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Abstract— A system is needed for quantitatively evaluating the 

activity recovery level of functional disable people. Although 

functional recovery is administered to hemiplegic patients 

during rehabilitation, some patients who have recovered 

function in a rehabilitation facility are still unable to perform 

daily activities at home. Therefore, recovering activities of 

daily living (ADL) has become more important than functional 

recovery. Since existing ADL recovery level indices are based 

on responses to questionnaires, judgment of recovery level is 

easily affected by an evaluator’s subject. We have developed a 

system for collecting and storing motion data on daily life 

activities for use in quantitatively evaluating ADL recovery 

levels. Evaluation of the system using data measured for a 

healthy participant with restricted movement and two actual 

hemiplegic patients demonstrated that slight differences in 

disability levels can be detected. This system is thus well suited 

for quantitative ADL assessment for patients with a disability. 

Keywords-rehabilitation; functionary recovery; activities in 

daily living; ADL; BLE beacon; Google Firebase. 

I.  INTRODUCTION 

Most patients suffering from cerebrovascular disease 
have paralysis on one side of the body, and their bodies lean 
and twist to the paralyzed side. Also, because of unusual 
muscle strain, their hands and feet become stiff. In some 
cases, muscles of the upper body go into convulsions. 
Functionary recovery is administered to hemiplegic patients 
as rehabilitation. However, some patients are not always to 
live less inconveniently in their home. Some patients who 
recover hand and arm functionality better in a rehabilitation 
facility cannot eat meals better in their home. Therefore, 
recovering Activities of Daily Living (ADL) has recently 
become more significant than recovering functionaries. We 
proposed a system to collect motion data on patient’s ADL 
in IARIA eTELEMED 2019 [1]. 

The Barthel Index, which is based on questionnaires, is 
popularly used to quantitatively evaluate ADL recovery 
levels [2][3]. With questionnaires, however, recovery level 
judgments easily change in accordance with the evaluator’s 
subject. Each recovery level is digitized to a few levels. For 
example, answers for feeding include “unable,” “needs help 
cutting, spreading butter, etc., or requires modified diet” and 
“independent.” Each answer is scored 0, 5, or 10. However, 
the recovery level for feeding with help ranges from “a 

patient eating food directly from dishes without using a 
spoon or fork” to “a patient eating a meal with a knife and 
fork in almost the same way as a healthy person.” Also, it 
takes too much time to ask and observe whether a patient can 
do an activity independently without needing help. 

Functional Independence Measure (FIM) [4] and Katz 
Index [5]-[7] scores are also used to evaluate ADL. FIM 
scores cover not only functional disease but also mental 
disease. Scores are broken down into seven levels for each 
activity, including feeding. Katz Index scores are usually 
applied to cure elder patients or those suffering from chronic 
disease.  

The question formats for these evaluation methods are 
basically the same, and an evaluator needs much time to ask 
questions and observe a patient. We think that a quantitative 
evaluation system with a computer is needed to evaluate 
patients objectively without needing to ask them any 
questions and/or observe them.  

Judging ADL recovery levels is based on whether 
patients can do tasks, such as eating, getting dressed, bathing, 
washing, and discharging bodily waste by themselves. 
Therefore, a system that collects motion data of patients in 
daily life needs to not only measure and collect the motions 
of body parts but also detect which activities are performed. 
However, it is very difficult to estimate these merely from 
changes in acceleration and/or gyro sensor data obtained 
from devices attached to body parts. Therefore, we estimate 
activities by using information about places, such as a dining 
table, bathroom, dressing room, or bedroom. We used the 
BLE beacon [8] to detect places in this system.  

Most surgeons also think that postoperative patient 
functions assessed by ADL and quality of life have become 
especially important ways to measure surgical treatment 
outcomes for the elderly [9]. 

In this study, we developed a system to collect and store 
patients’ motion data to quantitatively judge the recovery 
level of activities in daily living. The system can use up to 
seven sensors for simultaneously measuring the motions of 
seven body parts. A patient’s name, measured location, 
sensor-attached body parts and time-stamps are described as 
the file names for each measured data file in this system.  

The system only requires that recognized medical doctors 
or physiotherapists can access measured data to maintain 
security. To ensure this, we developed a data collecting 
system based on Google Firebase [10]. Since the Firebase 
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application can be independently implemented for any 
organization, high level security can be maintained. 

To confirm whether this cloud-based system can 
distinguish between normal and restricted movements, we 
first had a healthy participant rotate both lower arms and 
then extend them forward to ensure that the system measured 
these movements correctly. We then restricted movement of 
the person’s elbows and collected movement data during 
teeth brushing, face washing, and eating.  

Next, we applied this system to tow actual hemiplegic 
patients. Drinking and walking motions were measured.  

The measurement data differed slightly depending on the 
level of movement restriction or disability; this system is 
thus suitable for quantitatively assessing the ADL level of 
patients with a disability. 

After introducing related work in Section II, we describe 
the system’s design concept and its implementation in 
Sections III and IV. Confirmation of its performance for a 
healthy participant with restricted movement is presented in 
Section V, and that for actual hemiplegic patients is 
presented in Section VI. Section VII concludes with a 
summary of the key points and a mention of future work.  

II. RELATED WORK 

To develop a quantitative evaluation system for the 

recovery level of activities in daily living of hemiplegic 

patients, we have to know how to evaluate ADL 

quantitatively, existing life log systems and healthcare 

information cloud service. 

A. Evaluation index for function level 

Three indexes to evaluate function level in daily living 

are widely used: the Barthel Index, the FIM and the Katz 

Index. They are basically questionnaires for daily life 

activities, such as feeding. The Barthel Index and FIM are 

popularly applied to evaluate function levels for 

rehabilitation patients, such as those afflicted with 

cerebrovascular disease.  There are ten question items in the 

Barthel Index: Feeding, Moving from wheelchair to bed and 

return, Personal toilet (washing face, combing hair, shaving, 

cleaning teeth), Getting on and off the toilet (handling 

clothes, wiping, flushing), Bathing self, Walking on level 

surfaces, Ascending and descending stairs, Dressing 

(includes tying shoes, fastening fasteners), Controlling 

bowels and Controlling bladder [2] [3]. A score of 

independently doing an activity is usually 10 points, doing it 

with help is usually 5 points, and not doing it is 0 points.  

FIM evaluates not only physical functions but also social 

abilities, such as communication or social recognition [3]. 

The number of questions covers 18 issues; 13 for physical 

functions and five for social abilities. Questions about 

physical functions are more segmentized. For example, the 

dressing function is divided into dressing the upper body 

and the lower body, moving activities are divided into the 

moving between a wheelchair and a bed/chair, and sitting on 

a toilet seat and moving to a bathtub. Scores are given on a 

seven-point system. Independently doing an activity gets 

seven points, doing it with full help gets one point, and 

doing it with partial help gets scores ranging from two to six 

points. 

The Katz Index is usually applied to elder patients or 

those suffering from chronic disease in a variety of care 

settings [4 - 6]. The index ranks adequacy of performance in 

six activities: bathing, dressing, toileting, transferring, 

continence, and feeding. Clients are scored yes/no for 

independence in each of the six functions. 

Every three indexes evaluate whether a patient can do 

activities in daily living. Therefore, our proposed system 

must know what kinds of activities a patient tries to do. 

In addition, one of the most widely recognized and 

clinically relevant measures of body function impairment 

after stroke is the Fugl-Meyer (FM) assessment. Of its 5 

domains (motor, sensory, balance, range of motion, joint 

pain), the motor domain, which includes an assessment of 

the upper extremity (UE) and lower extremity (LE), has 

well-established reliability and validity as an indicator of 

motor impairment severity across different stroke recovery 

time points. Consistently, greater motor severity as 

indicated by lower UE and LE FM motor scores is 

correlated with lower functional ability, such as spontaneous 

arm use for feeding, dressing and grooming, or walking at 

functional gait speeds. [11]. 

B. Life log system 

Over the years, many researchers have tried to estimate 

daily life human activities, such as walking and sitting up 

and down from acceleration and/or gyro sensor data 

obtained from wearable devices and/or smartphones. In this 

paper, we refer to the research done respectively by Zhan et 

al. and Wang et al. [12] [13]. Only a few motions were 

given in this research; distinctions among activities were not 

recognized. In contrast, Debraj et al. tried to recognize 19 

daily living activities [14]. They collected environment 

information, such as that for temperature and location in 

addition to activity information. They used GPS and BLE 

beacons to identify places. However, they did not consider 

the Barthel Index or other indices and consequently their 

target activities did not correspond to activities in the index 

of function recovery levels. 

C. Healthcare cloud service 

Zhang et al. developed a cyber-physical system for 

patient-centric healthcare applications and services [15]. 

They called it Health-CPS. It was built on cloud and big 

data analytics technologies.  It consisted of a data collection 

layer, a data management layer and an application service 

layer to collect and follow up on many kinds of big data. It 

used a security tag to maintain security.  

Doukas et al. proposed a mobile system that enables 

electronic healthcare data storage, update and retrieval using 

cloud computing [16]. A mobile application was developed 

using Google’s Android OS and Amazon’s S3 to provide 

management of patient health records and medical images. 
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We developed a cloud service whose collecting function 

for medical data is basically the same as that for the above 

systems. However, our system is specialized so that it can 

collect activity and place information to functionally 

evaluate recovery levels that correspond to existing 

evaluation methods, such as the Barthel Index. In this paper, 

we show how we implemented the system with Eri 

BLM620 [17] as the sensor node, as well as Android 

smartphone, BLE beacon, and Google Firebase. 

III. SYSTEM DESIGN CONCEPT 

We designed the proposed system so that it could not 

only evaluate ADL for a patient, but also develop 

algorithms for detecting whether a patient can do a 

designated activity. The system collects and stores sensor 

data and video data synchronously and allows appropriate 

persons to access stored data. We designed the system while 

taking the following issues into consideration: 

1) Suppressing battery consumption for wearable sensor 

devices, 

2) Suppressing recorded data and collecting necessary 

data, 

3) Maintaining security. 

 

Google Firebase service provides many functions, 

including authentication and real-time database functions, to 

enable systems to be managed effectively, such as through 

the means of allowing access to authorized persons. Since 

any organization can independently implement Firebase 

applications, it becomes possible to maintain high level 

security. This is why we implemented our data collecting 

system on Google Firebase.  

The image of a data collecting system that collects data 

about the motions that a patient performs daily is shown in 

Figure 1. The system we propose consists of sensor devices, 

a sensor relay unit (smartphone), BLE beacons, and Google 

Firebase. A smartphone is used as the sensor relay unit that 

controls sensor devices and temporarily stores and forwards 

measured data to the Firebase. 

BLE beacons are placed in various locations: under a 

dining table, on top of a toilet, in a bathroom, in a bedroom, 

in a closet. When the smartphone receives a BLE beacon 

signal level that exceeds the threshold level, it sends a 

message to sensor devices to start measuring data. And 

when the smartphone receives a receiving signal level lower 

than the threshold level, it sends a message to sensor devices 

telling them to stop measuring data. Sensor devices and 

smartphones are managed by the Realtime Database on 

Google Firebase. Security is maintained by enabling only 

authorized persons using the system, including patient, 

readers, such as medical doctor and installation personnel, 

such as nurse are also managed by the Realtime Database is 

used to maintain security. In this system, measured data are 

downloaded for pre-registered persons from the web server.  

 

 
Figure 1. Image of the data collecting system for patient’s daily life 

motions. 

IV. SYSTEM IMPLEMENTATION 

We developed a PatientApp program that works on the 

sensor relay unit and a DataCollectionServer program that 

works on Firebase. The PatientApp manages sensor devices, 

gets measured data from sensor devices and uploads the data 

file to the DataCollectionServer.  

A. PatientApp 

This time, we developed a PatientApp program based on 

the Android Framework. With this program, a developer 

must first access the Firebase and download a configuration 

file. An Android application package file (Apk File) is then 

made as a building application and is connected to Firebase. 

This makes it possible to securely download the Apk File 

for each organization. 

Before starting to measure sensor data and/or video data, 

it is necessary to enter a patient’s name, bind a sensor with a 

body part, bind a BLE beacon with a place of activity and 

select a video recording on/off function. Therefore, we 

designed a transition diagram of UI pages as shown in 

Figure 2. There were three alternatives for a user name at 

the login; the patient’s name, the medical worker’s name 

with measuring devices set up, and the medical 

professional’s name with measured data analyzed. For the 

latter two cases, a patient’s name must be entered after the 

login. Therefore, we decided on the first one, login with a 

patient’s name. 

After login, a “List of setting up” page is presented. An 

example of this page is shown in Figure 3. With it, a user 

can confirm a state of setting. When the “Change” button is 

clicked, the page will change to the “Sensor” page to bind a 

sensor with a body part. When the “Next” button is clicked, 

the page will change to the “Beacon” page to bind a BLE 

beacon with a place in activity. When the “Next” button is 

clicked, the page will change to the “Video” page to select 

video ON/OFF. When the “Next” button is clicked, the page 

will change to the “List of setting up” page. When the 

“Next” button is clicked in the “List of setting up” page, the 
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page will change to the “Measuring” page.  When the 

“Start” button on this page is clicked, the PatientApp sends 

a message to the sensor messages to start measuring, and the 

“Start” button changes to the “Stop” button. When the 

“Stop” button is clicked, the PatientApp sends a message to 

the sensor messages to stop measuring, and the “Stop” 

button changes to the “Start” button. When the “End” button 

is clicked, the PatientApp finishes. 

When a sensor receives a BLE beacon signal, it starts 

measuring, and, when a sensor loses a BLE beacon signal, it 

stops measuring. After clicking the “Stop” button, measured 

data are changed to a measured data file. Its file name is 

“Patient name_place_body part_timestamp” to recognize its 

properties. The file is uploaded to the storage in Firebase. 
 

 

Figure 2. Transitions of UI pages in the PatientApp. 
 

 

Figure 3. Example of setting up page list. 

We developed the following six packages of classes to 

achieve the above proceedings: 

- Beacon: receiving beacon signals and handing their 

information to other classes. 

- Mobile2wear: controlling a sensor device and 

receiving measured data. 

- Camera: managing a video camera. 

- Firebase: converting measured data and transferring 

the data to the Firebase storage. 

- View: managing transition of pages 

- Viewmodel: listening events on buttons or input 

boxes and handing, such information to other 

classes. 

B. DataCollectionServer 

The DataCollectionServer has the following functions; 

- Data upload function: The sensor relay unit 

temporarily stores measured data and forwards them 

to the server. 

- Data download function: Authorized persons, such 

as medical doctors can access the 

DataCollectionServer and download measured data 

files securely. 

 

It consists of the Storage and WebSite. The WebSite 

collaborates with the Storage and provides a file download 

function to a medical professional through the Web browser. 

In this subsection, we mainly introduce how to upload 

and download measured data file. 

1) Data upload function (Figure 4) 

After a measured file has been made, the PatientApp 

uploads the file to the storage server in Firebase as shown in 

Figure 4. The storage server generates the file download 

URL, which is managed in the Realtime Database. 

 

 
Figure 4. Sequence flow to upload measured files. 

 

2) Measured data download function (Figure 5) 

Supervisors input the access account of medical 

professionals from the management page in Firebase. The 
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sequence flow with which medical professionals download 

their patients’ files is shown in Figure 5. When medical 

professionals access the Website, they log in with their 

assigned ID and password on the page of Figure 6 (a).  

 

 
Figure 5. Sequence flow to download measured files. 

 

 

 
(a) Login page 

 

 
 

(2) File list page 

 
Figure 6.  WebSite user interface. 

 

After login, the Website application accesses the 

Realtime Database to get information related to nurses and 

patients. The Website application also gets meta-data such 

as an access path to a stored file. When a medical 

professional clicks a file on the page of Figure 6 (b), the 

Website application accesses the indicated file on the 

Storage through the access path. Finally, the indicated file is 

downloaded. 
 

C. Wearable device 

We initially used a SONY Smart Watch III [18] as the 

wearable device, as reported at eTELEMED 2019. However, 

SONY no longer produces this device, so we worked with 

Eri, Inc. [17] to develop the BLM620 wearable sensor to 

ensure a stable supply. 

Its appearance and configuration are shown in Figures 7 

and 8. It contains a 3D digital accelerometer and a 3D 

digital gyroscope packaged together (LSM6DSL, 

STMicroelectronics [19]) and a Bluetooth and CPU module 

packaged together (HRM1062, Hosiden [20]). Its 

acceleration and gyro axes are shown in Figure 9. The 

maximum number of simultaneous connections is seven.  

Its connection performance was measured using an 

Android terminal wirelessly connected to seven wearable 

devices, as shown in Figure 10, for two types of connection: 

multi-thread and sequential. The flow for each type is 

shown in Figure 11. The data were measured in lower and 

higher radio interference environments. The interference in 

the latter one was generated by a nearby 2.8 GHz WiFi 

access point. There was no such interference source in the 

former one. The terminal connected to each device 30 times. 

The connection error rate (CER) is shown in Figure 12. 

While there were differences in the CER between devices, 

the CER was generally higher in the higher radio 

interference environment than in the lower one. It was also 

higher for the multi-thread connections than for the 

sequential connections. Therefore, we used sequential 

connections in this application program. 
 

 

Figure 7. Appearance of the developed wearable device 

 
Figure 8. Configuration of the developed wearable device 
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Figure 9. Acceleration and gyro axis 
 

 

Figure 10. A scene of experiment 
 

 
(a) Multi-thread connection 

 

 
(b) Sequential connection  

 

Figure 11. Connection flow 

 
 

 
Figure 12. Connection error rate 

V. COMFIRMATION OF SYSTEM PERFORMANCE 

Prior to collecting motion data for actual hemiplegic 

patients, we collected motion data for a healthy participant 

with and without elbow restrictions to confirm that the 

proposed system can detect differences between normal and 

restricted joint movement.  

A. Simple motions 

We started with simple motions for which it is easy to 

confirm the accuracy of measured data. We first had the 

participant rotate both lower arms 90°, as shown in Figure 

13, five times. The measured acceleration and yaw/roll/pitch 

angle data are shown in Figure 14. The acceleration along 

the X and Z axis basically changed from 0 to 1 G alternately 

(Figure 14 (a)) five times. The acceleration along the X axis 

changed from 0 to −1 G while that along the Z axis changed 

from 0 to 1 G alternately (Figure 14 (c)) five times.  

The roll angles for the two arms (Figures 14 (b) and (d)) 

were symmetrically opposite due to their symmetrical 

motions. The acceleration along the Z axis when both 

thumbs were in the “right up” position (Figures 14 (a) and 

(c)) was not zero. This reason is caused by over actions of 

the arms. The yaw/roll/pitch angles in Figures 14 (b) and (d) 

include the drift error. 

 

 
                       (a) Start                                            (b) End 

Figure 13. Rotating the lower arm 
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Figure 14. Measured data of rotating the lower arm 

 

The participant raised both lower arms from the straight 

down position to the forward position, as shown in Figure 

15, five times. The measured acceleration and yaw/roll/pitch 

angle data are shown in Figure 16. The acceleration along 

the Y axis for the straight down position was roughly −1 G 

(Figures 16 (a) and (c)) since the sensors simply measured 

gravity. The acceleration along the X axis corresponded to 

the centrifugal force. The symmetric differences in yaw 

angle between Figures 16 (b) and (d) were due to the 

symmetrical motion. The yaw/roll/pitch angles in Figures 16 

(b) and (d) include the drift error, the same as in Figures 14 

(b) and (d). The measured data in Figures 14 and 16 

basically represent the changes in motion accurately. 
 

 
                                  (a) Start                      (b)End 

Figure 15. Rising the lower arm forward 

 

 
Figure 16. Motion data of rising the lower arm forward 

B. Restricted motions 

To confirm whether the proposed system can detect 

differences between different motion restrictions, we 

measured the participant’s motions during eating, face 

washing, and teeth brushing under three conditions; 

a. Bending of the right elbow was restricted by placing it 

in a plaster cast (Figure 17), wrapping it in a bandage, 

and fixing it to his upper body with a bandage, 

b. Bending of the right elbow was restricted by placing it 

in a plaster cast and wrapping it in a bandage, without 

fixing it to anything. 

c. No restriction. 

 

Wearable devices were attached to the head, the mid-

lumbar region, both lower arms, and both upper arms, as 

shown in Figure 18. Under conditions a and b, the 

participant brushed his teeth with his right hand, as shown 

in Figure 19 (a). Under condition c, he brushed his teeth 

with his left hand since he usually brushes with his left hand. 

The acceleration data for the lower arms and head are 

presented in Figure 20. The other data are not presented as 

they did not have any particular features of interest. Since 

there was a lot of right and left or up and down motion and 

little rolling motion in brushing teeth, the angle data for the 

tooth-brushing arm had little variation. There were big 
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differences in the data between conditions a and b, as shown 

in Figures 20 (a-2) and (b-2) while there was little 

difference between conditions b and c, as shown in Figures 

20 (b-2) and (c-1). There was little head movement under 

any condition, as shown in Figures 20 (a-3), (b-3), and (c-3).   
 

 
Figure 17. Plaster cast    

 

 
Figure 18. Participant with sensors and restrictions 

 

 
(a)Brushing teeth       (b)Washing face          (c)Eating food 

Figure 19. Restricted motions 

The participant washed his face with his right hand 

under conditions a and b, as shown in Figure 19 (b). He 

washed his face with both hands under condition c. The 

acceleration data for the lower arms and head are presented 

in Figure 21. The other data are not presented as they did 

not have any particular features of interest. Since there was 

a lot of up and down motion and little rolling motion in 

washing face, the angle data for the face washing arm had 

little variation. There were not any big differences in the 

data between conditions a and b, as shown in Figures 21 (a-

2) and (b-2). There was a big difference in the data between 

condition c and the other two conditions: the acceleration 

data for the lower arms varied widely, as shown in Figures 

21 (c-1) and (c-2) due to using both hands. There was little 

head movement under any condition, as shown in Figures 

21 (a-3), (b-3), and (c-3). 

The participant ate curry rice with his right hand under 

all three conditions, as shown in Figure 19 (c). The 

acceleration and angle data for the right lower arm are 

presented (Figure 22), since eating food with a spoon 

involves much rolling motion. The angle of head for the 

direction of gravity is also presented (Figure 22 (a-3), (b-3), 

and (c-3)). The range of change in the acceleration Y, Z, and 

pitching of his right hand are bigger, as there was less 

motion restriction. The angle of head for the direction of 

gravity during eating is bigger, as there was less motion 

restriction. The participant had to close his face to curry and 

was hard to roll his hand during eating in condition a. 
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Figure 20. Data collected during teeth brushing. 

 

167

International Journal on Advances in Life Sciences, vol 11 no 3 & 4, year 2019, http://www.iariajournals.org/life_sciences/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

7 9 11 13 15 17
Time (sec.)

加速度X

加速度Y

加速度Z

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4 6 8 10 12 14 16 18
Time (sec.)

加速度X

加速度Y

加速度Z

A
c
c
e
le

ra
ti
o
n
 (

G
)

(a-1) Acceleration (left lower arm)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4 6 8 10 12 14 16 18

Time (sec.)

加速度X

加速度Y

加速度Z

(a-2) Acceleration (right lower arm)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4 6 8 10 12 14 16 18

Time (sec)
加速度X

加速度Y

加速度Z

(a-３) Acceleration (head)

A
c
c
e
le

ra
ti
o
n
 (

G
)

A
c
c
e
le

ra
ti
o
n
 (

G
)

A
c
c
e
le

ra
ti
o
n
 (

G
)

(b-1) Acceleration (left lower arm)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

7 9 11 13 15 17

Time (sec.)

加速度X
加速度Y
加速度Z

A
c
c
e
le

ra
ti
o
n
 (

G
)

(b-2) Acceleration (right lower arm)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

7 9 11 13 15 17

Time (sec.) 加速度X

加速度Y

加速度Z

A
c
c
e
le

ra
ti
o
n
 (

G
)

(b-３) Acceleration (head)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4 6 8 10 12 14

Time (sec.) 加速度X
加速度Y
加速度Z

(c-1) Acceleration (left lower arm)

A
c
c
e
le

ra
ti
o
n
 (

G
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4 6 8 10 12 14

Time (sec.)

加速度X

加速度Y

加速度Z

(c-2) Acceleration (right lower arm)

A
c
c
e
le

ra
ti
o
n
 (

G
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

4 6 8 10 12 14
Time (sec.) 加速度X

加速度Y

加速度Z

A
c
c
e
le

ra
ti
o
n
 (

G
)

(c-３) Acceleration (head)

Washing

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

X
Y
Z

Washing Washing

 
(a) Condition a                                                          (b) Condition b                                                       (c) Condition c 

 

Figure 21. Data collected during face washing. 
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Figure 22. Data collected during eating. 
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These results demonstrate that measured data for lower 

arm motions are effective for detecting differences in 

motion restriction levels. Although it impossible to detect a 

difference using data for a single activity, such as teeth 

brushing or face washing, it is possible to detect one using 

data for a combination of activities, such as teeth brushing, 

face washing, and/or eating. 

VI. MEASUREMENT FOR HEMIPLEGIC PATIENTS 

 We collected and analyzed data for the walking and 

drinking motions of two hemiplegic patients and three 

healthy participants who wore seven wearable devices for 

collecting data. Their placements for each motion are shown 

in Figure 23. Data were collected for three stable walking 

cycles and for one drinking motion on the paretic side. The 

UE and LE functionalities of the two hemiplegic patients 

were assessed on the basis of FMA by physical and 

occupational therapists. Hemiplegic patient A had severe 

impairment on the paretic side (FMA UE score: 25; LE 

score: 14) while hemiplegic patient B had mild impairment 

on the paretic side (FMA UE score: 58; LE score: 26). 

The data were collected safely and smoothly for both the 

hemiplegic patients and healthy participants. The walking 

and drinking motions during collection were the same as 

their usual motions. The periods were longer for the patients 

due to their severe impairment. Since the period of time 

during walking and drinking and the acceleration and angle 

data for every healthy participant were similar, data for a 

typical healthy participant were presented in this paper. 

Figure 24 shows the raw acceleration and angle data for 

the paretic-side lower leg for hemiplegic patients A (a-1 and 

2) B (b-1 and 2), and for the left lower leg for the healthy 

participant (c-1 and 2) for the walking motion. While it is 

difficult to recognize walking gait cycles from the 

acceleration data for hemiplegic patients B and the health 

participant, the walking gait cycles are clearly recognized in 

the yaw angle data for all participants. The yaw angle 

indicates forward movement in the lower leg. The range for 

the healthy participant is biggest in three participants. The 

range is smaller for the hemiplegic patients due to their 

severe impairment. 

Figure 25 shows the raw acceleration and angle data for 

the paretic-side lower arm and for the head for hemiplegic 

patients A (a-1, 2, and 3) and B (b-1, 2, and 3), and for the 

left lower arm and head for the healthy participant (c-1, 2, 

and 3) for the drinking motion. The data indicate a larger 

forward movement of the head for the hemiplegic patients 

than for the healthy participant. And, the range of yaw angle 

of the lower arm of patient A is smaller than that of patient 

B and the healthy participant. This difference is attributed to 

the severe impairment and compensatory movements of the 

patients. 

This experiment demonstrated that this device and 

system can safely and smoothly collect motion data for 

hemiplegic patients as well as healthy individuals. They are 

thus suitable for quantitative assessment of ADL for 

hemiplegic patients. 
 
 

 
(a) Drinking a cup of water                            (b) Walking 

Figure 23. Experimental scenes with a hemiplegic patient 
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Figure 24. Data collected walking 
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VII. CONCLUSION AND FUTURE WORK 

Existing evaluation indexes for activities in daily living 

(ADL) recovery levels such as the Barthel Index are based 

on responses to questionnaires. Therefore, the judging of 

recovery levels can be easily affected by an evaluator’s 

subject. We have presented a system for collecting and 

storing motion data about daily life activities for use in 

quantitatively evaluating ADL recovery levels. The system 

was developed on the basis of Google Firebase. We used 

information about places such as a dining room and a 

bathroom to estimate the type of activity. The places are 

detected using Bluetooth beacons.  

Measurement results obtained for a healthy volunteer 

with restricted movement demonstrated that it is possible to 

detect slight differences in the restriction level. However, it 

is difficult to estimate whether the motions can be 

performed without help.  

Through the experiment measuring for hemiplegic 

patients, the proposed system can collect motion data safely 

and smoothly.  Measurement results obtained from two 

hemiplegic patients whose severity of impairment were 

different shows that it is possible to detect slight differences 

in the severity. 

Planned improvements to the proposed system include 

uploading video and GPS data to a cloud server. GPS data 

will enable measurement of motion during walking or 

running outdoor.  

Our goal is to develop a new index for evaluating ADL 

recovery levels on the basis of big motion data measured for 

people performing various activities. 
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Figure 25. Data collected drinking 
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