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Abstract — Inertial data can represent a rich source of clinically 

relevant information, which can provide details on motor 
assessment in subjects undertaking a rehabilitation process. 
Indeed, in clinical and sport settings, motor assessment is generally 
conducted through simple subjective measures such as a visual 
assessment or questionnaire given by caregivers. Thus, inertial 
sensor technology and associated data sets can help provide an 
objective and empirical measure of a patient’s progress. In this 
publication, several metrics in different domains have been 
considered and extrapolated from the three-dimensional 
accelerometer and angular rate data sets collected on an impaired 
subject with knee injury, via a wearable sensing system developed 
at the Tyndall National Institute. These data sets were collected for 
different activities performed across a number of sessions as the 
subject progressed through the rehabilitation process. Using these 
data sets and adopting a combination of techniques (LASSO, 
elastic net regularization, screening-based approaches, and leave-
one-out cross-validation), an automated method has been defined 
in order to select the most suitable features which could provide 
accurate quantitative analysis of the improvement of the subject 
throughout their rehabilitation. The present work confirms that 
changes in motor ability can be objectively assessed via data-
driven methods and that most of the alterations of interest occur 
on the sagittal plane and may be assessed by an accelerometer 
worn on the thigh. 

Keywords — Regression; Feature Selection; Motor Assessment; 
Rehabilitation; Wearable.  
 

I. INTRODUCTION 
HIS paper is the extended presentation of [1], first 
published at HealthInfo 2018. While [1] illustrated an 
effective method for defining a single score indicator which 

could monitor the rehabilitation progress from features obtained 
by inertial sensors comparing impaired and unimpaired limb, 
this work analyses the same features with different data 
analytics techniques with the goal to investigate which 
combination of feature, limb, axis and sensor is the most 
sensitive and helpful to determine changes in motor capacity. 
Motor assessment is the aspect of biomechanics which studies 
the process by which the musculoskeletal system can create and 
control coordinated movements [2]. Voluntary movement 
requires the transmission of a message from the brain to the 
appropriate muscle which also controls the smoothness and 

 
 

coordination of the movement. If motor function is intact, 
muscles can be commanded to move so as to allow symmetrical 
movements with significant strength levels. However, reduced 
motor function can occur as a result of injury or trauma to the 
central nervous system, muscles, ligaments, and so on. Thus, 
motor impairments can be associated with a number of 
disorders, such as Parkinson’s disease, stroke, cerebral palsy, or 
orthopeadic injuries, all of them requiring long rehabilitation 
periods. Therefore, it is essential to track accurately a patient’s 
progress as they proceed through the rehabilitative regimes 
prescribed to them by their care givers/clinicians, and 
consequently to tailor patient-specific rehabilitation programs, 
through the accurate assessment of human motion during the 
performance of clinically defined tasks, and the development of 
measured empirical data sets associated with their performance.  

With particular reference to the treatment of patients with 
lower extremity injuries, literature has recently shown a 
paradigm shift, going from time-dependent concepts to 
function-based concepts [3], where qualitative and quantitative 
tests comparing affected and unaffected sides must be met 
before successfully accessing the following rehabilitation stage.  

Qualitative and quantitative motor assessment is typically 
divided into clinimetrics, balance analysis, and gait analysis.   

Indexes, rating scales, questionnaires, and observational 
forms represent the clinical standard for knee joint assessment, 
including, for instance, Knee Injury and Osteoarthritis Outcome 
Score (KOOS), Oxford Knee Score (OKS), Tegner Lysholm 
Knee Scoring Scale, International Knee Documentation 
Committee (IKDC), Western Ontario & McMaster Universities 
Osteoarthritis Index (WOMAC) [4]. However, these tools are 
subjective and, even when utilised by experienced clinicians, 
may not be adequate or sensitive enough. 

Gold-standard technology adopted in gait analysis for 
quantitative movement analysis include camera-based motion 
analysis, instrumented treadmills, force platforms [5], and 
despite the achieved high performance, their application is 
constrained by costs, access to specialist motion labs, as well as 
practicality of application for larger patient/subject groups. 

A viable alternative is represented by the adoption of small-
size low-cost, wearable sensing units whose consideration for 
lower-limbs monitoring during rehabilitation, in order to 
provide objective performance of impaired subjects throughout 
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the process, has been growing lately. Indeed, inertial sensors, 
typically including accelerometers, gyroscopes, and 
magnetometers, have been used to derive gait parameters 
efficiently both in healthy and symptomatic subjects [6]. 

As a matter of fact, inertial sensors have been used in a great 
number of applications, such as navigation systems, activity 
classification, augmented reality systems, and so on [7][8], and 
biomechanics, in particular, has achieved significant progress 
from the adoption of this technology [9]. 

In the last years, researchers have investigated the 
possibility to define comprehensive indexes which could 
quantitatively define gait impairment, thus removing the 
subjective aspects from the assessment. Some examples are the 
Gait Deviation Index (GDI) [10], the Gait Profile Score (GPS) 
[11], and the Classifier Oriented Gait Score (COGS) with 
related sub-scores [12][13], which provide an indication of the 
deviation of a subject’s conditions in comparison to healthy 
individuals by taking into account the full-body joint 
trajectories during walking tasks. However, it may be 
impractical to measure the full-body joint angles, and similar 
scores were obtained using limited number of inertial sensors. 
For instance, Wang et al. [14] defined the Gait Variability Index 
(GVI) from time-related features obtained by 4 sensors attached 
on the lower-limbs showing the possibility to monitor gait 
changes in people with neurodegenerative disorders in a 12 
months’ period. Likewise, [15] showed that one sensor attached 
on the lower-back can provide a score (defined as Multifeature 
Gait Score with related sub-scores considering temporal, 
symmetry, regularity, complexity, amplitude and distribution 
aspects) which can assess gait quality by testing the method 
against healthy adults, sedentary and active older adults. In this 
case, well-known gait temporal features and time-related 
acceleration features were adopted for the evaluation.  

However, all these examples present some limitation. First 
of all, these works only consider gait assessments, but do not 
evaluate additional exercises typically performed during 
rehabilitation. Moreover, [14][15] which adopted inertial 
sensors, considered an ageing population of interest and did not 
test the methods with subjects involved in lower-limbs 
rehabilitation. Finally, most of these studies considered well-
known gait metrics and joint angles for their evaluation. 
Nevertheless, it has been reported in literature that a data-driven 
approach may be more beneficial to discriminate impaired from 
unimpaired subjects. As an example, van den Dikkenberg et al. 
in [16] observed that, in order to discriminate healthy subjects 
from Total Knee Replacement (TKR) patients, accelerations 
(which were significantly different in 213 cases out of 216) 
were more useful than angles (38 cases out of 52). Furthermore, 
Patterson et al. [17] studied that gyroscope features were able 
to discriminate healthy from Anterior Cruciate Ligament 
(ACL)-reconstructed individuals, which was not possible using 
spatial or temporal variables.      

Most of the studies which apply wearable inertial sensors in 
lower-limbs rehabilitation generally considered the assessment 
of impaired subjects against a healthy control during a one-off 
assessment, or discriminate between correct and incorrect 
execution in specific rehabilitation exercises [18-21]. However, 
to date, only a small amount of studies considered the 
quantitative assessment of patients’ performance via inertial 
sensors during rehabilitation following lower-extremity 

injuries. This task can be particularly challenging as it consists 
of isolating the gradual changes in movements due to recovery 
and improvement despite the presence of a multitude of sources 
of variability. Indeed, sources of intra- and inter-variability are 
even more significant in patients following rehabilitation, due 
to different levels of pain, fatigue, and possible compensations.  

Some examples are shown in [22-25]. The main limitations 
of those studies are related to the short period for data collection 
which have investigated only the initial part of the rehabilitative 
process (from 5 days to a maximum of 4 months in [23]). 
Moreover, the previous works do not evaluate the features 
extrapolated from the inertial data and their combination so as 
to show which of them can be the most beneficial and sensitive 
for clinicians when monitoring patients’ movements performed 
during lower-limb rehabilitation exercises.  

The present study analyzes through various data analytic 
techniques the data collected with the aim of investigating the 
relationships between inertial-based time-domain features and 
changes in clinical outcomes and motor performance of adults 
involved in lower-limb at-home rehabilitation following knee 
injuries. Besides establishing which of these features are the 
most sensitive and helpful to determine changes in motor 
capacity, aspects related to axis, limb, and sensor selection are 
also investigated, as they could be of relevant importance for 
reducing the problem dimensionality in the context of 
wearables where power consumption and computational 
complexity are of prime concern. The results could help 
clinicians and sport scientists to gain a comprehensive picture 
of patients’ condition and provide more targeted medical 
feedback. This investigation is carried out by using a wearable 
inertial system [26-28] developed at the Tyndall National 
Institute, consisting of two sensors per limb, able to provide a 
complete biomechanics assessment for a series of scripted 
activities.  

The present work is organized as follows. Hardware 
platform description and test protocol are described in Sections 
II and III, respectively. The features evaluated are illustrated in 
Section IV. The data analysis is instead performed in Section 
V. Discussion of the results is illustrated in Section VI. Finally, 
conclusions are drawn in the final section. 

II. HARDWARE PLATFORM 
The biomechanical monitoring system consists of two 

Tyndall Wireless Inertial Measurement Units (WIMUs) per leg 
[26-28]. The platform measures 44 × 30 × 8 mm and 7.2 g 
without battery (Figure 1). The WIMU is equipped with a high-
performance low-power ARM Cortex-M4 32-bit 
microprocessor operating at a frequency up to 168 MHz, part of 
the STM32F0407 family produced by STMicroelectronics. It 
also features a floating point unit, single precision, high-speed 
embedded memories (1 Mb of Flash memory, 192 + 4 Kb of 
SRAM), an extensive range of enhanced I/Os and peripherals, 
and standard and advanced communication interfaces.  

Inertial sensors (three-dimensional accelerometer and 
gyroscope, MPU-9250 from Invensense) are the main sensing 
components on the platform and are wired to the 
microcontroller through the I2C communication. Sensor data 
can be:  
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- transmitted wirelessly via a communication Bluetooth 
Low-Energy (BLE)-complaint module (Broadcom 
BCM20737S), representing a single mode low-energy 
solution with integrated ARM CM3 microcontroller unit, 
radio frequency and embedded Bluetooth Smart Stack; 

- or logged to a removable Micro SD card at 250 Hz.  
 
For measurement of inertial data, the Invensense MPU-

9250 was chosen for its low power consumption and the high 
range (16 g for accelerometer and 2000 deg/s for the gyroscope) 
with limited noise levels.  

The platform also features a USB connector, battery 
charger, fuel gauge, external I/O connectors, three LEDs, and 
power switch. All the components were chosen for their 
specific fitness in mobile applications and, averagely, the 
overall power consumption in TX/RX mode is 100 mA, 
dropping to 40 mA (17 mA) for stand-by (sleep mode).   

III. PROTOCOL FOR DATA COLLECTION 
In conjunction with clinical partners [29], an experimental 

protocol for data collection was developed to evaluate patient 
progress. The rehabilitation tasks considered are walking (at 
defined speeds on a treadmill, e.g., 3, 4, 6 km/h), and exercises 
such as half-squat, hamstring curl, and flexion-extension, which 
are defined by physiotherapists as good indicators of 
rehabilitation progress.  

The system has been tested with an impaired subject. The 
impaired subject is a female athlete, age: 44, height: 161 cm, 
and weight: 52 kg, with good general health status, with a 
history of knee injuries and surgery (reconstructed anterior 
cruciate ligament in the left leg following a sporting injury). 
The tests were carried out during the course of the rehabilitation 
program, e.g., starting 1 month before surgery and finishing 7 
months after surgery. Overall, the subject has been evaluated in 
8 sessions through three periods: once in pre-surgery conditions 
(e.g., 1 month before surgery), then 6 times in a range of 20 
weeks starting one month after surgery (namely short-term 
post-surgery), and finally once 3 months after the last data 
capture (e.g., during long-term post-surgery period). 

The participant was wearing four devices, two of them were 
attached to the anterior tibia, 10 cm below the tibial tuberosity, 
and the remaining two to the lateral thighs, 15 cm above the 
tibial tuberosity, using surgical adhesive tape. 

A number of repetitions have been collected for each 
exercise, so as to provide an accurate picture of the overall 
conditions, and each exercise was repeated twice. Most of the 
exercises were performed during the majority of the data 

captures. Hamstring curl, as well as walking at 3 and 4 km/h, 
were performed at every session. Similarly, flexion-extension 
was always recorded except in the pre-surgery session due to 
subject’s impairment of movement. For the same reason, half-
squat and walking at 6 km/h were not recorded in the first 2 
sessions after surgery. The order of the exercises within a 
session was randomized. Prior to participation, the participant 
received a verbal and written explanation of the study protocol 
and written consent was obtained. The study received approval 
by the Clinical Research Ethics Committee at the University 
College Cork.  

IV. FEATURES 
The metrics considered for the patient’s assessment are well-

known statistical features extrapolated from the time-domain. 
Those variables are applied on every segmented walking 
stride/exercise repetition for both legs performed during the 
sessions. More details on the computation of the features are 
reported in [26]. The selected features are described below: 
- Mean, standard deviation, variance, skewness, kurtosis, 

root mean square (RMS), signal magnitude area, and 
energy calculated over the acceleration and angular 
velocity magnitudes, 

- Mean, minimum, maximum, median, standard deviation, 
coefficient of variation (CV), peak-to-peak (p-p) 
amplitude, and RMS over the x-, y-, and z-axis of the 
acceleration and angular rate signals. 

- Autocorrelation on the x-, y-, and z-axis of the acceleration 
and angular rate signals measured taking into account all 
the repetitions/strides in a session as a whole. 

- Regularity on the x-, y-, and z-axis of the acceleration and 
angular rate signals. It is calculated as the ratio between the 
unbiased autocorrelation coefficient at the first dominant 
period and the coefficient at the second dominant period, 
both measured taking into account all the repetitions in a 
session. 

All those features are calculated for both thigh and shank 
for both legs. Overall, the number of features extracted is p = 
152, which means that, in this scenario, the number of 
predictors is much larger than the number of observations n (p 
>> n, n = 8). 
 

The data analysis is implemented off-line over the data 
collected using a commercial software package (MATLAB 
R2017b, The MathWorks Inc., Natick, MA, 2017).  

V. DATA ANALYSIS 
Preliminary analysis described in [26][27] have highlighted 

that several parameters are seen to be potentially relevant to 
provide indications on patient’s performance during 
rehabilitation. However, to support clinicians during their 
clinical practice, it is essential to understand which of those 
features are related to currently used clinical indexes.  

An accurate assessment of a patient’s performance requires 
the selection of the informative features, excluding those 
uninformative or redundant. Some features can be informative 
for some exercises and being redundant for others; thus, it is 
important to define an automatic method for selecting those 

 
Fig. 1.  Tyndall Wireless Inertial Measurement Unit (WIMU). 
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features. A common technique for feature selection is the Least 
Absolute Shrinkage and Selection Operator (LASSO) [24]. 
This regression tool requires to define an output in order to 
adjust the weights of a linear model which defines the features 
to be selected. However, this method may show some relevant 
limitations. 

In the case of interest, with a number of predictors much 
larger than the number of observations n (also known as, “high 
dimensional small sample size” - HDSSS), the LASSO can only 
select n variables at most; moreover, if a group of variables is 
highly correlated, then the LASSO will select only one variable 
from this group ignoring the others.  

These limitations may be overcome with a dual-stage 
approach. Firstly, screening-based approaches [30][31], which 
are an effective and computationally efficient method which 
can reduce the p >> n problem to more acceptable dimensions, 
could be used to reduce the number of predictors. For example, 
the Sure Independence Screening (SIS) [32] is a simple method 
which preserves only those features whose correlation against 
the responses ݕ is above a pre-defined threshold. Secondly, 
when the number of predictors is strongly reduced, elastic net 
regularization [33] is adopted to the LASSO, by adding an 
additional penalty term. The elastic net technique solves the 
following regularization problem: 

 
	ቀ ଵ
ଶ
∑ ݕ) − ߚ − ଶ(ߚ்ݔ + ߠ ఈܲ(ܾ)
ୀଵ ቁఉబఉ

             (1) 
 
Where ఈܲ(ܾ) = 	∑ ቀଵିఈ

ଶ
ଶߚ + หቁߚหߙ


ୀଵ , with ݕ being the 

response at observation i, xi is the p-dimensional data, ߠ is the 
regularization parameter which controls the strength of the 
shrinkage of the variables, ߚ a vector of the resulting 
coefficients of the linear model, and  being the weight of the 
additional penalty term and included in the range [0-1]. For 
the elastic net approaches the ridge regression while 
when it is equivalent to the naïve LASSO technique. 

A standard approach to define the regularization parameter 
when the sample size is small is through leave-one-out cross-
validation (LOO CV). A description of this method is shown in 
[34]. LOO CV is repeated for different values of ߠ and 
calculating, for each pair of coefficients, the related Mean 
Squared Error (MSE) and R-squared. The performance metrics 
associated to the minimum-plus-one standard error (1SE) point 
are then selected. The 1SE point is preferred over the minimum 
MSE point, as the former usually guarantees to build a model 
with fewer features. Finally, the optimal regularization 
parameters related to the models with the minimum MSE 
among the several models built considering the 1SE distribution 
are taken into account for feature selection and model 
generation. 

     
Another aspect to solve in the LASSO approach is provided 

by the definition of the responses ݕ. As shown in [24], this 
output was defined as linearly increasing from the first to the 
last test session, with this period ranging from 4 to 12 days. 
However, even though this assumption can be accepted for the 

short period of time immediately following surgery, it may be 
unrealistic when analyzing rehabilitation outcomes for a longer 
period post-surgery and also pre-surgery.  

An alternative may be represented by the adoption of one of 
the gait indexes discussed in [10-13]; however, those indexes 
can be based on the joint angles collected from the full-body (as 
an example, GDI is obtained by taking into account pelvic and 
hip angles on all three axes, knee flex/extension, ankle 
dorsi/plantarflexion, and foot progression). Nevertheless, Baker 
et al. in [11] postulated that those nine variables could be taken 
individually to calculate a single gait variable, referred to as a 
Gait Variable Score (GVS), using the same mathematic 
approach described in [10]. Given that the knee flex/extension 
angle is obtained from the inertial sensors for all the sessions, 
the related GVS can be considered as a more accurate option to 
define the responses ݕ. A similar approach, adopted using the 
Fugl-Meyer and the Wolf Motor Function Test scales in stroke 

 
Fig. 2.  GVS knee score. Gait 3 km/h. 

  

 
Fig. 3.  GVS knee score. Gait 4 km/h. 

  

 
Fig. 4.  GVS knee score. Gait 6 km/h. 
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survivors was studied in [35]. The responses ݕ are thus 
calculated as follows: 

1. The knee angle time-normalised curves of all the 
subjects in a control group are averaged to define a 
template curve. 

2. The natural logarithm of the Euclidean distance between 
the knee angle time-normalised curve for an individual 
subject in the control group and the template curve is 
obtained for all the control group participants, producing 
a Ncontrol x 1 vector, with Ncontrol being the number of 
subjects in the control group.  

3. Mean and standard deviation of the distribution 
calculated at point 2 are defined. 

4. The natural logarithm of the Euclidean distance between 
the knee angle time-normalised curve for the injured 
subject in the study and the template curve is obtained. 

5. The value calculated at point 4 is standardized using the 
mean and standard deviation obtained at point 3. 

6. The final score (which represents ݕ at observation i) is 
calculated by subtracting from 100 the value calculated 
at point 5 multiplied by 10. As a result, scores of 100 or 
higher indicate the absence of gait pathologies, while to 
every 10 points that the score falls below 100 
corresponds one standard deviation away from the 
control group mean.  

 
Normative lower-limb angles data from a control group 

measured when walking at various speeds were available in 
[36]. Angles were time-normalised as a percentage of the gait 
cycle. Given that joint angle in gait is affected by age and 
gender [37], only data from female subjects with age between 
21 and 35 were considered from [36]. As a result, overall 20 
subjects were left from the original dataset, with average height 
equal to 166 cm and average weight of 62 Kg. For the walking 
speed of 3 km/h, the template curve was obtained from 13 
subjects and 75 gait cycles in the speed range of 0.8-1.0 m/s. 
For the walking speed of 4 km/h, the template curve was 
obtained from 11 subjects and 61 gait cycles in the speed range 
of 1.0-1.2 m/s. For the walking speed of 6 km/h, the template 
curve was obtained from 11 subjects and 53 gait cycles in the 
speed range of 1.4-1.6 m/s.  

It is worth noting that, while the dataset in [36] for the control 
group has been assembled using the gold-standard VICON as a 
reference, the knee angles from the injured subject were 
obtained with the hardware platform described in Section II. 
Even though this may be problematic, it has been demonstrated 
in [28] that this platform guarantees an average error in the 
estimation of the knee angle equal to -0.29, 1.54 and 1.58 deg 
at 3, 4, and 6 km/h, respectively (or 5.2, 7.4, and 11.3 deg if 
considering the RMS error), and thus it was deemed 
comparable with the gold-standard technology. The gait cycles 
were automatically segmented from the motion data using the 
procedure described in [38], while the joint angles were 
estimated via the algorithm in [39].   

 
Examples of the knee angle-based GVS for left and right leg 

over the eight sessions for the various speeds are shown in 

Figures 2-4, together with the related absolute differences.            
From the figures, it is evident how the left leg shows an 

almost linear improvement in the GVS score over the different 
sessions. While the score increment stopped at the 7th session 
for walking at 3 and 4 km/h, it continued up to the 8th session 
for 6 km/h speed. On the other hand, for the first 7 sessions, the 
right leg tends to have a constant score, with limited variability 
at the increase of the speed. However, the last session shows a 
substantial drop in performance in the right leg, and this is 
evident on all the walking speeds. As a result, the absolute 
difference between the legs shows a linear almost monotonic 
trend tending towards zero, which confirms similar results in 
literature [40-42], with however a large value in the last session. 
Unfortunately, authors are not aware of a reasonable 
explanation for the shown behavior, which could be due to 
excessive training loads, fatigue, movement compensation 
dysfunction, etc. and since it occurs in the last session, it is not 
feasible to indicate it as an outlier or not. As a consequence, the 
GVS score reported is used as the responses ݕ in the LASSO 
in two cases, with and without considering the last session.   

 
In summary, the described data analysis includes the 

following steps: 
1. From the collected raw motion data, each 

repetition/cycle is segmented and the related joint angle 
is estimated; 

2. Using datasets available online with normative data, the 
GVS knee score for the walking tasks is defined for each 
session which corresponds to the responses ݕ in the 
LASSO technique; 

3. From the collected raw data, the features described in 
Section II are extrapolated for both legs, and the related 
absolute difference is obtained, which is afterwards 
standardized considering all the observations; 

4. Relying on the SIS method, the features with a 
correlation against ݕ lower than 0.7 are discarded; 

5. Using the LOO CV approach, the LASSO problem is 
solved defining the best ߠ and coefficients, and thus 
the related selected features and  vectors.  

VI. RESULTS 
In each session, each exercise was divided in two separate 

tests (both logged for 60 sec), and in each of the two tests a 
series of repetitions have been carried out by the subject. The 
overall number of repetitions recorded for all the sessions was: 
184 hamstring curls (92 left / 92 right), 134 flexion/extensions 
(67 left / 67 right), 66 half squats, 478 strides for both legs when 
walking at 3 km/h, and similarly 544 strides when walking at 4 
km/h, and 512 strides when walking at 6 km/h.  

For each test, the features described in Section IV, were 
extrapolated and compared among the different sessions after 
applying the data analysis defined in Section V.  

Owing to technical issues with system hardware during data 
recording, data from the right leg in the hamstring curl exercise 
on the first session are not available. 

WIMUs have been attached to the anterior tibia, 10 cm 



28

International Journal on Advances in Life Sciences, vol 11 no 1 & 2, year 2019, http://www.iariajournals.org/life_sciences/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

below the tibial tuberosity, and to the lateral thigh, 15 cm above 
the tibial tuberosity using surgical adhesive tape. 

Finally, in order to have the same reference system for both 
WIMUs worn on the same leg, the method proposed by Seel et 
al. [43] has been adopted to virtually rotate around an axis the 
raw inertial data recorded on the shank. As a result, for all the 
WIMUs involved, the x-axis represents the mediolateral axis, 
the y-axis is the anteroposterior one, while the z-axis is the 
vertical axis. Thus, the plane y-z represents the sagittal plane. 
Results for all the exercises are described below. 

A. Gait 3 km/h 
Considering the gait task at 3 km/h, the resulting selected 

features are summarized in Table I.  
As expected, when considering the responses ݕ without the 

last session, better results in terms of MSE and R squared are 
achieved (MSE = 12.62 and R2 = 0.98 vs. MSE = 16.82 and R2 
= 0.92 if the last session is kept). As a consequence, the model 
built without removing the 8th observation is simpler as fewer 
features show this particular behaviour. This model consists of 
3 features versus 9 features for the model without the possible 
outlier. However, 2 out of the 3 features are in common between 
the two models. The number of features kept after applying SIS 
was 9 and 15, respectively.  

B. Gait 4 km/h 
Considering the gait task at 4 km/h, the resulting selected 

features are summarized in Table II.  
Unlike the previous case, considering the last session 

achieves a model with better performance metrics in terms of 
MSE and R-squared despite having twice the number of 
metrics. Interestingly, all the features in the model built without 
the last session are included in the model built considering all 
the sessions. The number of features kept after applying SIS 
was 18 and 25, respectively. 

C. Gait 6 km/h 
Considering the gait task at 6 km/h, the resulting selected 

features are summarized in Table III.  
Again, considering all the sessions provides the best 

performance metrics in terms of MSE (6.18) and R-squared 
(0.96) selecting 29 features instead of the 44 chosen by the 
model that does not consider the last session. 21 out of the 29 
features are included in both models. The number of features 
kept after applying SIS was 29 and 44, respectively. 

D. Other Tasks 
To the best of authors’ knowledge, clinical indexes and 

ratings are available in literature only for gait tasks. Addressing 
these aspects also for general exercises in a rehabilitation 
process would be an important aspect in order to empower 
clinicians in their clinical practice. Given that the GVS score 
for the knee joint was similar at every speed, an average of those 
scores has been considered as an indication of the responses ݕ 
when analyzing other non-walking tasks/exercises, as a better 
alternative than simply using a linear model.  

 
For the flexion/extension exercise, the resulting selected 

features are summarized in Table IV.  

Interestingly, in the model built without the last session, no 
features were selected with the best performance provided by a 
simple constant linear model; however, considering all the 
sessions suggested a more interesting model with good MSE/R-
squared performance consisting of a limited number of features 
due to the chosen naïve LASSO approach. The number of 
features kept after applying SIS was 20 and 38, respectively. 

 
For the hamstring curl exercise, the resulting selected 

features are summarized in Table V.  
Again, the model built without the last session selected no 

features while the model considering all the sessions suggested 
to select 14 features. The number of features kept after applying 
SIS was 14 and 20, respectively. 

 
For the half-squat exercise, the resulting selected features 

are summarized in Table VI.  
The model built considering all the sessions provide the best 

results in terms of MSE and R-squared (7.51 and 0.98, 
respectively), together with a reduced number of features 
selected compared to the other model. Interestingly, 23 out of 
the 28 overlap between the two models. The number of features 
kept after applying SIS was 28 and 44, respectively.  

E. Discussion 
ACL injuries are common and functionally disabling. The 

biomechanical effects of ACL injuries are well-known in 
literature; however, few studies have followed individuals 
throughout the whole rehabilitation and treatment period. As 
shown in [44], alterations in frontal- and sagittal-plane walking 
kinematics and kinetics observed early (< 12 months) after 
surgery persisted in the following period (12-36 months). 
Despite clearance to return to physical activity, these gait 
patterns do not appear to normalize over time, which may 
indicate that the current approach to rehabilitation and 
assessment before return to activity is not adequately 
identifying individuals with dysfunctional movement patterns. 
This was also confirmed in [45], where biomechanical 
differences between limbs were observed 9 months after 
reconstruction across jump/landing tasks, and in [42] where 
joint kinematics differences were observed up to 6 years 
following reconstruction. 

Therefore, a data-driven approach may be more suitable in 
order to identify those dysfunctional movement patterns during 
the rehabilitation process. Inertial sensors can then bring a huge 
impact on clinical practice. 

This work analyzed the body-worn inertial data collected 
from a patient over the course of rehabilitation adopting a 
combination of techniques (LASSO, elastic net regularization, 
SIS, LOO CV, and quantitative clinical indexes) for the 
definition of an automated method which could select a number 
of features for better understanding and monitoring patient’s 
progress in several test and, thus, predict the clinical outcome.  

The resulting performance, for models considering all the 
therapeutic sessions, shows good values in terms of both MSE 
(average result 10.8) and R-squared (going from 0.9025 to 
0.98). A summary of the features selected is shown in Table 
VII.  

From the table, it is evident that accelerometer and 
gyroscope-derived features have the same importance in a  
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TABLE I.  GAIT 3 KM/H 

 Features selected MSE R2 

With all 
sessions 

Accelerometer thigh (1): Mean Y-
axis,  
Gyroscope thigh (1): Mean Z-axis, 
Gyroscope shank (1): Maximum Y-
axis  

16.82 0.928 1 

Without 
the last 
session 

Accelerometer thigh (3): Mean Y-
axis, Median Y-axis, CV X-axis  
Gyroscope thigh (1): Mean Z-axis  
Gyroscope shank (5): RMS 
magnitude, Mean X-axis, Minimum 
Y-axis, CV Y-axis, p-p amplitude Y-
axis 

12.62 0.984 0.8 

TABLE II.  GAIT 4 KM/H 

 Features selected MSE R2 

With all 
sessions 

Accelerometer thigh (2): Mean 
Y-axis, Median Y-axis  
Accelerometer shank (3): RMS 
magnitude, RMS X-axis, 
Regularity Z-axis 
Gyroscope thigh (3): Maximum 
X-axis, st_dev X-axis, p-p 
amplitude X-axis  
Gyroscope shank (2): Maximum 
X-axis, RMS X-axis 

11.26 0.9025 0.7 

Without the 
last session 

Accelerometer thigh (2): Mean 
Y-axis, Median Y-axis   
Gyroscope thigh (2): Maximum 
X-axis, St_dev X-axis 
Gyroscope shank (1): Maximum 
X-axis  

15.78 0.717 0.9 

TABLE III.  GAIT 6 KM/H 

 Features selected MSE R2 

With all 
sessions 

Accelerometer thigh (14): 
St_dev/Variance/Skewness magnitude, 
Mean X-Y-Z-axis, Minimum Y-Z-axis, 
Maximum Y-axis, Median X-Y-Z axis, 
autocorrelation Y-axis, Regularity Y-
axis  
Accelerometer shank (2): CV X-axis, p-
p amplitude Y-axis 
Gyroscope thigh (10): 
Mean/Skewness/RMS/Area/Energy 
magnitude, Maximum Z-axis, Median Z-
axis, St_dev X-axis, p-p amplitude Y-Z-
axis,  
Gyroscope shank (3): Median Y-axis, 
St_dev Z-axis, p-p amplitude Z-axis 

6.19 0.96 0.3 

Without 
the last 
session 

Accelerometer thigh (17): 
St_dev/Variance magnitude, Mean X-Y-
axis, Minimum X-Y-axis, Maximum Y-
axis, Median X-Y-Z-axis, St_dev Z-axis, 
CV X-Y-Z-axis, RMS X-axis, 
autocorrelation Y-axis, Regularity Y-
axis  
Accelerometer shank (4): Maximum X-
axis, CV X-axis, p-p amplitude X-Y-axis  
Gyroscope thigh (14): 
Mean/Skewness/Area/Energy 
magnitude, Mean Z-axis, Maximum X-
Z-axis, Median Z-axis, St_dev X-axis, 
CV X-Y-axis, p-p amplitude X-axis, 
RMS X-axis, autocorrelation Z-axis  

63.7 0.53 0.2 

 Features selected MSE R2 
Gyroscope shank (9): Mean X-Z-axis, 
Minimum X-axis, Maximum X-axis, 
Median Y-axis, St_dev X-axis, p-p 
amplitude X-axis, autocorrelation Z-
axis, Regularity Z-axis  

TABLE IV.  FLEXION/EXTENSION TASK 

 Features selected MSE R2 

With all sessions 

Accelerometer thigh (1): 
Mean Y-axis 
Gyroscope shank (1): Mean Z-
axis 

6.04 0.95 1 

Without the last 
session N/A 21.35 0 0.9 

TABLE V.  HAMSTRING CURL TASK 

 Features selected MSE R2 

With all 
sessions 

Accelerometer thigh (7): Mean Y-
axis, Minimum Y-axis, Maximum Y-
axis, Median Y-Z-axis, RMS Y-axis, 
Regularity Y-axis 
Accelerometer shank (5): 
Skewness/Area/Energy magnitude,  
autocorrelation Z-axis, Regularity X-
axis 
Gyroscope thigh (1): RMS Y-axis  
Gyroscope shank (1): Mean Y-axis  

16.98 0.93 0.1 

Without 
the last 
session 

N/A 21.28 0 0.9 

TABLE VI.  HALF-SQUAT TASK 

 Features selected MSE R2 

With all 
sessions 

Accelerometer thigh (18): Variance 
magnitude, Mean X-Y-Z-axis, 
Minimum X-Y-Z-axis, Maximum Z-
axis, Median X-Y-Z-axis, St_dev Z-
axis, CV Y-Z-axis, p-p amplitude Z-
axis, RMS Y-Z-axis, Regularity Z-axis 
Accelerometer shank (4): Maximum X-
axis, p-p amplitude X-Y-axis, 
autocorrelation Z-axis 
Gyroscope thigh (4): Median X-axis, 
RMS Y-Z-axis, autocorrelation X-axis 
Gyroscope shank (2): RMS magnitude, 
CV Z-axis 

7.51 0.98 0.1 

Without 
the last 
session 

Accelerometer thigh (20): Mean X-Y-Z-
axis, Minimum X-Y-Z-axis, Maximum 
X-Y-Z-axis, Median X-Y-Z-axis, 
St_dev Z-axis, CV Y-Z-axis, p-p 
amplitude Z-axis, RMS Y-Z-axis, 
Regularity Y-Z-axis 
Accelerometer shank (6):  
Mean/Skewness/Area magnitude, 
Maximum X-axis, p-p amplitude Y-
axis, Regularity Z-axis 
Gyroscope thigh (5): Maximum X-Y-
axis, RMS Y-Z-axis, autocorrelation Z-
axis 
Gyroscope shank (8): 
Mean/Skewness/RMS/Area/Energy 
magnitude, Maximum X-axis, CV X-Z-
axis 

77.69 0.65 0.3 
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TABLE VII.  FEATURES SELECTED - SUMMARY

    Gait 3 km/h Gait 4 km/h Gait 6 km/h Flex/Extension Hamstring Curl Half-Squat Total 

Thigh 

Accelerometer magnitude     3     1 4 

Accelerometer X-axis     2     3 5 

Accelerometer Y-axis 1 2 6 1 6 5 21 

Accelerometer Z-axis     3   1 9 13 

Gyroscope magnitude     5       5 

Gyroscope X-axis   3 1     2 6 

Gyroscope Y-axis     1   1 1 3 

Gyroscope Z-axis 1   3     1 5 

Shank 

Accelerometer magnitude   1     3   4 

Accelerometer X-axis   1 1   1 2 5 

Accelerometer Y-axis     1     1 2 

Accelerometer Z-axis   1     1 1 3 

Gyroscope magnitude           1 1 

Gyroscope X-axis   2         2 

Gyroscope Y-axis 1   1   1   3 

Gyroscope Z-axis     2 1   1 4 

  Total 3 10 29 2 14 28 86 

Sensors 
Accelerometer 1 5 16 1 12 22 57 

Gyroscope 2 5 13 1 2 6 29 

Limbs 
Thigh 2 5 24 1 8 22 62 

Shank 1 5 5 1 6 6 24 

  
number of tasks, such as walking at different speeds and 
flexion/extension. However, this is not shown for other 
exercises, e.g., hamstring curl and half-squat, where features 
selected from the accelerometer are present in a larger number. 
This may indicate that accelerometry may be sufficient to detect 
incorrect movement patterns, and this can be even more 
important in battery-powered devices, considering the 
gyroscope power consumption is typically larger than the 
accelerometer’s (almost 7 times larger in the platform built in 
Section II). Secondly, features obtained from thigh and shank 
limbs have similar distributions in a number of tasks (walking 
at 3-4 km/h, flexion/extension, and hamstring curl), except for 
gait at 6 km/h and half-squat, where thigh-derived features are 
more prominent. This can be explained by the fact that those 
two exercises are more physically demanding for the subjects, 
and ACL tears causes a decrement in the quadriceps and 
hamstring muscles, with the decrease in quadriceps strength 
being 3-fold greater [46]. Thus, a limited strength in the thigh 
muscles can limit the control of the knee and lower limbs during 
complex and demanding activities in the rehabilitation phase. 
This aspect may be further investigated by adding 
electromyography (EMG) sensors in future analysis.  Finally, 
when taking into account the individual features, it is evident 
how features extrapolated from the accelerometer over the 
anteroposterior axis on the thigh are the only features present in 
every task. Features from the other axis, sensors, and limbs are 
uniformly distributed across the different exercises, with no 

preference of one over the other, except for the accelerometer-
based features extrapolated from the vertical axis of the thigh, 
which are found in walking at 6 km/h and half-squat tasks. Over 
24% of the overall features selected in all the tasks is obtained 
from the anteroposterior axis of the accelerometer located on 
the thigh, and 15% of the overall features are from the vertical 
axis. These findings confirm the results discussed in [44], with 
most of the alterations of interest taking place in the sagittal 
plane. 

Regarding the application of the SIS method, the number of 
features kept after using this method was included between 9 
and 29 (when considering all the therapeutic sessions), and 
between 15 and 44 when not considering the last session. In 
percentage, the kept features represent a fraction of the 
originally considered features in the range of 5.9-19% (with all 
sessions), and 9.8-28.9% (without the last session). This 
confirms the effectiveness of the SIS method in reducing p >> 
n problems to more acceptable dimensions. Another interesting 
aspect is that the number of features kept with SIS in the model 
built with all the sessions is lower than the number of features 
kept without considering the last session for all the exercises. 
This was expected since the last session introduces an 
unexpected behavior in the responses ݕ which is more unlikely 
to be reproduced in the analyzed features.  

Finally, it is also worth investigating that not always all the 
features kept using SIS are then adopted to build a model with 
the following LASSO/elastic net regularization. In fact, 
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exercises such as walking at 6 km/h, hamstring curl, and squat, 
show a model defined with the exact number of features filtered 
with SIS; this was expected as in those models the parameter  
in the elastic net regularization approach is between 0.1 and 0.3, 
thus approaching a ridge regression which does not have the 
ability to further reduce the number of features. On the other 
side, exercises such as walking at 3 and 4 km/h and 
flexion/extension, show a model defined using between 10 and 
55% of the features filtered with SIS; this occurs as in those 
models the parameter a is included between 0.7 and 1, thus 
approaching the naïve LASSO technique which has the ability 
to further reduce the number of features. 

This study only considered well-known time-domain 
statistical features for this analysis, extrapolated from 
acceleration and angular rate signals of the shank and thigh, 
proving their sensitivity for a number of exercises. However, as 
only a single subject was available for the present study, an 
enhanced number of athletes, with homogeneous 
characteristics, will also be tested to have a more robust base 
and further validate the drawn conclusions. 

VII. CONCLUSION 
This work presented a combination of wearable inertial-

based system and data analytics techniques for an objective 
assessment of lower-limbs in patients over the course of 
rehabilitation. The hardware platform adopted for the system 
realization and the data analytics involving inertial data 
collected from thighs and shanks have been described.  

The studied techniques are able to indicate which features 
are more informative regarding patients’ performance and 
could be easily taken into account by clinicians during their 
analysis. Results analysis confirmed that changes in motor 
ability can be objectively assessed via data-driven methods and 
that most of the alterations of interest occur on the sagittal plane 
and may be assessed by an accelerometer worn on the thigh. 
Future work should further assess the system capability to 
differentiate injured and non-injured subjects collecting larger 
datasets by recruiting a greater amount of participants and 
involving more exercise types. Moreover, datasets could be 
enriched by including additional sensing technologies, e.g., 
EMG, galvanic skin response, heart rate. Despite the 
availability of a number of public datasets, a rehabilitation 
dataset including the described characteristics is not yet 
available in literature and would further develop this area. 
Therefore, additional clinical trials are currently being planned 
in order to further validate the developed model in statistical 
terms. Moreover, the development of personalized models 
could be further investigated also adopting different data 
analytics methods, such as deep learning techniques.  
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