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Abstract— The invasion of SARS-CoV-2 into host cells depends 

on the interaction of the Spike protein with the human 

angiotensin-converting enzyme 2 (Ace2). Specific Ace2 

polymorphisms have been associated with increased 

susceptibility to SARS-CoV-2, potentially affecting the risk of 

infection and the severity of COVID-19. Furthermore, SARS-

CoV-2 has a high probability of mutating and adapting to the 

environment. However, the effect of these genetic variations on 

the stability and affinity of the Spike-Ace2 interaction is not 

well understood. For a deeper understanding of this 

interaction, molecular dynamics simulations are used. Despite 

generating extensive data, these simulations do not easily 

facilitate the identification of essential residues that influence 

protein interaction. To address this challenge, we combined 

molecular dynamics simulations and supervised machine 

learning techniques to identify the residues that are subtly 

important in the interaction and dynamics of the complexes. 

The molecular dynamics simulations revealed subtle trajectory 

variations, emphasizing key residues and loop regions residues. 

While complexes show stable behavior with slight differences, 

machine learning techniques offer deep insights into how 

genetic variations in both the virus and host receptor influence 

the interaction region of these proteins. 

Keywords-COVID-19; Bioinformatics; Virus-host 

interaction; Polymorphism; Variants. 

I.  INTRODUCTION 

On March 11, 2020, the World Health Organization 
characterized COVID-19 as a pandemic, identifying it as an 
infectious disease caused by the Severe Acute Respiratory 
Syndrome of Coronavirus-2 (SARS-CoV-2) [1] [2]. To date, 
August 2023, more than 691 million cases have been 
confirmed, with the global death toll surpassing 6.9 million 
[3]. In Brazil, listed as one of the most impacted countries, 
records exceed 37 million confirmed cases and almost 704 
thousand deaths [4]. COVID-19 is a respiratory disease 
primarily transmitted through virus-containing particles that 
are expelled when  an infected person coughs, sneezes, or 
talks.  The severity of the disease can vary from mild cases 
to severe cases that can lead to Acute Respiratory Distress 
Syndrome  and, in more serious situations, organ failure [5]. 
People with pre-existing comorbidities and/or who are 

experiencing some degree of immunosuppression are 
generally more susceptible to developing severe forms of the 
disease. Although some people may experience the severe 
form of COVID-19, others remain asymptomatic [5][6]. 

The entry of the virus into the host cell is one of the most 
important processes in viral infection. The virus establishes 
interactions with specific receptors present on the cell 
surface, followed by a fusion or endocytosis process, which 
enables the release of its genetic material into the cell 
cytoplasm. This viral entry step is a critical target in the 
development of vaccines and antiviral drugs, as inhibiting or 
blocking this process can effectively prevent or limit viral 
replication and spread. The invasion of SARS-CoV-2 into 
host cells depends on the interaction of the Spike protein 
with the human angiotensin-converting enzyme 2 (Ace2), 
which is present in the cell membrane. Certain 
polymorphisms of the Ace2 protein have been associated 
with increased susceptibility to SARS-CoV-2 [5][6]. These 
genetic variations in Ace2 can influence how effectively the 
virus attaches and enters into host cells, potentially affecting 
the risk of infection and the severity of the resulting COVID-
19 disease. 

Furthermore, SARS-CoV-2 has a high probability of 
mutating and adapting to the environment [7]. The virus has 
multiple Variants of Concern (VOC) during the course of the 
pandemic, each with specific mutations that have raised 
global health concerns. Notable VOCs include Omicron 
(B.1.1.529 – several countries), Alpha (B.1.1.7 - United 
States), Beta (B.1.351 – South Africa), Gamma (P.1 - Brazil) 
and Delta (B.1.617.2 - India) [2]. In addition, there were 
region-specific variants of interest, such as the P2 (or Zeta 
variant) (B.1.1.28.2), which was detected in the Rio de 
Janeiro city, Brazil, in October 2020. The mutations 
observed in SARS-CoV-2 variants, in conjunction with the 
Ace2 polymorphisms, raise questions about whether genetic 
variability of both the virus and the host could explain the 
different degrees of severity observed in infection cases. 

Understanding the complex interaction between viral 
mutations and host genetic variations is crucial to unraveling 
the factors that influence disease outcomes. One of the areas 
of investigation is how these variations impact the stability 
and affinity of the Spike-Ace2 complexes, which are critical 
for viral entry into host cells. Certain mutations in the Spike 
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can increase the ability of the virus to interact more tightly 
with the Ace2 receptor, potentially leading to increased viral 
replication and infectivity. Unraveling the mechanisms by 
which these mutations influence viral entry and replication 
could open new avenues for therapeutic interventions. 

Molecular dynamics (MD) simulations offer valuable 
information for exploring the effects of mutations and 
evaluating the stability and affinities between complex 
structures. However, the trajectories resulting from these 
simulations generate large amounts of data from thousands 
of atoms at each time interval. The analysis of complex 
trajectories can be performed through various approaches, 
including temporal trajectory analysis, evaluation of 
thermodynamic properties, and investigation of the bonds 
and interactions present. 

Despite these analytical approaches, the highly 
dimensional nature and noisy output for the simulations 
present significant challenges in extracting crucial features 
from the trajectories. Consequently, it becomes difficult to 
gain a deeper understanding of molecular processes, such as 
regions or residues that may subtly contribute to protein 
interactions. Interpreting and extracting significant 
information from these trajectories requires robust analysis 
and is not a simple task. 

Machine learning techniques are utilized to analyze 
extensive datasets, helping to identify crucial distinctions 
between trajectories obtained in MD simulations, even when 
these differences are subtle. Fleetwood et al. (2020) 
demonstrated the utility and potential of machine learning 
techniques in understanding biomolecular processes [8]. 
Their work involved the successful application of both 
supervised and unsupervised methods to investigate three 
distinct biological systems. In the field of viral interactions 
with human hosts, Pavdola et al. (2021) employed MD 
simulations and machine learning techniques to investigate 
the differences in how SARS-CoV and SARS-CoV-2 
interact with the human Ace2 receptor [9]. Inspired by these 
studies, our research aimed to further explore the interaction 
between SARS-CoV-2 and Ace2,  aiming to fill the 
knowledge gap about the interaction between viral mutations 
and genetic variations of the host. 

In our previous study, we investigated the effects of 
genetic variability in SARS-CoV-2 on the interaction with 
wild type Ace2 [1]. Extensive MD simulations were 
performed to evaluate the stability of the formed protein 
complexes and, subsequently, supervised machine learning 
methods were used considering the trajectories obtained in 
the simulations as input data. In this study, we expand our 
analyzis to address the interaction of Spike variants with 
wild type Ace2, in addition to including new investigations 
into the effects of Ace2 polymorphisms. The combining of 
MD simulations and machine learning methods has allowed 
us to gain deeper insights into how genetic variations in both 
the virus and the host receptor can impact the region of 
interaction between these essential proteins. 

The structure of this work is outlined as follows: Section 
II elucidates the methods employed at each stage of this 
study. Moving forward, Section III elaborates on the results 
and subsequent discussions, while Section IV summarizes 

the conclusion and describes the next steps of this research. 
The article concludes with acknowledgements. 

II. MATERIAL AND METHODS 

In this section, we will outline the methods employed to 
perform molecular dynamics simulations and implement 
machine learning architectures. 

A. Molecular Dynamics 

The tertiary structure of the complex Spike receptor-
binding domain (RBD) and Ace2 (PDB ID: 6LZG) was 
obtained from the Protein Data Bank [10] and the Modeller 
software v9.23 [11] was used to fill the missing atoms and 
residues. The mutant complexes for Spike variants and Ace2 
polymorphisms were generated by using the UCFS 
CHIMERA software version 1.14 [12]. Seven complexes 
Ace2_Spike-RBD were analyzed: Ace2_Spike-RBD (Wild 
complex), Ace2_Spike-RBD variants (Omicron, Delta and 
P2) and Ace2_Spike-RBD complexes with the Ace2 
polymorphisms (K26R, R219C, K341R). The Ace2 
polymorphisms were selected using the Genome 
Aggregation Database (GnomAD – 
https://gnomad.broad.institute.org) and Brazilian Online 
Mutations Archive (ABraOM – http://abraom.ib.usp.br). The 
selection of non-synonymous Ace2 mutations was carried 
out using the following criteria: amino acid residues located 
in the region of the peptidase domain of Ace2 (19-614 
residues) and identified, according to the literature, as critical 
residues in the interaction between Ace2 and Spike-RBD, 
polymorphisms found in samples of the Brazilian population 
deposited in the ABraOM database and which are in high 
frequency in the population according to GnomAD data. 

The systems were solvated in a cubic box with a 
minimum distance of 1.25 nm from the solute to the edge of 
the box. GROMACS package version 2020.5 [13] was used 
in the MD simulations of complexes. The force field used 
was CHARMM36 [14]. The molecules were solvated with 
TIP3P water molecules and neutralized by adding the 
appropriate number of Na+Cl ions considering the ionic 
concentration of 0.15 M. The energy minimization was 
performed using the steepest descent method with a 
maximum force of 1000 KJ.mol-1.nm-1. After minimization, 
the systems were equilibrated in two stages: a canonical 
NVT set followed by an isothermal-isobaric NPT set. The 
NVT equilibrium was performed with a constant temperature 
of 300 K for 500 ps. The NPT equilibrium was performed 
with a constant pressure of 1 bar and a constant temperature 
of 300 K for 500 ps. The v-rescale and Parrinello-Rahman 
algorithms were utilized to keep constant temperature and 
pressure. The production step was conducted at 300 K for 
100 ns and the trajectories were saved every 10 ps. 

The Root Mean Square Deviation (RMSD) and Root 
Mean Square Fluctuation (RMSF) were calculated as metrics 
to evaluate the structural stability and dynamic fluctuations 
of the systems. While RMSD measures the average distances 
between matching atoms in two structures, usually 
comparing frames obtained during MD simulations with the 
initial frame (t = 0 ns), RMSF calculates the average squared 

100

International Journal on Advances in Life Sciences, vol 15 no 3 & 4, year 2023, http://www.iariajournals.org/life_sciences/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



fluctuations of atom positions in relation to their average 
positions throughout a simulation. 

To estimate the binding energy and determine the 
energetic contributions of residues in protein-protein 
interactions, we utilized the MM/PBSA method [15]. For the 
MM/PBSA calculations, we included all frames from the 
final 10 ns of production for each complex.  We selected the 
last 10 ns of the simulations, as during an extended 
simulation, the systems attain a state of dynamic equilibrium 
where relevant properties for calculating binding free energy 
become stabilized. This time window is appropriate for 
sampling the conformation and properties of the system, not 
requiring high computational power. Additionally, a shorter 
time interval helps minimize the effects of initial system 
fluctuations, allowing for a more accurate estimation of the 
binding energy. 

B. Machine Learning 

Based on Fleetwood et al. [8], correlation matrices of 
filtered contact maps from MD trajectories were used as 
inputs for supervised ML techniques. In order to reduce the 
influence of a single model and enhance the stability of our 
results, we utilized two different classification strategies: 
Multilayer Perceptron (MLP) and Random Forest (RF). Both 
methods were used to identify residues that contribute to the 
difference in dynamic behavior between the complexes (Fig. 
1). 

 

 
 

Figure 1. Workflow of the Machine Learning methods used in this study. 

 
The MLP is an artificial neural network with multiple 

layers between the input and output layers. It is particularly 
suited for capturing complex, non-linear relationships in 
data. On the other hand, RF is an ensemble learning 
technique that builds multiple decision trees and combines 
their outputs through majority voting. The performance and 
capability of RF to manage noisy and incomplete data make 
it a valuable resource in various scenarios. By utilizing both 
RF and MLP, we ensure a comprehensive exploration of 
intrinsic relationships and distinctive patterns within the 

dataset, which ultimately results in more accurate predictions 
and valuable insights in our analysis. 

What constitutes the input features for the MLP are 
correlation matrices obtained from contact distances between 
Ace2 and Spike-RBD residues. The distances were 
calculated as the minimum distance between the heavy 
atoms of residues in the interaction region and then filtered, 
leaving only the distances less than 15 Å, in order to 
establish a predetermined range of analysis for the studied 
regions. The values were then inverted and normalized to be 
used for the calculation of the correlation matrix, which was 
also filtered. Correlations over 0.9 were discarded, as the 
objective was to identify residues that are not easily 
recognized as significant contributors to the interaction. 

In the MLP, four additional profiles were generated for 
each complex using bootstrapping, aiming to enhance the 
classifiers performance. As a result, five profiles were 
obtained for each complex. 

The MLP was implemented using the open-source ML 
library Scikit-learn in Python [16]. We also used the data 
analysis and manipulation library Pandas [17], and the 
numerical computing library NumPy [18]. For the structure 
of the MLP, 8 hidden layers were used, with 100, 75, 50, 40, 
30, 20, 10, and 5 neurons respectively, each with the ReLU 
function as activation. The labels (Ace2_Spike-RBD 
complex) were one-hot encoded to represent categorical data 
numerically and the training process used the Adam 
optimizer [19] to adjust node weights. A train-test split was 
applied, with 80% of the data in the training set and 20% in 
the test set. 

This network was trained with each of the profiles, 
resulting in 5 total MLPs for the complexes with Spike-RBD 
variants and Wild type (WT) and 5 for the complexes with 
the Ace2 polymorphisms and WT. 

Since the classification task itself does not directly 
indicate which were the important features that influenced 
the prediction, an explanation algorithm was applied for the 
model. The one selected was the Layer-Wise Relevance 
Propagation (LRP) [20] with the LRP-0 rule. This algorithm 
indicates which inputs had the most impact on a specific 
prediction made by the model,  obtaining this through the 
allocation of a normalized relevance score to each individual 
feature. Therefore, making the decision-making of the neural 
network more transparent. 

The RF classifier, also implemented with Scikit-learn, 
receives as inputs the distances matrix, since it  uses an 
internal bootstrapping process to produce consistent profiles, 
and the number of decision trees was set to 100.  Our model 
utilized the Gini impurity coefficient, ranging from zero to 
one. Zero indicating a pure split and one indicating 
maximum impurity. We aimed to select splits that would 
lower Gini impurity, resulting in more homogeneous 
distribution of classes within the leaves of the tree. 

To calculate the importance of a specific state in the RF 
model, the one-versus-the-rest approach was employed. This 
strategic method decomposes the problem into multiple 
binary classification instances and endeavors to discriminate 
each individual case. 
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III. RESULTS AND DISCUSSION 

The outcomes achieved at each step of our work will be 
detailed in the subsequent subsections. 

A. Analysis of trajectory stability 

The simulation data was used to compute RMSD for 
Ace2_Spike-RBD complexes, considering two distinct 
approaches: the first one considering the interaction between 
Ace2 WT and Spike-RBD variants; and the second one 
analyzing the interaction between Ace2 polymorphisms and 
Spike-RBD WT. Fig. 2 shows the RMSD values for the 
Ace2 and Spike-RBD proteins. 

 

 
 

Figure 2. Analysis of the RMSD trajectories obtained in the MD 

simulations. (A) RMSD of Ace2 WT interacting with Spike-RBD variants; 

(B) RMSD of Spike-RBD variants interacting with Ace2 WT; (C) RMSD 
of Ace2 polymorphisms interacting with Spike-RBD WT; (D) RMSD of 

Spike-RBD WT interacting with Ace2 polymorphisms. 

 

In the Ace2 chain trajectory (Figs. 2A and 2C) involving 

the interaction with Spike-RBD, the RMSD showed similar 

values (between 0.2 nm and 0.4 nm) and low standard 

deviation, implying their stability. The trajectory of the 

Ace2 WT had a subtle higher RMSD value compared to the 

other complexes, revealing greater structural variation over 

the analyzed time. The Spike-RBD trajectories (Figures 2B 

and 2D) of all complexes remained in equilibrium, with 

RMSD values between 0.2 and 0.6 nm. All analyzed 

trajectories of the Spike-RBD complex interacting with 

Ace2 polymorphisms similarly exhibited stability 

throughout the simulation. 

Stable trajectories indicate that the simulation is 

converging to an equilibrium state, where the properties of 

the systems stop showing significant variations. This 

stability enhances the reliability and precision of the 

simulation data, providing valuable insights into the 

behavior and interactions of the studied complexes. 

 

B. Analysis of the Atomic Position Variation 

The RMSF represents the degree of variation in the 
position of a given atom during the course of time. Higher 
values of RMSF per residue characterize greater flexibility, 
and vice versa [21]. The RMSF results of the interaction 
between Ace2 WT and Spike-RBD variants, along with the 
interaction between Ace2 polymorphisms and Spike-RBD 

WT, are presented and discussed in sections 1 and 2, 
respectively. 

 
1) Mobility Analysis of Ace2 WT Associated with Spike-

RBD Variants.: The RMSF analysis revealed the residues 
that exhibited the most significant fluctuations in the 
trajectories of the Ace2 protein (Fig. 3A) and Spike-RBD 
(Fig. 3B). On the Ace2 trajectories, the most pronounced 
fluctuations occur predominantly in loop regions, 
specifically in residues near Pro138, Gln287, Asn290, 
Gln340, and Phe428 (Fig. 3C). Notably, Gln340 exhibited 
the highest peak in the trajectory of the Delta variant (0.67 
nm), with a difference of 0.36 nm from the other 
trajectories. Among these residues, Gln340 is the only one 
located in a loop relatively close to the Spike-RBD. 
 

 
 

Figure 3. Analysis of residual RMSF from Ace2 protein interacting with 
Spike-RBD variants. (A) Residual RMSF of Ace2 WT in the Ace2_Spike-

RBD complex; (B) Residual RMSF of Spike-RBD variantes in the 
Ace2_Spike-RBD complex; (C) Fluctuations in Ace2 WT  loop regions; (D) 
Fluctuations in Arg408 residue of Spike-RBD variants; (E) Fluctuations in 

residues Ile434 and Lys444 of Spike-RBD variants. 

 
Regarding the Spike-RBD trajectories (Fig. 3B), notable 

fluctuations were observed for the Arg408, Ile434 and 
Lys444 residues. The RMSF values showed that Arg408 
residue of the Delta variant obtained a slightly lower RMSF 
value (0.13 nm) compared to the WT (0.21 nm), Omicron 
(0.25 nm) and P2 (0.28 nm) variant complexes. This residue 
is situated in an alpha-helix, near the interaction interface of 
Spike-Ace2 (Fig. 3D). 

Arg408 is adjacent to residue 417, which has mutated 
into the Omicron variant, resulting in an amino acid switch 
from lysine to asparagine (K417N). In the Spike WT, 
Lys417 forms a very stable salt bridge with the aspartate at 
residue 30 of the Ace2 receptor. The replacement of lysine 
for asparagine or threonine largely disrupts binding at this 
position, as it induces a loss of the salt bridge at this position 
[22]. 

As for the Omicron variant complex, the Ile434 residue 
showed a slightly higher fluctuation (0.12 nm) compared to 
the Spike-RBD WT (0.7 nm), in addition to Delta (0.7 nm) 
and P2 (0.6 nm) variants. Ile434 is located in a beta-sheet, 
but it is not close to the Spike-RBD (Fig. 3E). Isoleucine, 
being a non-polar amino acid, plays an important role in the 
structural stabilization of proteins due to hydrophobic 
interactions within its interior. Furthermore, Ile434 is close 
to the S375F and N440K mutations in the Omicron variant. 
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Such mutations decrease the protein stability, which may 
explain the greater fluctuation observed in this variant [22]. 

The Lys444 residue of the Delta variant had the highest 
fluctuation peak of 0.20 nm, followed by the Omicron 
variant (0.16 nm), P2 variant (0.16 nm), and Spike-RBD WT 
(0.14 nm). Lys444 is located in a loop close to Gly446, 
Tyr449, Gln498, Thr500 and Asn501 in Spike WT, which 
are involved in polar interactions with Ace2 (Fig. 3E) [23]. 
The L452R mutation of the Delta variant, which is relatively 
close to the Lys444 residue, reduces protein stability [24]. 
 

2) Mobility Analysis of Spike WT Associated with Ace2 

Polymorphisms: The RMSF results for Ace2 

polymorphisms and Spike-RBD are shown in Figs. 4A and 

4B, respectively. The most prominent RMSF fluctuations 

are observed in loop regions, which were previously 

highlighted in the previous section and are represented in 

Fig. 3C. However, a few subtle fluctuations have been 

identified near the Ace2 polymorphisms regions, such as 

those observed in Gln325, Trp328, and Arg582. 
The Gln325 residue is situated in an alpha-helix near the 

Spike-RBD and exhibited a slightly reduced fluctuation in 
the trajectory of the complex with the K341R polymorphism 
(0.18 nm), followed by WT (0.26 nm), R219C (0.27 nm), 
and the largest, K26R (0.30 nm). Similarly, Trp328 also 
showed a smaller fluctuation in the trajectory of the K341R 
polymorphism, with a difference of 0.16 nm compared to the 
other complexes. The tryptophan residue is located in an 
alpha-helix next to the Spike-RBD. Both Gln325 and Trp328 
are positioned near the K341R polymorphism (Fig. 4C). 

The residue Arg582 of the Ace2 WT obtained a slightly 
lower RMSF value (0.07 nm) compared to the complexes 
with the polymorphisms K26R (0.25 nm), R219C (0.20 nm) 
and K341R ( 0.19 nm). Residue Arg582 is located in an 
alpha helix close to the R219C polymorphism (Fig. 4D). 

 

 
 

Figure 4. Analysis of Residual RMSF from Spike WT interacting with Ace2 
polymorphisms. (A) Residual RMSF of Ace2 polymorphisms  in the 

Ace2_Spike-RBD complex; (B) Residual RMSF of Spike-RBD in the 
Ace2_Spike-RBD complex; (C) Fluctuations in residues Gln325 and Trp328 

of Ace2 polymorphisms; (D) Fluctuations in Arg582 residue of Ace2 
polymorphisms; (E) Fluctuations in Trp436 and Ser443 residues of Spike-

RBD. 

 
In the RMSF plot of the Spike-RBD chain (Fig. 4B), the 

Ace2_Spike-RBD complex featuring the K26R 
polymorphism demonstrated a slightly elevated RMSF value 
at residue Trp436 within the Spike protein (with a 0.1 nm 

difference) compared to complexes involving other 
polymorphisms. The Arg26 polymorphism represents a polar 
residue located within an alpha helix, near to the Spike-RBD, 
while Trp436 is an aromatic amino acid with non-polar 
characteristics, positioned within a beta sheet structure (Fig. 
4E). Additionally, the complex with the G211R 
polymorphism exhibited marginally higher RMSF values in 
the Ser443 residue, showcasing a difference of 0.27 nm in 
relation to the other polymorphisms. Situated adjacent to 
Spike-RBD within an alpha helix, the residue Ser443 
emerges as an uncharged polar element. 
 

C. MM/PBSA Binding Free Energy Analysis 

The MM/PBSA calculation was performed to estimate 

the binding energies between the Ace2 and Spike proteins, 

along with to comprehend the factors contributing to the 

stability or instability of the interaction. The binding energy 

values are summarized in Table 1, revealing that the 

Omicron variant demonstrates a more affinity with Ace2, 

showing a binding energy of -2572.23 ± 144.92 KJ.mol-1, 

followed by the Delta and P2 variants, which record values 

of -1875.71 ± 132.97 and -1837.21 KJ.mol-1, respectively. 

The analysis of MM/PBSA residual energy decomposition 

has revealed that it is the electrostatic interactions that 

predominantly influence the stability of the Spike-RBD 

variants in the protein-protein interaction. On the other 

hand, the values obtained for the Van der Waals energy 

components, solvation polar energy and SASA did not show 

significant variations. Regarding the interaction of Spike-

RBD WT with Ace2 polymorphisms, the estimated values 

for binding energy did not exhibit significant variations. 

This can be attributed to the point-wise changes in Ace2 

polymorphisms, which were not sufficient to differentiate 

the binding interaction energy. 

TABLE I.  RESIDUAL DECOMPOSITION AND BINDING ENERGY 

(GIVEN IN KJ.MOL
-1

 ) IN THE PROTEIN-PROTEIN INTERACTION. 

 
 

Fig. 5 illustrates the per-residue energy decomposition 
through MM/PBSA of the analyzed complexes. Although 
Ace2 residues showed subtle variations in interaction with 
the Spike variants (Fig. 5A), variations within Spike residues 
themselves were more pronounced (Fig. 5B).  Specifically, 
the residues at positions 408, 417, 440, 452, 478, 484, 493, 
and 498 exhibited significant energetic variations. 

In the Spike-RBD chain (Fig. 5B), the Omicron variant 
shows a slightly decreased binding energy at the Arg408 
residue in comparison to WT and other variants. 
Furthermore, Lys417 residue in the Omicron variant shows a 
weaker binding energy than in the other complexes (-4.72 
KJ.mol-1), with a discrepancy greater than 200 KJ.mol-1. As 
previously mentioned, the substitution of lysine with 
asparagine, as observed in the Omicron variant, disrupts a 
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highly stable salt bridge interaction between Lys417 and 
Ace2 residue 30, consequently destabilizing the complex. In 
addition, the N440K mutation present in the Omicron variant 
records a value of -225,52 KJ.mol-1, differing by more than 
200 KJ.mol-1 from the other complexes. 

 

 
 

Figure 5. MM/PBSA per-residue energy decomposition for the 
trajectories obtained in the MD simulations. (A) Contribution energy of 

Ace2 WT residues in interaction with Spike-RBD variants; (B) Contribution 
energy of Spike-RBD variants residues in interaction with Ace2 WT; (C) 
Contribution energy of Ace2 polymorphism residues in interaction with 
Spike-RBD WT; (D) Contribution energy of Spike-RBD WT residues in 

interaction with Ace2 polymorphisms. 

 
In the Delta variant complex, the L452R mutation 

showed a binding energy of -200.19 KJ.mol-1, while in the 
other complexes the residue reached values around -1 
KJ.mol-1. The residue L452R is located in the hydrophobic 
region of the Spike protein and does not interact with the 
Ace2 receptor. However, there is a possibility that the 
mutation induces structural changes by promoting its 
interaction with the Ace2 receptor [25]. 

The T478K mutation, identified in the Delta and 
Omicron variants, resulted in binding energies of -186.69 
and -175.78 KJ.mol-1, respectively. In contrast, the WT and 
P2 complexes showed binding energies around -1 KJ.mol-1. 
Replacement of the polar and uncharged threonine residue 
with the positively charged basic amino acid lysine increases 
the electrostatic potential contribution within the Spike-
RBD, promoting stronger affinity with the Ace2 receptor. 
Furthermore, the elongated lysine side chain could increase 
the steric effects of the Delta variant, potentially elucidating 
the increased interaction between Spike-RBD and the Ace2 
receptor [26]. 

The Glu484 residue is mutated in the Omicron variant, 
involving the replacement of glutamine by alanine, and 
likewise in the P2 variant, but with the replacement of 
glutamine by lysine. Notably, the E484K mutation in the P2 
variant produced a higher binding energy (-211.87 KJ.mol-1), 
contrasting with the E484A mutation observed in the 
Omicron variant (-1.76 KJ.mol-1). The E484A mutation 
within the Omicron variant abolishes the weak binding of 
Glu484 to Ace2 in the WT, while mitigating the 
destabilization arising from conceivable electrostatic 
repulsion between Glu484 from WT and Glu35 from Ace2 
after transition to Ala484. Consequently, the E484A 

mutation has no influence on the binding free energy, in 
contrast to the E484K mutation observed in P2, which 
increases the interaction. 

Q493R and Q498R are mutations present in the Omicron 
variant that showed a reduction in binding energy, with 
values of -226 and -252 KJ.mol-1, respectively, with a 
difference of more than 200 KJ.mol-1 from the Delta and 
WT. The combination of the Q498R and N501Y mutations 
significantly increases Ace2 binding capacity due to the 
formation of two new strong salt bridges between Arg493 
and Arg498 of Omicron, and Glu35 and Asp38 in Ace2 [27]. 

Regarding the complexes between Ace2 polymorphisms 
and Spike-RBD WT, no significant values were observed in 
the MM/PBSA results for the residues in question (Figs. 5C 
and 5D). However, the residues Val343 and His345, located 
in the Ace2 chain of the complex containing the K341R 
polymorphism, showed slightly weaker binding energy 
compared to the other complexes (Fig. 5C). Val343 and 
His345 are situated close to the K341R polymorphism, all 
within the loop region and relatively near the Spike-RBD. 

D. Discriminatory Residues of Spike Variants through 

Machine Learning 

Table 2 shows the five most significant residue pairs for 
each complex. In the MLP, the importance values of each 
residue pair were derived by calculating the average of the 
associated LRP-0 attributes. On the other hand, in the RF, 
the importance was evaluated based on the reduction of Gini 
impurity. Key residues responsible for variations in binding 
between Spike-RBD variants and Ace2 WT were identified, 
some of them already reported in previous studies. 
 

TABLE II.  IMPORTANT RESIDUES OBTAINED FROM MLP AND RF FOR 

SPIKE VARIANTS INTERACTING WITH ACE2 WT. THE PAIRS HIGHLIGHTED IN 

BOLD ARE SUPPORTED BY THE LITERATURE AND ARE DISCUSSED IN THIS 

STUDY. 

 
 

Fig. 6 illustrates the importance values of the pairs 
obtained through MLP (Fig. 6.A) and RF (Fig. 6B), 
highlighting the most relevant residues that distinguish the 
variants from the WT (Figs. 6C-E). 
 

104

International Journal on Advances in Life Sciences, vol 15 no 3 & 4, year 2023, http://www.iariajournals.org/life_sciences/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
 

Figure 6. Pairs of residues determined as most important for distinguishing the binding between Ace2 WT and Spike-RBD variants. (A) Pairs identified by 
MLP; (B) Pairs identified by RF; (C) Pairs of important residues found for Spike-RBD WT and P2; (D) Pairs of important residues found for Spike-RBD WT 
and Omicron; (E) Pairs of important residues found for Spike-RBD WT and P2. Important residues are composed of highly distinct pairs of distances between 

Ace2 WT and the studied Spike-RBD variants. 
 

The residue pairs identified by the RF model differed 
from those identified by the MLP model. However, some 
residues were identified by both methods. The analysis of the 
results emphasizes the importance of the main residues of 
Ace2 in the interaction with Spike-RBD, as mentioned by 
Ali and Vijayan (2020), which include Gln24, Thr27, Asp30, 
Glu37, Gln42, and Lys353 [28]. Furthermore, the Ser19 
residue of Ace2 protein, which was commonly seen among 
pairs, is also important. Ser19 participates in a network of 
hydrogen interactions, particularly interacting with Pro462 
[29]. 

The results obtained by the MLP suggest that Ser19 can 
subtly interact with residues near Pro462, forming pairs with 
Pro479 in the Spike-RBD WT, and Asn477 and Pro479 in 
the P2 variant. The S477N mutation, present in the P2 
variant, may favor a greater interaction with Ser19 of Ace2 
protein. In addition, a mutation S19P increased the 
interaction between Ace2 and Spike-RBD [30]. This 
suggests that the Ser19 residue plays a critical role in 
modulating the interaction between Ace2 and Spike, 
potentially influencing the infection capability and viral 
transmissibility of the P2 variant. The mentioned pairs may 
be of importance in distinguishing between the binding of 
Spike-RBD WT and P2 to Ace2 (Fig. 6C). 

In the RF model, the mutations K417N and Q498R of the 
Omicron variant formed interesting residue pairs. The 
K417N mutation may have significant effects with residues 
Ile21, Gln24, Ala25, and The27, while the Q498R mutation 
may affect Lys353 of Ace2 protein (Fig. 6D). Studies 
indicate that the K417N mutation leads to a reduction in the 
binding affinity of the Spike to Ace2; however, it is an 
immune escape mutation, which helps SARS-CoV-2 escape 
the natural immune defenses of the host, contributing to 
increased viral transmissibility. On the other hand, Q498R is 
associated with an increase in viral infection. The Lys353-
Arg498 pair had an importance of 0.94. The study by Zhang 
et al. (2022) suggests that Q498R is structurally incompatible 
with Lys353 in Ace2, but is structurally adapted to Asp38 
[31]. 

The E484K mutation, found in the P2 variant, is 
associated with a reduction in neutralizing antibodies. This 

mutation results in a tighter binding interface between Spike-
RBD and Ace2 protein, contributing to an increase in 
binding affinity [32]. Our results indicate the presence of two 
pairs related to this residue, namely Ser106-Lys484 with a 
significance of 1.00, and Ser105-Lys484 with a significance 
of 0.79 (Fig. 6E). 

E. Discriminatory Residues of Ace2 polymorphisms 

through Machine Learning 

 

Table 3 shows the five pairs responsible for variations in 
the binding between Ace2 polymorphisms and Spike-RBD. 
Both the RF and MLP models identified identical residue 
pairs, such as Phe356-Tyr495 in K26R, and Gly104-Phe486 
and Ser105-Tyr489 in K341R. For ACE2 WT and R219C 
polymorphism, the residue pairs identified by the RF model 
differed from those identified by the MLP model. However, 
the residue Phe486 (in R219C) and Gln325 (in WT) were 
identified in both methods. Notably, the Ser19 residue in the 
Ace2 protein received high scores for all the polymorphisms, 
including K26R, K341R, and R219C identified by MLP, in 
addition to the WT identified by RF. 

TABLE III.  IMPORTANT RESIDUES OBTAINED FROM MLP AND RF FOR 

ACE2 POLYMORPHISMS INTERACTING WITH SPIKE-RBD WT. THE PAIRS 

HIGHLIGHTED IN BOLD AND MARKED WITH ASTERISKS APPEARED IN BOTH 

MLP AND RF ANALYSES. THE REMAINING BOLD PAIRS ARE ALSO 

DISCUSSED IN THIS STUDY. 
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Figure 7. Pairs of residues determined as most important for distinguishing the binding between Spike-RBD WT and Ace2 polymorphisms. (A) Pairs identified 
by MLP; (B) Pairs identified by RF; (C) Pairs of important residues found for Ace2 WT and K26R; (D) Pairs of important residues found for Ace2 WT and 

K341R. Important residues are composed of highly distinct pairs of distances between Ace2 polymorphisms and the Spike-RBD. 

 
Fig. 7 shows the significance of the pair values obtained 

using MLP (Fig. 7A) and RF (Fig. 7B), emphasizing the key 
residues that differentiate the variants from the WT, as 
demonstrated in Figs. 7C and 7D. 

Ace2 K26R increases susceptibility to SARS-CoV-2 due 
to a higher binding affinity with the Spike protein [30]. In 
this polymorphism, Phe326 forms a pair with Tyr495. 
Phe356 is located near residues Tyr41, Gln42, Lys353, and 
Arg357, which interact with the Spike-RBD, while Tyr495 
participates in a hydrogen bonding network with Ace2. 
However, there is currently no literature available on the 
specific importance of Phe356 in the K26R polymorphism 
when interacting with the Spike-RBD. 

The K341R mutation, which replaces lysine with 
arginine, results in a larger mutant residue, which can cause 
protrusions [33]. Our research findings highlight significant 
variations in the pairs Gly104-Phe486 and Ser105-Tyr489. 
The roles of some of these residues have been documented 
by Ali et al. (2020) [28]. Specifically, Phe486 participates in 
important polar interactions with Tyr83 and hydrophobic 
interactions with Leu79 of Ace2. Tyr489 is involved in polar 
interactions with Thr27 and Lys31, as well as hydrophobic 
interactions with Phe28, Tyr83, Thr27, Phe32, and Phe72 
from Ace2. 

IV. CONCLUSIONS AND FUTURE WORK 

The interaction between the Spike and Ace2 proteins 
plays a crucial role in determining the replication rate of 
SARS-CoV-2 and has implications for  the disease 
progression in infected individuals. The virus exhibits a 
pronounced propensity for mutations, as evidenced by the 
emergence of various variants in recent years. Ace2 genetic 
polymorphisms have the potential to influence susceptibility 
to the disease, along with its subsequent intensity and clinical 
outcome. However, a comprehensive understanding of how 
mutations and polymorphisms impact the stability and 
interaction dynamics within the SARS-CoV-2-Ace2 
complex remains an ongoing effort. 

In our research, we combined MD simulations and 
machine learning techniques to explore the interaction 
between different SARS-CoV-2 variants and human Ace2 
polymorphisms. Through these simulations, we obtained 
valuable information about the protein-protein interaction. 
Concurrently, employing machine learning techniques 
allowed us to pinpoint critical amino acid residues within the 
binding region that subtly contribute to this interaction. 

The MD simulations revealed similar stability patterns 
among the studied complexes. Furthermore, the resulting 
trajectories indicated a convergence of the simulations into 
an equilibrium state. The stability of the Ace2 protein 
complex with Spike-RBD WT was slightly diminished, as 
evidenced by the RMSD values, in contrast to the SARS-
CoV-2 variant complexes. This observation is consistent 
with the anticipated effect of mutations in the Spike 
interaction region leading to increased stability. 

Although the most significant fluctuations were observed 
in loop regions, some residues near the interaction interface 
exhibited notable fluctuations. Arg408 and Lys444 of the 
Spike-RBD showed slightly higher RMSF values in the 
Delta variant. Gln325 and Trp328 residues of the Ace2 
protein showed lower fluctuations in the trajectories of the 
K341R polymorphism, whereas Trp436 and Ser443 
exhibited higher fluctuations for WT and G211R, 
respectively. Significant changes in RMSF in these regions 
may suggest important conformational alterations for the 
biological activity in the Ace2-Spike interaction. 

The Omicron variant demonstrates a stronger affinity 
with Ace2, as evidenced by the MM/PBSA values, where the 
Q493R and Q498R mutations contributed more significantly 
to the binding energy. Regarding the complexes formed 
between Ace2 polymorphisms and the Spike-RBD, no 
significant differences were identified in the MM/PBSA 
results for the considered residues. These point 
polymorphisms were not sufficient to generate detectable 
notable variations using the MM/PBSA method. 

Regarding the Machine Learning methods, we achieved a 
precision score of 1 and loss values below 0.005 for both 
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approaches using the test dataset. The high precision and low 
loss on the test data suggest that the model is performing 
well, but they do not ensure the absence of overfitting. A 
more comprehensive evaluation, utilizing other data sources 
such as cross-validation, is necessary to determine the 
presence of overfitting. 

The ML and RF approaches successfully identified key 
residues from both proteins responsible for differences in 
binding region, some of which have been previously reported 
in the literature. This demonstrates that our method was able 
to identify residues that significantly contribute to the 
distinction between virus and host interaction due to Spike 
variants and Ace2 polymorphisms,  extending even to those 
pairs of residues that have been not previously documented 
in the existing literature. 

Our study shows that machine learning can simplify the 
complexity of virus-host interactions by reducing 
dimensionality and identifying crucial residues. Our findings 
indicate that there may be additional important residues 
beyond those previously considered above that may impact 
the interaction between Spike and Ace2 proteins. These 
residues may account for differences in stability and affinity, 
leading to varying levels of susceptibility to SARS-CoV-2 
and resulting in varying degrees of disease severity. In our 
work, we aim to gain a deeper understanding of the 
relationship between mutations and the affinity between 
Spike-Ace2 by not only exploring other variants, but also 
incorporating various machine learning methods. 
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