
Supporting Collaborative Care of Elderly

through a Reward System based on Distributed Ledger Technologies

 Emilien Bai and Kåre Synnes

Department of Computer Science, Electrical and Space Engineering

 Luleå University of Technology

 Luleå, Sweden

 e-mail: emibai-6@student.ltu.se, unicorn@ltu.se

Abstract—This paper discusses supporting collaborative care

of elderly through a reward system based on distributed ledger

technologies. The design and implementation of such a reward

system that connect elderly and volunteers by mutual

agreements involve technologies such as smart contracts and

blockchains. The work is motivated by the demographic

change, where an aging population consequently increases the

need for care. This causes a great tension in our society, as care

resources become increasingly constrained, both regarding

costs and availability of care staff. Much of the daily care of

the elderly is today done by family members (spouses,

children) and friends, often on a voluntarily basis, which adds

to the tension. The core idea of this work is to help broaden the

involvement of people in caring for our elderly, enabled by a

system for collaborative care. The proposed system benefits

from recent advances in distributed ledger technologies, which

similarly to digital currencies, are build on the ability for

mutual agreements between people who do not know each

other. The system also benefits from recent gamification

techniques to motivate people to collaborate on a larger scale

through performing simple daily tasks. The proposed system

benefits from inherent distributed ledger technologies

advantages, such as a high level of decentralization, thus a high

availability, and strong data consistency. These advantages

make it interesting to develop the possible links between

blockchains and the outside world to allow for a higher level of

automation and distribution of services such as collaborative

care. New models for distributed ledger technologies, such as

Iota tangles or the Swirld platform, may however scale and

perform better than blockchains. These should thus be

considered for a full implementation and test of the system. In

summary, this paper presents a novel framework and

prototype implementation of a reward system supporting

collaborative care of elderly, that is based on distributed ledger

technologies.

Keywords-component; Blockchain; Collaborative Care;

Gamification.

I. INTRODUCTION

The work in this paper in based on a paper presented at
the UBICOMM 2017 conference [1]. The aging population
has been identified as a challenge for the future in a Swedish
study from 2013 [2]. In May 2012, 18.8% of the total
population of Sweden was 65 years old or older. This part of
the population is expected to reach 20.5% in 2020 and 25.9%
in 2060. The main difficulties identified are to finance

welfare of the aging population, as well as meeting the
increasing demand of service provision. The demand on staff
is expected to increase by 210 000 caregivers by 2030 in
Sweden, while the supply is expected to stay quite the same.
Also, this situation will probably result in a widened
financial gap between the cost of welfare and state revenues.
The trend of an aging population is confirmed to be
worldwide by a United Nations report from 2015, which
focuses on the oldest persons (aged 80 years or more) [3].

Much of the daily care (such as performing daily tasks
like shopping for groceries, cleaning, cooking, etc) are often
performed by informal carers such as family members, or
friends. The burden this places on spouses and children of
the elderly can often be very high, reducing the quality of life
not only for the elderly being cared for but also for these
informal carers.

It is thus clear that a broader engagement of our society
in caring for our elderly is needed, where voluntary
contributions also can be rewarded (besides the altruistic
satisfaction of being helpful, pro-bono). Not everyone would
of course require such rewards, but motivating a larger
cohort of our fellow people may require both short and long
term perceived benefits. Examples of short term benefits
may be making people's contributions visible in the society
or being able to trade work, and long term benefits may
include being able to get help back in kind (If I help now,
then I will get help later). This leads to the following
research question:

 How can a system for collaborative care of elderly be

designed and implemented to engage and motivate people to
contribute with daily tasks on a voluntary basis?

 The aim of this work is thus to develop an application

intended to connect the population who may need help in
common daily tasks with people who may provide
voluntarily help. The aim is not to replace workers
specialized in health care, but to reduce their work charge
where it is possible and therefore instead leave them more
time to do important and skilled tasks for the elderly.

Ultimately, by reducing the proportion of paid care, the
application may also contribute to decreasing the cost of care
for the aging population, without degrading the quality of
care.

90

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rest of the paper is organized as follows. In Section
II, we present a state of the art concerning distributed ledger
technologies (DLT), blockchains as well as smart contracts.
In Section III, we introduce the methodology used in order to
develop the system. Section IV focuses on the
implementation and design of the system. In Section V, we
present the design of the gamification aspect. In Section VI,
we discuss how the designed system fills the needs of our
research question and point out some limitations. Finally, we
conclude this paper in Section VII.

II. STATE-OF-THE-ART

The rapid digitization of our society is key to alleviating
the tension on our care systems, where recent technological
and methodological advances bring great potentials to enable
an increasingly collaborative care. One example is
communication technologies, where access to mobile
computing now is nearly ubiquitous and where we now at
any time can engage in our social networks. A recent
example is DLT, including the notions of Blockchains and
Smart Contracts, which are introduced in this section
together with novel methodologies for user engagement,
namely Gamification.

A. Distributed Ledger Technologies

A distributed ledger (also called a shared ledger) is a
consensus of replicated, shared and synchronized digital data
geographically spread across multiple nodes (sites, countries
or institutions) [4]. There is no central administrator or
centralized data storage. Instead, a peer-to-peer network is
required together with consensus algorithms to ensure that
replication and consistency is maintained across the nodes of
the distributed ledger.

The most popular distributed ledgers are based on public
or private blockchains, which employ a chain of blocks to
provide secure and valid achievement of distributed
consensus. The first Blockchain was conceptualized in 2008
by Satochi Nakamoto [5] and implemented in 2009 for the
digital currency Bitcoin. The example of bitcoin
demonstrates the huge potential of blockchains for mutual
agreements between two parties without the need of a trusted
third party. For example, the volume of daily bitcoin
transactions has been over 175 000 since April 2016 [6].
However, the bitcoin blockchain only scratches the surface
of the potential of the technology, as it is focused and
dedicated on the exchange of value, in the form of bitcoin
transactions.

Distributed ledger technologies are expected to have a
disruptive effect in our society, especially concerning mutual
agreements, as they show many advantages: 1) agreements
made on top of the blockchain do not need a trusted third
party, and 2) each transaction needs to be signed by its
sender using asymmetric encryption, which removes the
need of an authentication layer in applications as this is
directly handled at the blockchain level. It could ease the
exchange of property between people or allow a more fine-
grained digital right management.

B. Blockchains

Blockchains are distributed databases for transaction
processing, and they are well suited for financial transactions
but not limited to such applications. The use of blockchain
technology also extends to non-financial applications and is
for example, considered for supply chains, asset management
or electronic health records.

All transactions are stored in a single ledger and ordered
by time. The ledger represents the current state of the system
and is replicated across every node. The transactions are
broadcasted to the network and accepted if valid, by
distributed consensus mechanisms, and are then grouped into
a block, which is to be added to the blockchain. The last, and
key, operation is to compute an ID for this block before
storing it on the blockchain.

This operation can be done by solving a mathematical
problem (usually random with a low probability), based on
the previous block index (this takes around 10 minutes for
the Bitcoin blockchain). The problem consists in finding a
nonce (an integer value) to associate with the hash of the
content of the block and the id of the preceding block. Once
these 3 values concatenated, the resulting hash of this
concatenation must respect a constraint: being less than x, x
evolving in order to keep a relatively constant period
between each block. This constraint can only be fulfilled by
trying new solutions for the nonce. Once an ID has been
computed, the network adopts the block and begins to work
on finding the ID of the next block. The process of
computing an ID in this way is called proof-of-work and it
makes the blockchain immutable since changing an existing
block requires to compute the ID for all the following blocks
while the blockchain continues to grow. One of the weakness
in the proof-of-work mechanism is the 51% attack. In the
case an organization controls more than 50% of the
computing power, it can start censuring transactions an can
refute mining outside of the organization, as the blockchain
considered as valid is the one replicated on the majority of
blocks, in order to centralize all the rewards.

This operation can also be done using a proof-of-stake,
where the miner is chosen in a deterministic way. One of the
proof of stake design, used in Peercoin [7], is based on the
concept of “coin-age”. The coin age is a number, which
depends on the product of coins times the duration they have
been held by the node. The higher the coin age is, the bigger
the chances to be elected for the associated node are. Once a
node has been selected to mine a block, the duration it held
the coins is reset in order to avoid the richest and oldest
nodes from dominating the blockchain. This method is more
energy efficient than a proof-of-work as it does not imply
any power competition between the nodes. It is also safer
against attacks as acquiring the majority of the coins is
usually more costly than collecting 51% of the computing
power of the network.

As the technology evolves, new consensus mechanisms
appear. We can cite Proof-of-Elapsed-Time (PoET) [8], used
in Hyperledger Sawtooth [9]. This consensus mechanism is
based on trusted function called at the central processing unit
(CPU) level. It reproduces a leader election protocol found in

91

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

many consensus mechanisms and distributes leadership
across the population of validators. This mechanism has a
low cost of implication, which increases the potential
number of validators and therefore the robustness of this
consensus algorithm.

Every transaction on a blockchain is signed, using
asymmetric key cryptography, ensuring its provenance. The
nodes in the network check the transaction conformity (an
user can only spend the money he owns from previous
transactions and can only perform a transaction in his own
name: this is verified thanks to the cryptographic signature),
authorization (an user can only perform a transaction in his
own name) and resistance to censorship.

If a transaction conforms to the protocol, it will be added
to the ledger without any party being able to discard it. All
transactions can be processed peer-to-peer without the need
of a trusted third party, since a blockchain network does not
rely on any central authority but on a distributed consensus.

C. Public and Private Blockchains

This study began with a review of existing blockchain
technologies, which revealed two main categories of ledgers:
public or private.

A public blockchain is a ledger for which anyone
executes transactions or mines blocks. Since anyone can
modify a public blockchain, they offer a high replication
rate. This is also what makes public blockchains slow and
less energy-efficient. Since anybody can contribute to public
blockchains, it also offers pseudonymity where an user is
only identified by an address and all the transactions
referring to this address can be read. Some projects are being
developed in order to create a true anonymity when using a
Blockchain technology. For example, that is the goal of
Zcash blockchain [10] that protect the privacy of its users
using zero-knowledge privacy.

A private blockchain does not allow everyone to join. It
usually belongs to a single company, or a group of
companies, running the chain and validating transactions. It
usually uses a certificate authority in order to control the
access and the rights of each stakeholder. The level of
decentralization is not as good as in public blockchains, but
performance is generally significantly higher. Indeed, when
located on a public blockchain, a decentralized application
represents only a small proportion of the entire system
instead of representing the majority of it and, therefore, gains
efficiency. It allows for greater privacy since users are
chosen and known. However, private blockchains are
therefore not resistant to censorship. The main entity running
the blockchain can decide to stop one stakeholder to execute
transaction.

D. Permissioned and Non-permissioned Blockchains

Our study also identified two subcategories of
blockchains: permissioned or non-permissioned. In a
permissioned blockchain, each node has a limited role. It
may only be allowed to validate transactions, mine new
blocks, execute smart contracts (see below) on the
blockchain or perform transactions with the chain assets. On
the contrary, a non-permissioned blockchain allows any node

to take any role. Table I illustrates the resulting
categorization of studied blockchains.

TABLE I. CHAIN CLASSIFICATION

 Non-permissioned Permissioned

Public Ethereum[11],
Bitcoin[5], Iroha[12]

Ripple[13]

Private Fabric[14], Burrow[15],
Openchain[16], Multichain[17]

E. Smart Contracts

In 1994, Nick Szabo defined smart contract as [18]:
”A smart contract is a computerized transaction protocol

that executes the terms of a contract. The general objectives
are to satisfy common contractual conditions (such as
payment terms, liens, confidentiality, and even enforcement),
minimize exceptions both malicious and accidental, and
minimize the need for trusted intermediaries. Related
economic goals include lowering fraud loss, arbitrations and
enforcement costs, and other transaction costs.”

Smart contracts are a way to enforce a legal agreement
without the need of a trusted third party. It consists of
computer code, stored on the blockchain and its execution
can change the state of the blockchain. A sample of smart
contract code demonstrating a simple use case of an asset
holder contract is illustrated in Figure 1. It profits from
blockchain immutability to ensure that the terms cannot be
modified. Thus, smart contracts cannot be modified and the
result of an interaction is predictable and not corruptible. A
high level in data integrity (as well as a good log level in
case of breach in contracts design) is therefore ensured.
Smart contracts develop the need of experts able to formalize
legal agreements and convert it in clear and complete
specifications. These specifications have to be translated in
computer code and audited in order to ensure that all corner
cases are covered.

Figure 1: Sample of smart contract code

92

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Bitcoin and Etherum Smart Contracts

The Bitcoin blockchain only runs a single smart contract,
where the Bitcoin blockchain only ensures that the sender
actually owns the tokens he wants to send in a transaction.
As a consequence, a receiver cannot refuse a transaction. It is
usually not referred to as a smart contract since the code is
more embedded inside the chain protocol than actually
running on a chain virtual machine (VM).

Ethereum is the biggest public platform for smart
contracts [11] which provide a Turing complete language for
smart contracts executing in a virtual machine environment.
As it is a public and uncensored platform, all users are free to
send their own code, to be executed by the Ethereum VM.
To avoid malicious user from locking the system, executing
infinite loops algorithm for example, the VM use a “gas”
system. When sending code to be run by the VM, users have
to send a certain amount of gas associated with it. For every
computation cycle required by the contract execution, a
small amount of gas is consumed. If there is no more gas to
consume, the computation is stopped, and an error is
returned. Gas is bought using the chain currency (in our case
ether): Its consumption is used to reward the nodes who took
part in the smart contract execution. Smart contracts are
triggered by receiving a transaction and they process
transaction data in order to change the state of the contract.
The code execution is replicated on each mining node in
order to validate the transaction and include it in the next
block. Code execution happens as many times as there are
nodes validating transactions. Therefore, there are some
limitations in the smart contracts design [19]: it is difficult to
link smart contracts with outside world events, or make use
of external services automatically (without a transaction). If
a contract is waiting for data from the outside world and it
does not receive the same data on every node, this would
create a conflict on the chain. That is why smart contract are
mainly triggered by transactions that ensure data consistency
across the nodes. However, one library, Oraclize is aimed at
bridging external service with smart contract code in a secure
way, but has not been tested in the field of this study. On the
contrary, if a contract must call an external Application
Programming Interface (API), which will trigger an action, it
cannot determine which node is responsible to actually make
the call. This design issue can be avoided using external logs
watcher that can check a contract status then trigger the
outside chain action if needed.

Smart contracts are thus not well suited to ensure
agreements outside the chain, but they remain a very
efficient way to condition fund transfer inside a chain. We
can imagine an internal coin system with which users agree
on a value and use it to limit the volume of “official”
currency. This mirrors the current financial system where
major stakeholders like banks agree on the value of a debt
toward each other and balance the debt volume without
actually exchanging assets. Finally, smart contract are also
not well suited to hide confidential data, especially on a
public chain. Every node replicates the database, and can try
to brute-force encryption of data if need be. Also, every

transaction is relatively anonym, which means activity of
user towards contracts can be traced.

G. Involver

Our technical review only identified one mobile
application for volunteering, an application called
“Involver”. It is defined as a social volunteering platform
[20].

The goal of this application is to bring together potential
volunteers with partner organizations that need help. Every
cause a volunteer can help with is ordered based on location,
subjects and skills needed. The rewards are brought by
sponsors and take the form of non-monetary advantages.

The application also offers to certify the number of
volunteering hours on professional social networks. It also
includes a social aspect emphasizing the fact that
volunteering is more interesting with friends. This example
illustrates the need of a trusted third party (in this case the
application) when agreements are made between volunteers
and organizations.

Involver is however more of a start-up than a scientific
platform. It is also not aimed at manipulating sensitive data,
as this kind of information is to be held out of the
application, by the organizations themselves if need be.

III. METHODOLOGY

This work is based on multiple theories within the
gamification field, which form the basis of the theoretical
work as well as the implementation. This section describes
the definitions in the context of this work.

A. Gamification Definitions

The word gamification appeared for the first time around
2002, when Nick Pelling used it for its consultancy business
[21]. Gamification is according to Hutoari and Hamari
[22]”a process of enhancing a service with affordances for
gameful experiences in order to support user’s overall value
creation.”

Deterding et al. [23] propose a more general definition of
gamification as ”the use of game design elements in non-
game contexts”. This definition is supported by the
distinction made between games and play, with gaming
being more structured by rules and more competitive. Game
elements are defined as elements that are characteristics to
games, found in most (but not necessarily all) games and
found to play a significant role in gameplay.

Since gamification has been a trending topic, it prompted
a lot of academic studies, which showed gamification to be
present in many different contexts such as learning (e.g.,
Duolingo [24]), exercise (e.g., Fitocracy [25]), work and
more.

B. Gamification, Rewards and Volunteers

The gamification aspect is part in the final application as
an incentive for volunteers to use it. A review of studies
concerning gamification by Hamari, Koivisto, and Sarsa [26]
show that, globally, gamification has positive effects and
benefits on users where it is used. Gamification have a

93

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

positive impact on the behavior of users, but also a
psychological impact, acting on motivation, attitude or
enjoyment of users while filling tasks. The gamification
aspect is expected to motivate users and maintain their
involvement.

Gamification can also be coupled with rewards in order
to extend the scope of the gamification to the real world. A
reward system can thus be seen as a natural part of a
gamification system. For example, it can be used as a
mechanism to engage, motivate and compensate users who
volunteer their time and services for collective purposes.

Volunteers’ motivations to help have been shown to be
more based on intrinsic rewards (to fulfill psychological
needs). However, small and non-expensive rewards are also
appreciated and encouraging, where, generally, the goal is
not to spend as much in a reward as the cost to pay someone
[27]. The vision of combining gamification with real-world
rewards allows reaching both fully altruistic people, who
probably would not use the rewards or would not see it as an
essential part of the application, as well as an audience
needing more recognition to maintain its motivation Rewards
are also expected to stimulate the interest of people usually
that do not usually take part in volunteering activities.

C. Achievements and Badges

Achievements are a really common part in gamified
applications. They are usually associated with badges and
find their origin in merit-badges given to boy scouts of
America since 1911. In 2003, Wikipedia started Wikipedia’s
Barnstars [28], aimed at rewarding contributors for their
involvement on the platform. Another example of successful
use of achievements is the Foursquare badges [29], which
encouraged people to complete tasks in real life in order to
unlock them. Furthermore, all games published on the
Microsoft Xbox Live [30] platform are required to have
achievements. A study by Anderson et al. [31] showed that
badge placement in an application can have an effective
influence on user behavior and also affect his/her use of the
application. However, a study by Montola et al. [32]
concludes that achievements globally have a positive effect
on motivation but can sometimes be confusing for some
users if they are not introduced properly. In summary,
badges can be efficient incentives and are relatively cheap to
implement in an application.

D. The Hamari and Eranti Achievement Framework

According to the framework designed by Hamari and
Eranti [33], an achievement can be divided in three main
parts.

Firstly, an achievement has a signifier, which is the
visible part of an achievement and conveys information
about it. It consists of a name that set the theme of the
achievement and hints at the completion logic for it. The
signifier also includes a visual, which completes the name
and often has two states, unlocked where the visual is faded
and completed where the visual gets fully colored. Finally,
the signifier has a description, which describes what is
required from the user to complete the achievement and what
can be gained by completing it.

Secondly, an achievement also consists of a completion
logic. It consists of a trigger, a pre-requirement (specific
date, already completed achievement), a conditional
requirement to determine if the action is triggered and also a
multiplier, which determines how many times the three first
parts have to be completed to unlock the achievement.

Thirdly, achievements carry rewards to show the user the
achievement that has been completed. When added to a
game, achievements completion can be a way to unlock in-
game rewards. The external part of the reward is often the
fact that these achievements are displayed publicly.

E. Leveling

Leveling based on experience points is an easy way for
users to keep track of their progress. It was originally used in
role playing games, and then extended to any type of games.
The logic behind leveling is quite simple: when performing a
task, users receive points, and then when a certain amount is
reached, the user advances a level. In games, earning levels
is often linked to gain or progress skills for the avatar. In a
gamified application, advancing a level is recognition of the
skills acquired by the user in real life: it can also allow an
user to access more advanced features. In games, points are
earned when completing a mission/quest: in gamified
applications, points are delivered when the user completes
the task the app is trying to help with. For example, points
can be delivered when a volunteer completes an offer, based
on the number of tokens earned. However, when the user
spends his tokens, he keeps the same number of points.

An important part of a levelling system is the threshold:
it represents the number of points needed to reach the next
level. Usually, the first levels have a low threshold, in order
to keep the user motivated and show quick progress. Then,
once users have been significantly engaged, thresholds get
bigger to be more challenging and therefore more rewarding.

IV. IMPLEMENTATION

Based on the pros and cons listed above, the Burrow
blockchain has been chosen to conduct our test
implementation. It is fast, provides a smart contract virtual
machine and the permission layer allows controlling the
access rights. As the system works with sensitive data, it
benefits from the privacy a private blockchain provides. The
permission layer allows limiting the number of nodes
allowed to mine blocks or create contracts on the chain. Our
chain is therefore only dedicated to our system and does not
spoil resources for other contracts. It also uses a proof-of-
stake consensus mechanism, which is better suited to the use
of a private blockchain, since every mining node is known
and trustworthy. A proof-of-stake consensus is also more
energy efficient and faster than using proof-of-work.

A. System Goals

The designed system is intended to connect elderly with
volunteers who can help them with everyday life tasks,
which do not require any specialized skills (for example, in
health care). The goal is not to replace health care workers
but to reduce their workload where it is possible in order to
give them more time for specialized tasks. As an incentive,

94

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

volunteers receive a non-monetary reward, a token based on
time spent to help and eventually resources involved in tasks,
as the use of a vehicle for example. These tokens can be used
to acquire rewards as coupons or advantages / discounts in
local shops or non-monetary advantages. On top of this,
gamification aspect using points and badges is added to keep
volunteers motivated.

Users of the platform need to register by giving their
identity. Their personal data is stored encrypted and only
revealed to other users if they share a task (tasks can also be
referred to as offers or task offers from elderly users). Once
users are registered, an authority is charged of verifying the
information and grants the permissions according to the user
status. For example, this external authority has to check that
volunteers who claim to have a driving license actually have
it, and more generally verify the identity of users who
register. This authority could follow the model used by the
car sharing application for example. An elderly user is
allowed to create task offers: they describe the mission,
specify a time slot when it has to be performed and duration,
and a type for the task (gardening, shopping, accompanying
for visits, etc.). The reward amount is computed according to
the offer specifications. A task that requires the volunteer to
own and use a vehicle will be rewarded with a higher reward
then task with no material need. Once the offer is created,
volunteer users can see it and read its specifications: if a
volunteer is available and able to fulfill the task, he or she
can commit to it. From there, the elderly user can access the
volunteer’s contact information to schedule the task more
precisely. Once the task is accomplished, the volunteer needs
to claim the reward. The elderly user can then confirm that
the offer has been fulfilled: this action triggers the issuing of
tokens for the volunteer who helped. With these tokens, the
volunteer will be able to buy rewards. Rewards are added by
rewarder users. These rewards contain a description, a price
and a code, delivered only when the reward is bought. This is
illustrated in the activity diagram below, see Figure 2.

B. Global Design

The system back-end is built on top of a blockchain with
smart contracts to handle agreements between the users. It
has four main contracts handling the different parts of the
system: these contracts form a database while they also
ensure system consistency. These database contracts do not
directly store data. They are more data structures that
reference other contracts where the data actually is.

The bank contract handles the tokens for each user: the
only way tokens are issued is when an elderly user confirms
that a task offer has been fulfilled. The only way to use these
tokens is when a volunteer user spends them to buy a reward.
The bank contract stores the balance for each user and
ensures that the user actually owns enough of them before
spending them.

The user contract is used to store user data. One part of
this data is readable by everyone (and uses pseudonimity)
while sensitive data stays encrypted and is only revealed
when a task links two users. This contract is also used to
handle permissions for each user. Permissions are set by an
authority according to the status of the user: depending of his
permission level, an user can or cannot perform some actions
in the application (As an example, only a volunteer user can
commit and claim an offer).

A contract is used to store offers and commit, claim and
confirm their execution. An offer is a task, proposed by an
elderly user for which help from a volunteer is needed. Thus,
offers are smart contracts with properties and states: the state
of the offer evolves during the course of the agreements but
properties are immutable. This evolution is described in
Figure 3.

Finally, a contract is used to store and buy available
rewards. Rewards are added by partner rewarders in a
limited availability and bought by volunteers.

The blockchain handles authentication of users for these
actions, allowing a mutual agreement between different users
without the need of a trusted third party, once the registration
is complete. The blockchain also guarantees the content of
agreements since contracts cannot be discreetly modified.
The division of the application is described in Figure 4.

C. Detailed Architecture

The system is built on the Monax blockchain, Burrow
[15], a fork of the Ethereum blockchain allowing working
with a permissioned ledger: this permission layer also allows
using a proof-of-stake mining mechanism. Another
difference compared to unpermissioned ledger is that nodes
can have restrictions on how they can contribute: some can
be dedicated to validate nodes, while others handle
permissions or receive transactions.

Contracts are developed using Solidity [34], an object-
oriented programming language for smart contract
development. Solidity code of a contract needs to be
compiled outside of the blockchain, and then is sent using a
specific type of transaction. The result of this operation, if
successful, is the address of the contract. This address will
then be used to interact with the contract, by calling its
functions in transactions or when reading its state.

Figure 2: Activity Diagram for Volunteer Users

95

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The application is developed following an action-driven
architecture coupled with a five types model.

The five types model suggests splitting the application
using different kind of contracts. Database contracts, where
data is stored, can be read or updated. As explained before,
these databases are key value store for our data. They consist
in lists where a contract address can be found using its id.
The use of a custom data structure (our lists) over the one
usually used when developing in Solidity (mappings that are
dictionary already existing in the basic structures of Solidity)
has been done in order to be able to query all the entries in a
database, when we would have need to keep every data
contract names to retrieve them if using the mapping
structure. Controllers contracts operate on database contracts,
and can operate on multiple databases (for example, read
user’s permissions from one database and then operate an
action on another). A third type of contract is contracts
managing contracts (CMCs) where other contracts addresses
are kept in view and can be replaced if needed (if we update
the code of a controller for example). They provide single
point of entry to the system, which is useful when a system
uses many contracts and therefore also many addresses. They
include an update mechanism for controller contracts in
order to be able to edit a code that would otherwise be
immutable. These CMCs allow the update of existing
controller contract in a transparent way for the user. Without
them, when updating a controller contract, the user would
need to obtain the address of the updated version of the
contract. Using this system, the user only need to query the
contract wanted using its name and the CMC directly
redirect the query to the latest version. Application logic
contracts (ALC) are contracts specific to an application and
they perform multiple operations using controllers and other

contracts. Finally, utility contracts can be seen as libraries:
they perform a specific task, without modifying the state of
other contracts and can be used without any restrictions.
They are not project specific and can be re-used in different
situations.

The five types model effectively separate actions used to
interact with databases contracts. Actions are thus focused on
small parts and modifications of the system. Actions are
smart contracts with only one function (in our case,
“execute”) and perform atomic modifications to the system.
It can be seen as a microservice architecture even though it
does not share the goals of such an architecture but appears
more as a need to be able to maintain and update the
application. Actions are stored in a CMC. This architecture
allows the system to be updated more easily than if using full
controller contracts. A full controller would handle every
interaction with database contracts. Any simple modification
to a simple function implies the full contract replacement,
which infers heavy interaction with the chain. As a result,
actions can be dynamically replaced without the need of
modifying a complete controller contract. As we can see in
Figure 4, the update mechanism is integrated directly in the
action driven architecture. Users with the right permission
level can add, replace or remove an action from the system in
the same way more general users interact with it. The main
CMC is a Decentralized Organization Upgrade Guy
(DOUG) storing all databases’ contracts of the system and
especially, the action database. The action database is also a
CMC and works with an action manager calling this database
in order to find the actions to execute. By following this
architecture, an user can interact with the system knowing
only the address of the DOUG and the databases public
APIs. On the developer side, maintenance operations are

Figure 3: Offer evolution

96

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simple because actions can be easily updated (replacing an
action in the database is an action itself) without the need of
updating every interface as long as the DOUG contract stays
the same (and therefore keeps the same address). Since
action replacement is an integrated part of the application,
this also allows using multiple developer accounts with the
right permission level instead of locking the system by
limiting updates to only its creator. The process of executing
an action is described in Figure 5. First, users, that only
know the address of the DOUG, query this contract in order
to get the address of the action manager (1). Then, users then
send a transaction to the action manager address using as
parameters the action they want to execute (2). The action
manager contract receives the transaction. It queries the
DOUG in order to order to get the address of the action
database (3). The action manager then queries the address of
the action contract that will be executed (4). The action
manager repeats step 3 to get the address of the user database
(5), and repeat action 4 in order to get the calling user data
and especially permission level of the user (6). From the
data, it can read in the action contract, the action manager
verifies that the caller user has the right permission level to
execute this action (7). Then, it calls the execute function of
the action contract if allowed to do so (8). The action
contracts query the DOUG to get the addresses it needs to
perform its action (9), and modifies the database data
accordingly (10). Databases are locked in such a way that
they can only be modified by the action being currently
executed. The action returns the result of its execution to the
action manager (11) that returns it as a result of the
transaction originally sent by the user (12).

D. Interface

In order to keep the system as decentralized as possible,
the user credentials are not kept in a database. The most

suitable solution is to let users manage their own credentials
and this can be done using a mobile or desktop application
acting as a Bitcoin wallet. This solution presents as an
inconvenient a high risk of credential loss. It should only be
coupled with an efficient “save-and-restore” system that
would allow users to keep a safe copy of their own. Another
solution to store credentials can be paper wallets: these are
cardboard-cards with flash-codes or text-written credentials.
This can be a solution to effectively handle permissions and
verify user information by sending them their credentials
using for example, standard post, or asking them to present
themselves to an office where the identity verification occurs
and their paper wallet is delivered. The credentials on paper-
wallets can afterwards be stored in a mobile application or
required to be scanned for every action performed through
the application. This solution has not been chosen in the
prototyping step, but should be considered in a following
step.

The user then interacts with the blockchain through a
Representational State Transfer (REST) API. Every node
used as a validator for the blockchain is also used to host an
API server, allowing a good level of decentralization. The
choice of using a REST API comes from technical limitation
at the moment the project has been conducted. An ideal
design applies the creation, signing and sending of the
transactions directly from the device it is sent, and not
centrally executed on a third part server. The use of an
installed application instead of a web based application also
limits the number of request needed for developing the
gamification aspects, since, as a Bitcoin wallet, this kind of
application does not need to store every transaction but only
those concerning users. The developed application used for
testing is illustrated in Figure 6.

Figure 4: The Five Types Model

97

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5: Execute Action Process

E. Technical limitations

The system was first designed to be as modular as
possible: every action had its own execute method, taking
various numbers of arguments. Since this modularity implies
no real inheritance, the action manager had to use low-level
calls, a Solidity feature where a function is called at a
specified address without knowing the contract API at the
caller level. These low-level calls return a boolean only
indicating if the call succeeded (a function has been found
and called) or not, but not the actual return value. This
solution has been abandoned since it created a lot of
problems in data formatting for arguments at the action
manager level and afterwards at the action level. The absence
of a relevant return value was also a performance issue since
it implied to check every action execution afterward. Finally,
the choice has been made to use a formatted schema for the
execute method of every action, covering all the current
cases, and ignoring some useless parameters for some of the
actions contracts. This choice reduces genericity but improve
the reliability and performances of the system.

Some gamification aspects have been limited by the use
of smart contracts as databases. This layout is not really
efficient when querying many contracts and therefore limits
some features such as ranking between all users. This
limitation is also linked to our choice of using list as our
main data structure. This choice is easy to deploy and

reliable but does not scale really well or not really well
suited to filter elements.

V. GAMIFICATION DESIGN

The choice for our application is to limit the gamification
aspect to the frontend in order to reduce the volume of
interaction with the back-end and therefore improve
performance. It has been a design choice from the beginning,
as there were no existing studies concerning performance
and scalabity of decentralized applications, either on public
or private blockchains. Badges fit really well with this
vision. Achievements are well oriented towards volunteers,
as they are the target we try to motivate. The achievements
implemented have two main objectives. The first objective is
to serve as a tutorial, where these achievements appears
when doing really basic actions (such as to commit to an
offer or getting a validated account) and are supposed to
show the possibilities of the application while also introduce
the achievement system. This kind of rewards is supposed to
be numerous in the beginning: it guides the users toward
using all the features of the application and rewards them
quite often in order to provoke a feeling of significant
progress and create engagement. The second objective is to
maintain motivation and encourage involvement. The
achievements for this objective are focused on quantity and
regularity: it consists in fulfilling a defined number of offers,

98

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

typed or not: buying rewards, keep checking the app and
keep fulfilling offers every week/month to create strikes.

The achievements implemented in the application are

detailed in Table II.

TABLE II. LIST OF ACHIEVEMENTS

Achievement / Multiplier Step 1 Step 2 Step 3

Complete X offers 10 50 100

Buy X rewards 10 50 100

Complete X offers- Gardening 5 20 50

Complete X offers- Shopping 5 20 50

Complete X offers- Driving 5 20 50

Complete X offers- DIY 5 20 50

Complete X offers- Accompanying 5 20 50

Use the app for X days 30 180 360

Complete X offers in a week 2 4 6

Complete X offers in a month 4 8 15

The Hamari and Eranti Achievement Framework, as
detailed above have been utilized to design the achievements
for the application. Since no formal study have been found
regarding leveling curve formulas, and since in game
examples are often based on experience points gains varying
depending on level, the following formula has been chosen
in order to progressively increase the levelling thresholds:

 

The chosen initial threshold (to pass from level 1 to level
2) is 30. Since points are approximately equivalent to
minutes, this allow users to gain levels quite quickly at first,
then require more engagement to level-up further. For
example, the users need a bit less than 4 hours of cumulated
engagement to reach level 5. Reaching level 10 requires
around 13 hours for the volunteer and reaching level 20 is
almost 90 hours. Having such a progression is aimed at
challenging users who will need to dedicate more and more
time in order to level up. The progression of points needed is
illustrated in Figure 7.

Levels can be seen as a simplified achievement since it

can be associated with a name and a visual status. The
chosen completion logic, focusing more on global progress,
is however simplified in comparison to an achievement
focused on specific task completion. Gaining points also
happens more often than unlocking an achievement.

VI. DISCUSSION

How can a system for collaborative care of elderly be

designed and implemented to engage and motivate people to

contribute with daily tasks on a voluntary basis?
 A system for collaborative care of elderly should come

as a complement to the “classical” care system. It means that
it should be efficient to help professional workers while
keeping the costs low and the elderly population safe. The
costs problem can be partially treated by implying volunteers
in the process of elderly care and creating a system where

Figure 6: Application Interface for Volunteers

Figure 7: Levelling Curve

99

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

moderation needs are low. In order to keep these cost low,
the system needs to be reliable and able to work with a very
high level of autonomy. DLT appear to be interesting by
their performance in handling mutual agreements between
parties not knowing each other. Such a system only requires
moderation at registration and then can handle itself
efficiently. Such an application should be mobile in order to
integrate itself efficiently in daily life for both volunteers and
rewarders. This mobile deployment is really compatible and
almost comes as a complement for such a distributed system.

Even if the system benefits from the advantages of the
blockchain on mutual agreements, it also shows some
limitations due to the fact that it requires many interactions
with the outside world. Firstly, the designed system can be
abused by two parties knowing each other and agreeing on
hypothetical tasks in order to issue tokens. This bias can
partly be solved by limiting the number of offers an elderly
user can post every week/month. The risk is to disadvantage
honest users who need a lot of help, while only curbing
abuses. However, since every commitment can be publicly
visible, these abuses could be detected and user banned
although this implies more authority regulation than just
certifying user identity at registration. Therefore it reduces
the interest in using such a trust-based system.

Another issue comes from the fact that the system does
not allow nuances: a task offer will either be confirmed or
not. Even if task confirmation could be coupled with a
notation system, weighting the reward would be really
dependent on personal appreciation. In the worst situation, an
offer is not completed at all and this case is not automatically
disadvantageous for the abuser while it can have negative
consequences for the elderly user. Nevertheless, this
situation is the same in every system implying trade between
nonprofessional users (such as in carpooling services for
example), and require an impartial arbiter to be resolved.
However, what differs from another service is the criticality
of the failure from one of the user. If a volunteer does not
execute a task, it can have critical consequences for the
elderly user while the volunteer only faces being banned or
some equivalent penalty. It would require a legally
recognized contract agreement in order to avoid this kind of
situations. Such a protocol could discourage the potential
volunteers. It could also create confusion between volunteers
and professional workers.

Finally, another bias that could possibly appear is the
preference for the most rewarding offers at the expense of
the smaller ones. Even if rewards are calculated based on the
efforts needed for their fulfillment, the least demanding
offers could be discouraging because of the external efforts it
can imply.

In this paper, we discuss many use cases where DLT
could have a disruptive effect compared to our current
applications. The main aspect is the focus on removing the
need of a trusted intermediary in different kind of exchanges
(monetary, intellectual property, assets management).
However, we already have and use solutions daily to tackle
this kind of scenario. And problems that come from theses
scenario are usually not linked to a lack of trust in the
intermediary. In our financial system, the vast majority of

population trusts the banks and does not need any kind of
censorship resistant money that would require users to
engage more time and energy than what we currently have
for quite a similar result. Moreover, the crypto-currencies
based on blockchains as we design them today are not
compatible with the functioning of the financial system
based on debt and monetary creation. It would require either
a huge adaptation from the financial system to fully embrace
crypto currencies based on blockchain (which is highly
unlikely) or a transformation in the paradigm we use to
design crypto currencies and therefore, would result in the
loss of what made a huge part of their interest: being a digital
cash. Another interesting feature of smart contracts is the
automation level they can provide. Yet, this level of
automation is also available in our current systems when
based on an external trusted authority. DLT could only
enable the deletion of this intermediary but not actually
creating new processes.

Not to be fully negative on the subject, we can foresee
interesting use cases concerning bookkeeping and trace-
ability. DLT may reveal themselves interesting when it
comes to store important and non sensible data in an
immutable way for an extended amount of time for example.
Private blockchains could also be put in use to synchronize
swarms of machine working together independently and not
requiring a centralized synchronization. But even if the
problems we approach today using DLT are “non-problems”,
it is still an interesting field of research as we need time to
explore the full capabilities of this relatively new technology.

VII. CONCLUSION

Care of elderly is an important and sensitive topic, which
raises many and various concerns. The need for care will
grow and volunteering will have to take part in this care in
order to maintain reasonable costs for the society, as well as
a sufficient level of services. A service to establish contact
between people needing help and people willing to volunteer
therefore is well motivated. This kind of system creates
mutual agreements between users not necessarily knowing
each other and can therefore take advantage of DLT.

Smart contracts are most efficient with on-chain
agreements but show limitations when interfacing with
outside-chain events. Interfacing with such events requires
additional control points during the course of the agreements,
to keep consensus between users. This reduces the interest in
comparison with traditional, often centralized, systems
between non-professional users.

In conclusion, the system described here still benefits
from inherent DLT advantages, such as a high level of
decentralization, thus a high availability, and strong data
consistency. These advantages make it interesting to develop
the possible links between blockchains and the outside world
to allow for a higher level of automation and distribution of
services such as collaborative care.

VIII. FUTURE WORK

This proof-of-concept system and prototype would be
required to be evaluated with real users, first in small scale
through participatory design and then in larger scale to

100

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ensure statistical certainty of results. The current project can
be seen as a feasibility study to pave the way for this future
work that would require more extensive resources.

The next development step in this project would consist
in working on a new agreement protocol that could for
example, involve a third-party user of the system to settle
and confirm or not the task execution. This could be
associated with an appreciation system working both ways:
the elderly user evaluates the service he received in terms of
motivation or punctuality (the goal is not to judge the skills)
while volunteers could rate the offer description accuracy
and the reception received. By adding a rating system for
both tasks and users, it should motivate users to provide a
quality service and filter abusive users or at least point them
out. Using smart contracts, we can imagine to automatically
suspending accounts who received a very bad appreciation in
order to clarify the situation with the authority running the
service.

We could also think of adding more filters to offers based
on the elderly user preferences and needs: for example, some
tasks may require a valid driving license that can be
authenticated at registration: then, only users with a valid
driving license would be able to see and commit to these
offers. One last feature that can be investigated is a bidding
system allowing volunteers to compete on committing to an
offer and, therefore, not base the system on a first-come, first
serve model. This would probably allow a selection focused
more on the volunteer motivation.

A future step would also be to include more in-life
elements, starting with paper wallets in order to authenticate
users for the first meeting or while claiming a reward. Offer
passwords, needed to claim the offer, shortly evoked in the
precedent paragraph taking the form of matrix bar-code only
readable by the mobile application could be used as a proof
of the meeting while complicating frauds.

Finally, the concepts of utilizing IOTA tangles (iota.org)
or the Swirld platform (swirlds.com) to replace blockchains
as mechanisms to implement trust and data sharing needs to
be further investigated. These could mitigate the inherent
problems with many of the popular blockchains used today,
such as scalability and performance issues.

IX. ACKNOWLEDGMENTS

This work was sponsored by Vinnova and supported by
Ericsson Research in Luleå through the academy-industry
exchange project Concedo. The work has previously been
published in a shorter paper at UBICOMM 2017 [1].

REFERENCES

[1] E. Bai and K. Synnes, “A Reward System for Collaborative

Care of Elderly based on Distributed Ledger Technologies”,
In the proceedings of the Eleventh International Conference
on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM), November 12-16, 2017,
Barcelona, Spain , [ed] IARIA, ISSN: 2308-4278, ISBN: 978-
1-61208-598-2.

[2] P. M. Office, “Future challenges for Sweden”, 2013, [Online],
Available:

http://www.regeringen.se/49b6cf/contentassets/389793d478de
411fbc83d8f512cb5013/future-challenges-for-sweden--final-
report-of-the-commission-on-the-future-of-sweden,
[retrieved: 10, 2017].

[3] U. N. D. of Economic and S. A. P. Division, “World
population ageing 2015”, 2015, [Online], Available:
http://www.un.org/en/development/desa/population/publicatio
ns/pdf/ageing/WPA2015_Report.pdf, [retrieved: 10, 2017].

[4] UK Government, Office for Science, “Distributed Ledger
Technology: beyond blockchain”, 2016, [Online], Available:
http://www.ameda.org.eg/files/gs-16-1-distributed-ledger-
technology.pdf, [retrieved: 09, 2017].

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system”, 2008, [Online], Available:
http://bitcoin.org/bitcoin.pdf, [retrieved: 09, 2017].

[6] www.blockchain.info, “Confirmed transactions per day”,
[Online], Available: https://blockchain.info/charts/n-
transactions [retrieved: 09, 2017].

[7] “Peercoin - Secure & Sustainable Cryptocoin.”, edited 2018,
[Online], Available: https://peercoin.net/, [retrieved: 02,
2018].

[8] "PoET 1.0 Specification”, edited 2017, [Online], Available:
https://sawtooth.hyperledger.org/docs/core/releases/latest/arch
itecture/poet.html, [retrieved: 02, 2018].

[9] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D.
Middleton, and C. Montgomery, "Sawtooth: An
Introduction", 2018, [Online], Available:
https://www.hyperledger.org/wp-
content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.
pdf, [retrieved: 02, 2018].

[10] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, "Zcash
Protocol Specifcation", edited 2018, [Online], Available:
https://github.com/zcash/zips/blob/master/protocol/protocol.p
df, [retrieved: 02,2018].

[11] V. Buterin, “A next-generation smart contract and
decentralized application platform”, 2013, [Online],
Available: https://github.com/ethereum/wiki/wiki/White-
Paper, [retrieved: 09, 2017].

[12] Iroha, “White Paper”, 2016, [Online], Available:
https://github.com/hyperledger/iroha/blob/master/docs/iroha_
whitepaper.md , [retrieved: 09, 2017].

[13] Ripple, “Solution Overview”, 2013,[Online], Available:
https://ripple.com/files/ripple_solutions_guide.pdf, [retrieved:
09, 2017].

[14] “Welcome to Hyperledger Fabric”, edited 2017, [Online],
Available: https://hyperledger-fabric.readthedocs.io/en/latest/,
[retrieved: 09,2017].

[15] “The Monax Platform”, edited: 2017, [Online], Available:
https://monax.io/platform/, [retrieved: 09, 2017].

[16] “Openchain - Blockchain Technology for the Enterprise”,
edited: 2017, [Online], Available:
https://www.openchain.org/, [retrieved: 09,2017].

[17] G. Greenspan, “MultiChain Private Blockchain — White
Paper”, 2015, [Online], Available:
https://www.multichain.com/white-paper/, [retrieved: 09,
2017].

[18] N. Szabo, “Smart Contracts: Building Blocks for Digital
Markets,” 1996.

[19] G. Greenspan, “Why many smart contract use cases are
simply impossible”, 2016, [Online], Available:
https://www.coindesk.com/three-smart-contract-
misconceptions/, [retrieved: 09, 2017].

[20] “Involver – Social Volunteering”, 2015, [Online], Available:
www.getinvolver.com, [retrieved: 09, 2017].

[21] A. Marczewski, “Gamification: a simple introduction”, 2013,
[Online], Available:

101

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

https://books.google.se/books?id=IOu9kPjlndYC, [retrieved:
09, 2017].

[22] K. Huotari and J. Hamari, “Defining gamification: a service
marketing perspective”, in Proceeding of the 16th
International Academic MindTrek Conference, ser. MindTrek
’12. New York, NY, USA: ACM, 2012, pp. 17–22,
doi:10.1145/2393132.2393137.

[23] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From
game design elements to gamefulness: Defining
gamification”, in Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media
Environments, ser. MindTrek ’11. New York, NY, USA:
ACM, 2011, pp. 9–15, doi:10.1145/2181037.2181040.

[24] “Duolinguo”, edited 2017, [Online], Available:
https://www.duolingo.com/, [retrieved: 09, 2017].

[25] “Fitocracy”, edited 2017, [Online], Available:
https://www.fitocracy.com/, [retrieved: 09, 2017].

[26] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification
work? – a literature review of empirical studies on
gamification”, in the 47th Hawaii International Conference on
System Sciences, Jan 2014, pp. 3025–3034.

[27] M. H. Phillips and L. C. Phillips, “Volunteer motivation and
reward preference: an empirical study of volunteerism in a
large, not-for-profit organization”, SAM Advanced
Management Journal, 2010, pp. 12–19.

[28] Wikipedia, the free encyclopedia, “Wikipedia:Barnstars”,
2004, [Online], Available:

https://en.wikipedia.org/wiki/Wikipedia:Barnstars, [retrieved:
09, 2017].

[29] “Foursquare”, edited 2017, [Online], Available:
https://www.foursquare.com, [retrieved: 09, 2017].

[30] “X Box Live”, edited: 2017, [Online], Available:
https://www.xbox.com/en-US/live, [retrieved: 09, 2017].

[31] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec,
“Steering user behavior with badges”, in Proceedings of the
22Nd International Conference on World Wide Web, ser.
WWW ’13. New York, NY, USA: ACM, 2013, pp. 95–106,
doi:10.1145/2488388.2488398.

[32] M. Montola, T. Nummenmaa, A. Lucero, M. Boberg, and H.
Korhonen, “Applying game achievement systems to enhance
user experience in a photo sharing service,” in Proceedings of
the 13th International MindTrek Conference: Everyday Life
in the Ubiquitous Era, ser. MindTrek ’09. New York, NY,
USA: ACM, 2009, pp. 94–97 doi :10.1145/1621841.1621859.

[33] J. Hamari and V. Eranti, “Framework for Designing and
Evaluating Game Achievements,” in Proceedings of DiGRA
2011 Conference: Think Design Play, 2011, [Online],
Available: http://www.digra.org/wp-content/uploads/digital-
library/11307.59151.pdf, [retrieved: 09, 2017].

[34] “The solidity programming language”, 2015, [Online],
Available: https://github.com/ethereum/wiki/wiki/The-
Solidity-Programming-Language, [retrieved: 09, 2017].

102

International Journal on Advances in Life Sciences, vol 10 no 1 & 2, year 2018, http://www.iariajournals.org/life_sciences/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

