International Journal on Advances in Life Sciences, vol 17 no 3&4, year 2025, http.//www.iariajournals.org/life_sciences/

Fall Prediction in Older Adults: A Model Based on Fall-Trajectory Predictors
Collected in Patients’ Homes

Amadou M. Djiogomaye Ndiaye
Laboratoire Vie-Santé, UR 24 134, Faculté de Médecine
Chaire d'excellence chez Fondation Partenariale de
I'Université de Limoges I Institut Omega Health
Limoges, France
e-mail: amadou maguette djio.ndiaye@unilim.fr

Michel Harel

Laboratoire Vie-Santé, UR 24 134, Faculté de Médecine
INSPE de Limoges, Université de Limoges
Limoges, France
Institut de Mathématiques de Toulouse, UMR CNRS 5
219, Université Paul Sabatier
Toulouse, France
e-mail: michel.harel@unilim.fr

Abstract—Falls among older adults are a major public health
concern due to their frequency, consequences and impact on
autonomy and mortality. The Risk Of Falling (ROF) is linked to
three dimensions: physical/organic, socio-environmental and
thymic/cognitive. Identifying individuals at high risk is essential
to implementing personalized prevention strategies. While fall
history is a well-known predictor, the integration of multi-
dimensional health data and interpretable machine learning

models may enhance prediction accuracy. We conducted a
retrospective analysis of 1,648 older adults who underwent a
Comprehensive Geriatric Assessment (CGA) at two time points.
Based on clinical, functional, cognitive and psychosocial
variables, we developed and compared four supervised
classification models: logistic regression, Support Vector
Machine (SVM), random forest and eXtreme Gradient Boosting
(XGBoost). Predictive performance was evaluated using Area
Under the receiver operating characteristic Curve (AUC), F1-
score and Brier score. SHapley Additive exPlanations (SHAP)
values were used to interpret variable contributions at the
individual level. XGBoost and random forest models
demonstrated the best performance (AUC = 0.76 and 0.77, F1-
score = 0.72 and 0.73, Brier score = 0.19 for both). SHAP
analysis confirmed that fall history was a strong predictor but
not the sole contributor to the model's decisions. Functional
limitations, low Activities of Daily Living (ADL) and low
Instrumental Activities of Daily Living (IADL), impaired
physical performance (low Short Physical Performance Battery
(SPPB)), pathological Single Leg Balance (SLB) and cognitive
scores (Mini-Mental State Examination (MMSE)) also played
substantial roles. Misclassified cases illustrated the importance
of multidimensional balance in the model's outputs. Our
findings support the use of interpretable machine learning
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models, particularly XGBoost, for personalized fall risk
prediction in older adults. Beyond fall history, a combination of
physical, cognitive and psychosocial variables contributes
meaningfully to risk estimation. Such models may help guide
targeted preventive interventions in geriatric practice, provided
operational complexity is managed to allow real-world clinical
integration.

Keywords-fall; older population; prevention; personalized
medicine; Al

L INTRODUCTION

This article is an extended version of the international
conference paper entitled “Enhancing Fall Prediction in
Older Adults: A Data-Driven Approach to Key Parameter
Selection” [1]. In this extended version, some models have
been upgraded by including dyslipidemia, a cardiovascular
factor, among the predictive variables for falls. However, we
retain XGBoost as our final model, since it remains one of the
most effective approaches for ensuring both high predictive
performance and interpretability in personalized prediction.

According to the World Health Organization (WHO),
older individuals are those aged > 60 years. The proportion of
older individuals worldwide is expected to nearly double
between 2015 and 2050, increasing from 12% to 22% [2]. The
National Institute of Statistics and Economic Studies (INSEE)
estimates that one in three individuals in France will be
aged > 60 years by 2060, compared to one in four individuals
in 2021 [3]. Aging leads to a gradual decline in functional
capacity, increasing the ROF [4]. Falls in older adults

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

99



represent a major public health concern due to their high
frequency, their functional, psychological and economic
consequences, as well as their impact on mortality. In the
study by Tan etal. [5], falling was identified as one of the main
predictive factors integrated into a model designed to identify
long-term care patients at highest risk of death. Similarly,
Shaik et al. [6] highlighted that, in both older and younger
individuals, falls, along with bone pathologies, are among the
primary causes of hip fractures.

Fall prevention has always been a central focus in medical
practice, notably through clinical test batteries or by adjusting
specific functions according to identified predictive factors,
generally using linear regression models (LRMs), after
grouping patients based on shared health characteristics.
While traditional regression models have long been the
standard tool for analyzing risk factors, machine learning
methods now offer improved predictive performance by
accounting for complex interactions between variables.

We developed predictive models using as input data the
factors identified in various fall trajectories. The objective is
to evaluate whether these variables are sufficiently
discriminative to power an effective predictive model, among
all those tested and thereby contribute to a targeted and
personalized fall risk prevention strategy. Early identification
of ROF facilitates the administration of personalized
interventions for individuals [7].

Most recent studies predict falls using sensors or
Electronic Health Records (EHRs). With data collected
directly from elderly individuals’ homes, our objective is to
develop an effective predictive model using the fewest
possible features.

In this study, we evaluated and compared several
classification algorithms to predict fall risk based on clinical,
functional and psychosocial data collected from a CGA.
Model interpretability was ensured using SHAP values, in
order to facilitate clinical understanding of the results and to
precisely identify the factors that most contributed to the
prediction of fall risk.

II.  MATERIALS AND METHODS

A. Study Design

Our study is based on a dataset collected between
September 2011 and September 2023 through multiple home
visits conducted by the Unit for Prevention, Monitoring and
Analysis of Ageing (UPSAV — Unité de Prévention, de Suivi
et d'Analyse du Vieillissement) at Limoges University
Hospital, Limoges, France. The UPSAV team comprises
nurses, geriatricians and other healthcare professionals. Each
patient underwent an initial visit, followed by a second visit
six months later and a third visit one year after the second. If
the patient remains in the study after the third wisit,
subsequent visits occur annually. The study includes men and
women aged 60 and older. To be eligible, participants had to
meet the following criteria:

e Provide written informed consent, either personally

or through a legal representative.
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e Not be enrolled in a clinical trial that modifies their
standard medical management.

e Not have progressive pathologies
significantly affect short-term prognosis.

e Notreside in a long-term care unit or a nursing home.

e Be covered by social security at 100%.

that could

B. Falls and Comprehensive Geriatric Assessment

During the Follow-up, a fall was defined as
unintentionally coming to rest on the ground or other lower
level not as a result of a major intrinsic event (e.g.,
myocardial infarction, stroke, or seizure) or an overwhelming
external hazard (e.g., hit by a vehicle) [8], [9]. Each patient
underwent a CGA and received a personalized care plan. The
CGA is a multidimensional and standardized approach
designed to enhance clinical practices in the care of older
adults through a comprehensive health assessment. CGA are
widely used to evaluate the physical, cognitive, social and
medical factors associated with fall risk in older adults [10].
Although they provide valuable clinical information, CGAs
often involve numerous variables and can be time-consuming
to administer and interpret, particularly in home care settings.
This highlights the growing need for efficient and scalable
tools that can help prevent falls without increasing the burden
on caregivers or patients.

Falls may occur repeatedly within a year. In geriatric
practice, individuals who experience at least two falls within
a 12-month period are classified as “fallers” [11].

A holistic fall prediction approach considers three key
dimensions:

e  The physical/organic dimension gathers data related
to an individual’s medical history and current
symptoms, diagnosis of underlying health issues and
treatment effectiveness.

e The thymic/cognitive dimension refers to an
individual’s mental, emotional and cognitive states.

e The socio-environmental dimension refers to age,
gender, family and social support, housing
conditions, home configuration, the presence of
slippery rugs, stairs without railings, uneven surfaces
and inadequate lighting.

Evaluating the ROF involves at least a gait and balance
assessment of the physical/organic dimension and the age and
gender of the socio-environmental dimension. Data involving
the thymic/cognitive dimension allow for a comprehensive
review of the potential causes of a fall. The term “dimension”
refers to the types of factors that contribute to the ROF and
their evaluation.

Hospitalized patients often receive incomplete health
assessments across all dimensions. Our home-collected data
encompass features from all three dimensions.

C. Data Collection and Variable Processing

Covariates included fall occurrences, cardiovascular risk
factors, socio-environmental characteristics and the CGA
summary. Fall occurrences refer to falls that occurred
between visits.
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Socio-environmental characteristics assessed in the home
included gender, age, lifestyle, housing conditions, presence
of an elevator, long-term illness status, leisure activities,
social activity, human assistance and pet ownership.

Cardiovascular  risk  factors  considered  were
hypertension, diabetes, dyslipidemia, obesity and tobacco
use.

The CGA summary encompassed multiple functional and
cognitive assessments, including:

e Verbal fluency test [12],

e Single Leg Balance (SLB) test, scored 0-60
seconds [13],

e  Clock-drawing test (CDT), scored 0-5 [14],

e Instrumental Activities of Daily Living
(IADL), scored 0-8 [15],

e Mini-Mental State Examination (MMSE),
scored 0-30 [16],

e  Mini Nutritional Assessment (MNA), scored 0-
30 [17],

e Short Physical Performance Battery (SPPB),
scored 0-12 [18],

e  Geriatric Depression Scale (GDS), scored 0-30
[19].

For consistency, in the rest of the document, we added
'Pathological' to the feature names SLB test, CDT, Verbal
Fluency and GDS to indicate whether the test result is
positive or not.

D. Data analysis

In our study, the sample size decreased from 1,648
patients at the first visit to 954 patients followed up at the
second visit. A descriptive analysis was conducted to provide
an overview of the study variables and their distribution
between individuals who had fallen and those who had not.
Pearson’s Chi-squared test was used for categorical variables,
while the Wilcoxon rank-sum test was applied to continuous
variables. The significance threshold for all statistical tests
was set at a p-value (P) < 0.05 and all reported P-values were
two-tailed. The p-value or probability value is a statistical
measure ranging between 0 and 1. It expresses the probability
of obtaining a result at least as extreme as the one observed
under the assumption that the null hypothesis (Ho) is true. The
null hypothesis used as the starting point of a statistical test
states that there is no effect, no difference, or no relationship
between the variables under study. According to the most
commonly accepted convention a result is considered
statistically significant when p < 0.05. In this case, the
probability of obtaining the observed data (or more extreme
outcomes) under Ho, is less than 5%. The null hypothesis is
therefore rejected in favor of the alternative hypothesis (Hi),
suggesting the existence of an effect or a difference. All
statistical analyses were performed using R software (version
4.4.0, R Foundation for Statistical Computing, Vienna,
Austria).
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E. Model Development Using Supervised Machine
Learning

The construction of a predictive model relies primarily on
selecting a limited number of relevant variables. In geriatrics,
preventive  strategies implemented by geriatricians
traditionally rely on "predictive factors" identified using
logistic regression models (LRM). These factors correspond
to variables significantly associated with fall risk across
different patient groups (or clusters), formed based on
longitudinal (or panel) data collected at multiple time points
during the study.

In our work, after identifying the fall trajectories specific
to the study population, we extracted the most explanatory
variables for each of these trajectories. These predictive
variables then served as the basis for building several
predictive models, which we compared in order to evaluate
their performance.

We developed a fall risk prediction model by selecting the
best-performing algorithm among four classifiers: logistic
regression, Support Vector Machine (SVM), eXtreme
Gradient Boosting (XGBoost) and Random Forest. Logistic
regression is a linear supervised classification model
particularly suited for binary problems . SVM, on the other
hand, aims to maximize the margin between classes using an
optimal hyperplane [20]. Ensemble models such as XGBoost
and Random Forest rely on aggregating multiple decision
trees: the former through a sequential boosting process and
the latter through a bagging mechanism, both of which
enhance model accuracy and robustness [21], [22].

To optimize the performance of each classifier, we used
the RandomizedSearchCV method, which randomly explores
a subset of hyperparameter combinations within a defined
search space. Unlike GridSearchCV, which exhaustively
evaluates all possible combinations, this approach reduces
computational cost while efficiently exploring influential
parameters through cross-validation. Finally, to calibrate the
predicted probabilities of the models, we applied 5-fold
cross-validation calibration using CalibratedClassifierCV
(with cv=5) before evaluating final performance on the test
set.

No missing data were observed among the variables
included in the analysis. To address class imbalance, the
RandomUnderSampler method was applied, which consists
of randomly removing observations from the majority class
to rebalance the dataset. Given the sensitive and real nature
of health data, no synthetic oversampling method was used.
The dataset was randomly split into a training set (70%) and
a test set (30%).

Model performance was evaluated on both the training
and test sets using several metrics: Area Under the Curve
(AUC), accuracy, precision, recall, specificity, F1-score and
Brier score [23], [24], [25]. Among these, AUC, F1-score and
Brier score were selected as the main evaluation indicators.
AUC assesses the model’s discrimination ability, the F1-
score captures the balance between precision and recall,
while the Brier score measures the accuracy of probabilistic
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predictions; it is calculated as the mean squared difference
between predicted probabilities and actual outcomes. A high
AUC and F1-score, combined with a low Brier score, indicate
good classification performance and accurate probability
estimation.

For model interpretation, SHAP values were computed to
quantify the contribution of each variable to the individual
prediction of fall risk. SHAP is an explainable Al method that
provides insights into the contribution of each feature both
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participants included in the study, 48.6% reported at least one
fall prior to the follow-up period. Fallers exhibited several
characteristics that were significantly different (p < 0.05)
from non-fallers. Fallers were predominantly women
(74% vs 66%). Their functional and physical abilities were
generally more impaired: lower ADL scores, reduced SPPB
scores (6 £ 4 vs 8 = 3) and lower IADL scores. Depression,
as indicated by a pathological GDS score, was more frequent
among fallers (31% vs 20%) and postural instability, assessed

102

globally (across the entire dataset) and locally (for individual
predictions) [26]. All algorithms were implemented in Python
3.10.16 (Python Software Foundation, Wilmington, DE).
Variable preprocessing was performed using OneHotEncoder
for categorical variables and StandardScaler for numerical
variables, via the scikit-learn library.

by a pathological one-leg stance test, was observed in 46% of
fallers compared to 34% of non-fallers. Participation in
leisure activities was also slightly lower among fallers (86%
vs 91%), which could reflect behavioral withdrawal or
functional restriction.

TABLE II. OVERVIEW OF THE SIX-MONTH INPUT FEATURES USED IN OUR
PREDICTIVE MODELS

III. RESULTS

A total of 1,648 individuals met the inclusion criteria for
the study. Table I presents the baseline socio-environmental

Falls of the study (N = 954)

oY b Features Total sample No falls Falls p-
and health characteristics of the sample that significantly (N=954) (n=490,51.4%) (n=464,48.6%) value’
differentiate fallers from non-fallers. Among the older adults n (%)
included, 1,113 (68%) were women and 535 (32%) were
men. Additionally, 73% had hypertension and only 288 Woman 664 (70%) 321 (66%) 343 (74%) 0.005
participants (17%) engaged in social activities. The mean age  Hypertension 688 (72%) 353 (72%) 335 (72%) 0.96
of participants was 83 + 6 years. Regarding falls, 823 Dyslipidemia 453 (47%) 237 (48%) 216 (47%) 0.57
participants (approximately 50%) had experienced a fall Obesity 254 (27%) 122 (25%) 132 (28%) 0.21
during the previous year. Concerning housing conldi.tions, Leisure 843 (88%) 445 (91%) 398 (86%)  0.015
991 (60%) were homeowners. Furthermore, 449 participants  yvsE. m + SD 2546 2546 2546 013

o . . )
(27%) were classified as having depression. SPPB, m £ SD 714 8+3 6+4 <0.001
TABLE I. OVERVIEW OF BASELINE CHARACTERISTICS ACCORDING TO ADL, m £SD S1 61 51 <0.001
FALLS OF THE STUDY IADL, m = SD 6+2 T+2 62 <0.001
Falls of the study Pathological GDS 238 (25%) 96 (20%) 142 (31%) <0.001
Features of the study Total sample  No falls Falls p- Pathological SLB 381 (40%) 167 (34%) 214 (46%) <0.001
— — — * *Pearson's Chi-squared test; Wilcoxon rank sum test. i (p-value < .05).m,mean
(N - 1’648) (l’l - 794’ (n - 854’ Value SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental ,u/ tivities of Daily Living;
n (%) 48-2%) 5 1 8%) MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance Battery; GDS, Geriatric Depression Scale.
Data are shown as the number (percentage) or mean  SD unless otherwise indicated.
Woman 1,113 (68%) 500 (63%) 613 (72%) <0.001 In contrast, hypertension, dyslipidemia, obesity and
Age, m£ 8D, years  83£6 82+6 83£6 ~ 0.001 MMSE scores were not statistically associated with falls in
Diabetes 339 (21%) 146 (18%) 193 (23%) 0.035 this cohort
Leisure 1,377 (84%) 689 (87%) 688 (81%) <0.001 Th ) n it the h thesis of ltifactorial
Social activity 288 (17%) 162 (20%) 126 (15%) 0.003 | nese results support the ypothesis ol a multitactoria
Human assistance 1,402 (85%) 644 (81%) 758 (89%) <0.001  ctiology of falls, primarily driven by physical function
ADL, m £ SD 541 5+1 541 <0.001 impairment, loss of autonomy, mood disorders, depression
IADL, m + SD 6+2 6+2 5+2 <0.001 and postural balance issues.
MMSE, m + SD 23+7 24+7 237  0.006 A comparison of Table I and Table II shows that variables
Pathological CDT 585 (35%) 244 (31%) 341 (40%) <0.001 such as hypertension, obesity and dyslipidemia are predictive
Patll:oll(;]gical 672 (41%) 269 (34%) 403 (47%) <0.001 factors of falls but do not significantly differentiate fallers
verba uency _ . . .
MNA. m = SD 2aid 2424 1314 <0.001 from non fal.ler.s. The remaining variables reported in Table
SPPB, m + SD 714 714 6+4  <0.001 I are also significant in Table I.
Pathological GDS 449 27%) 176 (22%) 273 (32%) <0.001 Fig. 1 presents the AUC of the four models evaluated for
Pathological SLB 708 (43%) 261 (33%) 447 (52%) <0.001 predicting fall risk, namely logistic regression, SVM,
*Pearson’s Chi-squared test; Wilcoxon rank sum fest. Statistically significance (p-value < .05). XGB 0 OSt and random forest.
m, mean; SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental
Activities of Daily Living; MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance
Battery; GDS, Geriatric Depression Scale.
Data are shown as the number (percentage) or mean + SD unless otherwise indicated,

In Table II, which presents the variables included in our
predictive models, it is observed that among the 954
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Figure 1. Area Under the Curve (AUC) of the Different Models

Table III reports the performance metrics of the different
models. All models achieved an identical precision of 0.78,
with balanced Fl-scores ranging between 0.71 and 0.73,
indicating comparable overall classification performance.

TABLE III. SUMMARY OF PREDICTIVE PERFORMANCE OF THE DIFFERENT

MODELS
Meties oS SVM XGBoost oo
AUC 0.74 0.75 0.76 0.77
Accuracy 0.73 0.71 0.72 0.73
Precision 0.78 0.78 0.78 0.78
Recall 0.68 0.65 0.67 0.68
Specificity 0.78 0.78 0.78 0.78
F1 score 0.73 0.71 0.72 0.73
Brier score 0.20 0.20 0.19 0.19

However, XGBoost and Random Forest show better areas
under the ROC curve, with AUC values of 0.76 and 0.77
respectively (see Fig. 1), suggesting higher discriminative
ability compared to logistic regression (AUC = 0.74) or SVM
(AUC = 0.75). Recall is slightly lower for XGBoost (0.67)
than for Random Forest (0.68), which may reflect a tendency
to under-detect certain fall cases. Finally, the lowest Brier
scores (0.19) are achieved by XGBoost and Random Forest,
indicating better probabilistic calibration of predictions.
Thus, although all models perform similarly in classification,
Random Forest appears to offer the best trade-off between
discrimination and calibration.

XGBoost and Random Forest are the models with the best
overall performance. Both are tree-based methods; while
Random Forest makes binary decisions, XGBoost has the
advantage of computing individualized probabilities, which
makes it more suitable for personalized care approaches. To
better understand the contribution of each variable to the
model’s predictions, we apply SHAP to XGBoost.
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The analysis of SHAP values presented in Fig.2
highlights both the relative importance and the direction of
effect of each variable in predicting fall risk within the
XGBoost model.

High
Fell in past year *-" - "*
MMSE - 0-.— -
Pathological SLB e e
ADL mﬂ— - ameww
SPPB « oo 29 )
IADL e 3
Dyslipidemia .‘ %
—
Hypertension +
Gender }
Obesity *
Pathological GDS }
Leisure |'
0.4

Low

-1.0 -0.5 0.5 1.0

SHAP value (impact on model output)

Figure 2. Impact of the Different Variables on the Best Model (XGBoost)

The use of SHAP values provides transparent model
interpretation and may help inform priorities for targeted
preventive strategies. A low score (values in blue) contributes
significantly to risk reduction, whereas a high score (shown
in red) is associated with increased predicted risk.

Among all the variables considered, fall history emerges
as the most influential factor thereby confirming the strong
predictive power of prior fall events. Physical performance,
as assessed by the SPPB score also plays a central role in fall-
risk prediction, low SPPB values (indicating physical
impairment) are strongly associated with higher risk.
Pathological single-leg stance reflecting balance impairments
does not appear to be correlated with elevated fall risk ; in
some cases, it may even be linked to severely limited mobility
thereby reducing exposure to risk through restricted
movement.

At the cognitive level, the MMSE score shows a more
nuanced relationship while low scores are generally
considered a risk factor, their impact appears less pronounced
in the model. Conversely, higher scores may
counterintuitively be associated with increased risk possibly
due to overconfidence or engagement in unsafe physical
activities.

The ADL and IADL scores indicators of functional
autonomy exhibit patterns consistent with clinical evidence
reduced functional capacity is generally associated with
increased fall risk. However, very low IADL scores may not
strongly correlate with higher risk suggesting that advanced
dependency could reduce exposure to hazardous situations.

Dyslipidemia reflecting cardiovascular impairment is
unexpectedly associated with a lower risk of falls potentially
indicating a tendency to avoid physical activity due to fear of
falling.
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Other variables including hypertension, obesity, gender,
and the presence of depression (pathological GDS), exert a
more moderate or marginal influence on model predictions.
Participation in leisure activities shows a modest protective
effect, although its overall contribution to fall-risk prediction
remains limited.

In summary, this analysis underscores that the most
influential predictors of fall risk are functional and physical
domains, while cognitive and psychosocial dimensions exert
secondary effects.

After examining the impact of each variable on the
model’s predictions, we now turn to some examples of
personalized predictions.

The personalized predictions will be evaluated using the
final selected XGBoost model. XGBoost is a gradient
boosting ensemble algorithm that aggregates multiple weak
decision trees to produce a high-performing predictive model
[22]. In binary classification, it generates a raw output in log-
odds, which is then transformed by the logistic function to
obtain a probability. The log-odds (logarithm of the odds) is
a way to transform a probability into a value that can range
from —0 to +oo. The raw output value of XGBoost is the
weighted sum of the decision trees:

K
f6) =Y T
k=1

where:
o Tp(x) is the output of the k-th tree for the
observation,
e K is the total number of trees,
e  f(x) is the raw model output, expressed in log-odds.
We then transform the raw output f(x) into a probability
p(x) with the sigmoid function :

p(x) = o(f(x)) = T1o7®

0.23
0.20
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where the sigmoid function is defined as:

1

The reference value (base value) is the mean of f (x) and the
associated probability is the overall prevalence in the training
sample.

Fig. 3 below illustrates a correctly predicted low fall risk
(f(x) =0.23) compared with the base value of 0.48.
Protective factors such as a lower MMSE score of 18,
preserved ADL of 6, and a high IADL of 8 strongly
contributed to reducing the predicted risk. A history of falls
also contributed to lowering the prediction. Although risk-
increasing variables such as the absence of a pathological
one-leg stance and a low SPPB score of 4 were present, they
were outweighed by the protective factors.

Fig. 4 below illustrates a case classified as high fall risk,
with a predicted probability of 0.65. However, the prediction
is incorrect; in the collected data, the patient did not fall.
Several strong risk factors were present including a history of
falls, dyslipidemia, low IADL (6) and a low SPPB score (9)
all of which contributed to increasing the predicted risk.
Nevertheless, these were insufficiently weighted by the
model while mitigating factors such as a relatively high
MMSE score (23), a non-pathological SLB and a moderate
ADL score (6) overly influenced the output leading to a
misclassification. This highlights the model’s limitation in
edge cases where compensatory features may mask critical
risks.

These personalized predictions of two different patients
highlight that the model’s outputs do not depend solely on
fall history, even though it is the strongest predictor among
all variables (Fig. 2). The trends observed in the SHAP values
of all variables in Fig. 2 are confirmed by the prediction
shown in Fig. 3.

035 040 045 0.50

) )

025 0.30
SPPB=4.0 Fell in past yea

Pathological SLB = 0.0 1.0

(S N

]
MMSE = 18.0 ADL = 6.0

ADL=8.0

Figure 3. Correct Prediction with SHAP

03 04 05

nigher «lowe

0.65

Dyslipidemia = 0.0 [ADL = 6.0 SPPB =9.0

06 07
Fell in past year= 1.0 | MMSE =23.0 Pathological SLB=1.0| ADI

Figure 4. Incorrect Prediction with SHAP
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IV. DISCUSSION

The evaluation of various fall risk predictors (see Table
1), based on data from patients who completed both the first
and second visits, revealed that most variables showed
significant differences between fallers and non-fallers. This
highlights the importance of identifying predictive factors
within the least stable clusters (i.e., those in which falls were
observed), as opposed to more stable clusters. Among the
variables analyzed, the following were significantly different
depending on group membership (fallers vs. non-fallers):
gender (female), ADL score, IADL score, SPPB score,
presence of a pathological GDS score, pathological SLB and
participation in leisure activities.

Among these variables, only sex and participation in
leisure activities pertain to the socio-environmental domain
and could be collected in other protocols. The remaining
variables are scores derived from the CGA conducted at the
patients' homes. These findings support the hypothesis that a
holistic approach is necessary for predicting fall risk.
Specifically, the pathological GDS score reflects the
thymic/cognitive dimension, while the ADL, IADL and
SPPB scores, along with the pathological one-leg stance,
reflect the physical/organic dimension.

Using the variables most significantly associated with fall
risk (see Table II) as input data represents a relevant strategy,
as the model’s objective is to differentiate fallers from non-
fallers in a personalized manner. In order to remain aligned
with the clinical approach of identifying predictive factors to
develop targeted prevention plans, all variables identified
(see Table II) were retained for model training. Fig.2
confirms the importance of these variables, showing that they
rank among the most influential in the XGBoost model, with
the exception of gender and pathological GDS score, which
were replaced by dyslipidemia and MMSE score in terms of
predictive weight. The integration of dyslipidemia, a
cardiovascular risk factor and the MMSE score, a marker of
cognitive function, further reinforces the model’s holistic
approach.

Not every feature within the three ROF dimensions is a
predictive factor for falls. The effectiveness of a predictive
factor depends on its statistical significance, correlation with
fall occurrences and its interaction with other variables across
the physical/organic, socio-environmental and cognitive
dimensions. In some studies, the identified predictive
variables did not encompass all three dimensions of ROF.
Kawazoe et al. [27], Tkeda et al. [28] and Cella et al. [29]
demonstrated that age category related to socio-environmental
was a predictor of falls, suggesting a strong association
between age and falls. Bath et al. [30] found that the predictive
variables related to the socio-environmental dimension are
diverse and varied, contributing to effective prevention. In
fact, a higher number of variables related to gait and balance
is associated with a more robust predictive model for falls.

In the literature review conducted by Rubenstein, only
cognitive impairment was identified as a predictive variable
related to the thymic/cognitive [31]. Conversely,
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Ikeda et al. [28], Kawazoe et al. [27] and Bath et al. [30]
identified at least two predictive variables involving the
thymic/cognitive dimension, providing a better understanding
of the ROF associated with the thymic/cognitive dimension
and facilitating preventive measures. In those features, we can
find fear of falling, depressive symptoms, self-rated health,
impaired consciousness and dementia at admission. Recent
studies by Ikeda et al. [28] and Kawazoe et al. [27] achieved
Area Under the receiver operating characteristic Curve (AUC)
scores of 88% and 85%, respectively, using comprehensive
approaches. lkeda et al. [28] employed a Random Forest-
based Boruta algorithm for feature selection, while Kawazoe
et al. [27] used a combination of Bidirectional Encoders and
Bidirectional Long Short-Term Memory (BiLSTM) networks
to process sequential data. These AUC scores indicate strong
model performance, reflecting high discriminative ability in
classification tasks [25].

Pennone et al. [32] highlighted the difficulty in predicting
fall risk among older adults with low levels of daily activity,
emphasizing the importance of measuring such activity using
standardized indicators. In our predictive model, we included
ADL and IADL scores, which are already well-established in
the literature as robust predictive factors [33], [34], [35]. A
history of falling, which by definition places an older adult at
risk of recurrent falls has consistently been identified as a
major predictor in recent studies when collected. It is also
consistently ranked among the most influential variables in
predictive fall models [28], [29], [36], [37]. The cognitive
dimension represented here by the MMSE score has also been
widely recognized in prior research as an important
determinant of fall risk [38], [39], [40]. In addition,
Bharadwaz et al. [41] emphasized the influence of depression
and sleep disorders on fall risk. Although the pathological
GDS score was not among the most influential variables in
our final model, it remains relevant when analyzing
trajectories. As for sleep disturbances, while not directly
measured their impact likely manifests indirectly through
reduced performance in activities of daily living further
justifying the inclusion of ADL and IADL scores in our
predictive approach.

Pathological SLB, combined with the SPPB score, which
evaluates gait and balance ability, emerged as one of the
strongest determinants in predicting fall risk. Several studies
have confirmed that these variables reflecting the physical
and organic dimension are essential fall predictors [36], [42],
[43], [44]. In the work of Lathouwers et al. [45], it was also
shown that maintaining physical, mental, or social activity
significantly reduces the probability of falling in older adults,
a finding that aligns with our own results.

Indeed, Landers et al. [46] demonstrated that such
activities help prevent the onset of fear of falling (FOF) and
contribute to maintaining a high level of confidence in one’s
balance abilities as measured by the Activities-specific
Balance Confidence (ABC) scale, both identified as major
risk factors. Similarly, Schumann et al. [47] recently
highlighted the role of FOF as a predictor of falling.
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The only variable present in our model that is notably
absent in recent studies is dyslipidemia, a cardiovascular risk
factor. This discrepancy may be explained by the
methodological specificity of our study, which was based on
data collected directly from patients in their homes, allowing
for a more integrative assessment of overall health. The
inclusion of dyslipidemia in our model underscores the
importance of considering cardiovascular risk as a potential
contributor to falls, especially when falls occur suddenly and
without prior functional warning signs.

While fall history is consistently identified as one of the
most influential predictors of future falls, our analysis shows
that the model does not rely exclusively on this variable to
make its predictions (Fig. 3 and Fig. 4). SHAP value
interpretation reveals that the XGBoost model incorporates a
wide range of factors, including physical performance,
functional autonomy, cognitive status and psychosocial
indicators, when estimating fall risk.

In several correctly classified cases, the presence of a
prior fall is counterbalanced by protective factors such as
high ADL and IADL scores, preserved cognitive function (as
indicated by MMSE) and non-pathological balance
performance (e.g., SPPB score or SLB). This demonstrates
that the model takes into account the complex interplay
between risk and protective variables rather than basing its
prediction on fall history alone.

Inversely, certain misclassified cases highlight that a
history of falls does not always lead to a high-risk prediction.
When other variables present a favorable profile, the model
may underestimate the actual risk, suggesting that fall history
while important is insufficient on its own to ensure predictive
accuracy.

Moreover, the model’s use of additional variables such as
dyslipidemia and cognitive scores reflects a broader more
integrative view of fall risk. These results confirm the
necessity of a multidimensional approach and support the
implementation of interpretable machine learning models
that can provide individualized, clinically meaningful
insights beyond any single predictor.

This study confirms the relevance of machine learning
models, particularly XGBoost for predicting fall risk in older
adults with good discriminative performance and calibration.
The analysis of SHAP values enabled a transparent and
clinically meaningful ranking of predictive factors. Fall
history, impairments in physical performance (SPPB, one-leg
stance) and functional limitations (ADL, IADL) emerged as
the main determinants. Cognitive and psychosocial factors
play a secondary yet non-negligible role. These findings
highlight the importance of a multidimensional assessment
that incorporates interpretable technological tools to guide
personalized prevention strategies. The integration of such
approaches into geriatric practice could enhance early
identification of at-risk patients and contribute to reducing
the incidence of falls.

Nonetheless, our work presents several limitations. First,
although the XGBoost model demonstrated good
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performance (AUC of 0.76, Brier score of 0.19, precision of
0.78), its implementation in clinical practice could be
hindered by the time required to perform the assessments,
even though the number of variables that significantly
influence predictions is relatively low. This complexity may
limit its use by healthcare professionals in care settings where
workload and time constraints are critical factors. A clinical
arbitration process aimed at identifying substitutable or
priority variables could facilitate the operational integration
of the model.

Moreover, the model was built using all variables
identified as predictive, without applying a selection
procedure based solely on significant differences between
fallers and non-fallers. Such a selection approach might
optimize the trade-off between predictive performance and
ease of use.

From a methodological standpoint, the study did not
include a control group. A randomized design comparing a
control group (receiving no care) and an intervention group
(receiving personalized follow-up) would have allowed for a
more detailed analysis of the impact of care on the dynamics
of fall risk factors and would have helped to better identify
common or distinguishing predictive variables between the
two groups.

Finally, the data used were exclusively collected from
patients in France. This geographical limitation restricts the
generalizability of the findings to other cultural and socio-
environmental contexts. Since falls are a multifactorial
phenomenon strongly influenced by lifestyle, home
environment and care practices, significant variations may
exist in other countries. In particular, the socio-
environmental dimension deserves to be examined through a
multicenter international approach.

Overall, while our model is grounded in a realistic
approach aimed at clinical integration, these limitations open
avenues for improvement in both methodological robustness
and the transferability of results.

V. CONCLUSION

This study contributes to advancing fall prevention by
leveraging a 12-year dataset collected in home settings to
develop an Al-based predictive model. Our approach
integrates the three dimensions of ROF, optimizing model
performance while reducing the number of required input
features.

By applying explainable Al techniques, we identified the
contribution of each feature to fall risk, thereby supporting the
development of more targeted and effective intervention
strategies. These findings may help enhance the quality of
elderly care by informing personalized prevention efforts and
guiding future research in geriatric risk assessment.

As with most Al models, ours can be continuously refined
with additional data over time. In our case, improving the
model also provides an opportunity to collect data from
patients' homes while offering them personalized fall
prevention advice. During the intervals between practitioner
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visits, necessary adjustments to home configurations can also
be made if needed.

The clinical utility of the final model could be explored in
future studies using Decision Curve Analysis (DCA). This
method helps identify the clinical range in which the model
provides a net benefit, thereby allowing practitioners to
determine the optimal threshold for patient management while
taking available resources into account.
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