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Abstract—This paper emphasizes emerging strategies in Patient-
Specific Quality Assurance (PSQA) for Intensity Modulated
Radiotherapy, with particular focus on the use of trajectory log
files to enhance computational efficiency and clinical throughput.
These log files passively record machine parameters throughout
treatment, offering a compelling alternative to conventional
phantom-based verification methods, which are resource-intensive
and limited in their ability to capture patient-specific variability.
Recent advancements have demonstrated the potential of algo-
rithms such as Support Vector Machines, tree-based algorithms,
and Artificial Neural Networks to improve the predictive accuracy
and robustness of PSQA systems. While current best practices
remain essential for ensuring baseline treatment safety, new models
should meet additional demands. To maintain high standards
of patient care, these models must be explainable, adaptable to
evolving clinical workflows, and capable of continuous updates
as treatment techniques advance. These attributes are key to
enabling clinical integration and establishing a scalable, data-
driven framework for personalized, real-time quality assurance
in radiation oncology. They are the keystone in turning proof of
concept into clinical reality.

Keywords-deep learning; machine learning; quality assurance;
volumetric-arc radiation therapy; intensity-modulated radiation
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I. INTRODUCTION

This is an extended version of the review paper [1] published
at AI Health 2025.

The American Cancer Society has estimated over 2 million
new cases of cancer in 2024 [2]. About 50% of all cancer
patients are expected to receive radiotherapy at some point

during treatment [3]. The proportion of radiotherapy patients
receiving Intensity-Modulated Radiotherapy (IMRT) and Volu-
metric Modulated Arc Therapy (VMAT) has steadily increased
over time from 22% in 2004 to 57.8% in 2017 [4]. IMRT and
VMAT are routine but complex cancer treatment modalities
that require time-consuming Quality Assurance (QA) measures.
Log-file based Patient-Specific Quality Assurance (PSQA) has
been proposed as an alternative method that can be performed
in real-time on a fraction-by-fraction basis [5]–[7]. Studies
comparing log-file based PSQA have identified differences
between log file recordings and actual behavior of machines
during treatment, however, several mitigation strategies have
been proposed [5][8][9]. These studies have given new insights
into the potential for more efficient PSQA; however, they have
been limited by small cohort size.

Machine learning, and by extension deep learning, have
rapidly gained traction as essential tools for advancing health-
care [10]–[12]. Machine learning can process and analyze large,
complex datasets to identify patterns and make predictions that
can be implemented to improve patient outcomes, increase
treatment efficiency, and aid in clinical decision-making.
Machine learning algorithms can automate time-consuming
tasks. This can reduce the workload on medical professionals,
reduce waiting times, and mitigate the risks of human error.
Unlike traditional strategies for automation that are static after
their implementation, these algorithms can evolve over time
with additional data. Updates are made constantly to maintain
or improve accuracy [13]. This is specifically advantageous
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in fields, such as radiation therapy, where advancements are
rapid, and techniques are constantly changing [14]–[17].

This paper thus endeavors to give a brief but comprehensive
overview of the current status of machine learning for log-file
based PSQA measures. This paper is structured as follows:
Section II provides the theoretical context for log-file based
PSQA. Section III explores the various applications of machine
learning and deep learning models for PSQA. Section IV
contains the discussion. Section V details future directions
and concludes with final remarks.

II. BACKGROUND

We will provide an overview of the theories behind the use
of log files for PSQA and the theory for the most successful
machine learning algorithms to date.

A. Log File-Based PSQA

As external beam radiation therapy has evolved, increasing
complexity in both treatment planning and delivery has
driven the need for more sophisticated quality assurance (QA)
approaches. Intensity-modulated radiation therapy (IMRT), to-
gether with its rotational counterpart volumetric modulated arc
therapy (VMAT), exemplifies this complexity. To understand
how this progression impacts QA requirements, it is helpful
to begin with three-dimensional conformal radiation therapy
(3D-CRT), a foundational technique that remains in clinical use
and provides a baseline for comparison with more advanced
delivery methods.

3D-CRT uses static radiation beams delivered from multiple
angles, shaped to match the target volume using manually
designed beam apertures. These treatment plans are rela-
tively simple, often allowing for manual dose calculations
and straightforward verification. Due to their efficiency and
reliability, 3D-CRT techniques are still employed in both
curative and palliative settings, particularly when target volumes
are geometrically uncomplicated and located away from critical
structures.

In contrast, IMRT delivers beams with variable intensity
across each field, enabling greater dose conformity to complex
or concave target volumes. This is particularly beneficial for
treating tumors located adjacent to radiosensitive organs. IMRT
may be delivered using a fixed gantry through segmental
(step-and-shoot) or dynamic (sliding window) techniques, and
may also utilize compensator-based systems. VMAT further
expands upon IMRT by delivering radiation in a continuous arc,
dynamically modulating beam intensity, multileaf collimator
(MLC) positions, and gantry speed throughout the rotation.

These treatments are administered using a computer-
controlled linear accelerator (linac), which generates high-
energy x-rays by accelerating electrons and directing them
toward a metal target. The resulting radiation beam is shaped
by the MLCs and guided according to complex instructions gen-
erated through inverse planning, typically based on computed
tomography (CT) imaging [18].

While these advancements allow for highly conformal
dose delivery and improved normal tissue sparing, they also

introduce significant complexity. Unlike 3D-CRT, IMRT and
VMAT plans are dynamic, with beam parameters changing
continuously during treatment. This makes manual verification
impractical and necessitates the use of advanced computational
QA systems. Consequently, modern QA must now account
for machine mechanics, patient positioning, beam geometry,
dose rate modulation, and the real-time behavior of delivery
components.

To ensure that each patient’s plan can be delivered safely
and accurately, patient-specific quality assurance (PSQA) is
used. Given the individualized and time-varying nature of
modulated treatments, PSQA plays a critical role in identifying
errors and maintaining treatment fidelity in clinical settings
[19][20]. Confirmations of machine performance and patient
treatment plan accuracy are essential. These verifications
include assessing patient positioning, machine mechanical
accuracy, dose distribution, and beam geometry. Given the
complex and highly variable nature of each treatment plan,
PSQA is required [21].

Currently, IMRT and VMAT treatment plans undergo
physical measurements prior to delivery to confirm accurate
dose output. These pre-treatment verifications are typically
performed on a phantom and measured using devices such as
ion chambers, diode arrays, film, or electronic portal imaging
devices (EPIDs). However, these measurements are conducted
in advance and may not capture real-time deviations during
treatment. This introduces the risk of mechanical or dosimetric
discrepancies between pre-treatment QA and actual delivery.

The gamma passing rate (GPR) is the most widely used
metric for comparing planned and measured dose distributions.
It is based on the gamma index, a composite metric introduced
in 1998 that combines dose difference (DD) and spatial
discrepancy-referred to as distance to agreement (DTA)—into
a single score [22]. The GPR method computes the gamma
index for each voxel and classifies it as pass or fail depending
on whether the selected acceptance criteria are met [23].

Despite its routine use in clinical workflows, GPR has
several well-documented limitations [24]–[26]. It is sensitive
to dose grid resolution and often exhibits weak correlation
with clinically significant dose errors. Furthermore, it has
poor specificity and sensitivity in detecting subtle delivery
inaccuracies that could affect patient outcomes. Although
alternative metrics have been introduced over the past two
decades, GPR remains the de facto clinical standard.

The most common PSQA workflow involves recalculating
the dose distribution onto a phantom geometry. The treatment
plan is then delivered and measured using QA devices. Dif-
ferences between the measured and planned dose distributions
are evaluated using gamma analysis, as outlined in American
Association of Physicists in Medicine (AAPM) Task Group
reports 119 and 218 [27][28]. These guidelines recommend
that at least 90% of measured points meet the defined dose
difference and DTA criteria, typically set at 3% and 2 mm,
respectively. However, this process is resource-intensive and
time-consuming, often requiring after-hours use of clinical
equipment to avoid disrupting treatment schedules. Additionally,
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the robustness of these methods and their ability to detect
certain failure modes remains under debate [7][29][30].

Log file-based PSQA has emerged as a promising alternative
to traditional measurement based verification. Rather than
relying on physical detectors, it uses automatically generated
machine log files to assess treatment delivery accuracy. These
files capture key delivery variables, including radiation output,
MLC positions, gantry and couch angles, beam status, and
timing at fixed intervals (typically every 20 milliseconds) [31].
The recorded values represent the minimal data necessary to val-
idate and troubleshoot the treatment process. Since the dataset
is time resolved, it enables frame by frame reconstruction of
the actual delivery, which can then be compared directly to
the planned settings for error detection.

While promising, log file–based PSQA is not without
limitations. Because log files are generated by the linac itself,
they cannot detect hardware miscalibrations—such as incorrect
MLC leaf positioning [8] - or software-related errors introduced
during treatment planning. This may lead to discrepancies
between recorded machine behavior and the actual delivered
dose. In the case of MLC discrepencies, any difference
above 1mm can lead to field edge misalignments that risk
radiation exposure to nearby organs [32].To address these
issues, enhanced QA protocols for the linac and more sensitive
machine QA tools are recommended, particularly for verifying
MLC performance [33]–[35].

The structure and resolution of these log files are critical for
their integration into machine learning workflows. Variations
in data format, parameter naming, and sampling frequency
between vendors and machine models can significantly impact
feature extraction and model performance. In recent studies, log
files, treatment planning system (TPS) data, and modulation
complexity scores (MCS) [34] have been used to develop
machine learning models that predict GPR as a surrogate for
plan deliverability.

Several early studies have evaluated the feasibility of log
file–based PSQA and reported encouraging results. Most of
this research has focused on specific disease sites such as head
and neck, prostate, and lung cancer, often in small patient
cohorts. In addition, the majority of published studies have
used Varian linacs, with relatively limited evaluation of Elekta
systems or other delivery platforms.

B. Machine Learning and IMRT/VMAT

Treatment log files record various parameters of radiation
delivery, such as MLC position, dose rates, beam angles, and
gantry positions in real-time during the course with recordings
taken every few milliseconds [36]. As highly structured,
real-time, and extensive data capture, these files would be
particularly difficult to analyze manually. Log files are thus
particularly well-suited to machine learning algorithms for
pattern recognition and error prediction. Models range from
simple classification techniques to complex deep learning
algorithms. The most successful models in the literature include
Support Vector Machines (SVMs), tree-based algorithms , and
Artificial Neural Networks (ANNs).

SVMs are effective for classification tasks for log file-based
PSQA. They can distinguish between compliant and non-
compliant treatment sessions by setting predefined acceptable
ranges for discrepancies between planned and delivered values
for parameters within the log file, such as dose rate, MLC
positions, and beam angles. This allows for quick identification
of errors as they occur so that a clinician can be alerted.
However, SVM is limited to cases where there are clear
distinctions between compliant and non-compliant values. SVM
is also sensitive to noise and outliers and is not well suited for
multi-class tasks [37].

Tree-based algorithms are non-parametric and based on
hierarchical, tree-like structures. Each tree is made up of
nodes that represent decisions based on feature values. The
branches represent possible outcomes or decisions. They are
well-suited for non-linear relationships between features and
can partition the feature space in more complex ways than
linear models. Tree-based machine learning models include
Random Forest (RF), Gradient Boosting, and Extreme Gradient
Boosting (XGBoost) algorithms [38]–[40].

RF models can leverage many decision trees to map the
involvement of multiple interacting features to identify more
subtle discrepancies between expected and delivered values. It
can detect complex relationships within the treatment data that
would not be as apparent with simpler methods such as SVM.
Due to the ensemble nature of the algorithm, RFs are difficult
to interpret and feature importance scores are only rough
approximations. They can show bias toward categorical features
with many levels. RFs also require a lot of optimizations for
hyperparameter tuning [38].

Gradient Boosting uses decision trees as its base and adjusts
instance weights with each iteration by fitting new predictors
to errors in the preceding iteration. Individual decision trees
are differentiated by a different subset of features to select
the best split. Each new tree accounts for the errors of the
preceding ones. This approach can be slow to train and is
prone to overfitting [39]. XGBoost builds upon the gradient
boosting algorithm by including L1 (Lasso) and L2 (Ridge)
regularization to prevent overfitting [41][42]. It also grows trees
with a depth-first approach and can train trees in parallel, which
increases the speed of training. Although these two models
are less prone to overfitting than RF, they do still pose some
risk of overfitting. They also exhibit hyperparameter sensitivity
and require careful tuning, especially for large datasets. Like
other tree-based models, they both struggle with extrapolation
beyond the training dataset [40].

ANNs are based on the McCulloch-Pitts artificial neuron
model. The model represents a neuron as a binary threshold
unit and inputs are assigned weights before being summed,
and compared against a specific threshold to determine the
neuron’s output. This effectively enables the representation
of logical functions [43]. With the advent of backpropagation
and activation functions -such as the Rectified Linear Unit
(ReLU) [44]- Deep Neural Networks (DNNs) further built upon
the ANN model by increasing the number of hidden layers
which enabled more complex patterns and representations to be
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modeled [45][46]. Deep learning models, such as convolutional
neural networks (CNNs), have more recently been applied
to log file-based PSQA. CNNs are well-suited to image
classification, making them ideal for use with fluence maps
that can be generated by log file data. CNNs apply filters to
detect desired features, reduce spatial dimensions to retain the
most important features, and then perform final classification
or predictions. They circumvent the need for manual feature
selection. They are highly scalable for large datasets and have
improved computational efficiency [47]. CNNs’ capabilities
for detecting highly complex and time-dependent errors make
them ideal for log file-based PSQA applications. They can
identify small misalignments in MLC positions, irregular dose
rate fluctuations, as well as other more subtle anomalies that
may be missed by more traditional machine learning models.
To prevent overfitting, large, labeled datasets are required and
can be vulnerable to being misled by small input changes.
CNNs’ decision making can be extremely difficult to interpret
[48].

Despite the demonstrated utility of SVMs, tree-based models,
and CNNs in log file–based PSQA, a common limitation across
these approaches is their lack of adaptability and scalability.
Most models are trained on static datasets and evaluated
under fixed conditions, which presents a challenge in clinical
environments where treatment techniques, machine behavior,
and planning protocols are continuously evolving.

Once trained, these models typically require complete
retraining or manual fine-tuning to incorporate new data or
adapt to changes in treatment delivery. This static approach
limits their long-term clinical utility and increases the risk of
model degradation in the face of equipment updates, workflow
modifications, or shifts in patient population characteristics.
Notably, few studies have systematically evaluated how quickly
treatment plans evolve in practice or how these changes may
impact machine learning model performance.

In addition, many models struggle to scale effectively
across institutions or linear accelerator (linac) vendors due
to differences in log file formatting, planning conventions, and
QA workflows. These inconsistencies can significantly hinder
model generalizability and limit cross-site implementation.

III. EXAMPLES OF RECENT APPLICATIONS

This section will summarize the current machine learning
applications for IMRT/VMAT PSQA within literature, including
both drawbacks and advantages.

A. Recent Models for IMRT/VMAT PSQA

Most current applications of machine learning models
in IMRT and VMAT PSQA fall into two main categories:
parameter prediction and error detection studies (see Table I).
Across the 20 studies summarized in Table I, several clear
trends emerge. Tree-based models were the most commonly
used machine learning approach, appearing in 50% of studies
(10/20), followed by convolutional or artificial neural networks
(CNNs/ANNs) in 45% (9/20), and support vector machines
(SVMs) in 35% (7/20). Seven studies also explored other model

types such as k-nearest neighbors or ensemble hybrids. The
majority (12/20) employed a parameter prediction approach,
while 8 focused on error detection. Gamma passing rate
(GPR) remained the most frequent outcome metric, though
some studies attempted direct dosimetric prediction or error
classification. While both IMRT and VMAT were well rep-
resented—appearing in 10 and 11 studies, respectively—only
4 studies were limited to a single anatomical site, suggesting
growing efforts to develop more generalizable models across
varied treatment contexts. Nevertheless, most studies still relied
on single-institution datasets, and few incorporated data from
multiple vendors. These trends emphasize the need for multi-
center collaborations and broader clinical diversity to support
scalable, real-world PSQA tools.

Models were evaluated using both error-based and
classification-based metrics, including Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Spearman’s Coeffi-
cient (SC), and Area Under the Curve (AUC), all of which are
standard metrics for regression and classification performance.
The choice of evaluation metric often depends on the model’s
output format and the specific goals of the study—whether
continuous value prediction or binary classification. As a
result, direct comparisons between studies can be challenging,
particularly when different endpoints or performance criteria are
reported. This variability underscores the need for standardized
evaluation frameworks in future work to better assess and
compare model effectiveness.

B. Drawbacks and Limitations

Tomori et al. [49], Lam et al. [50], Ono et al. [51], Huang
et al. [52], Wang et al. [53], and Song et al. [54] used the
parameter prediction approach. Using a prediction approach,
all studies indicated that machine learning models could be
effectively trained using log files to predict machine parameters
at the time of treatment delivery for new treatment plans. These
studies vary in the models explored, including SVM, RF, CNNs,
and others. All models have relatively promising accuracy as
seen in Table I. However, Tomori et al.’s scope was limited to
prostate IMRT plans, Huang et al. was limited to chest IMRT
plans, and Song et al. was similarly limited to nasopharyngeal
carcinoma and only used static gantry IMRT plans. Lam et
al. included plans for multiple anatomical sites but were still
specific to IMRT. Ono et al. and Wang et al. were specific
to VMAT plans. Ono et al. and Lam et al. both performed
their studies on multiple linear accelerators, but only Lam et
al. used data from more than one institution. All six studies
acknowledge that by using trajectory files, which are dependent
on the linear accelerator itself, there is some vulnerability to
machine-based error. As such, most log file-based PSQA is
considered an enhancement to other QA measures that ensure
the machine is calibrated appropriately, either with separate
protocols or by incorporating additional sources of data into
future models.

Error detection studies such as those by Kimura et al. [55],
Sakai et al. [56], and Nyflot et al. [57] were similarly limited
to one treatment plan type from a single institution. The only
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study that incorporated both VMAT and IMRT plans into a
single study was an error detection study by Chuang et al.
However, the study was only focused on MLC errors.

C. Positive Developments

These preliminary studies have gleaned significant insights
into creating a holistic model for automating PSQA using log
file data with a clear improvement upon methods over time.
Lam et al. trained their model for predicting dosimetric effects
in lieu of GPR to overcome any discrepancies between gamma
index and errors that are clinically relevant [50]. Kimura et al.
directly compared gamma map-based CNN models with dose
difference map-based CNN models and found dose difference
maps were more accurate [55]. Sakai et al. included radiomic
data which resulted in higher sensitivity and specificity for
MLC position and MLC modeling errors [56]. Hirashima et
al. utilized a combination of 3D dosiomic features and plan
complexity in a tree-based model [58]. Tomori et al.’s GPR
prediction-based CNN model struggled with overestimating
low GPR values and underestimating GPR in the test set
[49][59]. Song et al. developed a novel model that weighed
the MSE loss function to mitigate this class imbalance with
promising results [54]. However, as all these studies have been
limited to relatively small, single, or double institution datasets,
their results are difficult to directly compare to one another.
Additionally, most of the literature has been performed using
Varian machines [27]. Although Varian machines are widely
used in the US, Elekta machines are also used.

IV. DISCUSSION

Literature has broadly indicated that CNNs and other Deep
Learning models appear to be the most successful at creating
a model that is robust against certain biases seen in SVM
and tree-based algorithms [60]. Although some studies have
utilized data augmentation, most studies have agreed that to
bring these findings to a clinically relevant standpoint, sufficient
data must be collected from multiple institutions, techniques,
treatment machines, and anatomical sites [61][62]. Additionally,
encompassing both Varian and Elekta machines is essential to
ensure this PSQA strategy is accurate on both platforms [63].

Furthermore, past work has predominantly focused on
deterministic methods, which are ideal for providing direct,
quantitative evaluations of dose delivery accuracy. While these
are incredibly important in the overall application of the model,
there are many aspects of treatment that carry uncertainty. Error
tolerance, dose assessments, and multi-criteria evaluations are
all subject to imprecision. Cilla et al. approached these aspects
by using a "traffic light" protocol [64]. The protocol leveraged
plan complexity to designate plans as acceptable (green light),
requires further verifcation (orange light), or unacceptable (red
light) [64]. Fuzzy logic follows similar reasoning and has
been successfully applied to radiation control systems and
treatment plan optimization [65][66]. Fuzzy logic uses fuzzy
sets and linguistic variables to model uncertain or imprecise
information. Desired variables can be assigned degrees of
truth rather than a yes/no value. When applied to complex

systems, this mathematical system eliminates the restriction of
binary values to create more human-like decision making. The
Fuzzy-CID3 (F-CID3) algorithm is a tree-based, hybrid method
that combines neural networks and fuzzy sets, generating its
own topology. Using a neural fuzzy number tree with a class
separation method, the F-CID3 algorithm simplifies architecture
compared to precesssors, achieving better performance with
fewer connections [67].

While fuzzy logic offers a way to model uncertainty in
PSQA, it also highlights a broader need: the development
of systems that can continuously adapt to changing clinical
conditions. Future models must be not only accurate, but also
adaptable, scalable, and self-evolving. Instead of relying on
retraining static models each time conditions change, future
systems should be capable of continuous learning and modular
updates.

Incremental learning is one potential strategy where models
are can be updated gradually as new data is introduced [68].
This avoids the need for complete retraining by using an
adaptable models that can change in real-time. It is particularly
well suited for large datasets that requires stability. However,
these approaches are vulnerable to catastrophic forgetting where
older knowledge can be lost when incorporating new data
[69]. Techniques such as elastic weight consolidation can help
address this issue by preserving important parameters, though
they introduce new challenges in implementation and tuning.
Other mitigation techniques include replay, template-based
classification, and context dependent processing[70]–[72].

Fine-tuning offers another solution with further training on
related datasets [73]. This could be particularly effective when
adapting models to new machines, clinics, or delivery methods.
It is less computationally demanding than full retraining, but
fine-tuning must be handled carefully to avoid overfitting,
especially in settings with limited or imbalanced data which
are already inherent issues with log-file based PSQA models.

Genetic algorithms are another potential method for model
evolution [74][75]. By using population-based search strategies,
these algorithms can explore different architectures, hyperpa-
rameters, and feature selections over time. Genetic algorithms
are computationally intensive which can make them difficult
to implement. However, they are well suited for continuous
optimization in non-critical processing environments and are
not as prone to overfitting.

Figure 1 depicts a potential workflow that incorproates
suggested improvments to prior models. These To address
the limitations of prior log file-based IMRT PSQA modeling
strategies, a revised workflow is proposed, as illustrated in Fig-
ure 1 Previous machine learning and deep learning models often
relied on data from a single institution, which greatly limited
model generalizability and increased the risk of overfitting due
to site-specific bias. In the proposed framework, the input data is
expanded to incorporate contributions from multiple institutions,
enhancing the diversity of the training dataset and improving
the model’s capacity for generalizability. Additionally, the
integration of a genetic algorithm with fuzzy logic is expected to
improve feature selection and model optimization. The genetic
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algorithm enables a more robust exploration of potential feature
sets, while fuzzy logic facilitates flexible decision-making
in response to variability both within and across institutions.
Together, these modifications are intended to yield models with
not only increased predictive accuracy but also significantly
enhanced clinical applicability by allowing the system to evolve
alongside future clinical shifts.

Figure 1. Suggested workflow for log file-based IMRT PSQA modeling.
Enhancements include the incorporation of multi-institutional input data to
improve model generalizability. The integration of a genetic algorithm with

fuzzy logic is expected to enhance optimization, feature selection, and
adaptability.

As a supplemental technique to the aforementioned models,
federated learning can provide a network-preserving framework
for scaling PSQA across multiple clinics [76]. Rather than
sharing patient data, each institution trains a local model on its
own dataset and transmits only model updates (e.g., gradients
or weights) to a central server. The server then aggregates the
updates into a global model and redistributes it. While federated
learning effectively addresses data-sharing restrictions, its
implementation presents challenges such as non-identically
distributed data across sites, communication inefficiencies, and
synchronization issues. Nevertheless, it remains a promising
direction for building generalizable, robust QA models at scale.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Log file–based PSQA has emerged as a viable and efficient
alternative to traditional phantom-based methods, particularly
for IMRT and VMAT treatments. By leveraging machine
learning models such as SVMs, tree-based algorithms, and
CNNs, recent studies have demonstrated the ability to predict
GPR outcomes and detect delivery errors directly from log file
data. These methods offer a promising path toward scalable,
real-time QA workflows that reduce clinical burden while
maintaining—or even enhancing—treatment safety.

However, several challenges must be addressed before these
tools can be widely implemented in clinical practice. Most
current models rely on machine-reported parameters, limiting
their ability to detect mechanical miscalibrations or TPS-related
errors. In addition, the majority are trained on single-institution
datasets, with limited anatomical and vendor diversity, which

restricts their generalizability. These limitations highlight the
need for multi-institutional datasets that reflect a broader
spectrum of treatment techniques, patient populations, and
machine types [54][64][77]–[79].

Future research must prioritize both generalizability and
clinical adaptability. Multi-center collaborations that incorpo-
rate diverse planning protocols and hardware systems will
be critical to developing robust, transferable models. Models
must also be designed to remain effective in evolving clinical
environments. Techniques such as incremental learning, transfer
learning, and modular architectures can enable continuous
model improvement without requiring full retraining. Federated
learning also offers a promising privacy-preserving strategy for
distributed model development across institutions.

Equally important, especially in the clinical setting, is
the need for transparency and interpretability. Integrating
explainable machine learning and deep learning tools can help
clinicians understand how models generate predictions and
identify which features contribute to error detection. This not
only fosters trust and accountability, but also facilitates earlier,
more targeted interventions.

Altogether, these advancements represent a shift toward
faster, more efficient, and responsive QA systems. Future PSQA
workflows should ideally evolve in step with technological
innovation, while enhancing precision and safety in modern
radiation oncology.
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TABLE I. SUMMARY OF RECENT STUDIES USING MACHINE LEARNING MODELS FOR IMRT/VMAT PSQA. (AUC= AREA UNDER THE CURVE, MAE=
MEAN ABSOLUTE ERROR, RMSE= ROOT MEAN SQUARE ERROR, SR= SPEARMAN’S RANK CORRELATION COEFFICIENT)

Author/Year Plan Type Dataset Size Anatomic Sites Algorithm QA Outcome Feature
Count

Key Results

Carlson et al. 2016 [80] VMAT 74 plans (3,161,280 data points) Multiple RF Error detection 6 RMSE= 0.193mm (linear regression)
Tomori et al. 2018 [49] IMRT 60 plans Prostate CNN Parameter prediction N/A Errors within 1.10% at 3%/3mm criteria
Interian et al. 2018 [61] IMRT 498 plans Multiple CNN Parameter prediction N/A MAE= 0.70% at 3%/3mm criteria
Lam et al. 2019 [50] IMRT 1497 beams Multiple Tree-based Parameter prediction 31 Errors within 3% for 98% of predictions

at 2%/2mm criteria
Ono et al. 2019 [51] VMAT 600 plans Multiple Regression

Tree, ANN,
Other

Parameter prediction 28 Mean prediction error= -0.2% at
3%/3mm criteria (ANN)

Granville et al. 2019
[81]

VMAT 1,620 beams Multiple SVM Error detection 60 AUC=0.88 (macro-averaged)

Nyflot et al. 2019 [57] IMRT 186 beams (558 images) Multiple SVM,
Decision
Tree, Other

Error detection 145 Accuracy= 64.3% for SVM

Ma et al. 2020 [82] IMRT 180 beams (1,620 images) Multiple SVM, RF,
Other

Error detection 276 AUC=0.86 for linear SVM

Osman et al. 2020 [19] IMRT 10 plans (360,800 datapoints) Multiple ANN Error detection 14 RMSE=0.0096mm
Wall and Fontenot 2020
[83]

VMAT 500 plans Multiple SVM, Tree-
Based, ANN

Parameter prediction 241 MAE=3.75% at 3%/3mm criteria
(SVM)

Hirashima et al. 2020
[58]

VMAT 1,255 plans Multiple Tree-based Parameter prediction 875 MAE=4.2% and AUC=0.83 at 2%/2mm
criteria

Wang et al. 2020 [53] VMAT 276 Plans Multiple ANN Parameter prediction N/A Absolute prediction error=1.76% at
3%/3mm criteria

Kimura et al. 2020 [55] VMAT 161 Beams Prostate CNN Error detection 54 Accuracy=0.94
Tomori et al. 2020 [59] VMAT 147 plans Multiple CNN Parameter prediction N/A MAE=0.63% at 3%/3mm criteria
Sakai et al. 2021 [56] IMRT 38 beams (152 error plans) Multiple SVM, Tree-

based, Other
Error detection 837 AUC=1.00 for leaf transmission factor

error, 1.0 for dosimetric leaf gap error,
0.80 for leaf positional error vs. error
free (SVM)

Chuang et al. 2021 [84] IMRT/VMAT 267 IMRT and VMAT plans
(10,584,120 data points)

Multiple Tree-based,
Other

Error detection 7 RMSE=0.0085 mm (Boosted Tree
Model)

Huang et al. 2022 [52] IMRT 112 plans Chest CNN Parameter prediction 4 MAE and RMSE decreased with stricter
gamma criteria, while SR and R2 in-
creased as gamma criteria were made
stricter (3%/3mm, 3%/2mm, 2%/3mm,
and 2%/2mm)

Cilla et al. 2022 [64] VMAT 651 plans/1,302 arcs Multiple SVM, Other Parameter prediction 3 Precision of 93.1 for gamma % and
92.7% for gamma mean for the testing
dataset at 2%/2mm (SVM)

Lew et al. 2022 [85] VMAT 578 log files Multiple RF, SVM,
Other

Parameter prediction 13 Average error of less than 2% with
1%/1mm criteria.

Song et al. 2024 [54] IMRT 204 plans/2,348 fields Nasopharyngeal
Carcinoma

CNN Parameter prediction 1-8 AUC= 0.92 with 0.77 sensitivity and
0.89 specificity


