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Abstract—Recently, many healthcare devices have been 

developed to monitor the health conditions of older people and 

others with health problems. To detect even the slightest 

changes in physical condition, it is crucial to carry out 

assessments during long periods of time while people are 

engaged in their normal daily activities, which do not change 

from usual. However, while devices to assess health conditions 

are beneficial, they also present challenges, such as invasion of 

privacy by monitoring systems, difficulty in operation, and 

handling of large amounts of data. Walking is sometimes 

referred to as the sixth vital sign, and is used to assess various 

diseases, including central nervous system, orthopedic, 

cardiovascular and respiratory diseases. Research on the 

development of smart insoles that can acquire digital data is 

increasing. However, smart insoles cannot be used at home in 

cultures in which shoes are not worn at home. To overcome 

these challenges, we have developed a gait assessment device 

that integrates pressure sensors into a floor mat for daily use. 

The purpose of developing this device is not to analyze gait 

improvement, but to capture changes in physical condition in 

daily living activities through changes in walking. The 

equipment comprises a grid of eight pressure sensors, each 

perpendicular and parallel to the walking direction. Because 

this floor mat is intended for use in homes, the measurement 

distance is shorter compared to conventional gait assessments. 

Therefore, we study the possibility of floor mats via the timed 

up and go (TUG) test, a conventional walking assessment 

method, and shoes fitted with pressure and acceleration sensors. 

Three subjects performed free walking, walking with an older 

people experience set, and walking with ankle and knee joints 

restricted by supporters. In addition to simulated motions and 

visual limitations, comfort walking and fast walking were also 

performed and examined. The obtained results indicate a high 

correlation between insoles with pressure sensors and floor mats 

relative to step time, thereby suggesting the usefulness of floor 

mats. 

Keywords-Walking Assessment; Floor Sensors; Smart Shoes; 

Activities of Daily Living; Health Care. 

I. INTRODUCTION 

We have been performing studies to capture changes in 
health conditions during daily life activities with digital 
measuring instruments [1]. These studies are conducted by an 
interdisciplinary team consisting of occupational therapists, 
physical therapists, human-machine interface experts, 
physicists, medical doctors, and others [2]. We have been 
suggesting the importance of assessments of everyday life 
[2]–[4]. However, it is not easy to make a routine health 
assessment actions on your own. Activities of daily living 
such as eating, changing, dressing, toileting, and bathing 
involve the use of various items, such as dishes, clothes, 
toothbrushes, and toilet seats. By incorporating sensors that 
can measure these activities, rehabilitation assessments can be 
made easier. Optical, acceleration, and pressure sensors are 
useful tools for rehabilitation assessment of activities of daily 
living. Floor mats are frequently used every day, making it 
easy to detect changes in activity. Walking is sometimes 
referred to as the sixth vital sign [5], and assessments of soles 
and walking have a high potential for understanding health 
status. Gait measurements using smart insoles with pressure 
and acceleration sensors have high accuracy; however, in 
areas where there is no culture of wearing shoes indoors, 
measurements cannot be taken indoors. 

The population of the world is aging, which has led to an 
increase in the number of people facing health problems [6]. 
Therefore, having a healthy body and being active are 
important for as long as possible. For this purpose, an 
assessment of the activities will be useful. Gait assessment can 
be an indicator of overall health as well as lower extremity 
disease. Walking assessment is used for various patients, 
including older people [7]–[16], and to assess various 
disabilities, central nervous system diseases such as 
cerebrovascular disease, Parkinson’s disease, multiple 
sclerosis [17]–[24], cardiovascular and respiratory diseases 
[25]–[27], orthopedic diseases such as back pain [28], 
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cognitive dysfunctions [29,30], and others [31]. Recently, 
several monitoring support equipment and systems for older 
adults and those with health problems have been researched, 
developed, and marketed [32]–[38]. The use of this type of 
equipment is becoming an important method of health support. 
Wearable devices for assessing health conditions are 
becoming increasingly popular in the healthcare field. Digital 
devices are also being used to evaluate gait, [39]–[45] and the 
research and development of smart insoles for aging, disease 
assessment, and fall prevention is increasing [45]–[48]. While 
beneficial, these types of equipment also present problems, 
such as invasion of privacy by the monitoring system, 
difficulty in operation, and handling large amounts of data. 
Health conditions are often detected through vital sign 
measurement and movement monitoring. The sensors used in 
these devices include infrared, acceleration, temperature, and 
pressure sensors [40]. 

Long-term assessments during normal daily activities are 
important for monitoring even slight changes in health. The 
assessment of walking during dual tasks, when attention is 
focused on activities other than walking, is considered 
important for understanding life risks. The environment and 
comfort level vary between a laboratory or hospital and their 
homes, and their health conditions can change throughout the 
day. Therefore, it is crucial to conduct ongoing and long-term 
assessments in the home environment, where people spend 
their everyday lives, rather than relying solely on evaluations 
conducted in hospitals or medical facilities. By incorporating 
sensors into items used in daily life, assessments can be 
performed for extended periods at home. However, because a 
large amount of data is collected over a long period, it is 
important to focus on which data is effective and how it is 
needed to determine an individual’s health conditions [46]. In 
addition, to eliminate invasion of privacy, it is useful to turn 
measurements on and off at one’s will; however, this requires 
the operation of the device. Older people or disabled users are 
required to be able to use the device in their daily lives. 
However, it is not easy to habituate device operation for 
healthcare in daily life. Self-care equipment should be 
beneficial, easy to operate, convenient, and practical for older 
people and those with disabilities who face health challenges. 
In addition, it is important that healthcare professional 
supporters are able to understand and utilize the meaning of 
the data.  

Therefore, we developed gait assessment equipment that 
incorporates a pressure sensor in a floor mat used in daily life 
[49]. The floor mat is expected to measure a person’s 
movement speed in their daily life without being turned on or 
off. The two key points of this equipment are privacy 
protection through a floor mat and the ability to understand 
health conditions without measuring vital signs. We 
previously used this device to study hemodialysis patients 
[40]. The conventional assessment methods used in 
rehabilitation, including the timed up and go (TUG) test, do 
not assess activities of daily living that are repeated daily. 
Digital measuring devices for daily activities can increase the 
measurement interval and amount of measurement data. The 
measurement accuracy was also improved, making it easy to 
compare the data we obtained with past data. This is not just a 

digitalization of the conventional rehabilitation assessment 
methods. This floor mat is designed for daily household use 
and is shorter than conventional gait assessments, such as 
TUG test; however, it can increase the measurement interval. 
The time per step can also be measured. Gait measurement is 
highly accurate with smart insoles with built-in pressure and 
acceleration sensors; however, in areas where there is no 
culture of wearing shoes inside the home, it is not possible to 
measure gait inside the home. 

This report studies step measurement on a floor mat with 
built-in sensors that can be used in daily life and examines the 
potential use of the floor mat by comparing it with the TUG 
test, a gait assessment method, and smart shoes. Three 
subjects wore an older people experience set that simulated 
motor impairment and performed fast and comfortable 
walking on the TUG test and floor mats to determine the 
usefulness of the floor mats and speed calculation formula [1]. 
The same three subjects then walked and took measurements 
on the floor mat wearing shoes with acceleration and pressure 
sensors attached, with the knee and ankle joints restricted by 
the supporters. The step time, step length, and speed were 
compared between the floor mat and shoe-worn sensors. The 
characteristics used by occupational therapists to judge gait 
measurement in activities of daily living were also examined.  

This study was approved by the Ethics Committee on 
Research with Humans as Subjects of Teikyo University of 
Science. Section II describes the experimental method, 
Section III describes the results, Section IV presents a 
discussion, and Section V presents the conclusion. 

II. EXPERIMENTAL METHOD 

A. Devices and Measurement Systems 

1) Floor mat 

The study used a floor mat with a grid array of 16 

pressure sensors. Eight sensors (P0–P7) were 

perpendicular to the walking direction, and eight sensors 

(Q0–Q7) were parallel to the walking direction (see Figure 

1). The perpendicular sensors were 10 cm apart only at the 

initial P0–P1 sensor interval and 15 cm apart at the other 

sensor intervals.  

 

 

 

Figure 1.  Floor mat-type equipment with pressure sensor array. 

The parallel Q sensors were in pairs, two pairs in the 

front and two pairs in the rear, with each pair 

approximately 15 cm apart. The length of the sensor was 
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62 cm, and it measured approximately 120 cm in the 

direction of walking. The equipment size allows its use and 

placement at home. A clear plastic sheet protects the 

surface so that the sensor position can be checked. The 

sampling frequency of the equipment was 100 Hz. The 

approximate cost required for the creation of this floor mat 

is approximately 215 US dollars, with 16 sensors costing 

180 dollars at 11 dollars each and one Arduino costing 35 

dollars.   

2) Insole with Pressuresenors 

The smart insoles used were of a wireless type 

(FEELSOLE®) that measured four parts per foot and eight 

parts in total on both sides (see Figure 2). The insoles must 

be calibrated before they can be used. Calibration was 

performed four times: no pressure with no feet in the shoes, 

standing on both feet, and standing on one foot on each side. 

A 10 s operation was possible. The colors of the four parts 

(toe, heel, inside, and outside) changed according to the 

applied weight. The video was also recorded, and the video 

and pressure sensor data from the smart insole were 

synchronized. The data were saved on an iPad Air (Apple) 

and could be viewed on a screen. They were transferred 

from the tablet to a PC via email and made available for 

analysis. The sampling frequency was 50 Hz, and the data 

were output in CSV format. 

 

 

 

Figure 2.  Exterior of FEELSOLE and tablet screen. 

  

3)  Accelerometer with Shoe Adhesion 

The accelerometer used was the ORPHE CORE® (see 

Figure 3). It was measured using the iPhone application 

ORPHE TRACK®. The ORPHE TRACK® app and 

ORPHE CORE® connect wirelessly via Bluetooth. The 

data were uploaded to the cloud through the app and could 

be confirmed in CSV format every minute with ORPHE 

TRACK®, analyzing steps, distance, stride, step speed, 

pronation, impact angle, cadence, landing force, and 

contact time. The sampling frequency was set to 200 Hz. 

The video was not synchronized; therefore, comparison 

with the data of each step on the floor mat was impossible. 

The assessments were carried out with the device attached 

to the outside of the shoe and with it installed in the insole. 

 

 

Figure 3.  Accelerometer ORPHE CORE. 

 

B. Walking measurements and Analysis Methods 

1) TUG test and walking on floor mat 

a) Walking measurements  

Three subjects in their 50s to 70s (Cases A, B, and C) 

performed the TUG test and walked on the sensor array 

floor mat under a simulated restricted motion while 

wearing the older person experience set (see Figure 4).  
 
 

 
 

Figure 4.  Timed Up and Go test. 

 

The TUG test measures the time it takes to get up from 

a chair, go around a cone 3 m away, walk back to the chair, 

and sit down. The time taken was measured. The TUG test 

is often used in walking assessment during rehabilitation. 

Walking assessment is important for maximal walking 

speed (MWS) and self-selected walking speed (SSWS). 

Thus, we performed the test not only with comfortable 

walking, which is a standard practice, but also with fast 

walking. The motion restrictions varied by the subject. 

Participant A wore tinted eyeglasses in addition to (1) 

trunk-weighted and left upper and lower limb restrictions, 

followed by (2) trunk-weighted and right upper and lower 

limb restrictions. Subject B was (3) weighted on the trunk 

and had both legs restricted. Subject C was (4) weighted on 

the trunk. The subjects then walked on the sensor array 

floor mat without any motion restrictions. Videotaping and 

ankle joint range of motion (ROM) measurements were 
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also conducted by an occupational therapist. The ROM of 

the ankle joint with plantar flexion and dorsiflexion is 

shown in Table I. R and L represent the right and left sides, 

respectively.  

 

TABLE I.   RANGE OF MOTION FOR CASES A, B, AND C 

  Subjects 

Direction of Motions R / L Side Case A Case B Case C 

plantar flexion 
R 50 60 45 

L 55 50 50 

dorsi flexion 
R 20 10 20 

L 20 5 -5 

 

b) Analysis  

Figures 5 and 6 show examples of graphical 

representations of the output data for P0–P7 and Q0–Q7, 

respectively. For the least-Squares Method (LSM) 

calculation, data over half the height of the highest signal 

were used. In addition, data with very few continuous 

signals were judged to be noisy and were not used. 

 

 

 
 

Figure 5.  Q sensor output data. 

 

 

 
 

Figure 6.  P sensor output data. 

Speed was calculated by programming using the LSM. 

LSM was used so that the relationship between the distance 

of each sensor corresponding to the time the sensor was 

stepped on was a linear function (see Figure 7). The slope 

was obtained as the velocity.  
 

 

Figure 7.  Speed by the least-Squares Method. 

 

Figure 7 shows the time (s) and distance (sensor 

position), where the inclination of the red line is the speed. 

The least-squares method was used, assuming a linear 

function. 

Subsequently, a footprint diagram was drawn by 

examining the raw data from the P and Q sensors, plantar 

ground contact was determined, and the speed was 

calculated. When two sensors were stepped on 

simultaneously at the same time by a single sole, it was 

assumed to be a single ground contact, and the position and 

time in the middle of the two sensors were used to 

determine the speed. It was calculated directly by a manual 

process (Direct calculations regarding floor mats: DCF1). 

The judgment terms in DCF1 were as follows: (1) If 

there was an output that appeared to be noise that was not 

understood for a short time, the plantar ground contacts 

were judged to be grounded when ten consecutive pieces 

of data were obtained. (2) Data with <2.0% of the 

maximum value ten times in a row were excluded from sole 

grounding. (3) When the front and rear sensor data 

responded simultaneously, the same plantar contact was 

assumed when >70% of the front sensor data overlapped 

the rear data. (4)  When adjacent P-sensors did not 

respond consecutively, that is, there was one or more 

unresponsive P sensors in between, we assumed a different 

plantar ground contact. Two major differences were noted 

between LSM and DCF1 for speed using footprint 

diagrams. First, LSM calculates the speed based on the 

position and time of each sensor, regardless of whether the 
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two sensors are stepped on simultaneously. The speed by 

DCF1 is calculated by judging when two sensors are 

outputting simultaneously, whether they are one footprint 

or two footprints, that is, the same grounding. Second, it 

determines whether to use data with small values or 

responses in the calculation, or to exclude them and treat 

them as noise. In addition, we compared the TUG test 

results with sensor array data. An occupational therapist 

evaluated and validated the videos. On the sensor array, 

subjects walked straight ahead, whereas on TUG test, 

subjects walked straight ahead and then U-turn. The speeds 

on the TUG test were converted and compared with the 

LSM and DCF1 results from the sensor array data. 

2) Walking on a floor mat wearing shoes with sensors 

a) Walking measurements  

Three subjects walked on a floor mat wearing shoes 

equipped with pressure and acceleration sensors (see 

Figure 8).  

 

 

 

 

 

 

 

 

 

 

Figure 8.  Walking on floor mats with sensor-equipped shoes. 

 

They walked normally without intentional restriction of 

movement and with the right knee and right ankle joints 

restricted with supporters. Pressure sensors were placed in 

the insoles. The acceleration sensors were placed in two 

locations: one attached to the top of the shoes and one was 

integrated into the insoles. The video was also recorded 

while the subjects were walking with the pressure sensor 

insoles, and the sensor reaction time and video time were 

synchronized. However, the accelerometer was not 

synchronized with the video.  

b) Analysis  

Step times were compared between the floor mats and 

insoles. Step length and speed were examined between the 

floor mats, and stride length and speed data were calculated 

using the analysis application ORPHE TRACK®, which 

corresponds to the accelerometer ORPHE CORE®. 

Because the accelerometer was not synchronized with the 

video, we compared the left and right instead of each step. 

The judgment terms for plantar grounding were DCF2 in 

addition to DCF1, the method used for TUG test 

comparisons. In DCF2, both the P sensor and Q sensor 

were used. The data with the fastest response among the P 

and Q sensors were used to determine the time. Although 

the P sensor does not respond to plantar contact after the 

P7 sensor, the plantar contact of only the Q sensor, which 

is not responded to by the P7 sensor, was used in the 

determination. The determination of the plantar contact 

position used for calculating the distance was based on 

only one sensor that responded the earliest using the P 

sensor. 

 The judgment terms for DCF2 are as follows: (2) and 

(3) are the same as those for DCF1. (1) The consecutive 

data of "Q0Q1 and Q4Q5" on the left side and "Q2Q3 and 

Q6Q7" on the right side of the floor mat were judged to be 

the same ground, while those of the left side "Q0Q1, 

Q4Q5" and the right side "Q2Q3, Q6Q7" were judged to 

be different grounds. This term was prioritized in 

determining whether one identical or two grounds were 

made. (2) When adjacent P-sensors did not respond 

consecutively, that is, when there was one or more 

unresponsive P-sensors in between, they were assumed to 

have different plantar groundings. (3) When two sensor 

data points (front and rear) responded simultaneously, the 

same plantar ground contact was assumed when more than 

70% of the front sensor data overlapped the rear sensor data. 

(4) In addition to excluding the calculation when the noise 

processing was 2% or less of the maximum value, the 

calculation was also excluded if the same numerical data 

with a maximum value of 90% or less were continuously 

repeated five times. However, even if it was 90% or more 

of the maximum value, the data were considered noise and 

excluded if 30 consecutive values or 50 intermittently 

identical values were connected. 

Step times were compared between floor mats and 

insoles by measuring the time taken for one step. An 

example of insole data is shown in the graph below (see 

Figure 9). To calculate the distance of the step using the 

floor mat, the stride length was calculated as the position 

of the plantar contact when the P sensor first responded. 

The calculation of step distance using the accelerometer 

ORPHE CORE® relied on the stride calculated using the 

analysis application ORPHE TRACK®. 
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Figure 9.  Right insole with normal walking in Case C. 

 

One stride is equal to two steps (see Figure 10). The 

accelerometer was not synchronized with the video. Hence, 

a comparison between the data for each step on the floor 

mat could not be made. Instead of comparing floor mats 

and acceleration regarding stride length and speed for each 

step, we made a left–right comparison for step and stride 

for each floor mat and acceleration. We used the maximum 

stride length data from the accelerometers for two minutes 

before and after the measurement. From the floor mats, we 

only used data that had left and right data, that is, data with 

more than two steps. 

 

 

 
 

Figure 10.  Gait Parameters including step length, and stride length. 

 The stride length from the accelerometer is the distance 

from the foot-flat to the foot-flat of one foot. The step 

length from the floor mat is the distance from one foot to 

another during a step. The stride and step lengths are not 

the same (see Figure 10). 

III. RESULTS 

A. TUG test and Walking on Floor Mat 

1) Floor Mat and TUG test Comparison 

The speed of the TUG test was compared with that of the 

subjects walking on a sensor array floor mat. Walking 

speed on the sensor-placed floor mat was calculated using 

LSM and DCF1. The mean speeds of Subjects A, B, and C 

were calculated when they walked comfortably and fast 

with restricted motion. Figure 11 shows the results for 

TUG test, LMS, and DCF1. The figure is graphed in 

ascending order of TUG test speed. In the graph, the first 

letter corresponds to subjects A, B, and C. The following 

letter indicates “Rr” for right upper and lower limb 

restriction, “Lr” for left upper and lower limb restriction, 

“W” for weight loading, “E” for wearing tinted eye glasses, 

“c” for comfortable walking, and “f” for fast walking.  

 

    

Figure 11.  Speed comparison between TUG test and sensor array walking. 

 

The calculation results from the pressure sensor array 

differed according to the two calculation methods, i.e., 

LSM by programming and DCF1 by manual calculation 

using a footprint diagram. In LSM, the calculation result 

revealed that the speed was slower by three of seven times 

than the slowest speed in the “left upper and lower limbs 

and eye limits (A_LrE_c)” TUG test in Case A. In DCF1, 

the calculation result revealed that only one of the seven 

times the speed was slower than the slowest speed in the 

“A_LrE_c” TUG test in Case A. The relationship between 

TUG test and DCF1, which is a manual calculation using 

footprint diagrams, is stronger than that between TUG test 

and LSM using programming. This shows that LSM tends 

to be faster than DCF1. In the sensor array, walking was 

measured only straight ahead, whereas in the TUG test, 

 

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200

S
en

so
r 

v
al

u
e

Measurement period

heel toe inside outside

Step 

length 

Stride 
length 

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

S
p

ee
d

[m
/s

]

Motion restrictions of the subjects

Mean of Direct Calculation results(DCF1)

Mean of  Least Squares method results (LSM)

Mean of TUG test results

38

International Journal on Advances in Life Sciences, vol 15 no 1 & 2, year 2023, http://www.iariajournals.org/life_sciences/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



walking was measured both straight ahead and in U-turns. 

Therefore, the speed of TUG test walking would be slower 

than that of sensor array walking. The two discrepancies 

between TUG test and DCF1 were C_ W_c and C_W_f for 

Subject C. Subject C’s walking was assessed on video by 

an occupational therapist, and a left–right difference was 

judged. Both C_W_c and C_W_f were observed during 

plantar grounding of the left foot. The ankle joint ROM in 

Case C was R20/45 and L-5/50, with a left–right difference. 

2)  Detection of the Speed of the Left and Right Foot 

 The results of the speeds calculated by DCF1 for the 

simulated left and right upper and lower limb movements 

when restricted are shown in Figures 12 and 13, 

respectively. Figure 12 shows the right motion restrictions, 

and Figure 13 shows the left motion restrictions. The X-

axis shows comfortable or fast gait with the left or right 

plantar-grounded foot. The initial letter C in the graph X-

axis labels stands for “comfortable” and “F” stands for fast 

walking. The numbers following the letters C or F denote 

the number of times performed. The right upper limb lower 

limb is then indicated by R and the left upper limb lower 

limb restriction by L. The right and left upper and lower 

limbs were restricted only in Case A. The color of the bars 

in the graph is blue when the right plantar is grounded, that 

is, when the right foot is in the stance phase and the left 

foot is in the swing phase. Yellow indicates the left plantar-

grounded foot, that is, the left foot is in the stance phase 

and the right foot is in the swing phase. The results when 

walking faster are indicated by the lines around the bars. 

Right-side walking, that is, the blue one in the bar graph, 

tended to be faster than that of the left side, regardless of 

whether the motions were restricted to the left or right side. 

The fastest walking was observed when the right foot was 

grounded, regardless of the left or right side of the upper or 

lower limb restrictions. 

 

    

Figure 12.  Right upper and lower limb restrictions. 

 

    

Figure 13.  Left upper and lower limb restrictions. 

B. Walking on a Floor mat Wearing Shoes with Sensors 

1) Step Time 

The step times were calculated from the floor mats and 

insoles. The floor mat data were calculated in two ways: 

using the same method DCF1 as TUG test and a new 

method DCF2 with some modifications. The walking 

performance of three subjects was conducted 13 times, 

with the number of steps taken on a floor mat ranging from 

1 to 3 per performance, and the total number of steps was 

30. 

Figure 14.  Step time detected from floor mats and pressure sensor insoles. 
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Of the four parts of the insole (toe, heel, inside, and 

outside), the heel with a clear sensor response to ground 

contact was used. We measured the time from when the 

heel was on to when the other heel was on. The results for 

30 data points are shown in the graph (see Figure 14).  

The bar graph indicates the step time determined from 

the insole, and the line graph indicates the step time 

determined from the floor mat. In the graph, three bar 

graphs in one walking sequence indicate that three steps 

were performed on the floor mat. The two-bar graphs 

represent the two steps and a single step taken on the floor 

mat in one bar. Left foot grounding after the right foot was 

labeled as the left second step. The left foot is blue, light 

blue, and green in the bar graph, and navy and blue in the 

line graph. The right foot is orange on the insole, and red 

and yellow on the floor mat. The letters after the numbers 

indicate that “R_ankle” represents the restriction of the 

right ankle and “R_knee” represents the restriction of the 

right knee.  

 

Figure 15.  Step time by floor mat DCF2 and insole. 

 

We observed that DCF2 had a higher correlation with 

the insole data than DCF1. Therefore, we performed a 

correlation analysis between 30 pairs of data from the 

insole and the DCF2. The Pearson correlation coefficient 

was 0.80 (see Figure 15). 

2) Left–right Comparison of Step and Stride 

The step and stride lengths of the left and right sides 

were compared. The number of steps taken per walk ranged 

from 1 to 3, allowing for four trials in which the left and 

right sides could be compared for two or more steps. The 

total number of data points was eight. The graph shows the 

stride length calculated from the floor mat and the 

maximum stride length in 2 min calculated from the 

accelerometer (see Figures 16 and 17). 

 

 

Figure 16.  Maximum stride length from the accelerometer. 

 

 

Figure 17.  Step length from the floor mat. 

The graph shows a similar trend in the left– right 

comparison of stride length calculated by the 

accelerometer and step length calculated by the floor mat.  
As for C_free, the left–right balance of the floor mats and 

accelerometers is very different. Upon checking the video, 

it was confirmed that the left sole makes plantar contact 

slightly farther away from the P2 sensor and closer to P3. 

The subject stepped on the P3 sensor with the toes and not 

on the P2 sensor. Then, only the right heel stepped on P4. 

This pattern of slightly stepping on or not stepping on the 

sensor was repeated twice. 

3)  Left–right comparison of speed 

Using the same method as for the aforementioned steps 

and strides, the speed was calculated four times over two 

steps and eight times for the left and right sides combined. 

Speeds were calculated from the times and distances 

obtained from the previous items 2) and 3), and compared 

to the left and right. The speed calculation using the floor 

mat used the time of the foot that was not in contact with 

the ground. For example, the time from right foot contact 

to left foot contact was calculated as the speed during the 

left foot swing. 
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Figure 18.  Speed from the accelerometer. 

 

 

Figure 19.  Speed from the floor mat. 

 

The relationship between the speed of the floor mats and 

acceleration could not be considered as high (see Figures 

18 and 19). 

IV. DISCUSSION 

This floor mat is shorter than conventional gait 
assessments such as the TUG test. However, because the 
equipment can be placed at home at all times, considering its 
size, anything larger than this is not considered practical. The 
equipment is based on the premise that the detection accuracy 
will improve as the number of data points increases with daily 
repetition. Conventional gait assessments are based on a 
single measurement; therefore, the use of this floor mat differs 
from conventional assessment methods.   

Even with this approximately 120 cm equipment, a high 
correlation was observed between the insole and the floor mat 
regarding step time. The correlation was higher in DCF2 than 
in DCF1 because of the P sensor and also because the Q sensor 
was included in included in the calculation. It is important to 
determine whether the left and right soles are in contact and to 
increase the accuracy of determining the time of sole contact 
with the parallel Q sensor while walking. Although the Q 
sensor parallel to the walking gait is considered useful for 
measuring steps, video observation revealed plantar ground 
contact that did not step on the parallel sensor on one side. 

There were some walks on which one of the longitudinal 
sensors was not stepped on owing to the narrow stride width. 
To further improve the accuracy of the mat, it may be 
necessary to slightly narrow the distance between the 
longitudinal sensors. Regarding the measuring equipment, it 
is necessary to thoroughly examine it, including the distance 
between the sensors, in the future, as it may change slightly in 
noise and sensor position because of its movement to the 
survey facility and its possible slight changes from one 
implementation to another. 

Regarding speed, there seemed to be a relationship 
between the speed of the TUG tests, but no strong relationship 
was found in the left-right comparison with the insoles. This 
may be because the accelerometer was not synchronized with 
the video and could not investigate each step individually. It 
could also be attributed to the floor mat’s low accuracy in step 
length determination. In the gait where there was a large 
difference in the left–right balance of step and stride length 
from the floor mat and accelerometer, the left sole made 
plantar contact slightly farther away from the P2 sensor but 
closer to P3. The P3 sensor was stepped on with the toes, but 
the P2 sensor was not stepped on. Subsequently, only the right 
heel stepped on P4. This pattern of slightly stepping on or not 
stepping on the sensor was repeated twice. A solution to this 
problem would be to slightly narrow the distance between the 
P sensors. Although it depends on the body size of the subject 
and gait distance, narrowing the vertical sensor installed in 
parallel with the gait and the horizontal sensor at right angles 
by approximately 2 cm is thought to improve the accuracy. 

This study was experimentally conducted using a floor 
mat sensor intended for repeated use in activities of daily 
living. Although the data sample size is small and 
generalization is not possible, the high correlation with 
accurate insole data suggests a high potential for usefulness.  
The ability to measure gait daily at home would be useful not 
only for the early detection of disease and disability, but also 
for the treatment of those with fluctuating physical conditions 
such as rheumatism, those whose activity capacity changes 
under the influence of medications such as the on-off 
phenomenon of Parkinson’s disease, and those with rhythm 
disorders. Reports have shown that walking speed assessment 
at home differs from that in a laboratory setting [5]. Walking 
during dual tasking is slower than walking alone. In daily life, 
walking is often used as a means of transportation to perform 
activities. Walking during dual tasking is slower than walking 
alone. Attention must also be paid to environmental factors, 
such as flooring and objects, and sudden stimuli, such as 
someone approaching. Attention may also be low in a low-
awareness state. Occupational and physical therapists 
routinely assess walking conditions but do not always use 
measuring devices or quantify them. They observe and assess 
their interactions with the patients, and health conditions are 
determined based on the patients’ gait. If walking conditions 
could be measured naturally in daily life, it would be possible 
to assess walking ability without a therapist. This also leads to 
objective data showing the therapist’s tacit knowledge and 
experience [2].  
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Measuring walking ability in daily life at home can help 
provide information that cannot be obtained from laboratory 
or hospital measurements. 

V. CONCLUSION AND FUTURE WORK 

Regarding the floor mat used, the usefulness of step time 
was suggested, although challenges were associated with step 
length. The floor mat has the potential to predict health 
changes. The ability to measure walking ability during daily 
activities at home is thought to be useful in providing life 
support, self-care, and diagnostic assistance to older people 
and the disabled, as well as in understanding what is unknown 
from measurements taken in the hospital. Although the 
amount of data is small, there seems to be a strong correlation 
with high-accuracy smart insoles, suggesting that they may be 
useful. In the future, we plan to increase the amount of data 
and conduct further investigations to generalize our findings. 
Studies have already been conducted on synchronizing 
acceleration and pressure sensors attached to shoes. 
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