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Abstract—Falls among older adults are a major public health 

concern due to their frequency, consequences and impact on 

autonomy and mortality. The Risk Of Falling (ROF) is linked to 

three dimensions: physical/organic, socio-environmental and 

thymic/cognitive.  Identifying individuals at high risk is essential 

to implementing personalized prevention strategies. While fall 

history is a well-known predictor, the integration of multi-

dimensional health data and interpretable machine learning 

models may enhance prediction accuracy. We conducted a 

retrospective analysis of 1,648 older adults who underwent a 

Comprehensive Geriatric Assessment (CGA) at two time points. 

Based on clinical, functional, cognitive and psychosocial 

variables, we developed and compared four supervised 

classification models: logistic regression, Support Vector 

Machine (SVM), random forest and eXtreme Gradient Boosting 

(XGBoost). Predictive performance was evaluated using Area 

Under the receiver operating characteristic Curve (AUC), F1-

score and Brier score. SHapley Additive exPlanations (SHAP) 

values were used to interpret variable contributions at the 

individual level. XGBoost and random forest models 

demonstrated the best performance (AUC = 0.76 and 0.77, F1-

score = 0.72 and 0.73, Brier score = 0.19 for both). SHAP 

analysis confirmed that fall history was a strong predictor but 

not the sole contributor to the model's decisions. Functional 

limitations,  low Activities of Daily Living  (ADL) and low 

Instrumental Activities of Daily Living (IADL), impaired 

physical performance (low Short Physical Performance Battery 

(SPPB)), pathological Single Leg Balance (SLB) and cognitive 

scores (Mini-Mental State Examination (MMSE)) also played 

substantial roles. Misclassified cases illustrated the importance 

of multidimensional balance in the model's outputs. Our 

findings support the use of interpretable machine learning 

models, particularly XGBoost, for personalized fall risk 

prediction in older adults. Beyond fall history, a combination of 

physical, cognitive and psychosocial variables contributes 

meaningfully to risk estimation. Such models may help guide 

targeted preventive interventions in geriatric practice, provided 

operational complexity is managed to allow real-world clinical 

integration. 

Keywords-fall; older population; prevention; personalized 

medicine; AI. 

I.  INTRODUCTION 

This article is an extended version of the international 
conference paper entitled “Enhancing Fall Prediction in 
Older Adults: A Data-Driven Approach to Key Parameter 
Selection” [1]. In this extended version, some models have 
been upgraded by including dyslipidemia, a cardiovascular 
factor, among the predictive variables for falls. However, we 
retain XGBoost as our final model, since it remains one of the 
most effective approaches for ensuring both high predictive 
performance and interpretability in personalized prediction. 

According to the World Health Organization (WHO), 
older individuals are those aged ≥ 60 years. The proportion of 
older individuals worldwide is expected to nearly double 
between 2015 and 2050, increasing from 12% to 22% [2]. The 
National Institute of Statistics and Economic Studies (INSEE) 
estimates that one in three individuals in France will be 
aged ≥ 60 years by 2060, compared to one in four individuals 
in 2021 [3]. Aging leads to a gradual decline in functional 
capacity, increasing the ROF [4]. Falls in older adults 
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represent a major public health concern due to their high 
frequency, their functional, psychological and economic 
consequences, as well as their impact on mortality. In the 
study by Tan et al. [5], falling was identified as one of the main 
predictive factors integrated into a model designed to identify 
long-term care patients at highest risk of death. Similarly, 
Shaik et al. [6] highlighted that, in both older and younger 
individuals, falls, along with bone pathologies, are among the 
primary causes of hip fractures. 

Fall prevention has always been a central focus in medical 
practice, notably through clinical test batteries or by adjusting 
specific functions according to identified predictive factors, 
generally using linear regression models (LRMs), after 
grouping patients based on shared health characteristics. 
While traditional regression models have long been the 
standard tool for analyzing risk factors, machine learning 
methods now offer improved predictive performance by 
accounting for complex interactions between variables. 

We developed predictive models using as input data the 
factors identified in various fall trajectories. The objective is 
to evaluate whether these variables are sufficiently 
discriminative to power an effective predictive model, among 
all those tested and thereby contribute to a targeted and 
personalized fall risk prevention strategy. Early identification 
of ROF facilitates the administration of personalized 
interventions for individuals [7]. 

Most recent studies predict falls using sensors or 
Electronic Health Records (EHRs). With data collected 
directly from elderly individuals’ homes, our objective is to 
develop an effective predictive model using the fewest 
possible features.  

In this study, we evaluated and compared several 
classification algorithms to predict fall risk based on clinical, 
functional and psychosocial data collected from a CGA. 
Model interpretability was ensured using SHAP values, in 
order to facilitate clinical understanding of the results and to 
precisely identify the factors that most contributed to the 
prediction of fall risk. 

II. MATERIALS AND METHODS 

A. Study Design 

Our study is based on a dataset collected between 

September 2011 and September 2023 through multiple home 

visits conducted by the Unit for Prevention, Monitoring and 

Analysis of Ageing (UPSAV – Unité de Prévention, de Suivi 

et d'Analyse du Vieillissement) at Limoges University 

Hospital, Limoges, France. The UPSAV team comprises 

nurses, geriatricians and other healthcare professionals. Each 

patient underwent an initial visit, followed by a second visit 

six months later and a third visit one year after the second. If 

the patient remains in the study after the third visit, 

subsequent visits occur annually. The study includes men and 

women aged 60 and older. To be eligible, participants had to 

meet the following criteria: 

• Provide written informed consent, either personally 

or through a legal representative. 

• Not be enrolled in a clinical trial that modifies their 

standard medical management. 

• Not have progressive pathologies that could 

significantly affect short-term prognosis. 

• Not reside in a long-term care unit or a nursing home. 

• Be covered by social security at 100%. 

B. Falls and Comprehensive Geriatric Assessment 

During the Follow-up, a fall was defined as 

unintentionally coming to rest on the ground or other lower 

level not as a result of a major intrinsic event (e.g., 

myocardial infarction, stroke, or seizure) or an overwhelming 

external hazard (e.g., hit by a vehicle) [8], [9]. Each patient 

underwent a CGA and received a personalized care plan. The 

CGA is a multidimensional and standardized approach 

designed to enhance clinical practices in the care of older 

adults through a comprehensive health assessment. CGA are 

widely used to evaluate the physical, cognitive, social and 

medical factors associated with fall risk in older adults [10]. 

Although they provide valuable clinical information, CGAs 

often involve numerous variables and can be time-consuming 

to administer and interpret, particularly in home care settings. 

This highlights the growing need for efficient and scalable 

tools that can help prevent falls without increasing the burden 

on caregivers or patients. 
Falls may occur repeatedly within a year. In geriatric 

practice, individuals who experience at least two falls within 
a 12-month period are classified as “fallers” [11].  

A holistic fall prediction approach considers three key 
dimensions: 

• The physical/organic dimension gathers data related 
to an individual’s medical history and current 
symptoms, diagnosis of underlying health issues and 
treatment effectiveness. 

• The thymic/cognitive dimension refers to an 
individual’s mental, emotional and cognitive states. 

• The socio-environmental dimension refers to age, 
gender, family and social support, housing 
conditions, home configuration, the presence of 
slippery rugs, stairs without railings, uneven surfaces 
and inadequate lighting. 

Evaluating the ROF involves at least a gait and balance 
assessment of the physical/organic dimension and the age and 
gender of the socio-environmental dimension. Data involving 
the thymic/cognitive dimension allow for a comprehensive 
review of the potential causes of a fall. The term “dimension” 
refers to the types of factors that contribute to the ROF and 
their evaluation. 

Hospitalized patients often receive incomplete health 
assessments across all dimensions. Our home-collected data 
encompass features from all three dimensions. 

C. Data Collection and Variable Processing 

Covariates included fall occurrences, cardiovascular risk 

factors, socio-environmental characteristics and the CGA 

summary. Fall occurrences refer to falls that occurred 

between visits. 
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Socio-environmental characteristics assessed in the home 

included gender, age, lifestyle, housing conditions, presence 

of an elevator, long-term illness status, leisure activities, 

social activity, human assistance and pet ownership. 

Cardiovascular risk factors considered were 

hypertension, diabetes, dyslipidemia, obesity and tobacco 

use. 

The CGA summary encompassed multiple functional and 

cognitive assessments, including: 

• Verbal fluency test [12], 

• Single Leg Balance (SLB) test, scored 0-60 

seconds [13], 

• Clock-drawing test (CDT), scored 0-5 [14], 

• Instrumental Activities of Daily Living 

(IADL), scored 0-8 [15], 

• Mini-Mental State Examination (MMSE), 

scored 0-30 [16], 

• Mini Nutritional Assessment (MNA), scored 0-

30 [17], 

• Short Physical Performance Battery (SPPB), 

scored 0-12 [18], 

• Geriatric Depression Scale (GDS), scored 0-30 

[19]. 

For consistency, in the rest of the document, we added 

'Pathological' to the feature names SLB test, CDT, Verbal 

Fluency and GDS to indicate whether the test result is 

positive or not. 

D. Data analysis  

In our study, the sample size decreased from 1,648 

patients at the first visit to 954 patients followed up at the 

second visit. A descriptive analysis was conducted to provide 

an overview of the study variables and their distribution 

between individuals who had fallen and those who had not. 

Pearson’s Chi-squared test was used for categorical variables, 

while the Wilcoxon rank-sum test was applied to continuous 

variables. The significance threshold for all statistical tests 

was set at a p-value (P) < 0.05 and all reported P-values were 

two-tailed. The p-value or probability value is a statistical 

measure ranging between 0 and 1. It expresses the probability 

of obtaining a result at least as extreme as the one observed 

under the assumption that the null hypothesis (H₀) is true. The 

null hypothesis used as the starting point of a statistical test 

states that there is no effect, no difference, or no relationship 

between the variables under study. According to the most 

commonly accepted convention a result is considered 

statistically significant when p < 0.05. In this case, the 

probability of obtaining the observed data (or more extreme 

outcomes) under H₀, is less than 5%. The null hypothesis is 

therefore rejected in favor of the alternative hypothesis (H₁), 

suggesting the existence of an effect or a difference. All 

statistical analyses were performed using R software (version 

4.4.0, R Foundation for Statistical Computing, Vienna, 

Austria). 

E. Model Development Using Supervised Machine 

Learning  

The construction of a predictive model relies primarily on 

selecting a limited number of relevant variables. In geriatrics, 

preventive strategies implemented by geriatricians 

traditionally rely on "predictive factors" identified using 

logistic regression models (LRM). These factors correspond 

to variables significantly associated with fall risk across 

different patient groups (or clusters), formed based on 

longitudinal (or panel) data collected at multiple time points 

during the study. 

In our work, after identifying the fall trajectories specific 

to the study population, we extracted the most explanatory 

variables for each of these trajectories. These predictive 

variables then served as the basis for building several 

predictive models, which we compared in order to evaluate 

their performance. 

We developed a fall risk prediction model by selecting the 

best-performing algorithm among four classifiers: logistic 

regression, Support Vector Machine (SVM), eXtreme 

Gradient Boosting (XGBoost) and Random Forest. Logistic 

regression is a linear supervised classification model 

particularly suited for binary problems . SVM, on the other 

hand, aims to maximize the margin between classes using an 

optimal hyperplane [20]. Ensemble models such as XGBoost 

and Random Forest rely on aggregating multiple decision 

trees: the former through a sequential boosting process and 

the latter through a bagging mechanism, both of which 

enhance model accuracy and robustness [21], [22]. 

To optimize the performance of each classifier, we used 

the RandomizedSearchCV method, which randomly explores 

a subset of hyperparameter combinations within a defined 

search space. Unlike GridSearchCV, which exhaustively 

evaluates all possible combinations, this approach reduces 

computational cost while efficiently exploring influential 

parameters through cross-validation. Finally, to calibrate the 

predicted probabilities of the models, we applied 5-fold 

cross-validation calibration using CalibratedClassifierCV 

(with cv=5) before evaluating final performance on the test 

set. 

No missing data were observed among the variables 

included in the analysis. To address class imbalance, the 

RandomUnderSampler method was applied, which consists 

of randomly removing observations from the majority class 

to rebalance the dataset. Given the sensitive and real nature 

of health data, no synthetic oversampling method was used. 

The dataset was randomly split into a training set (70%) and 

a test set (30%). 

Model performance was evaluated on both the training 

and test sets using several metrics: Area Under the Curve 

(AUC), accuracy, precision, recall, specificity, F1-score and 

Brier score [23], [24], [25]. Among these, AUC, F1-score and 

Brier score were selected as the main evaluation indicators. 

AUC assesses the model’s discrimination ability, the F1-

score captures the balance between precision and recall, 

while the Brier score measures the accuracy of probabilistic 
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predictions; it is calculated as the mean squared difference 

between predicted probabilities and actual outcomes. A high 

AUC and F1-score, combined with a low Brier score, indicate 

good classification performance and accurate probability 

estimation. 
For model interpretation, SHAP values were computed to 

quantify the contribution of each variable to the individual 
prediction of fall risk. SHAP is an explainable AI method that 
provides insights into the contribution of each feature both 
globally (across the entire dataset) and locally (for individual 
predictions) [26]. All algorithms were implemented in Python 
3.10.16 (Python Software Foundation, Wilmington, DE). 
Variable preprocessing was performed using OneHotEncoder 
for categorical variables and StandardScaler for numerical 
variables, via the scikit-learn library. 

III. RESULTS 

A total of 1,648 individuals met the inclusion criteria for 

the study. Table I presents the baseline socio-environmental 

and health characteristics of the sample that significantly 

differentiate fallers from non-fallers. Among the older adults 

included, 1,113 (68%) were women and 535 (32%) were 

men. Additionally, 73% had hypertension and only 288 

participants (17%) engaged in social activities. The mean age 

of participants was 83 ± 6 years. Regarding falls, 823 

participants (approximately 50%) had experienced a fall 

during the previous year. Concerning housing conditions, 

991 (60%) were homeowners. Furthermore, 449 participants 

(27%) were classified as having depression. 

TABLE I. OVERVIEW OF BASELINE CHARACTERISTICS ACCORDING TO 

FALLS OF THE STUDY 

  Falls of the study  

Features of the study Total sample  

(N = 1,648)  

n (%) 

No falls 

(n = 794, 

48.2%) 

Falls 

(n = 854, 

51.8%) 

p-

value* 

Woman 1,113 (68%) 500 (63%) 613 (72%) <0.001 

Age, m ± SD, years 83 ± 6 82 ± 6 83 ± 6 0.001 

Diabetes 339 (21%) 146 (18%) 193 (23%) 0.035 

Leisure 1,377 (84%) 689 (87%) 688 (81%) <0.001 

Social activity 288 (17%) 162 (20%) 126 (15%) 0.003 

Human assistance 1,402 (85%) 644 (81%) 758 (89%) <0.001 

ADL, m ± SD 5 ± 1 5 ± 1 5 ± 1 <0.001 

IADL, m ± SD 6 ± 2 6 ± 2 5 ± 2 <0.001 

MMSE, m ± SD 23 ± 7 24 ± 7 23 ± 7 0.006 

Pathological CDT 585 (35%) 244 (31%) 341 (40%) <0.001 

Pathological  

verbal fluency 

672 (41%) 269 (34%) 403 (47%) <0.001 

MNA, m ± SD 24 ± 4 24 ± 4 23 ± 4 <0.001 

SPPB, m ± SD 7 ± 4 7 ± 4 6 ± 4 <0.001 

Pathological GDS 449 (27%) 176 (22%) 273 (32%) <0.001 

Pathological SLB 708 (43%) 261 (33%) 447 (52%) <0.001 
*Pearson's Chi-squared test; Wilcoxon rank sum test. Statistically significance (p-value < .05). 

m, mean; SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental 

Activities of Daily Living; MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance 

Battery; GDS, Geriatric Depression Scale.   

Data are shown as the number (percentage) or mean ± SD unless otherwise indicated. 

In Table II, which presents the variables included in our 

predictive models, it is observed that among the 954 

participants included in the study, 48.6% reported at least one 

fall prior to the follow-up period. Fallers exhibited several 

characteristics that were significantly different (p ≤ 0.05) 

from non-fallers. Fallers were predominantly women 

(74% vs 66%). Their functional and physical abilities were 

generally more impaired: lower ADL scores, reduced SPPB 

scores (6 ± 4 vs 8 ± 3) and lower IADL scores. Depression, 

as indicated by a pathological GDS score, was more frequent 

among fallers (31% vs 20%) and postural instability, assessed 

by a pathological one-leg stance test, was observed in 46% of 

fallers compared to 34% of non-fallers. Participation in 

leisure activities was also slightly lower among fallers (86% 

vs 91%), which could reflect behavioral withdrawal or 

functional restriction. 

TABLE II. OVERVIEW OF THE SIX-MONTH INPUT FEATURES USED IN OUR 

PREDICTIVE MODELS 

 Falls of the study (N = 954)  

Features Total sample 

(N = 954) 

n (%) 

No falls 

(n = 490, 51.4%) 

Falls  

(n = 464, 48.6%) 

p-

value* 

Woman 664 (70%) 321 (66%) 343 (74%) 0.005 

Hypertension 688 (72%) 353 (72%) 335 (72%) 0.96 

Dyslipidemia 453 (47%) 237 (48%) 216 (47%) 0.57 

Obesity 254 (27%) 122 (25%) 132 (28%) 0.21 

Leisure 843 (88%) 445 (91%) 398 (86%) 0.015 

MMSE, m ± SD 25 ± 6 25 ± 6 25 ± 6 0.13 

SPPB, m ± SD 7 ± 4 8 ± 3 6 ± 4 <0.001 

ADL, m ± SD 5 ± 1 6 ± 1 5 ± 1 <0.001 

IADL, m ± SD 6 ± 2 7 ± 2 6 ± 2 <0.001 

Pathological GDS 238 (25%) 96 (20%) 142 (31%) <0.001 

Pathological SLB 381 (40%) 167 (34%) 214 (46%) <0.001 
*Pearson's Chi-squared test; Wilcoxon rank sum test. Statistically significance (p-value < .05).m,mean; 

SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; 

MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance Battery; GDS, Geriatric Depression Scale. 

Data are shown as the number (percentage) or mean ± SD unless otherwise indicated. 

In contrast, hypertension, dyslipidemia, obesity and 

MMSE scores were not statistically associated with falls in 

this cohort. 

These results support the hypothesis of a multifactorial 

etiology of falls, primarily driven by physical function 

impairment, loss of autonomy, mood disorders, depression 

and postural balance issues. 

A comparison of Table I and Table II shows that variables 

such as hypertension, obesity and dyslipidemia are predictive 

factors of falls but do not significantly differentiate fallers 

from non-fallers. The remaining variables reported in Table 

II are  also significant in Table I.   

Fig. 1 presents the AUC of the four models evaluated for 

predicting fall risk, namely logistic regression, SVM, 

XGBoost and random forest. 
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Figure 1. Area Under the Curve (AUC) of the Different Models 

 

Table III reports the performance metrics of the different 

models. All models achieved an identical precision of 0.78, 

with balanced F1-scores ranging between 0.71 and 0.73, 

indicating comparable overall classification performance. 

TABLE III. SUMMARY OF PREDICTIVE PERFORMANCE OF THE DIFFERENT 

MODELS 

Metrics 
Logistic 

Regression 
SVM XGBoost 

Random 

Forest 

AUC 0.74 0.75 0.76 0.77 

Accuracy 0.73 0.71 0.72 0.73 

Precision 0.78 0.78 0.78 0.78 

Recall 0.68 0.65 0.67 0.68 

Specificity 0.78 0.78 0.78 0.78 

F1 score 0.73 0.71 0.72 0.73 

Brier score 0.20 0.20 0.19 0.19 

 

However, XGBoost and Random Forest show better areas 

under the ROC curve, with AUC values of 0.76 and 0.77 

respectively (see Fig. 1), suggesting higher discriminative 

ability compared to logistic regression (AUC = 0.74) or SVM 

(AUC = 0.75). Recall is slightly lower for XGBoost (0.67) 

than for Random Forest (0.68), which may reflect a tendency 

to under-detect certain fall cases. Finally, the lowest Brier 

scores (0.19) are achieved by XGBoost and Random Forest, 

indicating better probabilistic calibration of predictions. 

Thus, although all models perform similarly in classification, 

Random Forest appears to offer the best trade-off between 

discrimination and calibration. 

XGBoost and Random Forest are the models with the best 

overall performance. Both are tree-based methods; while 

Random Forest makes binary decisions, XGBoost has the 

advantage of computing individualized probabilities, which 

makes it more suitable for personalized care approaches. To 

better understand the contribution of each variable to the 

model’s predictions, we apply SHAP to XGBoost. 

The analysis of SHAP values presented in Fig. 2 

highlights both the relative importance and the direction of 

effect of each variable in predicting fall risk within the 

XGBoost model. 

 
 

Figure 2. Impact of the Different Variables on the Best Model (XGBoost) 

 

The use of SHAP values provides transparent model 

interpretation and may help inform priorities for targeted 

preventive strategies. A low score (values in blue) contributes 

significantly to risk reduction, whereas a high score (shown 

in red) is associated with increased predicted risk.  

Among all the variables considered, fall history emerges 

as the most influential factor thereby confirming the strong 

predictive power of prior fall events. Physical performance, 

as assessed by the SPPB score also plays a central role in fall-

risk prediction, low SPPB values (indicating physical 

impairment) are strongly associated with higher risk. 

Pathological single-leg stance reflecting balance impairments 

does not appear to be correlated with elevated fall risk ; in 

some cases, it may even be linked to severely limited mobility 

thereby reducing exposure to risk through restricted 

movement. 

At the cognitive level, the MMSE score shows a more 

nuanced relationship while low scores are generally 

considered a risk factor, their impact appears less pronounced 
in the model. Conversely, higher scores may 

counterintuitively be associated with increased risk possibly 

due to overconfidence or engagement in unsafe physical 

activities. 

The ADL and IADL scores indicators of functional 

autonomy exhibit patterns consistent with clinical evidence 

reduced functional capacity is generally associated with 

increased fall risk. However, very low IADL scores may not 

strongly correlate with higher risk suggesting that advanced 

dependency could reduce exposure to hazardous situations. 

Dyslipidemia reflecting cardiovascular impairment is  

unexpectedly associated with a lower risk of falls potentially  

indicating a tendency to avoid physical activity due to fear of 

falling. 
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Other variables including hypertension, obesity, gender, 

and the presence of depression (pathological GDS), exert a 

more moderate or marginal influence on model predictions. 

Participation in leisure activities shows a modest protective 

effect, although its overall contribution to fall-risk prediction 

remains limited. 

In summary, this analysis underscores that the most 

influential predictors of fall risk are functional and physical 

domains, while cognitive and psychosocial dimensions exert 

secondary effects. 

After examining the impact of each variable on the 

model’s predictions, we now turn to some examples of 

personalized predictions. 

The personalized predictions will be evaluated using the 

final selected XGBoost model. XGBoost is a gradient 

boosting ensemble algorithm that aggregates multiple weak 

decision trees to produce a high-performing predictive model 

[22]. In binary classification, it generates a raw output in log-

odds, which is then transformed by the logistic function to 

obtain a probability. The log-odds (logarithm of the odds) is 

a way to transform a probability into a value that can range 

from –∞ to +∞. The raw output value of XGBoost is the 

weighted sum of the decision trees: 

𝑓(𝑥) =  ∑ 𝑇𝑘(𝑥)

𝐾

𝑘=1

  

 

where: 

• 𝑇𝑘(𝑥)  is the output of the k-th tree for the 

observation, 

• 𝐾 is the total number of trees, 

• 𝑓(𝑥) is the raw model output, expressed in log-odds. 

 We then transform the raw output 𝑓(𝑥) into a probability 

𝑝(𝑥) with the sigmoid function : 

𝑝(𝑥) =  𝜎(𝑓(𝑥)) =  
1

1 + 𝑒−𝑓(𝑥)
 

where the sigmoid function is defined as: 

𝜎(𝑥)  =  
1

1 + 𝑒−𝑥 

The reference value (base value) is the mean of 𝑓(𝑥) and the 

associated probability is the overall prevalence in the training 

sample. 

Fig. 3 below illustrates a correctly predicted low fall risk 

( 𝑓(𝑥)  = 0.23) compared with the base value of 0.48. 

Protective factors such as a lower MMSE score of 18, 

preserved ADL of 6, and a high IADL of 8 strongly 

contributed to reducing the predicted risk. A history of falls 

also contributed to lowering the prediction. Although risk-

increasing variables such as the absence of a pathological 

one-leg stance and a low SPPB score of 4 were present, they 

were outweighed by the protective factors. 

Fig. 4 below illustrates a case classified as high fall risk, 

with a predicted probability of 0.65. However, the prediction 

is incorrect; in the collected data, the patient did not fall. 

Several strong risk factors were present including a history of 

falls, dyslipidemia, low IADL (6) and a low SPPB score (9) 

all of which contributed to increasing the predicted risk.  

Nevertheless, these were insufficiently weighted by the 

model while mitigating factors such as a relatively high 

MMSE score (23), a non-pathological SLB and a moderate 

ADL score (6) overly influenced the output leading to a 

misclassification. This highlights the model’s limitation in 

edge cases where compensatory features may mask critical 

risks. 

These personalized predictions of two different patients 
highlight that the model’s outputs do not depend solely on 

fall history, even though it is the strongest predictor among 

all variables (Fig. 2). The trends observed in the SHAP values 

of all variables in Fig. 2 are confirmed by the prediction 

shown in Fig. 3. 

Figure 4. Incorrect Prediction with SHAP 

Figure 3. Correct Prediction with SHAP 
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IV. DISCUSSION  

The evaluation of various fall risk predictors (see Table 

II), based on data from patients who completed both the first 

and second visits, revealed that most variables showed 

significant differences between fallers and non-fallers. This 

highlights the importance of identifying predictive factors 

within the least stable clusters (i.e., those in which falls were 

observed), as opposed to more stable clusters. Among the 

variables analyzed, the following were significantly different 

depending on group membership (fallers vs. non-fallers): 

gender (female), ADL score, IADL score, SPPB score, 

presence of a pathological GDS score, pathological SLB and 

participation in leisure activities. 

Among these variables, only sex and participation in 

leisure activities pertain to the socio-environmental domain 

and could be collected in other protocols. The remaining 

variables are scores derived from the CGA conducted at the 

patients' homes. These findings support the hypothesis that a 

holistic approach is necessary for predicting fall risk. 

Specifically, the pathological GDS score reflects the 

thymic/cognitive dimension, while the ADL, IADL and 

SPPB scores, along with the pathological one-leg stance, 

reflect the physical/organic dimension. 

Using the variables most significantly associated with fall 

risk (see Table II) as input data represents a relevant strategy, 

as the model’s objective is to differentiate fallers from non-

fallers in a personalized manner. In order to remain aligned 

with the clinical approach of identifying predictive factors to 

develop targeted prevention plans, all variables identified 

(see Table II) were retained for model training. Fig. 2 

confirms the importance of these variables, showing that they 

rank among the most influential in the XGBoost model, with 

the exception of gender and pathological GDS score, which 

were replaced by dyslipidemia and MMSE score in terms of 

predictive weight. The integration of dyslipidemia, a 

cardiovascular risk factor and the MMSE score, a marker of 

cognitive function, further reinforces the model’s holistic 

approach. 
Not every feature within the three ROF dimensions is a 

predictive factor for falls. The effectiveness of a predictive 
factor depends on its statistical significance, correlation with 
fall occurrences and its interaction with other variables across 
the physical/organic, socio-environmental and cognitive 
dimensions. In some studies, the identified predictive 
variables did not encompass all three dimensions of ROF. 
Kawazoe et al. [27], Ikeda et al. [28] and Cella et al. [29] 
demonstrated that age category related to socio-environmental 
was a predictor of falls, suggesting a strong association 
between age and falls. Bath et al. [30] found that the predictive 
variables related to the socio-environmental dimension are 
diverse and varied, contributing to effective prevention. In 
fact, a higher number of variables related to gait and balance 
is associated with a more robust predictive model for falls. 

In the literature review conducted by Rubenstein, only 
cognitive impairment was identified as a predictive variable 
related to the thymic/cognitive [31]. Conversely, 

Ikeda et al. [28], Kawazoe et al. [27] and Bath et al. [30] 
identified at least two predictive variables involving the 
thymic/cognitive dimension, providing a better understanding 
of the ROF associated with the thymic/cognitive dimension 
and facilitating preventive measures. In those features, we can 
find fear of falling, depressive symptoms, self-rated health, 
impaired consciousness and dementia at admission. Recent 
studies by Ikeda et al. [28] and Kawazoe et al. [27] achieved 
Area Under the receiver operating characteristic Curve (AUC) 
scores of 88% and 85%, respectively, using comprehensive 
approaches. Ikeda et al. [28] employed a Random Forest-
based Boruta algorithm for feature selection, while Kawazoe 
et al. [27] used a combination of Bidirectional Encoders and 
Bidirectional Long Short-Term Memory (BiLSTM) networks 
to process sequential data. These AUC scores indicate strong 
model performance, reflecting high discriminative ability in 
classification tasks [25]. 

Pennone et al. [32] highlighted the difficulty in predicting 

fall risk among older adults with low levels of daily activity, 

emphasizing the importance of measuring such activity using 

standardized indicators. In our predictive model, we included 

ADL and IADL scores, which are already well-established in 

the literature as robust predictive factors [33], [34], [35]. A 

history of falling, which by definition places an older adult at 

risk of recurrent falls has consistently been identified as a 

major predictor in recent studies when collected. It is also 

consistently ranked among the most influential variables in 

predictive fall models [28], [29], [36], [37]. The cognitive 

dimension represented here by the MMSE score has also been 

widely recognized in prior research as an important 

determinant of fall risk [38], [39], [40]. In addition, 

Bharadwaz et al. [41] emphasized the influence of depression 

and sleep disorders on fall risk. Although the pathological 

GDS score was not among the most influential variables in 

our final model, it remains relevant when analyzing 

trajectories. As for sleep disturbances, while not directly 

measured their impact likely manifests indirectly through 

reduced performance in activities of daily living further 

justifying the inclusion of ADL and IADL scores in our 

predictive approach. 

Pathological SLB, combined with the SPPB score, which 

evaluates gait and balance ability, emerged as one of the 

strongest determinants in predicting fall risk. Several studies 

have confirmed that these variables reflecting the physical 

and organic dimension are essential fall predictors [36], [42], 

[43], [44]. In the work of Lathouwers et al. [45], it was also 

shown that maintaining physical, mental, or social activity 

significantly reduces the probability of falling in older adults, 

a finding that aligns with our own results. 

Indeed, Landers et al. [46] demonstrated that such 

activities help prevent the onset of fear of falling (FOF) and 

contribute to maintaining a high level of confidence in one’s 

balance abilities as measured by the Activities-specific 

Balance Confidence (ABC) scale, both identified as major 

risk factors. Similarly, Schumann et al. [47] recently 

highlighted the role of FOF as a predictor of falling. 
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The only variable present in our model that is notably 

absent in recent studies is dyslipidemia, a cardiovascular risk 

factor. This discrepancy may be explained by the 

methodological specificity of our study, which was based on 

data collected directly from patients in their homes, allowing 

for a more integrative assessment of overall health. The 

inclusion of dyslipidemia in our model underscores the 

importance of considering cardiovascular risk as a potential 

contributor to falls, especially when falls occur suddenly and 

without prior functional warning signs. 

While fall history is consistently identified as one of the 

most influential predictors of future falls, our analysis shows 

that the model does not rely exclusively on this variable to 

make its predictions (Fig. 3 and Fig. 4). SHAP value 

interpretation reveals that the XGBoost model incorporates a 

wide range of factors, including physical performance, 

functional autonomy, cognitive status and psychosocial 

indicators, when estimating fall risk. 

In several correctly classified cases, the presence of a 

prior fall is counterbalanced by protective factors such as 

high ADL and IADL scores, preserved cognitive function (as 

indicated by MMSE) and non-pathological balance 

performance (e.g., SPPB score or SLB). This demonstrates 

that the model takes into account the complex interplay 

between risk and protective variables rather than basing its 

prediction on fall history alone. 

Inversely, certain misclassified cases highlight that a 

history of falls does not always lead to a high-risk prediction. 

When other variables present a favorable profile, the model 

may underestimate the actual risk, suggesting that fall history 

while important is insufficient on its own to ensure predictive 

accuracy. 

Moreover, the model’s use of additional variables such as 

dyslipidemia and cognitive scores reflects a broader more 

integrative view of fall risk. These results confirm the 

necessity of a multidimensional approach and support the 

implementation of interpretable machine learning models 

that can provide individualized, clinically meaningful 

insights beyond any single predictor. 

This study confirms the relevance of machine learning 

models, particularly XGBoost for predicting fall risk in older 

adults with good discriminative performance and calibration. 

The analysis of SHAP values enabled a transparent and 

clinically meaningful ranking of predictive factors. Fall 

history, impairments in physical performance (SPPB, one-leg 

stance) and functional limitations (ADL, IADL) emerged as 

the main determinants. Cognitive and psychosocial factors 

play a secondary yet non-negligible role. These findings 

highlight the importance of a multidimensional assessment 

that incorporates interpretable technological tools to guide 

personalized prevention strategies. The integration of such 

approaches into geriatric practice could enhance early 

identification of at-risk patients and contribute to reducing 

the incidence of falls. 

Nonetheless, our work presents several limitations. First, 

although the XGBoost model demonstrated good 

performance (AUC of 0.76, Brier score of 0.19, precision of 

0.78), its implementation in clinical practice could be 

hindered by the time required to perform the assessments, 

even though the number of variables that significantly 

influence predictions is relatively low. This complexity may 

limit its use by healthcare professionals in care settings where 

workload and time constraints are critical factors. A clinical 

arbitration process aimed at identifying substitutable or 

priority variables could facilitate the operational integration 

of the model. 

Moreover, the model was built using all variables 

identified as predictive, without applying a selection 

procedure based solely on significant differences between 

fallers and non-fallers. Such a selection approach might 

optimize the trade-off between predictive performance and 

ease of use. 

From a methodological standpoint, the study did not 

include a control group. A randomized design comparing a 

control group (receiving no care) and an intervention group 

(receiving personalized follow-up) would have allowed for a 

more detailed analysis of the impact of care on the dynamics 

of fall risk factors and would have helped to better identify 

common or distinguishing predictive variables between the 

two groups. 

Finally, the data used were exclusively collected from 

patients in France. This geographical limitation restricts the 

generalizability of the findings to other cultural and socio-

environmental contexts. Since falls are a multifactorial 

phenomenon strongly influenced by lifestyle, home 

environment and care practices, significant variations may 

exist in other countries. In particular, the socio-

environmental dimension deserves to be examined through a 

multicenter international approach. 

Overall, while our model is grounded in a realistic 

approach aimed at clinical integration, these limitations open 

avenues for improvement in both methodological robustness 

and the transferability of results. 

V. CONCLUSION 

This study contributes to advancing fall prevention by 
leveraging a 12-year dataset collected in home settings to 
develop an AI-based predictive model. Our approach 
integrates the three dimensions of ROF, optimizing model 
performance while reducing the number of required input 
features. 

By applying explainable AI techniques, we identified the 
contribution of each feature to fall risk, thereby supporting the 
development of more targeted and effective intervention 
strategies. These findings may help enhance the quality of 
elderly care by informing personalized prevention efforts and 
guiding future research in geriatric risk assessment. 

As with most AI models, ours can be continuously refined 
with additional data over time. In our case, improving the 
model also provides an opportunity to collect data from 
patients' homes while offering them personalized fall 
prevention advice. During the intervals between practitioner 
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visits, necessary adjustments to home configurations can also 
be made if needed. 

The clinical utility of the final model could be explored in 
future studies using Decision Curve Analysis (DCA). This 
method helps identify the clinical range in which the model 
provides a net benefit, thereby allowing practitioners to 
determine the optimal threshold for patient management while 
taking available resources into account. 
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