
33

International Journal on Advances in Life Sciences, vol 11 no 1 & 2, year 2019, http://www.iariajournals.org/life_sciences/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Knowledge Distillation from Machine Learning Models for

Prediction of Hemodialysis Outcomes

Harry Freitas da Cruz, Siegfried Horschig and
Matthieu-P. Schapranow

Digital Health Center
Hasso Plattner Institute

Rudolf-Breitscheid-Str. 187, 14482 Potsdam, Germany
Email: {harry.freitasdacruz|schapranow}@hpi.de

siegfried.horschig@student.hpi.de

Christian Nusshag

Department of Nephrology
Heidelberg University Hospital

Im Neuenheimer Feld 162, 69120 Heidelberg, Germany
Email: christian.nusshag@med.uni-heidelberg.de

Abstract—In order to compensate severe impairments of renal
function, artificial, extracorporeal devices, so called dialyzers,
have been developed to enable renal replacement therapy. The
parameters utilized in this form of therapy and the specific patient
characteristics substantially affect individual patient outcomes
and overall disease progression. In this paper, we present a
clinical prediction model for outcomes of critically ill patients that
underwent a specific form of renal replacement, hemodialysis. For
this purpose, we employed two categories of machine learning
models: interpretable (Bayesian rule lists and logistic regression)
and non-interpretable (multilayer perceptron and random forest).
To provide more transparency to the latter category, we applied
mimic learning and feature importance metrics. Results show that
non-interpretable models outperform the rule-based classifier (c-
statistic ≥ 0.9). Despite this result, the use of interpretability
methods enables more thorough model scrutiny by a medical
experts, revealing possible model biases, which might have been
otherwise disregarded.

Keywords–clinical prediction model; renal replacement therapy;
machine learning; supervised learning; knowledge distillation.

I. INTRODUCTION

Previously, we developed a prediction model for patient
outcomes following Renal Replacement Therapy (RRT) [1]. In
this paper, we expand our previous work, including different
algorithms, metrics, and more in-depth discussion so as to
provide a more comprehensive picture of the contributions,
challenges and limitations faced.

The renal system in the human body has the purpose to
excrete predominantly water-soluble metabolites and toxins in
order to maintain a sufficient blood homeostasis [2]. If this
system is impaired severely, e.g., in the context of an Acute
Kidney Injury (AKI), artificial, extracorporeal organ replace-
ment therapy becomes necessary [3]. Therefore, different RRT
modalities are available. One example is the hemodialysis,
where the solute exchange takes place via diffusion across a
semipermeable membrane between the blood and the dialysate
or dialysis fluid [4].

Hemodialysis outcomes are highly dependent on the pa-
tient’s clinical characteristics as well as on the type of the RRT
procedure applied [5]. Furthermore, RRT modalities based on
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Figure 1. Our research setup modeled as a Fundamental Modeling Concepts
(FMC) block diagram. Knowledge distillation approaches allow a medical

expert to scrutinize the non-interpretable, black-box models.

a filtration circuit, such as hemofiltration or hemodiafiltration
are particularly costly, requiring specialized equipment and
nursing staff [6]. In addition, various parameters have to be
adjusted for each patient, e.g., duration of the process, the
filtration rate and flow rates of the blood and dialysate. Clinical
prediction models can aid in decision making by providing
nephrologists with more accurate prognostic information under
uncertainty of outcomes [7].

In addition to usual criteria like accuracy or recall, when
employing Machine Learning (ML) in the medical context, one
especially important factor is the interpretability of the model,
since doctors must take full responsibility for the respective
decision, therefore requiring a high degree of trust [8]. As
such, one can distinguish between two categories of ML
algorithms: interpretable and non-interpretable. One example
for interpretable models are Bayesian Rule Lists (BRL) [9]. By
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presenting itself as if...then...else lists, it is easy for humans
to comprehend both the decision making and the individual
influence of each parameter on the outcome. In contrast, the
Multilayer Perceptron (MLP) model is usually more accurate,
but non-interpretable, since the weights of the nodes in the
hidden layers are all that is exposed to the outside. Due to the
fact that different loss and activation functions take effect when
updating those weights, the abstraction to the original input
data is too cumbersome for a human to grasp. By the same
token, in the case of ensemble approaches such as Random
Forest (RF), the number of constituent trees can be very high,
e.g. >100, severely harming model intelligibility, even as the
accuracy is improved.

In order to overcome the tradeoff between interpretability
and accuracy, we employed knowledge distillation techniques,
by means of which the complex inner workings of black-
box algorithms are ‘condensed’ into easy-to-understand terms.
Knowledge distillation is achieved, for example, by training an
interpretable model on the predictions of a more accurate, non-
interpretable model, a procedure termed mimic learning [10].
By means of this technique, we are able to gain insight into
the complex model’s decision process, thereby enhancing its
intelligibility. As a further knowledge distillation technique, we
utilized model-based feature importance for the RF model to
visualize its most important features, illuminating the behavior
the ‘black box’.

Our contribution consists of developing and scrutinizing
a Clinical Prediction Model (CPM) to prognosticate patient-
specific outcomes after hemodialysis in the Intensive Care Unit
(ICU). The research set-up is modeled in Figure 1 using a
Fundamental Modeling Concepts (FMC) block diagram [11].
We evaluated the performance of two different model cate-
gories, BRL and Logistic Regression (LR) as the interpretable
variants, along with MLP and RF as their non-interpretable
counterparts. After that, we employed mimic learning and
feature importance to help overcome the tradeoff between
accuracy and interpretability and provide some insight into
the decision parameters of the non-interpretable algorithms.
We then interviewed an expert in the field of Nephrology to
scrutinize the models thus developed.

The remainder of the work is structured as follows: In
Section II we place our work in the context of extant research.
We present our incorporated data and models in Section III
and present results of our work in Section IV. We discuss
our findings in Section V followed by the conclusion in
Section VII.

II. RELATED WORK

Our work is positioned at the intersection of ML and inter-
pretability approaches in the context of predictive modeling.
For this reason, in the following, we provide an overview
of existing prognostic models applied in hemodialysis using
both traditional and ML-based methods. Additionally, we
outline selected interpretability methods with which knowledge
distillation can be achieved.

A. Predictive Models for Hemodialysis Outcomes

When it comes specifically to predictive models for
hemodialysis outcomes that employ logistic or Cox regression,

a clear focus on prediction of mortality for chronic hemodial-
ysis patients can be ascertained. For instance, a predictive
model developed by Marks et al. for a cohort of chronic
kidney disease patients (N=3,396) presented limited results in
the prediction of 5-years mortality with Area Under the Re-
ceiver Operating Characteristic Curve (AUCROC)=0.753 [12].
For 60-day mortality of maintenance hemodialysis patients,
Cohen et al. achieved AUCROC=0.87, albeit in a relative
small cohort of 514 patients from eight clinics [7]. Finally,
a systematic literature review and external validation study
conducted by Ramspek et al. indicated that AUCROC of the
models validated ranged from 0.710 to 0.752 with Floege et
al.’s model being the best-performing, with AUCROC=0.79 in
their original population (N=11,508) [14, 13].

ML research in Nephrology has been traditionally geared
towards kidney disease detection using decision trees and naı̈ve
Bayes [15, 16]. However, those models tend to be less accurate
when compared to more advanced models, which prompted the
community to experiment with other methods, such as Support
Vector Machines (SVM) and Artificial Neural Network (ANN)
for prediction of kidney disease with encouraging results [17,
18]. In a similar fashion, Lakshmi et al. compared the three
models, namely, logistic regression, random forest and ANN,
proposing the latter for better performance and accuracy [19].

In the specific context of hemodialysis outcomes, ML
approaches have also been employed, achieving some degree
of success in the chronic setting. For example, Martı́nez-
Martı́nez et al. employed a range of different ML methods,
such as SVM and MLP, to predict hemoglobin levels and
thereby anemia in a cohort of N=13,011 patients, achieving
the lowest mean absolute error (0.662) with a bagging ap-
proach [20]. Furthermore, in a comparison of three different
techniques, ANN, LR and Decision Tree (DT), Srisawat et al.
recommended ANN for the mortality prediction task [21].

For critically ill patients, based on a cohort of N=76 Sri-
sawat et al. found a panel of urinary biomarkers to be strongly
predictive of renal recovery, presenting an AUCROC of 0.94.
Regardless of the small sample size which demands more
thorough validation, the needed biomarkers are not necessar-
ily always available in an intensive care setting, potentially
limiting the applicability of this biomarker panel.

B. Knowledge Distillation

The increasing complexity of ML models and the many pa-
rameters influencing their output make it considerably difficult
– if not impossible – for a human to understand the influence
of any specific feature on the training and outcomes of the
model. Case in point are the weights of the multiple neurons in
a MLP or the potentially hundreds of trees in a RF. To enable
us to ‘peek into the black box’ we employed the concept of
knowlegde distillation put forth by Che et al. utilizing mimic
learning [10]. In addition, algorithms such as RF make it
possible to derive feature importance based on specific criteria
such as mean decrease in impurity. This method provides even
further insight into the algorithm’s inner workings.

In the context of ML models and results, Doshi-Velez
defines interpretability as the ability to explain or to present
in understandable terms to a human [22]. In contrast, Lipton
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sees interpretability as a “non-monolithic concept” which en-
compasses a host of “distinct ideas” [23]. Expanding on these
ideas, a fledging community of researchers, deemed Fairness,
Accountability, Transparency (FAT) academics, emphasizes,
amongst others, explainability as one of the core principles
for accountable algorithms [24]. This principle establishes that
algorithmic decisions should be intelligible to end-users in
“non-technical terms”. In the context of this paper, we define
interpretability as a property of machine learning algorithms
and their outputs which allows scrutiny by medical experts.
Under scrutiny, we mean the ability of doctors to 1) easily
ascertain the ‘reasoning’ behind an algorithm’s decision, 2)
identify the most important features for the output and 3)
illuminate possible biases within the model.

In effect, the enhanced performance with modern ML
tools, however, is achieved at the expense of model inter-
pretability. The ability to explain and interpret decision is a
key requirement in medical applications. In the context of
ML, Lipton places particular focus on identifying decision
boundaries and ascertaining the influence of specific feature
for improved interpretability [23]. Approaches have been de-
veloped to achieve interpretability of black-box models, such
as the classification vectors approach by Baehrens et al. and the
Locally-Interpretable Model-agnostic Explanations (LIME) by
Ribeiro et al. [25, 26]. In particular, Katuwal and Chen applied
the LIME technique for achieving interpretability of random
forests for predicting ICU mortality, achieving accuracies of
80 % [8]. Still in the medical domain, Hayn et al. quantified the
influence of individual features on particular decisions made
by a random forest in clinical modeling applications [27].

Unlike previous work, we focus specifically on the task
of outcome prediction of hemodialysis patients in intensive
care while comparing two types of models side-by-side, one
interpretable (BRL and LR) and another non-interpretable
(MLP and RF). For aiding the interpretability of the complex
models, we made use of the mimic learning technique as
proposed by Che et al. in lieu of the LIME method employed
in extant research, because we aim to obtain a global under-
standing of the model’s inner workings rather than explain
individual instances of classification [8, 10]. Che et al. used
Gradient Boosting Trees as mimic learning model while we
applied Bayesian Ridge Regression (BRR) since their output
more closely resembles logistic regression, a technique widely
employed in medicine.

Given the extant literature on hemodialysis and knowledge
distillation, one can ascertain a lack of works 1) using ML
with a focus on critically ill patients, 2) covering different
outcomes, not only mortality prediction and 3) scrutinizing
model features by means of interpretability approaches. This
paper addresses these research gaps.

III. METHODS

In the following, we share details about the methods
and data employed for the clinical models developed. We
used RapidMiner [28], which allowed us to prepare data,
develop and cross-validate first models. The final models were
subsequently implemented with the scikit-learn library [29] in
Python 2.7. The data we used were provided by the MIMIC-
III dataset [30] stored in an in-memory database via an Open
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Figure 2. Cohort selection of the hemodialysis procedures based on the
MIMIC-III intensive care patients.

Database Connectivity (ODBC) interface [31]. To evaluate the
models, we utilized discrimination as measured by Area Under
the Receiver Operating Characteristic Curve (AUCROC) and
calibration using Brier score and calibration plots. A metric
routinely used in the medical context, Diagnostic Odds Ratio
(DOR) was also provided in combination with precision, recall
and sensitivity [32].

A. MIMIC-III Database

The MIMIC-III intensive care research database contained
hospital admission data for patients collected over an eleven-
year period in a Boston hospital [30]. As seen in Figure 2, out
of the approximately 46,000 patients present in the dataset, we
extracted 908 relevant patients for this paper, totaling approxi-
mately 3,093 hemodialysis procedures for model training. We
had to exclude from the analysis patients who had undergone
peritoneal dialysis, who are not relevant in an acute context.

The cohort did not contain patients who underwent
hemofiltration or hemodiafiltration, only hemodialysis patients.
Under hemodialysis, the data comprises both Continuous Renal
Replacement Therapy (CRRT) and Intermittent Hemodialysis
(IHD) modalities, therefore RRT type was a feature in the final
model. As such, we derived another cohort only with CRRT
patients (N=1,163 procedures) and IHD patients (N=1,930
procedures) to ascertain whether results were consistent across
hemodialysis modalities. We further derived a cohort consist-
ing exclusively of acute patients (N=954 procedures), since
patients who developed Acute Kidney Injury (AKI) without
previous history of renal disease exhibit peculiarities from a
clinical standpoint.

Missing Data: Due to the manually curated nature of the
MIMIC-III dataset, aside from occasional data inconsistencies,
a significant amount of data was missing. For example, the
columns containing serum creatinine and Glomerular Filtration
Rate (GFR) values before the procedure were missing in
approx. 20 % of samples. As the scikit-learn models need a
complete dataset for training, we decided to impute the missing
values using k-nearest neighbors algorithm (k-NN) [33].
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B. Features and Outcomes

In cooperation with a German university hospital, we con-
ducted interviews in order to curate a list of suitable features,
amounting to about 80 predictors. Those included patient
demographics, such as age or Body-Mass Index (BMI), RRT
parameters such as the duration of the procedure, comorbidities
as well as laboratory values, including parameters such as
serum creatinine and GFR for 24, 48 and 72 hours before
the procedure and patient vitals.

Additionally, we included outcomes such as 90-day mor-
tality, renal recovery, mechanical ventilation days and length
of stay in the ICU. The variables ventilations days and length
of stay presented continuous values, which had to be binarized
for the BRL classifier to work, since it only supports binary
outcomes. The complete list of features can be examined in
Table A.I. The outcomes were thus defined:

• 90-days Mortality: Indicates whether the patient has died
within a 90-day period (1 = dead / 0 = alive),

• Renal Recovery: If patient has been for more than 7
days without hemodialysis requirement, renal function is
considered to be restored (1 = recovery / 0 = no recovery),

• Ventilation Days: Indicates whether the patient has been
on ventilation for been less than seven days (1 = true / 0
= false), and

• Length of Stay: Points out if length of stay has been less
than 7 days (1 = true / 0 = false).

C. Modeling Algorithms

In the following, we describe the models and strategies
used as well as the parameters chosen for training for both the
interpretable and non-interpretable algorithms.

1) Bayesian Rule Lists: We chose the existing Python 2
implementation of BRL [9]. Letham et al. describe it as a
direct competitor to decision tree approaches, as the model
achieves high accuracy for classification tasks while still
being intelligible for subject-matter experts. This algorithm
tries to derive if...then...else statements over a dataset with
the important criteria of their being sparse for better human
readability. It builds Bayesian association rules consisting of
an antecedent a and a consequent b. The consequent has a
multinomial distribution over all the predicted labels y, so that
the rules are defined by Equation (1):

a→ y ∼Multinomial(θ) (1)

The rules are generated by mining antecedents directly
from the data and afterwards computing the posterior con-
sequent distribution over the antecedent lists. BRL have the
advantage of being easy to interpret due to their sparsity
while retaining accuracy in classification. However, there are
algorithms providing a higher accuracy, which also have the
capability of more elaborate parameter tuning. Additionally,
the current implementation of BRL has the shortcoming of
a very long runtime and only being able to classify binary
targets. Thus, we had to adjust the target features accordingly
through use of a binary operator for continuous predictors.

Parameters: The sole adjustable parameter in the im-
plementation used was the maximum number of iterations.
Multiple adjustments to this parameter – including changes by
a factor of ten – did not result in a significant change, neither
for the runtime nor for the accuracy. For the evaluation, we
chose a value of 50,000 maximum iterations.

2) Logistic Regression: LR is widely used for clinical pre-
diction model development. It provides fast training time and
easy-to-interpret coefficients for each model feature. For the
sake of illustration, in a univariate logistic regression model,
the probably that an input vector X can be assigned to the
default class (or y =1, i.e., AKI onset) is given by Equation (2)
also known as logit function:

p(X) =
eβ0+β1X

1 + eβ0+β1X
(2)

The parameters β0 and β1 are not known and therefore
must be estimated. This algorithm seeks to derive coefficients
βi for each input feature so that they map to a binary output
while minimizing the error between predicted and actual class
membership using maximum-likelihood estimation [34].

Owing to its simplicity, however, LR tends to perform
worse when compared to more sophisticated algorithms such
as MLP or RF. Critically, LR is built upon the assumption
of linearly correlated inputs and outputs. This is potentially
an issue, since in a medical context one cannot necessarily
assume linear relationships.

Parameters: One of the key hyperparameters to be
tuned for LR refers to the regularization strength. Model
performance upon validation can be improved by penalizing
large coefficients, potentially reducing overfitting. As such,
model sparsity is improved by a strong regularization, typically
defined as λ. Another key parameter to tune is the the type of
penalty for the regularization, namely L1 (lasso) or L2 (ridge).
Since utilizing L1 penalty shrinks the coefficients of less im-
portance to zero, some features might be removed altogether,
a desirable property when dealing with wide datasets. For our
experiment, we chose λ = 1 and L1 regularization.

3) Multilayer Perceptron: We chose the scikit-learn imple-
mentation of MLP, which is able to handle both regression and
classification tasks. Just as other implementations, this network
consists of multiple layers of so-called “neurons”: one input
layer with as many neurons as there are inputs, one output
layer with the size of the number of target features and hidden
layers varying in size and quantity. The log-loss function is
optimized through updating weights for each neuron for each
iteration of model training. The neural network can be defined
as mathematical function f(x) as shown in Equation (3) with
the activation function K and k-times gi(x) representing the
dependencies between functions with an individual weight wi.

f(x) = K

(
k∑
i=1

wigi(x)

)
(3)

MLP is a widely used algorithm in ML due to its versatility and
potentially high accuracy. It provides a wealth of parameters to
tune. As such, finding the right ones for a specific use case can
prove cumbersome. Furthermore, the decision making process
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of such a neural network is not comprehensible to a human
and thus provides nearly no interpretability.

Parameters: The amount of parameters to be adjusted
when using neural networks is very extensive. Performing
grid search over selected parameters, we found the default
ones provided by the library to perform the best. This means
the learning rate, which determines the speed and accuracy
of convergence, was set to 0.001. The activation function,
determining the output of the neurons in the hidden layer, was
the rectifier linear unit “relu”. The network consisted of one
hidden layer with 100 neurons. We set the maximum number
of iterations before convergence to 200.

4) Random Forest: The RF algorithm builds an ensemble
of multiple trees in order to get a more accurate and stable
prediction in comparison to an approach that relies on single
decision tree. The ensemble’s constituent trees utilize a random
subset of the features available to split the nodes to be
classified [35]. As a result of ‘pooling’ or majority voting of
individual predictions, characteristically, RF are less prone to
overfitting than regular decision trees. RF relies on bagging
or bootstrap aggregation, i.e., sampling with replacement, to
select samples of the training data, in an effort to reduce
variance in the prediction function [36]. Hastie et al. formalize
the concept in Algorithm 1.

Given a set of constituent trees b where b ∈ {1, . . . , B}, we
denote the overall class prediction of the random forest rf over
all B trees for input x by ĈBrf (x). Accordingly, if we denote
the class prediction of the bth constituent tree by Ĉb(x), the
classification output of the RF model is given by Equation (4):

ĈBrf (x) = majority vote{Ĉb(x)}
B

1 (4)

Algorithm 1: Training a Random Forest
Input: Training Data
Result: Ensemble of Trees
for b = 1 to B do

(a) Obtain bootstrap sample of size N from train-
ing data;

(b) Grow tree Tb to the bootstrapped data, applying
these steps recursively, until minimum node
size nmin is reached:
i. Select m variables at random from the avail-

able p variables;
ii. Pick the best variable/split point

among m;
iii. Split the node into two daughter nodes;

end
Return Ensemble of Trees {Tb}B1 ;

Parameters: The RF algorithm tends to perform well
even without extensive tuning, what may explain its wide
popularity [36]. In addition to the usual hyperparameters for
decision trees, such as tree depth, the library employed exposes
a number of hyperparameters that can be tuned specifically
for RF. They include, e.g., the number of constituent trees (or
estimators), i.e., B from Algorithm 1, number of variables m
to split a node and the minimum number of leaves required to

split an internal node. We determined the best hyperparameter
combination for our use case via gridsearch, with a total
number of estimators of 300, maximum tree depth of 16 and
maximum number of features of eight.

D. Knowledge Distillation

In the following, the knowledge distillation approaches
employed are presented in detail.

1) Mimic Learning: To provide some insight into the
workings of the complex models employed we utilized a
method called mimic learning. Building upon the approach of
Che et al. we trained an interpretable model – the thus termed
mimic model – on the outputs of the non-interpretable models,
i.e., MLP and RF. In this approach, the mimic model takes on
the same input features as the non-interpretable model.

In the case of MLP, the outputs of the non-interpretable
model are termed soft scores. More generally, they are called
prediction probabilities, meaning continuous variables approx-
imating the actual prediction target. Training the mimic model
on the prediction probabilities allows us to create a much
smaller, thus understandable, faster but still comparably ac-
curate model. In fact, under certain circumstances, it is even
possible for the mimic model to generalize better than the
non-interpretable model [10]. This happens because the non-
interpretable model filters out certain noise in the training data,
which could have a negative impact on training performance
of the interpretable model. For the mimic model, we needed
an algorithm which was able to predict continuous scores in
order to train it on the aforementioned soft scores. For this
purpose, we utilized BRR.

Similarly to common linear regression, BRR tries to find
coefficients for each input feature so that they map to the target
feature, minimizing loss. In addition to parameters common to
linear regression, it includes regularization parameters to con-
trol the growth of the coefficients. Therefore, this model is less
prone to over-fit while still being as fast as linear regression.
Furthermore, regression in general has the advantage of being
very fast concerning training time and interpretable, as one
can easily inspect the coefficients for each feature. However,
due to the simplicity of regression models, they usually lack
accuracy when compared to more elaborate algorithms. Very
few parameters can be adjusted for this algorithm and for our
experiments, we applied the default ones. This means that all
regularization parameters were set to 10−6 and the number of
iterations before convergence was set to 300.

The process logic implemented for the mimic learning
approach for MLP is shown in pseudo-code in Algorithm 2.
A similar logic can be followed for RF, in which case the soft
scores are replaced by prediction probabilities.

2) Feature Importance: Besides the aforementioned mimic
learning approach, we provided feature importance metrics for
RF the algorithm. In tree-based methods such as RF, one
can estimate the relative feature importance by computing
the decrease in node impurity by using it as split criterion.
This decrease is averaged across all constituent trees and
weighted proportionally to the number of samples it splits,
i.e., nodes closer to the root of the tree will be deemed more
important [37].
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If we define v(st) as the variable used in split st and
p(t) = Nt/N as the proportion of samples reaching t, the
importance of a variable Xm over all NT trees, i.e., Imp(Xm),
is defined by Equation (5). Note that p(t)∆i(st, t) represents
the weighted decrease in impurity over all nodes t which
include Xm.

Imp(Xm) =
1

NT

∑
T

∑
t∈T :v(st)=Xm

p(t)∆i(st, t) (5)

Algorithm 2: Mimic Learning with BRR
Input: MLP Model, Training Dataset and Test Dataset
Result: Sorted mimic regression coefficients
Obtain soft scores from MPL on Training dataset;
Train BRR model on soft scores and Training dataset;
Apply trained BRR model on Test dataset;
Obtain BRR regression coefficients on Test dataset;
Sort regression coefficients;
Return Regression Coefficients;

IV. RESULTS

In the following section, we compare the performance
of our interpretable models, BRL and LR, and our non-
interpretable models, MLP and RF in terms of discrimination
and calibration. Further, we present the knowledge distillation
results of applying mimic learning to both MLP and RF and
inspecting the feature importances of RF, since these were
often the best-performing algorithms.

A. Model Performance

In the following, we assess model performance along three
dimensions, discriminative power, calibration and computa-
tional performance in terms of runtimes.

1) Discrimination: Table I shows the overall performance
of the employed classifiers according to the AUCROC per-
formance metric. As expected, the MLP outperforms the BRL
classifier in virtually every patient cohort and patient outcomes,
excepting the prediction for ventilation days. The mimic ap-
proach using BRL trailed right along the MLP, presenting
somewhat similar results. It worth noting that, in general,
RF presented comparable performance to MLP, excepting the
renal recovery task, in which MLP displayed more favorable
results (0.91 vs. 0.83). In particular, the cohort of IHD patients
presented similarly high AUCROC values for MLP, BRL,
and BRR in the task of renal recovery (≥ 0.9). This result
suggests that patients in this cohort who do recover renal
function possess very strongly discriminative features, which
were captured by the algorithms.

While critically important, AUCROC is limited in the
extent to which it can be used as sole metric to compare
classifiers. Particularly in the medical domain, the trade-off
between sensitivity (recall) and precision is highly dependent
on the concrete use case. Therefore, we present further metrics
in Table II for the outcome 90-days mortality in the complete
patient cohort. This table shows that RF presented the best
results across the metrics under analysis. Furthermore, while in

Figure 3. Excerpt of the rules from the Bayesian Rule Lists classifier when
predicting 90-day mortality. Abbreviations: SOFA = Sequential Organ

Failure Assessment score, CR 24 B, CR 72 B = Serum Creatinine 24h and
72h before procedure, respectively.

terms of AUCROC MLP and RF do not differ substantially, the
exception being the outcome renal recovery, there are marked
differences when it comes to the other discrimination metrics,
particularly DOR. LR presents overall poor results, displaying
the lowest DOR. In combination its limited AUCROC, these
metrics suggest that LR is likely an ill-suited choice for the
task at hand in comparison with other modeling approaches. In
effect, as illustrated by Table III, in comparison with previous
discrimination results for similar albeit not identical tasks,
our best model for renal recovery performed as well as the
biomarker-based method proposed by Srisawat et al. [21].

2) Calibration: Calibration estimates the agreement be-
tween predicted and observed risk. This is particularly relevant
when it comes to predictive models employed in prognostic
settings, such as ours, in which one is interested to predict
future risk. In particular, it is possible for a model to be highly
discriminative while over/underestimating risk, i.e., presenting
poor calibration [38].

Figure 4 presents calibration curves for both MLP and RF
for the outcome 90-days mortality in the complete patient
cohort. In general, the MLP presents better calibration in
comparison to RF. Nevertheless, we can observe that the MLP
classifier tends to slightly underestimate the risk of death
as the actual risk increases. In contrast, the RF classifier
overestimates the probability of death in the low risk zone,
with an inverse relation as the actual risk increases. We
employed sigmoid and isotonic calibration to examine whether
calibration could be improved. A slight improvement could be
obtained for MLP, but in the case of MLP the calibration did
not have the desired effect.

3) Runtimes: Concerning runtimes, there were consider-
able differences between the employed classifiers. While the
MLP and RF took only a few seconds to conduct the full
training with the configuration described previously, the BRL
needed up to one hour to train on the same data. Due to the
interpretable nature of the BRL, a medical expert can analyze
the importance of single features directly on the model output.

B. Knowledge Distillation

Figure 3 shows the influence of some features and their
values on the prediction of 90-days mortality for the com-
plete cohort with the BRL algorithm. For this outcome, the
Sequential Organ Failure Assessment (SOFA) score was a key
feature. This score is widely used in intensive care for this
very purpose, therefore the BRL classifier correctly detected
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TABLE I. Simulation results displaying AUCROC for the different analysis cohorts and patient outcomes. Abbreviations: IHD = Intermittent Hemodialysis,
CRRT = Continuous Renal Replacement Therapy, MLP = Multilayer Perceptron, RF = Random Forest, BRL = Bayesian Rule Lists, LR = Logistic Regression

and BRR = Bayesian Ridge Regression, LOS ICU = Length of Stay in the ICU.

Outcome
Complete cohort Acute patients IHD patients CRRT patients

MLP RF BRL LR BRR MLP RF BRL LR BRR MLP RF BRL LR BRR MLP RF BRL LR BRR

90-days mortality 0.84 0.84 0.76 0.71 0.79 0.83 0.85 0.79 0.79 0.81 0.83 0.82 0.79 0.69 0.79 0.77 0.78 0.72 0.66 0.72
Renal Recovery 0.91 0.83 0.88 0.77 0.88 0.86 0.83 0.68 0.72 0.79 0.92 0.81 0.90 0.76 0.90 0.86 0.73 0.79 0.70 0.84
Ventilation Days 0.81 0.79 0.75 0.74 0.80 0.64 0.64 0.68 0.68 0.65 0.81 0.74 0.78 0.73 0.79 0.77 0.64 0.79 0.64 0.79
LOS ICU 0.83 0.80 0.82 0.73 0.82 0.78 0.64 0.69 0.63 0.73 0.80 0.82 0.78 0.78 0.80 0.73 0.64 0.73 0.63 0.73
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Figure 4. Model calibration depicted for Multilayer Perceptron (MLP) and Random Forest (RF) for the outcomes of 90-days mortality and renal recovery.

TABLE II. Overview of key discrimination metrics for the outcome 90-days
mortality in the complete patient cohort. Abbreviations: MLP=Multilayer
Perceptron, RF=Random Forest, BRL=Bayesian Rule List, LR=Logistic

Regression, DOR=Diagnostic Odds Ratio.

Algorithm Precision Recall Specificity DOR

MLP 0.76 0.73 0.83 13.84
RF 0.88 0.77 0.92 41.45
BRL 0.76 0.64 0.85 10.5
LR 0.68 0.66 0.77 6.73

this. “CR 24 B” corresponds to blood creatinine 24h before
the hemodialysis procedure and Elixauser is a comorbidity
score. High values for both of these features are associated with

TABLE III. Overview of CPMs for used in the context of hemodialysis
outcomes. Abbreviations: CPM=Clinical Prediction Model; N=number of

patients; AUC=Area Under the Curve

CPM N End point AUC

Marks et al. 3,396 Mortality 0.75
Cohen et al. 514 Mortality 0.87
Floege et al. 11,508 Mortality 0.79
Srisawat et al. 54 Renal recovery 0.94
Our approach 908 Renal recovery 0.92

increased mortality, but from the output of the BRL alone it is
hard to ascertain whether it correctly captured this relationship.

For the MLP and RF results to be inspected, we had to
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apply the mimic learning strategy discussed previously. First,
we needed to evaluate if the performance of the mimic model
is satisfactory when being trained on the outputs (soft scores)
of the MLP. One can verify in Table I that, while the BRR
is still worse than the MLP as a rule, it performed better
than the BRL, even if by a small margin. It is important to
highlight, however, that the mimic classifier is only as good
as the predictor it originally learned from.

In Figure 5, we can assess the influence of single features
on a positive prediction of both 90-day mortality and recovery
of renal function. The chart depicts the regression coefficients
of the BRR mimic model for MLP and RF. The sign of
the coefficients determine the direction of correlation and the
absolute component represents the magnitude. For example,
the higher the rightmost feature, e.g., the age of the patient,
the higher is the probability of the patient to die within 90 days.
Conversely, the higher the features with negative coefficients,
e.g., the hemoglobin value in the blood of the patient, the less
likely the patient is to die within 90 days. These results were
submitted to the appraisal of a Nephrology expert to establish
clinical relevance and adequacy.

In addition to the mimic learning results, the RF makes it
possible to derive feature importances, which enables non-ML
experts to have a sense of how individual features contribute
to the outcomes. Figure 6 displays feature importances for
90-days mortality in the complete cohort, reverse-ordered by
feature importance. Note that we show only the top 20 features
in Figure 6. Unlike the coefficients of the mimic learning
approach, the information regarding the direction of correlation
is not readily available, solely the magnitude of importance.

V. DISCUSSION

In the following, we will examine the model performance
in light of related work and the insights obtained via knowl-
edge distillation.

A. Model Performance

From a classification performance standpoint, our exper-
iments suggest MLP and RF as suitable classifiers for the
given prediction tasks, with BRL as a close third. In fact, both
MLP and RF performed particularly well for renal recovery
prediction, a key outcome for nephrologists. In effect, the
positive discriminative results obtained with these two clas-
sifiers are consistent with previous work targeted at other but
similar tasks [19, 17]. When it comes to dialysis outcomes
models, based on discriminative performance as measured
by AUCROC, our models outperform existing work based
on logistic regression approaches, except for the mortality
prediction outcomes of Cohen et al. [12, 7, 14]. These works
are based on the chronic setting, though. A direct comparison
of the models’ performance, while not advisable, gives us at
least a benchmark against which to compare, since the works
in the acute setting are lacking in the literature.

The only work considering a cohort of acute patients, the
biomarker-based approach by Srisawat et al., performs better
than our model in the task of renal recovery, but the small
sample utilized in the study might compromise its generaliz-
ability [21]. Furthermore, the needed urinary biomarkers might
not be readily available at all times in the ICU setting. Potential

cost considerations for these biomarkers should also be taken
into account.

In spite of the promising results, upon closer examination,
the approaches we developed have issues that might hinder
their adoption in clinical practice. If we examine, e.g., the
overall best-performing classifier, RF, for the outcome 90-
days mortality, it presents a higher specificity than sensitivity
(recall), meaning that it will fail to acknowledge high-risk
patients (true positives) more often than it identifies low-risk
patients (true negatives). This behavior of the RF classifier is
further illustrated by the calibration curves in Figure 4. The
implications of this difference must be examined in the context
of the specific clinical use case and can be mitigated with
careful threshold selection and other calibration techniques.

B. Knowledge Distillation

When it comes to ML models deployed in sensitive do-
mains, discriminative performance is not enough. The models
must be scrutinized with regards to their medical relevance
and physiological meaningfulness. For example, some of the
features deemed important for the MLP classifier do make
sense from a medical standpoint, such as higher age correlating
with a higher chance of mortality. However, the results also
indicate that high levels of Glomerular Filtration Rate (GFR), a
measure of how well the kidneys are functioning, is associated
with higher mortality, a counterintuitive outcome, since physio-
logically it represents a protective factor. The mimic model for
the RF classifier captures similar variables as the ones found
in the mimic MLP, albeit with different coefficients, i.e., with
differences in magnitude. However, the same criticism can be
leveled at it: GFR features prominently in it as a risk factor
instead of protective factor.

In a similar fashion, for the renal recovery outcome, both
mimic MLP and mimic RF captured similar features. In this
case, the positive outcome (recovery) is one (1) and the
negative outcomes (no recovery) is zero (0). High hemodialysis
dosage, therefore, would correlate with a higher likelihood
of recovery. However, there is considerable debate in the
medical literature as to whether higher dosage leads to better
outcomes [12]. Therefore, this result must be interpreted with
caution. Furthermore, the Sequential Organ Failure Assessment
(SOFA) score appears to be a factor favoring renal recovery
in the case of mimic RF, what clearly contradicts clinical
expectations. A hypothetical explanation for this scenario is
that patients with high SOFA scores are particularly ill and
therefore receive, on average, better standard of care than
other less severely ill patients. This hypothesis suggests that
the prediction results should be further stratified by disease
severity.

It is important to note that these potential spurious cor-
relations are only illuminated through model interpretability,
be it because of the nature of the model or the application
of mimic learning. Thus, the model interpretability approach
employed gives us the possibility to examine the correlations
and question assumptions which otherwise might just go unno-
ticed when using non-interpretable models. However, usually
there are non-linear correlations between certain blood values
and outcome (e.g., U-shaped curve), such as potassium, as
either too low or too large values can influence the patient’s
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Figure 5. Coefficients of the most important features for the Bayesian Ridge Regression trained as mimic model for 90-days mortality and renal recovery for
both Multilayer Perceptron (MLP) and Random Forest (RF). Abbreviations: GFR = Glomerular Filtration Rate 24h and 48h before procedure, respectively;

BUN = Blood Urea Nitrogen; CKD = Chronic Kidney Disease; OASIS = Oxford Severity of Illness Score.

health negatively. Such relationships cannot be adequately
represented by the mimic learning approach utilized.

To a certain extent, the feature importances of the RF
classifier reflected the knowledge gleaned from applying the
mimic learning approach, highlighting some of the parameters
that also were captured in the mimic learning method, such
as hematocrits, lactate, blood urea nitrogen and glomerular
filtration rate. Despite this fact, when examining all approaches
in combination, there is disagreement, for instance, in the
magnitude of contribution or in how often a feature is men-
tioned across different techniques. Hall and Gill recommend
that researchers combine different interpretability approaches
in order to obtain a more intelligible picture of the model’s
behavior [39].

Finally, algorithms considered to be interpretable might
not necessarily be intelligible. This is particularly evident for
the BRL algorithm. Take its output as depicted in Figure 3.
As a matter of fact, higher lactate values usually lead to

other complications, but the upper bound of “infinity” is not
meaningful in clinical practice. In order to refine and validate
those assumptions, it is necessary to further analyze the data.
Finding actual upper and lower bounds in the dataset can
provide some insight into the actual values the model considers
when making predictions.

VI. LIMITATIONS

Even though we achieved satisfactory discriminative per-
formance, this analysis was based on a comparatively small
patient cohort (N=908). Therefore, a validation study with a
larger cohort is needed in order to derive generalizable claims.
Additionally, missing data may have a significant influence
on the quality of the predictions and certain features could
be dropped if they are missing a large amount of values. We
sought to mitigate this effect by means of multiple imputation
with k-NN, but we cannot guarantee that no biases resulted
from this approach.
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Furthermore, in most cases, the mimic learning approach
is fundamentally limited by the performance of the original
model. In our experiments, the BRR performed worse when
being trained on the outputs of the MLP as opposed to being
trained directly on the real targets, because it most probably
also assimilates the errors of the MLP. This can be ameliorated
by improving the performance of the MLP through further
parameter tuning.

Besides, the literature of interpretability approaches is
growing. In this paper, we were able only to utilize two of
them, mimic learning and method-based feature importances,
thus necessarily providing a limited picture of model behavior.
Other methods could be explored, for example involving local
interpretability, such as Local Interpretable Model-agnostic
Explanations (LIME) [26]. Finally, the medical relevance and
physiological meaningfulness of the mimic models was eval-
uated by one expert only. Ideally, these should be assessed by
a panel of expert to reduce biases.

VII. CONCLUSION

In this paper, we compared the performance of different
models used in the prediction of hemodialysis outcomes,
namely, 90-days mortality, ventilation days, length of ICU
stay and renal recovery using data routinely acquired in a
intensive care setting. The algorithms employed consisted of a
combination interpretable and non-interpretable models. Our
results suggest that ML approaches such as MLP and RF
present satisfactory discriminative results (AUCROC ≤ 10 in
the case of renal recovery) when compared with interpretable
algorithms, such as LR or BRL.

However, an important aspect is the interpretability of such
models if they are to be used for decision support in a clinical
setting. To this end, we applied a knowledge distillation tech-
nique called mimic learning along with feature importances
in order to scrutinize the ‘black-box’ best-performing models.
The use of these techniques made it possible to uncover

potentially spurious correlations captured by the algorithms,
therefore shedding light on model biases. Therefore, we urge
researchers who rely on ML for clinical predictive modeling
to include an assessment of possible biases using for example
knowledge distillation approaches.

Future work could take the form of further data analysis
and processing, i.e., inclusion of more features, more elaborate
imputation strategy and collection of more information about
the patients. Besides, deployment in a clinical setting requires
external validation using datasets from different institutions.
Subsequently, an impact analysis of the use of such models in
a clinical setting should be conducted to ascertain the impacts
on care delivery and patient outcomes.
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APPENDIX

In Table A.I, we share the complete list of features used
for our models.

TABLE A.I. Model features. Note that related features are grouped together.
Abbreviations: Body-Mass Index (BMI), Acute Kidney Injury (AKI),

Sequential Organ Failure Assessment (SOFA), Simplified Acute Physiology
Score (SAPS), Partial Thromboplastin Time (PTT), International Normalized

Ratio (INR), Prothrombin Time (PT), Whole Blood Count (WBC).

Category Feature

Demographics

Age
Height, Weight, BMI
Ethnicity
Gender

Hemodialysis-related
Dosage
Modality
AKI stage

Comorbidities

AIDS
Alcohol abuse
Blood loss anemia
Cardiac arrhythmias
Chronic pulmonary
Coagulopathy
Congestive heart failure
Deficiency anemias
Depression
Diabetes complicated, Diabetes uncomplicated
Drug abuse
Elixhauser Vanwalraven score
Fluid electrolyte imbalance
Hypertension
Hypothyroidism
Liver disease
Lymphoma, Metastatic cancer, Solid tumor
Obesity
Other neurological disorders
Paralysis
Peptic ulcer
Peripheral vascular
Psychoses
Pulmonary circulation
Renal failure
Rheumatoid arthritis
Valvular disease
Weight loss

ICU scores

OASIS
SOFA
SOFA Renal
SAPS

Vitals

Heart rate
Systolic Blood pressure
Diastolic Blood pressure
Mean Blood pressure
Respiratory Rate
Temperature ◦C
Oxigen Saturation (SpO2)

Laboratory values

Anion gap
Albumin
Bands
Bicarbonate
Bilirubin
Blood urea nitrogen
Creatinine 24, 48 and 72h before procedure
Chloride
Glucose
Hematocrit
Hemoglobin
Lactate
Platelet
Potassium
PTT, INR, PT
Sodium
WBC
Glomerular Filtration Rate 24, 48 and 72h before procedure


