
47

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Synthesis of Refinement Maps for Real-Time Object Code Verification

Eman M. Al-qtiemat∗, Sudarshan K. Srinivasan∗, Zeyad A. Al-Odat∗, Sana Shuja†
∗Electrical and Computer Engineering, North Dakota State University,

Fargo, ND, USA
†Department of Electrical Engineering, COMSATS University,

Islamabad, Pakistan
Emails: ∗eman.alqtiemat@ndsu.edu, ∗sudarshan.srinivasan@ndsu.edu, ∗zeyad.alodat@ndsu.edu,

†SanaShuja@comsats.edu.pk

Abstract—Refinement-based verification is a formal verification
method, it is considered as a very scalable approach for dealing
with low-level artifacts such as real-time object code verification.
Two main obstacles prevent implementing the refinement-based
verification; firstly, it requires formal specification in transition
system form while most specifications are of informal or semi-
formal form. To solve this issue, we already proposed synthesising
procedures to transform both functional and timing require-
ments from natural language form into formal specifications,
our approach was successfully applied on insulin pump safety
requirements. Secondly, the verification process requires a con-
struction of refinement map, which is a function maps imple-
mentation states (the artifact to be verified) onto specification
states. Actually, constructing refinement maps often requires
deep understanding and intuitions about the specification and
implementation, it is shown very difficult to construct refinement
maps manually. To go over this obstacle, the construction of
refinement maps should be automated. As a first step toward
the automation process, we manually developed refinement maps
for various safety properties concerning the software control
operation of insulin pumps. In addition, we identified possible
generic templates for construction of refinement maps. To com-
plement our previous work, this paper is built on refinement maps
and refinement maps templates proposed previously to automate
the construction of refinement maps. Synthesising procedures
of refinement maps for functional and timing specifications are
proposed. In addition, this paper shows more results of formal
specifications and their suggested refinement map functions for
timing requirements. Our work uses safety requirements of
generic infusion pump model as heuristic data.

Keywords–Formal verification; Synthesising of refinement
maps; Formal specifications; Refinement-based verification.

I. INTRODUCTION

Software safety is one of the key challenges facing the
design process [1] of safety-critical embedded systems such
as medical devices [2]. For example, infusion pump (a medi-
cal device that delivers medication such as pain medication,
insulin, cancer drugs etc., in controlled doses to patients
intravenously) has 54 class 1 recalls related to software issued
by the US Food and Drug Administration (FDA) [3]. Class
1 means that the use of the medical device can cause serious
adverse health consequences or death.

Despite the fact that testing is the dominant verification
technique currently used in commercial design cycles [4],
testing can only show the presence of faults, but it never proves
their absence [5]. Alternate verification processes should be
applied to the software design in conjunction with testing to as-
sure system correctness and reliability. Formal verification can
address testing limitations by providing proofs of correctness

for software safety. Intel [6], Microsoft [7] and [8], and Airbus
[9] have successfully applied formal verification processes.

Refinement-based verification [10] is a formal verification
technique that has been demonstrated to be effective for veri-
fication of software correctness at the object code level [11].
To apply refinement-based verification, software requirements
should be expressed as a formal model. Previously, we have
proposed a novel approach to synthesize formal specifications
from natural language requirements [12], and in a later work,
we have also addressed timing requirements and specifica-
tions [13].

Our verification approach is based on the theory of Well-
Founded Equivalence Bisimulation (WEB) refinement [10]. In
the context of WEB refinement, both the implementation and
specification are treated as Transition Systems (TSs). If every
behavior of the implementation is matched by a behavior of the
specification and vice versa, then the implementation behaves
correctly as prescribed by the specification. However, this is
not easy to check in practice as the implementation TS and
specification TS can look very different. The specification
states obtained from the software requirements are marked
with atomic propositions (predicates that are true or false in
a given state). The implementation states are states of the
microcontroller that the object code program modifies. As
such, the microcontroller states includes registers, flags, and
memory. The various possible values that these components
can have during the execution of the object code program gives
rise to the many millions of states of the implementation. To
overcome this difference, WEB refinement uses the concept
of a refinement map, which is a function that provided an
implementation state, gives the corresponding specification
state. Historically, one of the reasons that refinement-based
verification is much less explored than other formal verification
paradigms such as model checking is that the construction
of refinement maps often requires deep understanding and
intuitions about the specification and implementation [14].
However, once a refinement map is constructed, the benefit is
that refinement-based verification is a very scalable approach
for dealing with low-level artifacts such as real-time object
code verification. In our previous paper [1], we have build
refinement maps corresponding to formal specifications related
to infusion pump safety and we have also proposed three
possible generic refinement map templates, which is the first
step toward automating the construction of refinement maps.
This paper is based on our previous work, we propose syn-
thesising procedures of refinement maps for both functional
and timing requirements, the new procedure allow an expert

48

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user intervention to assure the correctness of the system. The
remainder of this paper is organized as follows. Section II
summarizes background information. Section III details related
work. Section IV describes the refinement maps and refinement
map templates. Section V shows the proposed synthesis of
refinement maps for system requirement. Conclusions and
direction for future work are noted in Section VI.

II. BACKGROUND

This section explores the definition of transition systems,
the definition of refinement-based verification, and the synthe-
sis of formal specifications as key terms related to our work.

A. Transition Systems
As stated earlier, transition systems (TSs) are used to

model both specification and implementation in refinement-
based verification. TSs are defined below.

Definition 1: A TS M = 〈S,R,L〉 is a three tuple in
which S denotes the set of states, R ⊆ SXS is the transition
relation that provides the transition between states, and L is a
labeling function that describes what is visible at each state.

States are marked with Atomic Propositions (APs), which
are predicates that are true or false in each state. The labeling
function maps states to the APs that are true in every state.
An example TS is shown in Figure 1. Here S = {S1, S2, S3,
S4}, R = {(S1, S2), (S2, S4), (S4, S3), (S3, S4), (S3, S2),
(S1, S3)} and, L(S2) represents the atomic propositions that
are true for the S2 state.

S1

S3 S2

S4

Figure 1. An example of a transition system (TS).

B. Timing Transition Systems
Some applications have requirements with timing condi-

tions on the state’s transitions called as timing requirements.
Timing requirements explain the system behaviour under some
timing constraints. Timing constraints are very important es-
pecially if we deal with a critical real time systems. As
mentioned in the previous section (Section II-A), transition
systems are used to represent the implementation and speci-
fication in refinement-based verification, however they do not
contain timing requirements. Hence, in the verification of real
time systems that contain timing constraints, timing transition
systems (TTSs) [11] are used to represent the implementation
and specification.

Definition 2: A TTS Mt = 〈S,Rt, L〉 is a three tuple in
which S denotes the set of states and L is a labeling function
that describes what is visible at each state. The state transition
Rt has the form of 〈x, y, lt, ut〉 where x, y ∈ S and lt, ut ∈ N

S0

S1 S2
〈2, 5〉

〈0,∞〉

〈0, 0〉

〈0,∞〉

Figure 2. An example of a timing transition system (TTS).

represents the lower and upper bounds as the timing condition
for the transition.

Figure 2 shows an example of a timing transition system
that consists of three states { S0, S1, S2 }, for instance; if the
system is in state S0 it can go to state S1 only between 2 and
5 units of time, while going from S1 to S2 the time is zero
meaning that it should happen immediately, going from S2 to
S1 the time is zero to infinity which means that it can happen
any point of time, and so on.

C. Refinement-Based Verification

Our verification approach is based on the theory of Well-
Founded Equivalence Bisimulation (WEB) refinement. A de-
tailed description of this theory can be found in [10]. Here,
we give a very high-level overview of the key concepts. WEB
refinement provides a notion of correctness that can be used
to check an implementation TS against a specification TS. In
the context of WEB refinement, both the implementation and
specification are treated as TSs. The implementation behaves
correctly as given by the specification, if every behavior of the
implementation is matched by a behavior of the specification
and vice versa. However, this is not easy to check in practice.
Implementation TS and specification TS look quite different.
The implementation states are states of the microcontroller
that the object code program modifies. As such the microcon-
troller includes many registers, flags, and memory. The various
possible values that these components can have during the
execution of the object code program gives rise to the many
millions of states of the implementation. To overcome this
difference, WEB refinement uses the concept of a refinement
map, which is a function that given an implementation states,
tells you what is the corresponding specification state. Once
a refinement map is constructed, WEB refinement verification
proceeds as follows. The idea is to look at each implementation
transition. Consider an implementation transition say (w, v),
where both w and v are implementation states. To be cor-
rect, the transition has two options. The first option is that
this implementation transition should match a specification
transition, i.e., r(w) = s and r(v) = u, where r() is the
refinement map, s and u are specification states, and (s, u) is
a transition of the specification. This first option is called a
non-stuttering implementation transition. The second option is
that r(w) = r(v) = s, i.e., both w and v match to the same
specification state. The second option is called a stuttering
implementation transition. There are a few more checks to be
performed. The very nice property of WEB refinement is that it
is sufficient to reason about single steps of the implementation
and specification to check for correctness and find bugs. This
property makes WEB refinement very applicable to deal with
the complexity of object code.

49

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Synthesis of Functional Formal Specifications
Our approach for development and study of refinement

maps is based on the formal TS specifications. We developed
a previous approach to transform functional requirements into
formal specifications [11]. Since this work is closely tied to
the prior work, we briefly review it here. Figure 3 summarizes
the transformation procedure, the main steps are explained
as follows: functional requirement is fed as an input, an
English parser called Enju is used to get the parse tree the
requirement. The first step of computing the TSs is to apply
Atomic Proposition Extraction Rule (APER) extract the APs
from the requirements. We developed three Atomic Proposition
Extraction Rules (APERs) that work on the parse tree of the
requirement to get an initial list of APs. The resulting list is
subjected to an expert user check (User Input), where the APs
might be appended, eliminated or revised based on the expert
users domain knowledge. A high-level procedure for specifica-
tion transition system synthesis has been proposed to compute
the states and transitions using the resulting list of APs under
expert user supervision. Finally, the transition system is created
using the resulting list of states and transitions. The output of
the procedure is a formal specification TS.

E. Synthesis of Timing Formal Specifications
Some system requirements have timing constraints which

are called timing requirements. We proposed a previous ap-
proach to work on transforming timing requirements into
formal specifications [13]. Figure 4 shows the main steps of the
synthesising procedure. A brief description of this approach is
explained as follows: Timing requirement is fed as an input
of the procedure. As in the previous procedure, Enju parser
is used to get the parse tree that corresponds to the entered
requirement. An Atomic Proposition and Timing Constrains
Extraction Rule (APTCER) is applied on the resulted parse
tree to get an initial list of APs and Timing Constrains (TCs).
APs and TCs are paired together and they are considered the
base of a TTS. Then, a set of states are defined based on the
resulting list of APs. Transitions are applied between every
two states. TCs are assigned to the transitions. This procedure
allows input from domain expert as shown in Figure 4. Finally,
the TTS is created. The output of this procedure is a formal
specification TTS.

III. RELATED WORK

This section summarizes a few works on applying re-
finement processes to get more concrete specifications and
refinement-based verification. None of these works are applied
to insulin pump formal specifications as our work. To the best
of our knowledge, these are the most related state of art in this
area of study.

Klein et al. [15] introduced a new technique called State
Transition Diagrams (STD). It is a graphical specification
technique that provides refinement rules, each rule defines an
implementation relation on STD specification. The proposed
approach was applied to the feature interaction problem. The
refinement relation was utilized to add a feature or to define
the notion of conflicting features.

Rabiah et al. [16] developed a reliable autonomous robot
system by addressing A* path planning algorithm reliability
issue. A refinement process was used to capture more concrete
specifications by transforming High-Level specification into

Start

Functional

Requirement/s

Formal Specification

TS

Apply Enju Parser

 Apply APER

List of APs

 User Input

Create a TS

List of States &

Transitions

 User Input

Stop

Figure 3. Formal Model synthesis procedure for Functional Requirements.

equivalent executable program. Traditional mathematical con-
cepts were used to capture formal descriptions. Then, Z spec-
ification language was employed to transform mathematical
description to Z schemas to get formal specifications. Z formal
refinement theory was used to obtain the implementation
specification.

Spichkova [17] proposed a refinement-based verification
scheme for interactive real time systems. The proposed work
solves the mistakes that rise from the specification problems
by integrating the formal specifications with the verification
system. The proposed scheme translates the specifications to a
higher-order logic, and then uses the theorem prover (Isabelle)
to prove the specifications. Using the refinement-based verifi-
cation, this scheme validates the refinement relations between

50

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Start

Timing Requirement/s

Formal Specification

TTS

Apply Enju Parser

 Apply APTCER

List of APs & TCs

 User Input

Apply TCs

List of States &

Transitions

 User Input

Create a TTS

 User Input

Stop

Figure 4. Formal Model synthesis procedure for Timing Requirements.

two different systems. The proposed design was tested and
verified using a case study of electronic data transmission
gateway.

A new approach that focuses on the refinement verification
using state flow charts has been presented by Miyazawa et al.
[18]. They proposed a refinement strategy that supports the
sequential C implementations of the state flow charts. The
proposed design benefited from the architectural features of
model to allow a higher level of automation by retrieving the
data relation in a calculation style and rendering the data into
an automated system. The proposed design was tested and
verified using Matlab Simulink SDK. Through the provided
case study, the scheme was able to be scaled to different state

charts problems.

Cimatti et al. proposed a contract-refinement scheme for
embedded systems [19]. The contract-refinement provides
interactive composition reasoning, step-wise refinement, and
principled reuse refinements for components for the already
designed or independently designed components. The proposed
design addresses the problem of architectural decomposition of
embedded systems based on the principles of temporal logic to
generate a set of proof obligations. The testing and verification
of the Wheel Braking System (WBS) case study show that the
proposed design can detect the problems in the architectural
design of the WBS.

Bibighaus [20] employed the Doubly Labeled Transition
Systems (DLTS) to reason about possibilities security prop-
erties and refinement. This work was compared with three
different security frameworks when applied to large class
systems. The refinement framework in this work preserves and
guarantees the liveness of the model by verifying the timing
parameter of the model. The analysis results show that the
proposed design preserves the security properties to a series
of availability requirements.

A novel approach has been presented [21] to formally
specify and analyze the certification process of Partitioning
Operating Systems (POSs) by integrating refinement and on-
tology. An ontology of POSs was developed as an intermediate
model between informal descriptions of ARINC 653 and the
formal specification in Event-B. A semiautomatic translation
has been implemented from the ontology and ARINC 653 into
Event-B. Six hidden failures in ARINC were happened and
fixed during the formal analysis in the Event-B specification.
The existence of these errors has been validated in two open-
source POSs: XtratuM and POK. The degree of automatic
verification of the Event-B specification reached a higher level
because of the ontology. By validation, they have also noticed
some errors in open-source POSs. The proposed methodology
has shown capability to to formalize and verify systems
according to system’s informal standards and requirements.

Human factors consider as the most obvious cause of
failures especially when a human deals with critical systems
such as nuclear and medical systems. A new methodology
for developing a Human-Machine Interface (HMI) has been
proposed [22], it uses a correct by construction approach. A
HMI was developed independently using incremental refine-
ment. Human interactions is dependent on testing, which can
not guarantee the absence of failures. Formal method was used
to assure the correctness of the human interactions. Even-B
modeling language has been used to formalize the internal
consistency with respect to the safety properties and events.
This generic refinement strategy supports a development of
the Model-View-Controller (MVC) architecture.

A specification development method and a generic secu-
rity model were proposed based on refinement for ARINC
Separation Kernels (KSs) [23]. A step-wise refinement frame-
work was presented. Two levels of functional specification
are developed by the refinement. Kernel initialization, inter-
partition communication, two-level scheduling, and partition
and process management were modeled. Isabelle/HOL theorem
prover was used to carry out the formal specification and its
security proofs. Mechanical check proofs were given to solve
convert channels in separation kernels.

51

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fayolle et al. joined Algebraic State-Transition Diagrams
(ASTD) with an Event-B specification for better understanding
of the system behaviour [24]. They proposed an approach that
works on incrementally refine the specification couplings, it
takes the new refinement relations and consistency into con-
sideration between data and control system specifications. This
work had shown how to use two complementary languages for
formal modeling, a railway CBTC-like case study were used.
In addition, the principle of complementarity and consistency
was explored between ASTD and B-like refinements. Sepa-
ration between data and behavioural system’s aspects were
accomplished.

The issues of validating formal models were studied and
executed using Event-B method [25]. Firstly, new techniques
were created and discussed which allow model execution to be
at all abstraction levels. To overcome barriers comes form non-
deterministic features, users intervention such as modifying
the model or providing ad hoc implementations were needed.
Secondly, a new formal definition of the notion of fidelity
was given, this definition assures specifying all the observable
behaviors of the executable models by the non-deterministic
models.

Many other papers discuss and analyze refinement concepts
in the context of verifying concurrent objects. For example,
Smith et al. in [26] provided formal link between trace
refinement and linearizability, a comparison between these cor-
rectness conditions were explored. The main conclusion of this
work is generally that trace refinement reveals linearizability,
but linearizabilit does not reveals trace refinement. However,
linearizability can reveal trace refinement but under specific
conditions. Firstly, trace refinement can prove both safety and
liveness properties, while linearizability can only prove safety
properties. Secondly, the fact that trace refinement based on
the identification of when the implementation operations are
noticed to happen. They also studied these differences in the
verification context of concurrent objects.

IV. REFINEMENT MAPS AND REFINEMENT MAP
TEMPLATES

Figures 5-11 show the formal specification TS for 8 insulin
pump safety requirements, the figures also show the refinement
map we developed corresponding to each specification. In this
paper, formal specification TTS corresponding to 4 insulin
pump timing requirements are added in Figures 12-15, we
develop a refinement map for each specification as shown in
the figures. The formal specifications TSs [12] and TTSs [13]
were developed as part of our previous work in this area. As
can be seen from the figures, each TS or TTS consists of a
set of states and transitions between states. Also, each state is
marked with the atomic propositions that are true. For TTSs
in Figures 12-15, time bounds conditions are added on each
transition. Our strategy for constructing the refinement maps
is as follows. A specification state can be constructed from
an implementation state by determining the APs that are true
in the implementation state. If a specification has n APs, then
we construct one predicate function for each AP. The predicate
functions take the implementation state as input and output a
predicate value that indicates if the AP is true in that state
or not. Thus, the collection of such predicate functions is the
refinement map.

We next discuss the refinement map for the specification in
Figure 5. The safety specification from [27] is as follows: ”The
pump shall suspend all active basal delivery and stop any active
bolus during a pump prime or refill. It shall prohibit any insulin
administration during the priming process and resume the
suspended basal delivery, either a basal profile or a temporary
basal, after the prime or refill is successfully completed.” The
APs corresponding to this safety requirement are (1) BO: active
bolus delivery; (2) BA: active basal delivery; (3) P: priming
process; and (4) R: refill process. The refinement map however
has to account for what is happening in the implementation
code and relate that to the atomic propositions.

The predicate function for BO uses several variables from
the code including NB: Normal Bolus and EB: Extended Bolus
as there are more than one type of Bolus dose supported by the
system. So the AP BO should be true if there is a NB or an EB.
NB is only a flag that indicates that a normal bolus should be in
progress. The actual bolus itself will continue to occur as long
as a counter that keeps track of the bolus has not reached its
maximum value. Therefore, for example for a normal bolus,
we use a conjunction of NB and the condition that the NB
counter (NBc) is less than its possible maximum value (NBm).
We use a similar strategy for the extended bolus as well. This
refinement map template works for all processes similar to a
Bolus dosage delivery, such as basal dosage delivery, priming
process, and refill process. Therefore, we term this refinement
map template as ”process template.” For the basal dosage (BA
AP) a number of basal profiles (BPs) are possible that accounts
for BP1 thru BPn. TB stands for temporary basal. As can be
noted from Figures 6-15, the process template accounts for a
large number of predicate functions corresponding to APs.

The second refinement map template is a simple one called
the ”projection template,” which is used when the AP in the
specification TS corresponds directly to a variable in the code.
An example of the projection template can be found in Figure
6, where the User Reminder (UR) AP is mapped directly
from a flag variable in the code that corresponds to the user
reminder. A variation of this template is a boolean expression
of Boolean variables in the code. An example of such an AP
is the UIP AP in Figure 10.

The third refinement map template is called the ”value
change template,” which is used when the AP is true only
when a value has changed. An example use of this template
can be found in Figure 6 for the CDTC AP. CDTC corresponds
to the change in drug type and concentration and is true when
the drug type or concentration is changed. For the drug type
change, DT is the variable that corresponds to the drug type.
The question here is how to track that a value has changed. The
idea is to use history variables. HDT is a history variable that
corresponds to the history of the drug type, i.e., the value of
the drug type in the previous cycle. If HDT is not equal to DT
in a code state, then we know the drug type has changed. The
inequality of HDT and DT is used to construct the predicate
function. For all the safety requirements analyzed, these three
refinement map templates cover all the APs.

For timed specifications, we next discuss the refinement
map for the specification in Figure 13. The safety specification
from [27] is as follows: ”An air-in-line alarm shall be triggered
within a maximum delay time of x seconds if air bubbles larger
than y µL are detected, and all insulin administrations shall be
stopped.” The APs corresponding to this safety requirement

52

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

P

BO BA

R

• BO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• P = P ∧ (Pc < Pm)

• R = R ∧ (Rc < Rm)

• BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)]

Figure 5. A formal presentation of requirement 1.1.1 from [27] and the suggested refinement maps.

AI

RTV R

UR

CDTC

• AI = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

• CDTC = (DT 6= HDT) ∧ (CDTCc < CDTCm)

• UR = FLAG

• RTVR = (CRV 6= HRV) ∧ (RTV Rc < RTV Rm)

Figure 6. A formal presentation of requirement 1.1.3 from [27] and the suggested refinement maps.

IBO

INDV

SPM

SY NC

• IBO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• INDV = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

• SPM = [P ∧ (Pc < Pm)] ∨ [R ∧ (Rc < Rm)]

• SYNC = INCAL ∧ (INCALc < INCALm)

Figure 7. A formal presentation of requirement 1.8.2 and 1.8.5 from [27] and the suggested refinement maps.

NB

REQ

ALRT

DNY

• NB = NB ∧ (NBc < NBm)

• REQ = REQ-FLAG

• ALRT = ALRT-FLAG

• DNY = CALL-FUNCT

Figure 8. A formal presentation of requirement 1.3.5 from [27] and the suggested refinement maps.

SET UCNF CONC

• SET = CLRS ∨ [CHNS ∧ (CHNSc < CHNSm)] ∨ RESS

• UCNF = FLAG

• CONC = [SETT ∧ (SETTc < SETTm)] ∨ [CHNC ∧ (CHNCc <
CHNCm)]

Figure 9. A formal presentation of requirement 2.2.2 and 2.2.3 from [27] and the suggested refinement maps.

53

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

UIP WAR ACT

• UIP = BG ∨ TBG ∨ INCR ∨ CORF

• WAR = FLAG

• ACT = CNFI ∨ [CHNI ∧ (CHNIc < CHNIm)]

Figure 10. A formal presentation of requirement 3.2.5 from [27] followed by the suggested refinement maps.

ELR ELRF FWAR

• ELR = [EL ∧ (ELc < ELm)] ∨ [LR ∧ (LRc < LRm)]

• ELRF = ELF ∨ LRF

• FWAR = FLAG

Figure 11. A formal presentation of requirement 3.2.7 from [27] followed by the suggested refinement maps.

NBA

BA

NABA

ALRM

〈0,∞〉 〈x,∞〉

〈0,∞〉

〈0,∞〉

〈Z,∞〉

〈y,∞〉

• BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)]

• NBA = ¬ BA

• ALRM = ALRM-FLAG

• NABA = NBA ∧ NA

Figure 12. A formal presentation of the timing requirement 1.2.8 from [27] and the suggested refinement maps.

AIRB

ALRM INAD

〈0, x〉

〈0,∞〉

〈0,∞〉

• AIRB = AB > Y

• ALRM = ALRM-FLAG

• INAD = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

Figure 13. A formal presentation of the timing requirement 1.6.1 from [27] followed by the suggested refinement maps.

DLM

NDLM ALRM

〈0,∞〉

〈0,∞〉

〈x,∞〉

〈0,∞〉

• DLM = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

• NDLM = ¬ DLM

• ALRM = ALRM-FLAG

Figure 14. A formal presentation of the timing requirement 1.8.4 from [27] followed by the suggested refinement maps.

54

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ALRM

UIR UIP

〈x,∞〉 〈0,∞〉

〈x,∞〉

〈0,∞〉

• ALRM = ALRM-FLAG

• UIR = RTD ∨ RDC ∨ RRDV ∨ . . .

• UIP = STD ∨ SDC ∨ RDV ∨ . . .

Figure 15. A formal presentation of the timing requirement 2.2.1 from [27] followed by the suggested refinement maps.

are (1) AIRB: air bubbles; (2) ALRM: air-in-line alarm; (3)
INAD: insulin administration. The predicate function for INAD
uses several variables from the code including BPs; TB; NB;
and EB as explained above. The AP INAD should be true
if one of these variables is true and its counter variable is
less than the maximum value. This AP is considered as an
example use of the process template. For the ALRM AP, it is
a simple example of the projection template, it should be true
if its corresponding flag is true. The AIRB AP shows another
variation of the value change template, which is depends on
the changing value of the Air Bubbles (AB) variable. If the
AB variable value is greater than Y (Y is a predefined value of
the number of bubbles and it is based on the pump model), the
AirB AP will be true. Table I gives the expansions for all the
abbreviations used in Figures 6-15, so that the corresponding
refinement maps can be comprehended by the reader.

V. SYNTHESIS OF REFINEMENT MAPS FOR SYSTEM
REQUIREMENTS

This section explains new automation procedures for con-
structing refinement maps for both functional and timing
system requirements from [27]. The first part of this work uses
our previously proposed algorithms for synthesising formal
specifications from natural language requirements [12] [13].

Procedure 1 shows the overall flow for computing the
refinement map template for each AP in a functional require-
ment. A set of functional requirements in natural language
form is fed as input. Three template lists are the output of the
procedure, each list will contain a set of APs based on the
heuristic data from the parsed trees belonging to each input
requirement.

Three empty template lists are defined; projection template
list (line 1), process template list (line 2), and value template
list (line 3). A list for functional requirement’s APs (APf -list)
is initialized to null (line 4). Each requirement is input to the
Synthesising Procedure for Functional Requirements (SPFR)
(line 6) which comes up with formal specifications (explained
in II-D). A function called Get AP-list is used to obtain the
resulting AP-list from the SPFR into the APf -list (line 7). A
function called Get Sub-tree is applied to each entry (APf) in
the APf -list, this function returns the sub tree that corresponds
to the APf from Enju parsed tree (line 9). A function called
Head stores the head category of the sub tree in variable X
(line 10). Check if X is of NX category, right child of X is PP,
and left child of X is NX (line 11), then AP is added to the

Procedure 1 Procedure for synthesizing Refinement Maps for
functional requirements

Require: Set of Functional Requirements
1: Projection-Temp-list ← ∅ ;
2: Process-Temp-list ← ∅ ;
3: Value-Temp-list ← ∅ ;
4: APf -list ← ∅ ;
5: for each Reqf ∈ Functional Requirements do
6: Apply SPFR(Reqf);
7: APf -list ← Get AP-list(SPFR);
8: for each APf ∈ APf -list do
9: Sub-tree ← Get Sub-tree (APf);

10: X = Head(Sub-tree);
11: if [(X = NX) ∧ (RightChild(X) = PP) ∧

(LeftChild(X) = NX)] ∨ [(X = VP) ∧
(RightChild(X) = NP) ∧ (LeftChild(X)

= VX)] then
12: Projection-Temp-list ← Projection-Temp-list

∪ APf ;
13: else
14: if [(X = NX) ∧ (LeftChild(X) = VP) ∧

(RightChild(X) = NX-COOD)] ∨ [(X
= VP) ∧ (RightChild(X) = CP) ∧
(LeftChild(X) = VX)] then

15: Value-Temp-list ← Value-Temp-list ∪
APf ;

16: else
17: Process-Temp-list ← Process-Temp-list ∪

APf ;
18: Projection-Temp-list ← USR IN(Projection-Temp-

list);
19: Value-Temp-list ← USR IN(Value-Temp-list);
20: Process-Temp-list ← USR IN(Process-Temp-list);

projection template list (line 12). Also if X is of VP category,
right child of X is NP, and left child of X is VX (line 11),
so AP is added to the projection template list as well. For the
AP to be stored in the value change template (line 15), there
are two cases; case 1: If X is of NX category, left child of
X is VP, and right child is NX-COOD (line 14). Case 2: if
X is of VP category, right child of X is CP, and left child of
X is VX (line 14). If the sub tree of AP does not meet any
of the previous mentioned conditions, then AP will be stored
in the process template list (line 17). The procedure allows

55

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. LIST OF ABBREVIATIONS

Abbreviation Meaning
AI Active Infusion

CDTC Change Drug Type and Concentration
DT Data Type

HDT Historical Data Type
UR User Reminder

RTVR Reservoir Time and Volume Recomputed
CRV Current Reservoir Volume
HRV Historical Reservoir Volume
IBO Incomplete Bolus

INDV Insulin Delivery
SPM Suspension Mode

SYNC Synchronization
INCAL Insulin Calculations

REQ-FLAG Request Flag
CALL-FUNCT Call-Function for Calculation

SET Settings
CLRS Clear Settings
CHNS Change Settings
RESS Reset Settings
UCNF User Confirmation
SETT Setting the concentration
CHNC Changing the Concentration

BG Blood Glucose
TBG Targeted Blood Glucose
INCR Insulin to Carbohydrate ratio
CORF Correction Factor
ACT User Action
CNFI Confirm Input
CHNI Change Input
ELR Event or Log Retrieving
EL Event Logging
LR Log Retrieving

ELRF Event Logging or Logging Retrieving Failure
ELF Event Logging Failure
LRF Logging Retrieving Failure
ELF Event Logging Failure

FWAR Failure Warning
NBA NO Basal delivery

NABA No Alarm or Basal delivery
NA No Alarm
AB Air Bubbles

DLM Delivery Mode
NDLM Non-Delivery Mode

UIR User Input Requested
RTD Requested Time and Date
RDC Requested Drug type and Concentration

RRDV Requested Reloading Drug reservoir
UIP User Input Provided
STD Setting Time and Date
SDC Setting Drug type and Concentration
RDV Reloading Drug reservoir

Procedure 2 Procedure for synthesizing Refinement Maps for
timing requirements

Require: Set of Timing Requirements
1: Projection-Temp-list ← ∅ ;
2: Process-Temp-list ← ∅ ;
3: Value-Temp-list ← ∅ ;
4: APt-list ← ∅ ;
5: for each Reqt ∈ Timing Requirements do
6: Apply SPTR(Reqt);
7: APt-list ← Get AP-list (SPTR);
8: for each APt ∈APt-list do
9: Sub-tree ← Get Sub-tree (APt);

10: X1 = Head(Sub-tree);
11: if [(X1 = NX) ∧ (RightChild(X1) = NX)

∧ (LeftChild(X1) = ADJ)]∨ [(X1 = NX)
∧ (RightChild(X1) = NX) ∧ (LeftChild(X1)

= NP)] then
12: Projection-Temp-list ← Projection-Temp-

list ∪ APt;
13: else
14: if [(X1 = NX) ∧ (RightChild(X1) = ADJ) ∧

(LeftChild(X1) = NX)] then
15: Value-Temp-list ← Value-Temp-list ∪

APt;
16: else
17: Process-Temp-list ← Process-Temp-list

∪ APt;
18: Projection-Temp-list ← USR IN(Projection-Temp-

list);
19: Value-Temp-list ← USR IN(Value-Temp-list);
20: Process-Temp-list ← USR IN(Process-Temp-list);

expert user input to the final template lists (lines 18-20), the
user can modify, delete, add or exchange APs from any list
if any AP is classified in the wrong list. Procedure 2 shows
the overall flow for computing the refinement map template for
each AP in a timing requirement. A set of timing requirements
in natural language form is fed as an input. Three templates
lists are the output of the procedure as in procedure I, each
list will contain a set of APs based on the heuristic data from
the parsed trees belonging to each input requirement. Three
empty template lists are defined; projection template list (line
1), process template list (line 2), and value template list (line
3). A list for APs (APt-list) is initialized to null (line 4). Each
requirement is input to the Synthesising Procedure for Timing
Requirements (SPTR) (line 6) which comes up with formal
specifications (explained in Section II-E). A function called
Get AP-list is used to obtain the resulting AP-list from the
SPTR into the APt-list (line 7). A function called Get Sub-
tree is applied to each entry (APt) in the APt-list, this function
returns the sub tree that corresponds to the APt from Enju
parsed tree (line 9). A function called Head stores the head
category of the sub tree in variable X1 (line 10). Check if
X1 is of NX category, right child of X1 is NX, and left child
of X1 is ADJ (line 11), then AP is added to the projection
template list (line 12). Also if X1 is of NX category, right child
of X1 is NX, and left child of X1 is NP (line 11), so AP is
added to the projection template list. For the AP to be stored
in the value change template (line 15), there is only one case;

56

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

If X1 is of NX category, right child of X1 is of ADJ category
and left child of X1 is also NX (line 14). If the sub tree of
AP does not meet any of the previous mentioned conditions,
then it will be stored in the process template list (line 17). As
in procedure I, this procedure allows expert user input to the
final template lists (lines 18-20), the user can modify, delete,
add or exchange APs from any list if any AP is classified in
the wrong list.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed a process for synthesizing
refinement maps. Heuristics have been developed based on
the output of the Enju parser to select a refinement map
template for each atomic proposition. The key ideas of our
approach are the following. Firstly, the system requirement is
fed as an input. Secondly, the previously proposed synthesising
procedure of formal specifications is applied on the input
requirement. Finally, the heuristic data from the requirement’s
parsed tree is used to select the suitable refinement map
template. The refinement map template is either the process
template, the projection template or changing value template.
For future, our work can be applied on any critical device
that has safety requirements, and more generic refinement map
templates can be identified. In addition, the level of automation
can be increased by improving the synthesis procedure.

ACKNOWLEDGMENT

This publication was funded by a grant from the United
States Government and the generous support of the American
people through the United States Department of State and the
United States Agency for International Development (USAID)
under the Pakistan - U.S. Science & Technology Cooperation
Program. The contents do not necessarily reflect the views of
the United States Government.

REFERENCES

[1] E. M. Al-Qtiemat, S. K. Srinivasan, Z. A. Al-Odat, and S. Shuja, “Re-
finement maps for insulin pump control software safety verification,” in
The Eleventh International Conference on Advances in System Testing
and Validation Lifecycle VALID 2019. IARIA.

[2] B. Fei, W. S. Ng, S. Chauhan, and C. K. Kwoh, “The safety issues
of medical robotics,” Reliability Engineering & System Safety, vol. 73,
no. 2, 2001, pp. 183–192.

[3] FDA, “List of Device Recalls, U.S. Food and Drug Administration
(FDA),” 2018, last accessed: 2019-10-11. [Online]. Available:
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm

[4] S. Quadri and S. U. Farooq, “Software testing-goals, principles, and
limitations,” International Journal of Computer Applications, vol. 6,
no. 9, 2010, pp. 7–10.

[5] E. Miller and W. E. Howden, Tutorial, software testing & validation
techniques. IEEE Computer Society Press, 1981.

[6] R. Kaivola et al., “Replacing testing with formal verification in intel
coretm i7 processor execution engine validation,” in Computer Aided
Verification, 21st International Conference, CAV, Grenoble, France,
June 26 - July 2, 2009. Proceedings, pp. 414–429. [Online]. Available:
https://doi.org/10.1007/978-3-642-02658-4\ 32

[7] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and
static driver verifier: Technology transfer of formal methods inside
microsoft,” in Integrated Formal Methods, 4th International Conference,
IFM, Canterbury, UK, April 4-7, 2004, Proceedings, pp. 1–20. [Online].
Available: https://doi.org/10.1007/978-3-540-24756-2\ 1

[8] K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security. ACM, 2016, pp. 91–96.

[9] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of fluctuat on safety-critical avionics soft-
ware,” in International Workshop on Formal Methods for Industrial
Critical Systems. Springer, 2009, pp. 53–69.

[10] P. Manolios, “Mechanical verification of reactive systems,” PhD
thesis, University of Texas at Austin, August 2001, last accessed:
2019-10-04. [Online]. Available: http://www.ccs.neu.edu/home/pete/
research/phd-dissertation.html

[11] M. A. L. Dubasi, S. K. Srinivasan, and V. Wijayasekara, “Timed refine-
ment for verification of real-time object code programs,” in Working
Conference on Verified Software: Theories, Tools, and Experiments.
Springer, 2014, pp. 252–269.

[12] E. M. Al-qtiemat, S. K. Srinivasan, M. A. L. Dubasi, and S. Shuja,
“A methodology for synthesizing formal specification models from
requirements for refinement-based object code verification,” in The
Third International Conference on Cyber-Technologies and Cyber-
Systems. IARIA, 2018, pp. 94–101.

[13] E. M. Al-Qtiemat, S. K. Srinivasan, Z. A. Al-Odat, and S. Shuja, “Syn-
thesis of Formal Specifications From Requirements for Refinement-
based Real Time Object Code Verification,” International Journal on
Advances in Internet Technology, vol. 12, Aug 2019, pp. 95–107.

[14] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theoretical Computer Science, vol. 82, no. 2, 1991, pp. 253–284.

[15] C. Klein, C. Prehofer, and B. Rumpe, “Feature specification and refine-
ment with state transition diagrams,” arXiv preprint arXiv:1409.7232,
2014.

[16] E. Rabiah and B. Belkhouche, “Formal specification, refinement, and
implementation of path planning,” in 12th International Conference on
Innovations in Information Technology (IIT). IEEE, 2016, pp. 1–6.

[17] M. Spichkova, “Refinement-based verification of interactive real-time
systems,” Electronic Notes in Theoretical Computer Science, vol. 214,
2008, pp. 131–157.

[18] A. Miyazawa and A. Cavalcanti, “Refinement-based verification
of sequential implementations of stateflow charts,” arXiv preprint
arXiv:1106.4094, 2011.

[19] A. Cimatti and S. Tonetta, “Contracts-refinement proof system for
component-based embedded systems,” Science of computer program-
ming, vol. 97, 2015, pp. 333–348.

[20] D. L. Bibighaus, “Applying doubly labeled transition systems to the
refinement paradox,” Naval Postgraduate School Monterey CA, Tech.
Rep., 2005.

[21] Y. Zhao, D. Sanán, F. Zhang, and Y. Liu, “Formal specification and
analysis of partitioning operating systems by integrating ontology and
refinement,” IEEE Transactions on Industrial Informatics, vol. 12, no. 4,
2016, pp. 1321–1331.

[22] R. Geniet and N. K. Singh, “Refinement based formal development of
human-machine interface,” in Federation of International Conferences
on Software Technologies: Applications and Foundations. Springer,
2018, pp. 240–256.

[23] Y. Zhao, D. Sanán, F. Zhang, and Y. Liu, “Refinement-based specifica-
tion and security analysis of separation kernels,” IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 1, 2017, pp. 127–141.

[24] T. Fayolle, M. Frappier, R. Laleau, and F. Gervais, “Formal refinement
of extended state machines,” arXiv preprint arXiv:1606.02016, 2016.

[25] A. Mashkoor, F. Yang, and J.-P. Jacquot, “Refinement-based validation
of event-b specifications,” Software & Systems Modeling, vol. 16, no. 3,
2017, pp. 789–808.

[26] G. Smith and K. Winter, “Relating trace refinement and linearizability,”
Formal Aspects of Computing, vol. 29, no. 6, 2017, pp. 935–950.

[27] Y. Zhang, R. Jetley, P. L. Jones, and A. Ray, “Generic safety require-
ments for developing safe insulin pump software,” Journal of diabetes
science and technology, vol. 5, no. 6, 2011, pp. 1403–1419.

