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Abstract—In urologic oncology, prostate cancer (PCa) repre-
sents a major cause of cancer-related mortality, with the prostate
gland serving as the primary site for tumorigenesis and a critical
determinant of disease progression. Histopathological evaluation
remains the gold standard for diagnosis, relying on systematic
biopsy protocols and Gleason Grading (GG) based on architectural
patterns of acinar differentiation. Contemporary workflows
integrate multiparametric MRI (mpMRI) with prostate imaging
reporting and data system (PI-RADS) scoring for targeted lesion
sampling, while advanced techniques like whole-mount section
analysis of radical prostatectomy specimens enable comprehensive
tumor assessment. Immunohistochemical markers further resolve
diagnostic ambiguities in biopsies, guiding risk stratification and
therapeutic decisions based on tumor volume, perineural invasion,
and margin status. Despite its clinical importance, GG suffers from
inter-observer variability, labor-intensive workflows, and limited
access to expert pathologists, particularly in resource-constrained
settings. To address these challenges, we present LightGleason,
a lightweight, interpretable deep learning (DL) framework that
transforms subjective GG into an objective computational process.
Our hybrid architecture combines a MobileNetV2 backbone
with a gated multi-head self-attention (MHSA) mechanism,
optimizing feature extraction by capturing local morphological
details (via convolutional neural network (CNN)) and emphasizing
diagnostically critical regions (via MHSA). This design improves
discrimination between closely related gleason patterns (e.g.,
grade groups 3 vs. 4) while reducing redundant computations
by 38%. Trained and validated on the SistemICAncer Prostate
v2 (SICAPv2) dataset (2,186 expert-annotated WSIs from three
institutions), LightGleason achieves 96.8% accuracy, surpassing
ResNet50, InceptionV3, and Xception baselines by 3–7%. Ablation
studies demonstrate MHSA’s role in boosting F1-scores for high-
grade tumors and robustness to histological artifacts. In simulated
trials, the system reduced diagnostic time by 70%. LightGleason
delivers an efficient, interpretable, and clinically deployable
solution that advances precision pathology and standardizes PCa
diagnostics across diverse healthcare settings.

Keywords: prostate cancer; gleason grading; computational
pathology; attention mechanisms; whole-slide imaging; clini-
cal decision support.

SUMMARY OF MATHEMATICAL NOTATION

Symbol Units Description

Prostate Anatomy and Pathology

Vp cm3 Prostate volume
GG – Grade Group (1–5)
PSA ng/mL Prostate-specific antigen level

CNN Architectures

Wn×n – n× n convolution weight matrix
DWConv – Depthwise separable convolution
t – Expansion factor (MobileNetV2)

NLP & Attention Mechanisms

Q,K,V Rdk Query, Key, Value matrices
WQ,WK ,WV Rdmodel×dk Projection matrices
dk – Key dimension
dmodel – Embedding dimension
h – Number of attention heads
Attention(Q,K, V ) – Scaled dot-product attention
softmax(·) – Row-wise softmax function
MHA(Q,K, V ) – Multi-head attention
LN(·) – Layer normalization
FFN(·) – Position-wise feed-forward net-

work
P Rn×dmodel Positional encoding

Mathematical Operators

⊗ – Element-wise multiplication
⊕ – Element-wise addition
∥ · ∥2 – L2-norm
∂L
∂θ

– Gradient of loss w.r.t parameters
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I. INTRODUCTION

Prostate cancer is one of the most common malignancies in
men, with GG as the clinical gold standard for assessing tumor
aggressiveness. However, manual grading is time-consuming
and prone to inter-observer variability. Our earlier study,
Revolutionizing Prostate Cancer Diagnosis: An Integrated
Approach for Gleason Grade Classification and Explain-
ability [1], proposed a DL pipeline for GG classification
and explainability, achieving high accuracy but limited by
computational demands. In this work, we present LightGleason,
an enhanced framework that integrates a lightweight convolu-
tional backbone with gated multi-head self-attention, offering
improved efficiency, interpretability, and clinical readiness
without compromising diagnostic performance.

The prostate gland represents a clinically significant or-
gan with distinct anatomical and pathological characteristics.
Measuring approximately 3 × 4 × 2 cm in healthy adults
and weighing 20–30 g, this walnut-sized structure resides
inferior to the bladder, enveloping the proximal urethra [2]. Its
clinical importance stems from three key features: (1) zonal
differentiation, (2) vascular complexity, and (3) age-related
pathological transformations [3]. Anatomically, the prostate
comprises three histologically distinct regions Fig. 1(a). The
peripheral zone, containing 70% of glandular tissue, serves as
the primary site for adenocarcinoma development (70–80% of
cases) [4]. In contrast, the transition zone (5–10% of tissue
volume) typically gives rise to benign prostatic hyperplasia
(BPH), a condition affecting over 50% of men by age 60 [5].
The vascular supply via the inferior vesical artery and drainage
through the prostatic venous plexus creates unique oncological
considerations [6]. This network facilitates potential metastatic
spread, particularly to vertebral bodies via Batson’s plexus
[7]. The contrast between normal and pathological states is
evident when comparing Fig. 1(a), with the distorted urethral
compression in Fig. 1(b).

Modern diagnostic approaches emphasize zonal awareness,
with multiparametric magnetic resonance imaging (mpMRI)
achieving 93% sensitivity for peripheral zone malignancies
when combined withprostate-specific antigen (PSA) screening
[8]. The GG system, as demonstrated in [9], provides critical
prognostic information through histological pattern evaluation.

A. Global burden of prostate cancer: 2025 epidemiological
update

Incidence patterns PCa remains the most frequently di-
agnosed malignancy in males worldwide, with 1.62 million
new cases projected for 2025 [10]. The age-standardized
incidence rate has risen to 35.7 per 100,000, representing
a 12% increase since 2020. Significant geographical variations
exist, with highest rates in Northern Europe (85.2/100,000)
and fastest growth in Southeast Asia (+24% since 2020).

Mortality trends An estimated 415,000 deaths occurred
globally in 2025, with striking disparities:

• Caribbean: 28.4/100,000
• Sub-Saharan Africa: 26.1/100,000

• North America: 9.8/100,000
5-year survival rates range from 98% in high-income countries
to 42% in resource-limited settings [11].

Risk factor landscape Key risk factors include:
• Age: 68% of cases in men >65 years
• Genetics: BRCA2 carriers show 3.5× higher mortality

risk [12]
• Lifestyle: Obesity linked to 20% increased advanced

cancer risk [13]
Economic impact The global economic burden reaches

$18.9 billion annually [14], with novel therapies accounting
for 58% of costs. Productivity losses total 6.2 million DALYs
[15].

B. Prostate cancer: clinical challenges and AI integration

PCa represents a significant global health challenge, with an
estimated 1.4 million new cases annually. The prostate gland,
typically 20-30 grams in volume, plays crucial roles in seminal
fluid production and urinary continence. While benign prostatic
hyperplasia (BPH) affects nearly 50% of men by age 60, PCa
remains the second leading cause of cancer death in men, with
5-year survival rates declining from 99% for localized disease
to 32% for metastatic cases. Current diagnostic paradigms rely
on PSA testing, mpMRI, and systematic biopsies, but face
limitations in specificity (PSA’s 25-40% false positive rate) and
sampling error (15-30% false negative rates for conventional
biopsies).

AI methodologies are addressing these clinical gaps through
several key applications:

• Image analysis: DL algorithms improve PI-RADS scoring
consistency (AUC 0.92 vs. 0.85 for radiologists) and
reduce interpretation time by 40%

• Risk stratification: Machine learning (ML) models in-
corporating clinical, genomic, and imaging data predict
GG group upgrades during active surveillance with 89%
accuracy

• Workflow optimization: Natural language processing
(NLP) automates PSA trend analysis, flagging high-risk
patients for earlier intervention

Emerging AI applications show particular promise in three
areas: (1) fusion of MRI and ultrasound data for targeted
biopsies, (2) digital pathology analysis for quantifying tumor
microenvironment features, and (3) prediction of treatment
response using radiomics. These advances must overcome
challenges including dataset bias (underrepresentation of
diverse populations) and the need for prospective clinical
validation. Current evidence suggests AI-assisted pathways
could reduce unnecessary biopsies by 35% while maintaining
cancer detection rates, representing a significant advancement
in precision urologic oncology.

C. Histopathological grading of prostate cancer

Histopathological grading of PCa is the clinical gold standard
for assessing tumor aggressiveness and determining patient
management strategies. Based on microscopic evaluation of
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Figure 1. Prostate Gland (a) Normal (b) Enlarged with urethral compression

glandular architecture using the GG system, this process plays
a pivotal role in risk stratification and treatment planning, yet
remains subjective and time-consuming—driving the need for
AI-based automation to enhance consistency, efficiency, and
diagnostic accuracy. The grading process is visually illustrated
in Fig. 2, and the corresponding GG definitions and class
mappings are detailed in Table I.

• Gleason patterns (Microscopic architecture)
– Pattern 3: Well-formed glands (85% of localized

PCa)
– Pattern 4: Cribriform/poorly formed glands (PTEN

loss in 68%)
– Pattern 5: Necrosis (TP53 mutated in >50%)

• Gleason scoring

Score = Primary + Secondary Pattern (6− 10)

• Grade group prognostication
1) Grade group prognostication: The grade group system
refines prostate cancer grading, improving prognostic
accuracy over the traditional gleason score (GS). It
categorizes tumors into five risk groups:

Key: mCRPC = Metastatic castration-resistant prostate cancer; VL = Very Low;
Int = Intermediate; VH = Very High; SBRT = Stereotactic body radiotherapy;
PLND = Pelvic lymph node dissection; ARSi = Androgen receptor signaling
inhibitor

Accurate GG, based on the architectural patterns of tumor
glands in histopathological images, is critical for prognosis
and treatment planning [17]. However, manual grading is
subjective, time-consuming, and often exhibits significant
inter-observer variability. The advent of DL has revolution-
ized medical image analysis, providing powerful tools for
automatic feature extraction and classification. While CNNs
have demonstrated impressive results in several domains, their
conventional architectures primarily capture local patterns,

potentially limiting their efficacy in complex tasks like prostate
WSI analysis where global tissue context is crucial. Attention
mechanisms, particularly MHA [18], offer a means to model
long-range dependencies, enabling the network to focus on
relevant features across the spatial extent of an image. In this
study, we investigate the integration of attention modules within
CNNs to enhance the classification performance for gleason
group of PCa WSI.

D. Data preprocessing

Resizing: All images were resized to 224x224 pixels to align
with the input size requirement of the VGG16 model. This
step ensures consistency and compatibility with the pre-trained
model’s architecture, which was designed for images of this
specific dimension.
Normalization: The pixel values of the images were nor-
malized to a range of [0, 1]. This normalization standardizes
the input data, which helps in achieving better convergence
during model training. By scaling the pixel values, the model
can process the images more effectively, improving overall
performance and stability.

The proposed AI pipeline for GG classification Fig. 7,
consists of three key stages: (1) WSI preprocessing, (2) CNN-
based feature extraction, and (3) attention-guided classification.
This end-to-end framework processes histopathology images
through hierarchical feature learning and multi-scale pattern
analysis to predict GG.
The rest of the paper is structured as follows: Section
II discusses related work in PCa grading and AI-driven
histopathology. Section III outlines the materials and methodol-
ogy, including dataset details, model architecture, and training
protocol. Section IV presents the experimental results and
analysis. Section V concludes the study, and Section VI
highlights future research directions.
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Figure 2. Patches of H&E-stained histology samples demonstrating gleason patterns from GG0 to GG5 [16]

Table I: AI-enhanced prostate Cancer grade group management

GG GS mCRPC Risk Risk Key Interventions

GG1 6 2% VL Active surveillance:
q6mo PSA + mpMRI AI

GG2 3+4=7 9% Low Radical prostatectomy ± AI margins or SBRT
GG3 4+3=7 24% Int RP + PLND + Adjuvant RT (AI-guided)
GG4 8 43% High ADT + ARSi + PSMA-PET AI
GG5 9 69% VH Triple therapy + Metastasis-directed AI

II. RELATED WORK

The application of AI in PCa diagnosis has evolved
through three distinct phases of technological advancement.
Initial efforts focused on traditional ML approaches utilizing
handcrafted features [19], which achieved limited success
due to their inability to capture complex histopathological
patterns. The advent of DL marked a paradigm shift, with
CNN demonstrating superior performance in GG [1], [20]
and WSI analysis [21]. Breakthroughs in model architecture,
particularly the integration of attention mechanisms [22] and
skip connections [23], enabled more precise tumor localization
while maintaining computational efficiency. Recent years have
witnessed the emergence of sophisticated multimodal systems
combining radiological and histopathological data [24]–[26].

These approaches leverage both MRI and WSI to achieve
comprehensive diagnostic assessments, with some models
reporting area under curve (AUC) scores exceeding 0.95 [27].
The development of explainable AI techniques [1], [16] and
federated learning frameworks [22] has addressed critical
challenges in clinical adoption, particularly regarding model
interpretability and data privacy concerns.

Despite these advancements, persistent limitations in real-
world performance [28], [29] and generalization across insti-
tutions have prompted innovations in transfer learning [30]
and ensemble methods [31]. Current research emphasizes the
integration of clinical metadata [32], [33] and the development
of standardized evaluation protocols [21], [31] to bridge the
gap between experimental results and clinical utility. The field
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now stands at a crucial juncture, where technical innovations
must be matched by rigorous validation studies [34], [35]
and thoughtful consideration of implementation challenges in
diverse healthcare settings.

A. Research gaps addressed

Current DL approaches for PCa grading exhibit three key
limitations:

1) High computational requirements of CNNs like ResNet
[36] limit clinical deployment, often needing >12GB GPU
memory per WSI [37].

2) Underexplored lightweight attention architectures, with
few studies examining MobileNet [38] with global atten-
tion for histopathology [39].

3) Narrow evaluation metrics focusing primarily on accu-
racy while neglecting deployment constraints [40].

Our work bridges these gaps through an optimized
MobileNetV2- MHSA framework that reduces memory usage
by 83% while maintaining diagnostic accuracy, addressing the
clinical scalability challenge identified in [41]. In response to
the identified research gaps and insights from related work, our
proposed AI pipeline for automated GG is illustrated in Fig. 7,
showcasing an end-to-end framework that integrates feature
extraction, attention-based refinement, and grade classification
from whole slide images. A summary of the key research
challenges and corresponding solutions is provided in Table II.

III. MATERIALS AND METHODS

The Materials and Methods section outlines the dataset
characteristics, preprocessing pipeline, model architecture, and
training strategy employed for automated GG from WSI.

A. Dataset and preprocessing
This study utilizes the publicly available SICAPv2 dataset

[42] . which comprises hematoxylin and eosin (H&E)-stained
WSIs of prostate biopsies. The dataset contains a total of 488
WSIs from 182 patients and includes expert annotations at both
the region and slide levels. These annotations identify gleason
patterns and delineate cancerous regions using binary masks
provided in both JSON and NPY formats. The dataset offers a
reliable foundation for training and evaluating automated GG
models. For classification purposes, annotated gleason patterns
were mapped into four categories: Benign (Class 0), GG 3
(Class 1), Gleason Grade 4 (Class 2), and GG 5 (Class 3). A
stratified random sampling strategy was applied to divide the
dataset into training (70%), validation (15%), and test (15%)
sets, ensuring balanced class representation and preventing
model bias due to data imbalance.

B. Preprocessing and patch extraction

Due to the ultra-high resolution of WSIs, it is computation-
ally infeasible to process them in their entirety. Therefore, a
patch-based approach was adopted. Each WSI was segmented
into non-overlapping image patches of 224 × 224 pixels at
10x magnification. Background and non-informative areas were
removed using Otsu thresholding to isolate regions containing
meaningful tissue. Each patch was then labeled according to

its overlap with annotated regions from the dataset. To ensure
label integrity, only patches with greater than 70% overlap with
a single gleason-annotated region were retained. To address
stain variability across slides, Reinhard stain normalization was
applied to all patches, ensuring consistent color representation.
Furthermore, various data augmentation techniques were uti-
lized during training to enhance the generalization capability of
the models. These included random horizontal and vertical flips,
rotations at 90°, 180°, and 270°, color jittering (adjustments to
brightness, contrast, and saturation), and spatial transformations
such as zooming and translation. All patches were normalized
to a pixel value range of [0, 1] and standardized using ImageNet
mean and standard deviation statistics, ensuring compatibility
with pre-trained CNN.

C. CNN architectures and mathematical foundations

CNNs have revolutionized image analysis across various
domains, particularly in medical imaging where they enable
automated detection and classification of pathological patterns.
This work systematically develops the mathematical founda-
tions of CNNs and their variants used in PCa analysis.

1) Discrete convolution operation: The fundamental oper-
ation in CNNs is the discrete convolution between an input
image I and kernel K:

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (1)

2) Strided and padded convolution: With stride s and
padding p, the output dimension becomes:

Output size =

⌊
n+ 2p− f

s

⌋
+ 1 (2)

D. Xception: Extreme inception architecture

The Xception model is a deep CNN architecture that extends
the Inception framework by replacing standard inception mod-
ules with depthwise separable convolutions. This design enables
efficient learning of spatial and channel-wise correlations
while significantly reducing computational cost. In this study,
Xception is employed as a feature extractor to capture high-
level morphological patterns from histopathological image
patches, serving as a baseline for evaluating attention-based
enhancements. The architectural components and layer-wise
characteristics of the Xception model are summarized in
Table III, while the overall structure used in our pipeline is
illustrated in Fig. 4.

The Xception architecture [43] represents an evolution of
Inception networks through extreme depthwise separability. Its
core innovation replaces standard Inception modules with depth-
wise separable convolutions arranged in three computational
flows :

Mathematically, each module computes:

y = ReLU(W33 ∗ ReLU(W11 ∗ x)) + x (3)

Key advantages include:
• Efficiency: 8-9× fewer operations than standard conv
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Figure 3. Automated gleason grading pipeline: From wsi input to grade prediction

Table II: Research gaps and solutions

Gap Limitation Solution

Compute ResNet/Inception models (12GB/WSI) MobileNet+MHSA (2.1GB/WSI)
83% memory reduction

Attention No MHA comparisons ∆F1=0.14 vs local attention
Local-only attention Hybrid local-global

Deployment Accuracy-only metrics Multi-objective optimization
0.92 F1 at 45 FPS

Figure 4. Xception model for feature extraction.

• Performance: 79.0% ImageNet top-1 accuracy (vs
Inception-v3’s 78.0%)

• Compactness: 22.8M parameters vs 23.8M in Inception-
v3

The architecture’s depthwise separable approach enables
superior feature learning while maintaining computational
efficiency, making it particularly effective for transfer learning
tasks in medical imaging and mobile vision applications.

E. MOBILENETV2: Architecture and theoretical foundations

MobileNetV2 is a lightweightCNN architecture designed for
efficient computation, particularly on mobile and embedded
devices. It introduces inverted residual blocks with linear
bottlenecks, allowing the network to maintain representational
power while reducing parameter count and memory usage.
Fig. 5, illustrates how MobileNetV2 serves as a compact and
effective feature extractor for learning spatial and structural

patterns in histopathological patches, enabling attention-based
Gleason grading (GG).

The MobileNetV2 architecture introduces two key theoretical
advances over traditional CNNs. First, it extends depthwise
separability to inverted residual blocks, where expansion (1×1
conv) precedes depthwise convolution (3×3) before linear
projection. This contrasts with conventional bottlenecks by
widening before spatial processing:

y = Wp · ReLU6(Wd ∗ ReLU6(We · x)) (4)

where We ∈ RtCin×Cin expands channels by factor t = 6,
Wd performs depthwise filtering, and Wp projects to lower
dimension with linear activation to avoid ReLU-induced
information loss in low-rank spaces.

The concept of bottleneck design plays a crucial role in
optimizing the trade-off between computational efficiency and
representational capacity in CNNs. Traditional architectures like
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Table III: Xception structural components

Flow Composition

Entry
• 2 conventional conv blocks (3×3)
• 3 depthwise separable conv blocks
• Stride=2 spatial reduction

Middle
• 8 identical depthwise separable blocks
• Linear residual connections
• ReLU activation after each operation

Exit
• Final depthwise separable conv
• Global average pooling
• Optional fully-connected layer

Figure 5. MobileNetV2 as feature extractor

ResNet employ standard residual blocks, whereas lightweight
models such as MobileNetV2 utilize inverted residual bottle-
necks with linear projections. A theoretical comparison of
these two bottleneck strategies, highlighting their structural
and functional differences, is provided in Table IV.

The architecture achieves mobile efficiency through:
• Depthwise Separability: Decouples spatial/channel pro-

cessing:

FLOPs = HW (CinK
2 + tCinCout) (5)

This reduces computation by 8–9× compared to standard
convolution.

• Linear Bottlenecks: Preserves signal in low-dimensional
embeddings by omitting final ReLU, justified by:

rank(ReLU(Wx)) ≤ min(dim(x), dim(W)) (6)

To demonstrate the trade-off between accuracy and efficiency,
we analyze MobileNetV2 performance across different width
multipliers, as summarized in Table V.

Key advantages include:

• Hardware-aligned ops (90% of FLOPs in 1×1 convs)
• Native quantization support via ReLU6 clipping
• Scalable width multiplier (0.35–1.4×) for accuracy/speed

tradeoffs

F. Inception-V3: Architectural design and theoretical basis

The Inception-v3 model is a deep CNN that builds upon
earlier Inception architectures by incorporating factorized
convolutions, auxiliary classifiers, and batch normalization
to enhance both computational efficiency and representational
power. Its modular design enables multi-scale feature extraction
by processing input through parallel convolutional paths with
varying kernel sizes. In this study, Inception-v3 is employed as
a feature extractor to capture rich spatial representations from
histopathological image patches, serving as a strong baseline
for comparison with attention-augmented networks. Fig. 6,
depicts the architectural structure of the Inception-v3 model
used in our pipeline.
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Table IV: Theoretical comparison of bottleneck designs

Property Standard Residual Inverted Residual

Activation Order
• ReLU non-linearity
• Standard convolution
• Final ReLU activation

• ReLU6 (clipped at 6)
• Depthwise convolution
• Linear projection

Channel
Sequence • Channel compression

first
• Spatial processing
• Feature expansion

• Channel expansion
(6×)

• Depthwise processing
• Linear compression

Parameter
Count

K2CinCout tC2
in + K2Cin +

CinCout

Table V: MobileNetV2 Performance Scaling with Width
Multipliers

Width Top-1 Params MAdds
Multiplier (%) (M) (B)

1.4× 74.7 6.9 0.59
1.0× (Base) 72.0 3.4 0.30
0.5× 65.4 1.7 0.08

The Inception-v3 architecture [44] introduces three funda-
mental theoretical advances in efficient deep network design:
(1) factorization of larger convolutions into smaller ones (e.g.,
5× 5 into two 3× 3), reducing computational complexity; (2)
asymmetric convolution factorization (e.g., 3 × 3 into 1 × 3
followed by 3 × 1) to increase representational depth with
fewer parameters; and (3) grid size reduction modules that
downsample feature maps without bottlenecks, allowing deeper
networks while maintaining manageable computation.

L(x) = [W1 ×W3 ×W5] (x) + [W3 ×W5] (x) +W5(x)
(7)

where Wn denotes an n× n convolution. This factorization
principle enables more efficient computation through:

The Inception-v3 architecture incorporates several module-
level optimizations that enhance computational efficiency
without compromising representational power. These include
factorized convolutions, asymmetric filter decompositions, and
grid reduction strategies to manage spatial dimensions and
receptive fields efficiently. A summary of these core module
types and their theoretical properties is presented in Table VI.

Key theoretical contributions include:
a) Factorized Convolutions: Decomposes large kernels

to reduce parameters while maintaining receptive field:

Params(n×n) = C2n2 vs Params(1×n+n×1) = 2C2n
(8)

b) Auxiliary Classifiers: Combat vanishing gradients
through intermediate loss:

Ltotal = 0.7Lfinal + 0.3Laux (9)

c) Efficient Grid Size Reduction: Replaces max pooling
with parallel convolutional strides:

Output = concat [convs=2, pools=2] (10)

The architecture achieves efficiency through:

• Spatial factorization: 1×7 + 7×1 convs replace 7×7 (78%
fewer params)

• Dimensionality reduction: 1×1 conv bottlenecks before
expensive ops

• Label smoothing: Regularization technique improving
generalization:

q′(k|x) = (1− ϵ)δk,y + ϵu(k) (11)

G. Theoretical and architectural comparison

1) Core architectural theories: The three architectures
represent distinct approaches to efficient feature learning:

2) Computational efficiency: The architectures exhibit fun-
damental tradeoffs in resource utilization:

3) Feature learning dynamics:

• Inception-v3: Multi-scale processing through parallel conv
branches

F(x) = concat
[
conv1×1(x), conv3×3(x), pool3×3(x)

]
(12)

• Xception: Complete decoupling of spatial and channel
correlations

FLOPs = HW
(
CinK

2 + CinCout
)

(13)

vs HWK2CinCout (standard conv) (14)

• MobileNetV2: Linear bottlenecks preserve information

rank(y) = min (dim(x), dim(W)) (15)

(avoids ReLU-based dimensional collapse)
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Figure 6. Inception-v3 model for feature extraction

Table VI: Inception-V3 module types and properties

Module Type Theoretical Basis Params Saved Receptive Field

Factorized 7×7 Spatial factorization into 1×7 + 7×1 convo-
lutions

78% 15×15

Asymmetric 3×3 Replacing 3×3 convolutions with 1×3 + 3×1
convolutions

33% 7×7

Grid Reduction Parallel strided convolutions and pooling
operations

– Multi-scale

4) Training strategy, optimization, and performance eval-
uation: To ensure consistent training dynamics and fair
evaluation, each model in our pipeline was trained using
carefully tailored optimization strategies. Architectures
such as Inception-v3, Xception, and MobileNetV2 were
trained from scratch using stochastic gradient descent
(SGD) variants—specifically RMSProp and Nesterov-
accelerated SGD—with learning rates and decay schedules
adapted to each model’s convergence behavior.
To mitigate overfitting and promote generalization, we
incorporated regularization techniques including label
smoothing (Inception-v3), dropout with L2 penalty (Xcep-
tion), and weight decay (MobileNetV2). Batch sizes and
training epochs were customized according to the model’s
complexity and memory requirements.
To assess each model’s readiness for clinical deploy-
ment, we evaluated both predictive performance and
computational efficiency. Top-1 and Top-5 classification
accuracies were recorded to gauge diagnostic reliability,
while training time (in TPU hours) and inference latency
(in milliseconds) measured practical feasibility. Among
all models, Xception achieved the highest Top-1 and
Top-5 accuracy, benefiting from its depthwise separable
convolutions and efficient feature utilization. However,
MobileNetV2 excelled in deployment efficiency, offering
the lowest latency (22ms) and fastest training (6.2 TPU
hours), making it particularly suited for real-time clinical
applications with constrained hardware.

This dual-axis evaluation—optimization-centric and
deployment-centric—demonstrates that while deeper mod-
els offer higher accuracy, lightweight architectures aug-
mented with attention (e.g., MobileNetV2 + MHSA) yield
superior efficiency, rendering them ideal for scalable, AI-
assisted digital pathology workflows.

5) Natural language processing and the rise of attention
mechanisms: NLP has undergone a profound transfor-
mation, evolving from rule-based and statistical models
to modern DL architectures. Traditional approaches like
recurrent neural networks and long short-term memory
networks brought significant advancements but were
constrained by their sequential nature and difficulty in
modeling long-range dependencies.
The introduction of attention mechanisms—initially in neu-
ral machine translation by Bahdanau [45] et al.—marked
a key breakthrough. These mechanisms allowed models
to dynamically focus on relevant parts of an input
sequence when generating each output token, alleviating
the bottleneck of fixed-length context vectors. This not
only improved translation accuracy but also facilitated
interpretability and broader generalization across NLP
tasks such as summarization and question answering.

6) The Transformer architecture and cross-domain im-
pact: Building on this foundation, the transformer model
proposed by Vaswani et al. [18] replaced recurrence and
convolution entirely with self-attention and feed-forward
layers. Each transformer block contains multi-head self-
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attention (MHSA) and position-wise feed-forward net-
works, with residual connections and layer normalization
enhancing gradient flow and convergence. Transformers
support full parallelism, scale efficiently with data, and
have become the standard across NLP tasks—powering
models like BERT, GPT, and T5. The architectural
flexibility of transformers has enabled their extension to
non-sequential domains, including computer vision (e.g.,
ViT, Swin Transformer), where self-attention models both
local and global image dependencies.
7) Adaptation to medical imaging and histopathology: In
medical image analysis, particularly histopathology, spatial
context is crucial. Structures like gland boundaries or
cribriform patterns often span large regions. Transformer-
based models can capture such dependencies better than
conventional CNNs. However, challenges such as high res-
olution, memory complexity (quadratic in input size), and
data requirements have led to innovations like hierarchical
attention, sparse transformers, and area attention.
8) Core attention mechanisms: Attention computes a
weighted combination of value vectors based on the
similarity between query and key vectors. Given Q, K,
and V :

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (16)

Here, dk is the key dimension.
a) Self-attention and Multi-head attention: Self-attention
is applied when Q = K = V , enabling a position to attend
to all others in a sequence. In vision, this translates to
every pixel or patch relating to others. Multi-head attention
extends this:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

(17)

headi = Attention(QWQ
i ,KWK

i , V WV
i )

(18)

Multiple heads learn diverse relational patterns, enhancing
the model’s representational capacity.
b) Area attention: adaptive granularity: To address the
fixed-granularity limitation of MHSA, Area Attention [46]
aggregates spatially contiguous items (areas), beneficial
for histological structures like glands or ducts. For a
rectangular area A:

kA =
1

|A|
∑
i∈A

ki (19)

vA =
∑
i∈A

vi (20)

αA =
exp(q⊤kA)∑
A′ exp(q⊤kA′)

(21)

Attention(q, {kA}, {vA}) =
∑
A

αAvA (22)

Summed Area Tables enable efficient computation of these
aggregates, supporting real-time WSI processing.
9) Hybrid CNN–transformer architecture for gleason
grading: To bridge local feature extraction and global
tissue context, we propose a hybrid architecture H:

H(I) = T (B(I)) (23)

– I ∈ RH×W×3: Input WSI patch
– B: CNN backbone (MobileNetV2, Xception, Incep-

tionV3)
– T : Transformer encoder with MHSA and optional Area

Attention
CNN feature extraction: The CNN generates multi-scale
features:

{Fs}Ss=1 = {Bs(I)}, Fs ∈ R
H
2s ×W

2s ×Ds (24)

The final feature map FS is flattened into tokens F ∈
RN×D, where N = H

2S
· W
2S

.
Transformer attention module: We apply residual
MHSA and normalization:

Z = LayerNorm(F+MHA(F)) (25)

MHA(F) = Concat(head1, . . . ,headh)W
O (26)

This enables the model to learn multi-scale spatial interac-
tions across tissue components. Comparative attention
performance: A comparative analysis Table VII shows
that global MHSA significantly outperforms both CNN-
only and area Attention models in GG. MobileNetV3
+ MHSA provided the best trade-off between inference
speed and diagnostic accuracy.
Interpretability Attention weight visualization revealed
class-consistent patterns:
– GG3: high focus along glandular boundaries
– GG4: diffuse attention across cribriform areas
– GG5: focal emphasis on invasive fronts
These insights align with clinical histology and validate
the model’s transparency. This unified architecture cap-
tures both local morphological detail and global spatial
patterns—critical for accurate, interpretable, and efficient
GG. The Transformer’s attention mechanisms, particularly
MHSA and Area Attention, complement CNNs by mod-
eling inter-region dependencies that are not captured by
convolution alone.

10) Key findings from attention mechanism evaluation:

– Global Multi-Head Self-Attention (MHSA) outper-
formed area-based attention by up to 3.4% in classifi-
cation accuracy.

– MobileNetV3 + MHSA provided the best speed-
performance balance, achieving 15ms latency while
maintaining high diagnostic reliability.

– Area Attention was effective in gland-rich regions
by attending to contiguous histological patterns, but it
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Table VII: Comparative analysis of attention mechanisms for gleason grading

Attention
Mechanism

Backbone Accuracy (%) Latency (ms) Strengths Limitations

Standard Attention InceptionV3 91.2 38 Simple integration, inter-
pretable

Poor global context modeling

Area Attention MobileNetV3 93.4 26 Region-level interpretabil-
ity, reduced FLOPs

Degraded performance on
boundary-spanning tumors

Global MHSA Xception 94.6 27 Strong spatial context, ro-
bust to variation

Higher memory usage

Global MHSA MobileNetV3 96.8 15 Best speed-accuracy trade-
off

Head tuning required

MHSA + Area Atten-
tion

Xception 96.2 30 Combines fine + coarse fo-
cus

Increased complexity

Figure 7. Architecture of the proposed hybrid CNN–transformer model combining convolutional feature extraction, multi-scale
representation, and transformer-based attention.

showed reduced performance in diffuse or boundary-
spanning tumor regions.

– The combination of Area Attention and MHSA
captured both regional context and global structure,
offering interpretability gains at the cost of added
computational overhead.

H. Classification performance evaluation

To evaluate the diagnostic effectiveness of the PCa
classification model, several standard classification metrics
are used. These metrics are derived from the confusion
matrix and provide insight into different aspects of model
performance, including its ability to correctly identify
cancerous and benign cases, and to balance false positives
and false negatives.

I. Algorithmic overview of gleason grading pipeline

As outlined in algorithm 1, the proposed framework
combines the strengths of convolutional and attention-
based models to perform automated GG from histopatho-

logical image patches. Initially, CNNs are employed
to extract hierarchical spatial features that capture fine-
grained morphological details. To overcome the limitations
of local receptive fields, the architecture integrates MHSA
modules that dynamically reweight these features across
spatial regions. This enables the model to highlight diag-
nostically relevant structures—such as gland boundaries
or cribriform patterns—while suppressing irrelevant or
noisy background regions. The attention-refined feature
maps are then passed through a classification head to
predict the corresponding GG. The complete end-to-end
pipeline is illustrated in Fig. 7., which depicts each
stage of the model—from input image patch to final
grade prediction—highlighting the integration of CNN-
based feature extraction with Transformer-based attention
mechanisms. This hybrid algorithmic design effectively
captures both local tissue morphology and global spatial
context, resulting in a robust and interpretable framework
for PCa grading.
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Table VIII: Key classification metrics

Metric Formula Purpose in Study

Accuracy
TP + TN

TP + TN + FP + FN
Overall diagnostic correctness

Precision
TP

TP + FP
Positive predictive value

Sensitivity
TP

TP + FN
Cancer detection rate

Specificity
TN

TN + FP
Benign identification rate

F1-Score 2 · Precision · Sensitivity
Precision + Sensitivity

Grade-wise performance balance

Algorithm 1 Gleason Grading with Attention Mechanisms

Require: Histopathology image I ∈ R224×224×3

Ensure: Grade probabilities y ∈ R6

1: procedure FORWARDPASS(I , backbone_type,
attention_type)

2: F← B(I) ▷
B ∈ {MobileNet, Xception, InceptionV3}

3: if attention_type = MHA then
4: F′ ← Reshape(F, (HW,C))
5: MHA(Q,K) = Concat(head1, ..., headh)W

O

6: headi = Softmax
(

QWQ
i (KWK

i )T√
dk

)
VWV

i

7: Fattn ← MHA(F′,F′)
8: else
9: {Fi}4i=1 ← Split(F, 4)

10: Fattn ←4
i=1 Vec(Fi)

11: z← GAP(Fattn)
12: h← ReLU(W1z+ b1)
13: y← Softmax(W2h+ b2)
14: return y

IV. RESULTS

This section presents the quantitative and qualitative
evaluation of the proposed CNN–Transformer architecture
for automated GG. We report classification accuracy,
precision, sensitivity, specificity, and F1-scores across
multiple model configurations, as summarized in Ta-
ble VIII. Comparative performance metrics (Top-1, Top-
5 accuracy, latency, and training time) are analyzed
for three backbone networks—Inception-v3, Xception,
and MobileNetV2—with and without attention mecha-
nisms. Additional ablation studies evaluate the impact
of attention type (standard, multi-head, area-based) on
model performance. Visualizations of attention maps
and region-specific activations further demonstrate the
interpretability of our attention-augmented models. Finally,
clinical relevance is assessed through metrics such as mean
average precision (mAP), inference time, and memory
footprint, highlighting the model’s potential for real-world
deployment.

A. Performance comparison of CNN architectures

Table IX shows the classification accuracy of several
CNNs, both with and without attention mechanisms. We
observe that integrating attention leads to a consistent
improvement in model accuracy across architectures.
Notably, MobileNetV2, a lightweight backbone, benefits
the most with an increase of over 4% when enhanced with
attention and up to 6.8% when combined with MHSA.
Theoretical insight: The improvement stems from the
fact that CNNs alone primarily model local spatial depen-
dencies via convolutional filters, which may not suffice
for histopathological tasks that require capturing non-local
tissue patterns and global glandular structures. Attention
mechanisms—particularly self-attention—introduce dy-
namic receptive fields that adaptively model long-range
dependencies. This is critical in prostate cancer grading,
where distinguishing between Gleason patterns (e.g., fused
glands in GG4 vs. discrete glands in GG3) often requires
context-aware spatial reasoning.

Table IX: Model performance comparison

Model With Attention Accuracy (%)

ResNet50 (Baseline) No 86.90
InceptionV3 No 85.20
InceptionV3+Attention Yes 87.60
Xception No 89.10
Xception+Attention Yes 91.30
MobileNetV2 No 90.00
MobileNetV2+Attention Yes 94.20
MobileNetV2+MHSA Yes 96.80

B. Model efficiency and resource utilization

We also benchmarked computational efficiency in terms
of GPU memory consumption and inference speed. Mo-
bileNetV2+MHSA achieves a remarkable balance between
accuracy and deployability, requiring only 2.1 GB of GPU
memory while delivering near real-time inference.
Interpretation: This result is particularly promising for
resource-constrained clinical settings or point-of-care
diagnostics, where high accuracy must be achieved under
hardware limitations. It also validates that MHSA—despite
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being a more global operation—is compatible with mobile
architectures when optimized for channel and spatial
efficiency.

C. Ablation study: Role of attention mechanisms

To disentangle the effect of attention modules, we con-
ducted an ablation study across multiple backbones. As
shown in Table X, the addition of attention consistently
improves accuracy. MobileNetV2 benefits the most due to
its shallow and parameter-efficient design, which lacks the
representational depth of heavier models like Xception.
Why this works: In lighter models, there is limited
capacity to learn diverse filters for capturing complex
textures and contextual clues. Attention mechanisms
augment this limited capacity by allowing the network
to selectively emphasize discriminative regions—such as
nuclear density or glandular shape—that are critical in
distinguishing between ambiguous GG.

Table X: Ablation study: Effect of attention mechanisms

Model Without Attention With Attention

MobileNetV2 90.0% 94.2%
Xception 89.1% 91.3%
InceptionV3 85.2% 87.6%

D. Ablation study: Attention types and architectural
variants

We extended the ablation study to include different atten-
tion types and configurations across CNN architectures.
Table XI benchmarks accuracy, per-class F1 scores, mean
average precision (mAP), and computational efficiency.
Key Findings:
– MHSA contributes the most significant performance

gain across all metrics, particularly for GG5 detection,
which is crucial for aggressive PCa prognosis.

– The improvement in GG5 F1-score (96.9%) suggests
that MHSA enhances the model’s ability to detect
subtle and sparse morphological cues such as cribriform
structures or necrosis, which are often missed by
standard convolutional filters.

– Lightweight attention-augmented networks like Mo-
bileNetV2+MHSA outperform heavier models while
remaining computationally efficient.

V. CONCLUSION

This study presents LightGleason, an efficient DL frame-
work for automated GG of PCa using WSI. Our
MobileNet-based architecture enhanced with multi-head
self-attention achieves state-of-the-art performance 96.80%
accuracy on SICAPv2 while maintaining clinical prac-
ticality through its lightweight design (2.1GB memory
footprint). The attention mechanism provides critical im-
provements in discriminating subtle histological patterns,
particularly in challenging GG3-GG5 differentiations,

while our noise and dropout strategies ensure robust
generalization. Comparative analyses demonstrate superior
performance over existing methods in both accuracy and
computational efficiency, suggesting strong potential for
real-world deployment.
Three key innovations contribute to these results: (1) an
optimized attention gate design that focuses computation
on diagnostically relevant regions, (2) a hybrid training
approach combining transfer learning with targeted fine-
tuning, and (3) memory-efficient feature aggregation
enabling whole-slide processing. The framework’s clinical
viability is further evidenced by its consistent performance
across varying image qualities and staining artifacts,
addressing critical requirements for digital pathology
implementation.

VI. FUTURE WORK

While our proposed CNN–Transformer architecture
demonstrates strong performance in GG, future efforts
will prioritize clinical scalability and generalizability. Key
next steps include the development of a lightweight
visualization tool to overlay attention heatmaps onto
histopathological slides, enabling transparent model inter-
pretation for pathologists. Additionally, model quantization
and optimization for edge deployment will be explored
to facilitate real-time inference in low-resource clinical
environments. To address current limitations, we plan
to incorporate few-shot learning techniques for rare
gleason variants and extend the framework for multi-center
validation across diverse patient populations.
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