focuses on the following features of 

the human vision: the color perception mechanism, the 

perceptual decomposition of visual information in multiple 

processing channels, contrast sensitivity, pattern masking, and 

detection/pooling mechanism present in the primary visual 

cortex. Pattern masking is considered within a complex 

approach, combining data from distinct dimensions. The 

results are shown to correlate well with the subjective results 

obtained from an eye-tracking experiment. 

Keywords – human visual system; saliency map; visual 

perception; masking; perceptual decomposition. 

I.  INTRODUCTION 

This paper is focused on a region identification question 
and the regions that we are looking for are the ones having 
the best saliency from the perceptual point of view, as 
presented in [1]. The main idea is to be able to decide wich 
are the most important areas in a given scene, image or video 
frame. Such an algorithm has several applications, some of 
the most important beeing in the video preprocessing stage 
(coding), in order to optimize the compression scheme and in 
watermarking schemes that should hide information more 
effectively in images. In such applications, the characteristics 
and especially the limitations of the human visual system can 
be exploited to obtain the best performance with respect to 
visual quality of the output. Physiologists and psychologists 
have performed psycho-visual experiments aiming to 
understand how the human visual system (HVS) works. 
Engineers apply the results of those psychovisual 
experiments in their applications, but to do so, they use the 
simplified human vision models. This paper presents an 
attempt to integrate a such computational model of the 
human visual system into a tool for perceptual important 
areas detection. However, the experimental conditions used 
in the psycho-visual experiments are not representative for 
all types of image processing applications. Using the 
simplified human vision models with little knowledge 
regarding the applicability of these models under the new 
conditions limits the precision of the results. 

The computational model of the human visual system 
that we have used is a model derived from the one 

introduced by [2]. This model is based on the multi-channel 
architecture, as first proposed by Watson in [3] who assumed 
that each band of spatial frequencies is dealt with by a 
separate channel. The contrast sensitivity function (CSF) is 
the envelope of the sentivities of those channels. The 
detection process occurs independently in any channel when 
the signal in that band reaches a threshold. In addition, 
several models proposed later, including [4] and the present 
work, take into consideration temporal channels as well as 
chromatic sensivities and orientation selectivity. The 
perceptual decomposition in multiple channels is then 
performed in both domains, spatial and temporal. The 
temporal channels will deal with the dynamic stimuli from 
the visual scene. 

The paper is structured in four sections. Section II 
introduces the latest achievements in the area of perceptual 
region detection and human visual system modelling. 
Section III contains a detailed presentation of the proposed 
method, while in the final section of this paper we show that 
the results obtained with this algorithm are a good 
approximation for the perceptual regions detected with 
subjective experimental testing. 

II. PREVIOUS WORK 

Previous work related to this approach was mainly 

conducted in the field of visual attention modelling. 

Although visual assessment task in humans seems simple, it 

actually involves a collection of very complex mechanisms 

that are not completely understood. The visual attention 

process can be reduced at two physiological mechanisms 

that combined together result in the usual selection of 

perceptual significant areas from a natural or artificial scene. 

Those mechanisms are bottom-up attentional selection and 

top-down attentional selection. The first mechanism is an 

automated selection performed very fast, being driven by 

the visual stimulus itself. The second one is started in the 

higher cognitive areas of the brain and it is driven by the 

individual preferences and interests. A complete simulation 

of both mechanisms can result in a tremendously complex 

and time-consuming algorithm. 

The process of finding the focus of attention in a scene is 

usually done by building feature maps for that scene, 

following the feature integration theory developed by 

Treisman [5]. This theory states that distinct features in a 

scene are automatically registered by the visual system and 
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coded in parallel channels, before the items in the image are 

actually identified by the observer. Independent features like 

orientation, color, spatial frequency, brightness, and motion 

direction are put together in order to construct a single 

object being in the focus of attention. Pixel-based, spatial 

frequency and region-based models of visual attention are 

different methods of building feature maps and extracting 

saliency. 

The pixel-based category is represented by Laurent Itti‟s 

work concerning the emulation of bottom-up and top-down 

attentional mechanisms [6]. Another possibility of building 

feature maps is by applying different filtering operations in 

the frequency domain. Most common type of such filtering 

is done using Gabor filters and Difference of Gaussians 

filters. The work in [7] applies the opponent color theory 

and uses contrast sensitivity functions for high contrast 

detection. Last category of visual attention models are the 

region-based algorithms. In this case it is usually performed 

a clustering operation like region segmentation on the 

original image and then feature maps are computed using 

these clusters [8]. 

Regarding the HVS modelling, there have been studied 

and evaluated by the Video Quality Experts Group (VQEG) 

several video quality metrics that are using such models for 

the visual system. Based on a benchmark by the VQEG in 

the course of the Multimedia Test Phase 2007-2008, some 

metrics were recently standardized as ITU-T Rec. J.246 [9] 

and J.247 [10]. The first recommandation, J.246 presents 

several methods for perceptual visual quality assessment for 

cable television. Such networks have the advantage of 

permitting the transmission of some information about the 

reference or even a reduced bandwidth reference. 

The second recommandation J.247 states a new set of 

methods dedicated to perceptual video quality measurement 

when the entire reference is available. One of those 

methods, PEVQ or Perceptual Evaluation of Video Quality 

performs a pre-processing step that extracts a region of 

interest from the reference and the distorted signals. All the 

following calculations are then performed only on that 

region of interest. This step is based on the observation that 

distortions nearest to the border are not really noticed by 

viewers and often get ignored. This idea can be developped 

into a more precise analysis and one can identify a region of 

interest that best fits the perceptual saliency. All further 

calculations can be performed for that specific area found to 

be closest to the human focus of attention, consuming less 

time and resources in the application under consideration. 

III. PROPOSED ALGORITHM 

Human visual system modelling requires accurate 

knowledge about the entire visual pathways. In present, only 

certain aspects of vision are well understood and so, human 

visual system models have been developed in order to 

simplify the bahaviours of what is a very complex system. 

As the knowledge about the real visual system improves, the 

model can be upgraded. Such models are used by experts 

and researchers in image processing, video processing and 

computer vision, dealing with applications related to 

biological and pshychological processes. 

Many HVS features have their origins in evolution, 

since people needed to hunt for food and defend from other 

predators. For exemple, motion sensitivity is higher in 

peripheral vision with the purpose of early detection of any 

danger coming from wild animals. Also, motion sensivity is 

stronger then texture sensivity since it was crucial to scan 

the landscape and detect any camouflaged animals.   

 The model used in this work focuses on the following 

features of the human vision: the color perception 

mechanism, the perceptual decomposition of visual 

information in multiple processing channels, contrast 

sensitivity, pattern masking, and detection/pooling 

mechanism. In the following presentation, each feature is 

integrated into an algorithm processing step. The main 

target is to obtain at the end of the algorithm a map 

indicating the most salient areas from a scene. Perceptual 

saliency detection stands for the identification of objects, 

persons, visual stimuli in general that have the quality of 

standing out relative to neighboring items or simply beeing 

eye-catching. This task is similar to finding the focus of 

attention, that means recreating the mind‟s perceptual 

function to direct its inner awareness upon a specific target.   

A. Color processing 

The chromatic information from the visual scene is 
processed in the retinal stage according to the trichromatic 
theory. In the following stages of the visual pathway, 
specifically in the lateral geniculate nucleus, the color data is 
encoded according to the opponent colors theory, a technique 
that removes redundancy from the data stream. 

At the first stage of color perception in the retina, 
photoreceptor cells convert the light energy into neural 
signals. The basic process performed by photoreceptors is 
absorption of photons from the field of view and signalling 
this information through a change in the membrane potential. 
This mechanism provides the subsequent cortical areas with 
the necessary information about the scene comprised in the 
field of view. There are two types of photoreceptor cells: 
rods and cones, and they have different functions. Rods are 
found primarily in the periphery of the retina and are used to 
see at low levels of light. Rods are not sensitive to color, 
only to light/dark or to black/white. Rods can function in less 
intense light than can the other type of photoreceptors, cone 
cells, and they are concentrated at the outer edges of the 
retina beeing used in peripheral vision. Cones are located 
especially in the center of the retina. There are three types of 
cones that differ in the wavelengths of light they absorb; they 
are usually called short or blue (S), middle or green (M), and 
long or red (L). Cones are used to distinguish color at normal 
levels of light. 

In later stages of visual information processing, the color 
is to be coded differently. From the three primaries given by 
cones and the intensity given by rods, the color is eventually 
encoded as one luminance channel (magnocellular cells from 
the lateral geniculate nucleus - LGN) and two crominance 
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channels: one for red-green cones (parvocellular cells in 
LGN) and another one for blue-yellow connes (koniocellular 
cells in LGN).  

The color processing block in our algorithm is 
conducting a conversion from the usual YCbCr color-space 
to an opponent color space, similar to the one discovered at 
the LGN level. The resulting color components are: W-B for 
white-black, R-G for red-green, and B-Y for blue-yellow. 
These opponent colors can be associated to a luminance 
signal and two color difference signals. The colors selected 
are not random, they are considered opponent because under 
normal circumstances there is no hue one could describe as a 
mixture of opponent hues [11]. 

In order to obtain those components, the trichromatic 
values (RGB computed from YCbCr) undergo a power-law 
nonlinearity to counter the gamma correction used to 
compensate for the behaviour of conventional CRT displays. 
In LCD displays, the relation between the signal voltage and 
the intensity is very nonlinear and cannot be described with 
gamma value. However, such displays apply a correction 
onto the signal voltage in order to approximately get a 
standard γ=2.5 behavior. 

The linear RGB values produced are then converted to 
responses of the L, M and S cones on the human retina, 
based on the spectral absorbtion measured for these cells. 
This conversion is performed in two steps: first, RGB color 
space is converted to CIE XYZ color space; second, from 
XYZ components will be computed the LMS values. For the 
first transformation we have used a matrix defined in ITU-R 
Rec. BT.709-5 [15]: 

 

 
 
 
 
   

               
               
               

   
 
 
 
                       

 
The responses of the L, M, and S cones from the human 

retina are computed according to CIECAM02, the most 
recent color appearance model ratified by CIE Technical 
Committee (International  Commission on Illumination) 
[16]: 

 

 
 
 
 

   
                   

                   
                  

   
 
 
 
                

 
There is no unanimity of opinion regarding the particular 

values of the coefficients used in those transformations and 
several papers still use the classical von Kries 
transformation. We prefered the transformation matrix 
proposed in the latest standard published by ITU-R since it 
comes from more recent studies and measurements. 

Knowing the L, M, S cones absorbtions rates, the 
convertion to an opponent color space becomes possible due 
to the transformation matrix proposed by Poirson and 
Wandell [16]. The same transformation matrix has also been 
used by Winkler in his Perceptual Distortions Metric [2]: 

 

 
   
   
   

   
                 

                 
                 

   
 
 
 

             

 
The color space proposed by Poirson and Wandell was 

developed aiming to completely separate the color 
processing from the pattern perceptual processing. Keeping 
apart the color from the pattern makes easier to simulate the 
mechanisms in the human vision. 

The opponent color space agrees with the color 
processing at higher levels in the human brain, especially in 
the cortical area called V1. This type of color encoding de-
correlates the signals coming from the retina and removes 
redundancy.  In fact, in area V1 it has been proven to exist 
two types of double-opponent cells: red-green and blue-
yellow. Red-green cells confront the relative amounts of red-
green in one part of a scene, with the amount of red-green in 
a neighboring part of the scene; such cells respond best to 
local color contrast (red next to green). 

B. Multi-channel decomposition 

The multi-channel decomposition is performed according 
to a theory that explains the visual perception of a scene 
including multiple visual stimuli: each feature from the input 
scene is processed separately. Many cells in the human 
visual system and mainly in the visual cortex have been 
proven to be selectively sensitive to certain types of signals 
such as patterns of a particular frequency or orientation.  

The visual cortex is made from the combination of 
several areas: V1 (or primary visual cortex), V2, V3, V4, and 
V5. Neurons in the visual cortex respond to visual stimuli 
that appear within their receptive field by sending action 
potentials. The receptive field of one neuron is the region 
within the entire visual field which causes a response from 
that neuron. Each neuron responds best only to a subset of 
stimuli within its receptive field. This mechanism is neuronal 
tuning. First visual areas (for exemple V1 area) have neurons 
with simpler tuning that will respond to stimuli falling in 
their receptive fields such as vertical lines or textures with 
particular spatial frequencies. In later visual areas, neuronal 
cells have complex tuning that is much more complicated cu 
simulate. For instance, a neuron in the inferior temporal 
cortex may only react when a certain face appears in its 
receptive field. 

During the experiments regarding the primary visual 
cortex, it has been noticed that the tuning properties of V1 
neurons differ greatly over time. Evidence shows that there 
are at least two temporal mechanisms that affect neuronal 
responses in V1. The overall functioning of V1 can be 
thought of tiled sets of selective spatiotemporal filters. This 
is why the multi-channel decomposition splits the input into 
a number of channels, based on the spatio-temporal 
mechanisms present in area V1 from the visual cortex. In 
theory, these filters together can carry out neuronal 
processing of spatial frequency, orientation, motion, 
direction, speed (thus temporal frequency), and other 
spatiotemporal features. 

202

International Journal on Advances in Life Sciences, vol 2 no 3 & 4, year 2010, http://www.iariajournals.org/life_sciences/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 1. Simoncelli‟s steerable pyramid. Downsampling by a factor of 2 

and upsampling by 2 are used. The recursive construction of the pyramid is 

achieved by inserting a copy of the diagram contents enclosed by the 
dashed rectangle at the location of the block “R”. 

 
Temporal mechanisms are modeled with a perceptual 

decomposition in the temporal domain. We used two filters 
for two temporal mechanisms: the sustained and transient 
mechanisms, the same filters used in [2] and proposed by 
Fredericksen and Hess [17]. Finite impulse response (FIR) 
filters with linear phase are computed by means of a least-
squares fit to the normalized frequency magnitude response 
of the corresponding mechanism as given by the Fourier 
transforms of      and       , the second derivative of     , 
from the following equation: 

 
                                                   

 
The sustained mechanism is implemented by a low-pass 

filter, while the transient mechanism – by a band-pass filter. 
Both FIR filters are applied only to the luminance channel in 
order to reduce computing time. This simplification is based 
on the fact that our sensitivity to color contrast is reduced for 
high frequencies. 

Spatial mechanisms are modeled by means of a steerable 
pyramid decomposition [12], first proposed by Simoncelli. In 
this linear decomposition, an image is subdivided into a 
collection of subbands localized in both scale and 
orientation.  Similar multiscale transforms have often been 
used in image processing and image representation. For 
exemple, the wavelet transform was proven usefull in 
applications were scalable video coding was needed.   

The scale tuning of the filters is constrained by a 
recursive system diagram, as illustrated in Fig. 1. The left 
part of the diagram is called the analysis filter bank, while at 
the right side, the synthesis filter bank performs the 
reconstruction of the original image.  The orientation tuning 
is constrained by the property of steerability, which means 
that the transform is shiftable in orientation. A set of filters 
form a steerable basis if : 

(i) they are rotated copies of each other and  
(ii) a copy of the filter at any orientation may be 

computed as a linear combination of the basis filters. 

The pyramid‟s algorithm itself is based on recursive 
application of two types of operations: filtering and 
subsampling. First, the input signal or the original 
image/frame is divided into a low-pass and a high-pass 
portions. The low part will be further subdivided into 
bandpass portions and another low-pass one; each of the 
bandpass filters select features having distinct orientations. 
The last low-pass portion obtained is subsampled by a factor 
of 2 and the algorithm will be repeated in recursive cascades. 
The bandpass divisions are not subsampled in order to avoid 
aliasing, while for the subsampled low-pass subimage, the 
aliasing issue is prevented by using low-pass radial filters 
especially designed. 

In addition to having steerable orientation subbands, this 
transform can be designed to produce any number of 
orientation bands,  . The resulting transform will be 
overcomplete by a factor of     , meaning that the 
coefficient output rate is greater then the input signal sample 
rate. Note that the steerable pyramid retains some of the 
advantages of orthonormal wavelet transforms, but improves 
on some of their disadvantages (e.g., aliasing is eliminated; 
steerable orientation decomposition). One obvious 
disadvantage is in computational efficiency: the steerable 
pyramid is substantially overcomplete. 

Six sub-band levels with four orientation bands each 

plus one low-pass band are computed; the bands at each 

level are tuned to orientations of 0, 45, 90, and 135 degrees, 

as illustrated in Fig. 2. The same decomposition is used for 

the W-B, R-G and B-Y channels, meaning that all color 

channels go through the same steerable pyramid transform. 

This approach agrees with the primary visual cortex 

architecture regarding color, spatial frequency, and 

orientation  processing. 

 

 
Figure 2. Spatial frequency plane partitioning in the steerable pyramid 

transform. The gray region indicates the spectral support of a single sub-

band oriented at 45 degrees [2]. 

 

At this point of the algorithm, the input image is 

subjected to the steerable pyramid transform and the result 

is illustrated in Fig. 3 for a set of two images. The first 

image illustrates a flower who‟s petals have radial 

disposition, thus containing all orientations. In the output of 
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the steerable pyramid transform, at the first decomposition 

level it is easy to recognize the extracted feature‟s 

orientations. 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 3. a) and c) are original test images; b) and d) are the outputs from 

the steerable pyramid transform (four orientations and five levels 
decomposition). 

C. Contrast sensitivity 

Contrast is a visual property that makes an object 

distinguishable  from neighboring elements or background. 

The human visual system is more sensitive to contrast than 

to absolute luminance and the human eye itself is designed 

to react only to luminance variations. 

Researchers built contrast sensitivity functions from 

experimental measurements and beside the classic 

luminance contrast given by white/dark association, we now 

have color contrast sensitivity curves for the two chromatic 

channels: red-green and blue-yelow [18], [19] as it can be 

seen in Figure 4. The contrast sensitivity function shows a 

typical band-pass shape peaking at around 4 cycles per 

degree with sensitivity dropping off either side of the peak, 

meaning that human vision is most sensitive in detecting 

contrast differences occurring at 4 cycles per degree. The 

high-frequency cut-off represents the optical limitations of 

the visual system's ability to resolve detail and is typically 

about 60 cycles per degree. Tipically, our sensitivity to color 

contrast is reduced for high frequencies. 

 

 
Figure 4. The contrast sensitivity function for the red-green channel is 

the envelope of the visible gratings. 

 

Next step after the temporal and spatial decomposition is 

a shortcut in computation efficiency. Instead of pre-filtering 

the W-B, R-G and B-Y channels with their respective 

contrast sensitivity functions, which is the accurate 

approach, we searched for a set of weighting factors for 

each channel. The weights were determined intending to 

obtain a filter set that approximates the spatio-temporal 

contrast sensitivity of the human visual system. It was 

preferable since it conducts to a more simple 

implementation and the simulation time improves. 

D. Masking 

Visual masking is a perceptual phenomena that stands 

for the reduction or the elimination of the visibility of one 

brief stimulus called the “target” due to the presentation of a 

second brief stimulus, called the “mask”. Within the 

framework of quality assessment it is helpful to think of the 

distortion or the coding noise as being masked by the 

original image or sequence acting as background. Masking 
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explains why similar coding artifacts are disturbing in 

certain regions of an image while they are hardly noticeable 

in others. In order to be possible for visual masking to 

appear, both the target and the mask must be briefly 

presented, less then 50ms.    

Our human visual system model implements both intra-

channel and inter-channel masking. Masking is known to be 

stronger between visual stimuli of the same type (located in 

the same decomposition channel), so called intra-channel 

masking. This type of visual masking appears for a pair 

target-mask that have the same characteristics: belong to the 

same frequency band, same orientation, and even identical 

chromaticity. But masking also happens, at a lesser extent, 

between stimuli coming from different channels, beeing 

called inter-channel masking. We approached the masking 

perceptual process as a question of multiple excitations and 

inhibitions flows in the cortical pathways. For a neuron‟s 

excitation stronger than the associated inhibition from other 

neurons, we obtain the evidentiation. The opposite 

phenomenon, an excitation weaker than corresponding 

inhibitions will emulate the perceptual masking. An 

accurate modelling of evidentiation and masking operations 

will bring foreward salient features and objects from the 

input image.    

In neural networks, the neuron‟s excitation or inhibition 

can be simulated with the following linear equation: 

 

  
              

 

                             

 

where the output or the response of the j-th neuron is given 

by all inputs to that neuron, indexed by i and denoted as x, 

weighted  by the coefficients w according to that neuron‟s 

specialization. Excitation appears for a positive weight, 

while inhibition follows a negative weight. 

Our model takes into consideration the excitatory 

behaviour of specialised neurons inhibited by a pool of 

responses from other nervous cells in the visual cortex. 

Instead of a linear model, we adopted a nonlinear model 

where the weights were removed, thus eliminating the 

problem of choosing their values. The excitation is modeled 

by a power-law nonlinearity, where the input x is raised at 

power p. The inhibition follows the same modelling rule 

having an exponent q. 

 

  
  

             
                           

 

Equation 6 illustrates that the excitatory behaviour can 

be modelled by means of a power-law nonlinearity with 

exponent p greater then the inhibitory exponent q. The 

numerator models the excitation and x is a coefficient from 

the perceptual multi-channel decomposition. Such a 

coefficient comes as output from one of the filters in the 

filter bank that comprises the steerable pyramid. Therefore, 

x is a coefficient that carries information about a feature in 

the input image having precise characteristics: spatial 

frequency, color, and orientation. The denominator contains 

a constant c that prevents division by zero and two 

convolutions:    represents a gaussian pooling kernel for 

coefficients from the same decomposition channel, while    

is another gaussian pooling kernel for different channels 

interactions. This approach has proven to be more accurate 

then using a single pooling kernel  for all coefficients. In the 

inhibitory path, filter responses are pooled over different 

channels by means of two convolutions, combining 

coefficients from the dimensions of space and orientation. 

E. Detection 

The information coded in multiple channels within the 

VI area of the visual cortex is integrated in the subsequent 

cortical areas. This process can be simulated by gathering 

the data from these channels according to rules of 

probability or vector summation, also known as pooling. 

Then, the steerable pyramid is reconstructed only for the 

luminance channel.

 

   
a) b) c) 

Figure 4. a) Original image “Lena”; b) Saliency map obtained with our algorithm; c) Importance map obtained with TBQM metric [13]. The brighter 

pixels have higher saliency/ perceptual importance. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

g) 

 

h) 

Figure 5. a), c), e) and g) are original test images from the eye-tracking experiment database [14]; b), d), f) and h) are saliency maps obtained 
with the algorithm described previously. The brighter areas have a stronger perceptual importance, while the dark zones designate features 

without saliency. 
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Animals Flowers 

  
Street scenes Buildings 

Figure 6. Correlations between human fixation maps from the eye-tracking experiment and objective saliency maps. 
 

 

Our model of the human visual system uses at this stage a 

thresholding operation for the set of coefficients y resulted 

in the previous processing stage. Threshold values are 

model constants determined by experimental simulations, 

taking into consideration the saliency related to multiscale 

representation. The chromatic information was already 

included by the inter-channel masking processing. The 

resulting image pixel values are brought to a subunitary 

domain and they represent the saliency contained in the 

original image. 

IV. RESULTS 

For comparison of our results with one of the existing 

models, we provided the output of saliency maps by [13] 

in Figure 4. The model proposed in this paper is inclined 

towards totally eliminating the noninteresting areas 

because of being strict in selection. This tendency 

confines the exploration to a limited number of spots and 

the probability to skip a moderately prominent object in a 

visual search turns high. The method for importance map 

construction by [13] shown to be unable to discriminate 

the saliency of naturally prominent colors and also it does 

not consider the global context in the given scene. The 

proposed method has eliminated such weaknesses by 

incorporating theory of colors into the model and by 

including the influence of local and global neighborhood 

on the saliency of objects. In Figure 5 there are presented 

four test images and their objective saliency maps 

determined with our algorithm. 

The saliency maps are also correlated with the 

subjective results obtained for a 29 test images database, 

containing eye-tracking data [14]. Such data are highly 

accurate due to the experimental setting and the testing 

subjects carrefully selected. Eye-tracking data result in the 

only subjective saliency maps that can be used for 

comparison with objective methods. In order to compare 

the saliency maps with the human data, we used a 

correlation method proposed in [14]. The value of 

comparison is given by the correlation coefficient  : 

 

  
                              

    
    

 
        

 

where         is the objective map,         is the 

subjective map, and      are the mean and the variance 

of the values from these maps. A positive correlation 

coefficient indicates similar structure in both maps. Our 

objective maps result in correlation coefficients greater 

then those obtained with TBQM metric in 73% cases. In 

Figure 6 are illustrated the correlation coefficients for four 
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different types of images: natural scenes with animals, 

natural scenes with flowers, street scenes with peoples 

and cars and finally, building scenes. All the images come 

from the database provided by [14]. Each bar represent 

the mean correlation coefficient for the computed 

correlations between the 31 human fixation maps and our 

saliency map. The error bars give the confidence 

intervals. 

V. CONCLUSIONS 

 

The model proposed exploits spatiotemporal 

information and provides an efficient preprocessing step 

(salient spatiotemporal event detection) that will limit the 

application of high-level processing tasks to the most 

salient parts of the input. Our model simulates only the 

behaviour of the primary visual cortex (V1), which is 

necessary for conscious vision. As future work, the 

algorithm will be upgraded with emulations of the 

superior extrastriate visual cortex areas that will replace 

the final detection operation performed in the current 

work. 
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