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Abstract—The paper presents a statistical process control method
for monitoring health-recovery processes described by short non-
stationary time series. The Shewhart control chart for residuals,
based on model averaging approach, is built for differences
between values of consecutive observations. The practical ap-
plicability of this new approach has been demonstrated using a
real-life example of a recovery from a mild hypertension episode.
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I. INTRODUCTION

This paper is a significant extension of the conference
paper “Monitoring of Health-Recovery Processes with Control
Charts” presented in the Proceedings of ACCSE’2017 confer-
ence, held in Venice, Italy [1], and is focused on monitoring
of the stability of non-stationary processes. Stability is an
important feature of many processes. A process is considered
stable, or under control, when its uncontrolled variation is
purely random (e.g., due to random measurement errors). In
1924 W. Shewhart introduced a simple tool for monitoring
stable processes - a control chart. In its initial stage, which
is assumed to be in-control, monitored process characteristics
are measured, and their mean value and standard deviation are
recorded. These recorded values are used for the design of
a control chart, known as the Shewhart control chart, which
consists of control lines: central, and two (or one, when only
deviation of a process level in one direction is interesting)
control. The central line represents the mean value of the
process level (or a certain target value for this process), and
control lines are located at three standard deviations from a
central line. The process is considered stable when its future
observations are located inside control lines (limits). When an
observation falls outside the control lines, an alarm signal is
generated, and the process is considered as being possibly out
of control (unstable). When a monitored process goes out of
control, it is recommended to look for the reason of this, and
take appropriate actions with the aim to revert it to the in-
control state.

Within this paper, we discuss the construction of a control
chart for autocorrelated and non-stationary processes. In the
experimental part, we extend the results presented in [1],
and related to a special kind of medical data, namely data
describing health-recovery processes.

A. Monitoring of health-recovery processes
For many years, physicians have been prescribing certain

treatments, and advances in the health recovery of a treated
patient have been monitored during visits, e.g., in health care
units. Therefore, possible failures of applied treatments were

usually disclosed with delay. In many cases, such delays have
had detrimental effects on patient’s health. However, with the
development of e-health systems based on telemedicine this
situation has been dramatically changed. Nowadays, it is pos-
sible to monitor the state of patient’s health even continuously.
However, the main problem now is not related to measurements
and transmission of data, but to processing of available infor-
mation. When human’s life is endangered, very expensive sys-
tems, e.g., in intensive care hospital units, are used. However,
in many cases, the usage of all those sophisticated Information
Technology (IT) systems is not necessary. It is quite sufficient
to process data off-line, and to signal only these cases when
consultancy or intervention of a physician is really needed.
What is important in this context, it is the stability of health-
recovery processes, understood as non-existence of abnormal
and unpredictable changes of the monitored process. It has to
be noted here, that an unstable process may be still inside some
“normal limits”, pre-established by physicians, but its revealed
instability suggests the possibility of going beyond such limits.
Monitoring of such stability can be achieved by the usage of
appropriately designed control charts. The proposal of such
monitoring processes, based on a control chart for so called
residuals, is the main purpose of this paper.

It has to be noted here that the design of monitoring
procedures, such as these related to health care, has to fulfill
two conflicting requirements. A procedure has to be designed
using an appropriate mathematical model of a monitored
process, but on the other hand, it has to be simple to use, and
the results of this procedure have to be easily interpreted, even
by users without any special statistical training. This conflict
is especially visible in monitoring health-related processes.
For example, processes continuously monitored in intensive
care units, or processes monitored by wearable sensors, are
very complex, because their mathematical models have to take
into account many different circumstances, such like natural
24-hours variability or drug administration. Unfortunately,
monitoring procedures based on such complex mathematical
models, if not fully automated, are very difficult to interpret. In
this paper we consider a particular case when a mathematical
model is still relatively simple, but the results of its application
are much easier for interpretation. By taking this assumption
we restrict applicability of the proposed procedure to cases, in
which measurements are made in comparable circumstances,
e.g., once a day at the same time.

B. Real-life example of a health-recovery process
The experimental part of this paper is a case study. Daily

recordings of blood pressure (BP) for a period of 480 days of a
patient who is under treatment against mild blood hypertension
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are analyzed and discussed. In Figure 1, we present the
considered process of one-a-day BP measurements.

Figure 1. Measurements of blood pressure.

In the case of health-related time series data underlying
processes are often non-stationary and correlated, and there-
fore, proper establishment of control limits is challenging. This
paper investigates this problem.

C. Related work
Basic control charts, used in over 90% practical applica-

tions, are designed under two main assumptions: statistical
independence of consecutive observations, and the normal
distribution of measured characteristics. However, in many
practical cases, especially when individual process observa-
tions are monitored, these assumptions are not fulfilled. Thus,
in the recent 40 years, many inspection procedures that do
not rely on these assumptions have been proposed. They are
usually described in scientific journal papers or in a few
textbooks on statistical quality control, such as a famous book
of Montgomery [2]. They have been applied in many areas, but
only some of them have been applied in health-related services,
and similar applications, where their applicability seems to be
quite natural. One of these natural applications, monitoring
of health-recovery processes, has been described in [1]. A
comprehensive review of other applications of control charts
in health-care and public-health surveillance, written from a
perspective of a quality control specialist, can be found in the
paper by Woodall [3]. Similar review papers, but written from a
perspective of a health care specialist, were written by Tennant
et al. [4], Thor et al. [5], and Winkel and Zhang [6]. Since the
time of the publication of these papers, many other papers on
this topic have been published, mainly in journals related to
medicine.

Despite real popularity of control charts in many areas,
such as industry, finance and business, the number of their
applications in health care is relatively small. Probably the
main reason for this situation was given by the authors of [4]
who wrote in their conclusions “Control charts appear to have
a promising but largely under-researched role in monitoring
clinical variables in individual patients”. However, the situation
has been changed during the last few years. In their editorial
titled “Statistical process control in healthcare improvement -
new kid on the block?”, and published in a recent issue of Acta
Anaesthesiologica Scandinavica, Møller and Anhøj [7] have
written that the yearly number of PubMed citations including
the term “statistical process control” in any field has increased
from a level of 10 in 2010 to the level of 90 in 2018. If
we take a perspective of a statistician, a probable reason of
this situation is incompatibility of basic assumptions used for
construction of statistical process control (SPC) tools, such as

control charts, and the reality of health care. For example,
consecutive observations of health-related characteristics are
seldom independent. Moreover, they are often described by
non-stationary random processes, and the runs of interesting
observations are short. Therefore, control charts described
in popular textbooks, and in the great majority of scientific
papers, are not appropriate for monitoring such processes, and
the results of using such charts may be unsatisfactory. Some
new, more appropriate, approaches have been investigated
quite recently. For example, the properties of control charts
used for short runs for autocorrelated, but stationary, data have
been discussed in [8].

First research papers on applications of statistical process
control in cardiology have been published already in the
1990’s. For example, G. Cornélissen et al. [9] use control
charts to monitor blood pressure and heart rate for individ-
ualized assessment of a patient’s response to a drug. Another
application of control charts in monitoring of blood pressure
has been proposed recently in the paper by Albloushi et al.
[10]. Furthermore, benefits of applications of control charts in
cardiology are constantly being confirmed by several papers
on this topic published each year. For example, see the recent
paper of Jung and Kim [11], who introduced an electrocardio-
graphic (ECG) monitoring procedure for diagnosing PVC beats
using a wavelet-based statistical process control methodology,
or the paper of Lambeth et al. [12], who adapted the statistical
process control methods to monitor the stability of admission
temperature and glucose-level processes for the very low birth-
weight infants within first hour of birth at a neonatal intensive
care unit (NICU).

The paper is organized as follows. In Section II, we
describe a mathematical model of a stochastic process (a time
series) that may be useful for the description of health-recovery
data. Then, in Section III, we propose a control chart based
procedure that may be used for monitoring non-stationary
health-recovery processes. The problem of the monitoring of
short time series using the sXWAM chart, proposed by us in
[13], is considered in Section IV. In Section V, results for the
real-life health-recovery process are presented and discussed.
The paper is concluded in its last section, where we discuss
limitations of the proposed methodology, and indicate some
possible future applications.

II. MATHEMATICAL MODEL OF A MONITORED PROCESS

Series of dependent observations may be described by
many mathematical models. When the expected value (the
mean), the variance, and the covariances of the underlying
process are constant in time, we call such processes stationary.
When these statistical characteristics vary in time (e.g., accord-
ing to a certain trend function) we call such processes non-
stationary. Statistical methods of the analysis of time series,
both stationary and non-stationary, can be found in many
textbooks, such as, e.g., the book by Brockwell and Davis
[14].

Simple visual analysis of the considered data (Fig. 1)
reveals the existence of a visible trend. Thus, this time se-
ries cannot be described by a simple mathematical model.
There are formal ways, namely statistical tests, to verify
stationarity of a time series. One of the most powerful tests,
the Kwiatkowski-Philips-Schmidt-Shin (KPSS) test, was in-
troduced by Kwiatkowski et al. [15], and enables testing the
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null hypothesis of stationarity, either around a level or around
a linear trend, against the alternative of a unit root. For the
considered exemplary time series, the value of the KPSS
statistic amounts to 2.9737 and its related p-value is smaller
than 0.01. Basing on this result, we reject the null hypothesis
of stationarity, concluding that the considered time series is
non-stationary.

However, there exists a large class of non-stationary pro-
cesses that can be transformed to stationary processes, which
are much easier for analysis. An important member of this
class of non-stationary time series can be described by the
Autoregressive Integrated Moving Average (ARIMA) model,
introduced in the seminal book by Box and Jenkins [16]. For
an ARIMA non-stationary process of first order, differences
between consecutive observations are described by a stationary
Autoregressive Moving Average (ARMA) process. The time
series {Xt} is ARMA(p,q) process if {Xt} is stationary and
if for every t [14],

Xt−φ1Xt−1− · · · −φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q,
(1)

where {Zt} is a purely random (white noise) process of uncor-
related observations having null expected values and the same
finite variances, and the polynomials (1−φ1z−· · ·−φpzp) and
(1+θ1z+· · ·+θqzq) have no common factors. The special case
of the ARMA(p,q) model is the autoregression model AR(p)
defined by the following equation

Xt − φ1Xt−1 − · · · − φpXt−p = Zt. (2)

When the process {Zt} has a certain non-zero, and constant
in time, expected value µ, the model described by (2) has to
be slightly modified, and in this case has the following form

Xt − µ− φ1Xt−1 − · · · − φpXt−p = Zt. (3)

Now, let us look at Figure 2, where differences between
the values of consecutive observations of the process presented
in Figure 1 are displayed.

Figure 2. Differences between consecutive measurements.

Basing on visual inspection, the process displayed in
Figure 2 looks stationary. The statistical tests also confirm
its stationarity. The KPSS statistic is 0.0107, and the p-
value amounts to 0.1, thus there are no reasons to reject
the null hypothesis of stationarity. Hence, we can conclude
that this time series is stationary, and may be well de-
scribed by an autoregression process of the fourth order
AR(−0.862,−0.713,−0.358,−0.207). The constant term µ
in this case is close to zero, and equal to −0.085. Therefore,
this real-life example has motivated us to consider in this paper
time series described by models of a similar type.

Let X1, X2, . . . , Xn be a series of measurements obtained
during a period of time when a monitored process may be
considered (e.g., according to a physician who supervises the
treatment) as stable. The process of first differences is now
defined as follows: Di = Xi+1 − Xi, i = 1, . . . , n − 1. We
assume the ith difference is related to the previous observations
according to the equation

Di = µ+a1∗di−1+a2∗di−2+· · ·+ap∗di−p+εi, i = p+1, . . . ,
(4)

where εi, i = p + 1, . . . are normally distributed independent
random variables with the expected value equal to zero, and
the same finite standard deviation.

Estimation of the model AR(p), given by (4), is relatively
simple when we know the order of the model p. In order to
find estimators â1, . . . , âp, we have to calculate first p sample
autocorrelations r1, r2, . . . , rp, defined as

ri =
n
∑n−i

t=1 (dt − µ̂)(dt+i − µ̂)

(n− i)
∑n

t=1(dt − µ̂)2
, i = 1, . . . , p, (5)

where n is the number of observations in the sample (usually,
it is assumed that n ≥ 4p), and µ̂ is the sample average. Then,
the parameters a1, . . . , ap of the AR(p) model are calculated
by solving the Yule-Walker equations (see, [14])

r1 = a1 + a2r1 + . . .+ aprp−1

r2 = a1r1 + a2 + . . .+ aprp−2

. . .
rp = a1rp−1 + a2rp−2 + . . .+ ap

(6)

When a more general model of the AR process (3) has to be
used, the constant term µ may be estimated using the following
equation

µ̂ = x̄(1− a1 − · · · − ap), (7)

where x̄ denotes the average of the observed process values.

The estimators obtained by solving the Yule-Walker equa-
tions are, unfortunately, not numerically stable, especially for
small sample sizes. A better method was proposed by Burg.
A good description of Burg’s algorithm can be found in [17].
Burg’s algorithm is used to solve the following optimization
problem: for the set of observations x1, . . . , xN find the values
a∗1, . . . , a

∗
k that minimize Fk defined as

Fk =

N∑
n=k

(xn − (−
k∑

i=1

aixn−i))
2 (8)

The estimators of the AR(p) model given by (2) are obtained
by setting k = p,N = n, xi = di, i = 1, . . . , n − 1,
and âi = −a∗i , i = 1, . . . , p. Note, that in this formulation
of the optimization problem we do not use a constant term
µ. Therefore, the models estimated using the Yule-Walker
equations (moment estimators), and the models estimated using
Burg’s algorithm, may be different.

In both presented methods for the estimation of the AR
model we have assumed that the model order p is known in
advance. In practice, however, we do not know the order of the
autoregression process, so we need to estimate p from data.
In order to do this, we define a transformed random variable,
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called the residual. In the case of autoregression processes,
considered in this paper, the residual is defined as

Zi = Di− (µ̂+a1di−1 + . . .+apdi−p), i = p+1, . . . , n. (9)

When we know exactly the autoregression model, the proba-
bility distribution of residuals is the same as the distribution
of random variables εi, i = 1, . . . in (2), and its variance
can be used as a measure of the accuracy of predictions of
future values of the process. For given sample data of size
n, the variance of residuals is decreasing with the increasing
values of p. However, the estimates of p model’s parameters
a1, . . . , ap become less precise, and thus the overall precision
of prediction with future data deteriorates. As the remedy
to this effect, several optimization criteria with a penalty
factor, which discourages the fitting of models with too many
parameters, have been proposed. In this research we have used
the criterion proposed by Akaike [18], and defined as

BIC = (n− p) ln[nσ̂2/(n− p)] + n(1 + ln
√

2π)+
p ln[(

∑n
t=1 d

2
t − nσ̂2)/p],

(10)
where dt are our transformed process observations centered in
such a way that their expected values are equal to zero, and
σ̂2 is the observed variance of residuals. The fitted model, i.e.,
the estimated order p and parameters of the model â1, . . . , âp
(and µ̂, if a constant term is used) minimizes the value of BIC
calculated according to (10). We will use this model in the
construction of a control chart for monitoring health-recovery
processes.

III. CONTROL CHART FOR PROCESS MONITORING WITH
AUTOCORRELATED DATA

A. Design of a chart
The design of a simple Shewhart control chart, in the

case of a sufficiently large number of individual and mutually
independent observations, is extremely simple. One has to
collect data (a sample) from a period when the monitored
process is stable, calculate average value x̄ and standard
deviation σx, and set the control limits, upper (CUP) and lower
(CLO), to

CUP = x̄+ 3σx
CLO = x̄− 3σx.

(11)

When process deterioration is related only to increase (de-
crease) of a process level, one can use one-sided control charts
with respective upper (lower) control limits. Usually, it is as-
sumed that the monitored characteristic is normally distributed,
and in this case the probability of observing the observation
outside one control limit when the monitored process is stable
(i.e., observing a false alarm) is very low, and equals 0.00135.
It means, that the expected number of observations between
consecutive false alarms is equal approximately to 740 (for a
one-sided chart), or to 370 (for a two-sided chart).

When consecutive observations of a monitored process
are statistically dependent, the situation becomes much more
complicated. For example, when sample data are autocorre-
lated, the properties of a control chart designed using a simple
algorithm described above may be completely different from
those observed for independent data. Consider, for example, a
Shewhart control chart constructed using the results of first 20
measurements, and presented in Figure 3.

Figure 3. Control chart for original measurements.

In this case we use the chart with only an upper control
limit because alarms should be triggered only by abrupt
increases of blood tension. If we look at Figure 3 we may
immediately notice that the charted values of measurements
are rather far from the upper control limit. Moreover, the
difference between the observed process level and the control
limit increases in time. Therefore, the ability of the chart to
trigger an alarm deteriorates in time, and for this reason the
chart constructed using a classical way becomes useless.

The problem presented in Figure 3 is frequently observed
when charted data are autocorrelated, as it is the case of
our measurements. To cope with this problem, statisticians
have proposed two general approaches. In the first one, we
chart the original data, but control limits are adjusted using
the knowledge about the type of dependence. In the second
general approach, originally introduced by Alwan and Roberts
[19], a control chart is used for monitoring residuals. Their
methodology is applicable for any class of processes, so it is
also applicable for the autoregression process of differences
Di considered in this paper. According to the methodology
proposed by Alwan and Roberts [19], the deterministic part of
(2) or (3) is estimated from sample data of n elements, and
used for the calculation of residuals according to (9). Then,
these residuals are used for the construction of our control
chart according to the algorithm described above.

It is worth noticing that the Shewhart control chart for
individual observations, also known as the X chart, is not the
only control chart used for monitoring stability of monitored
processes. However, it is the simplest one. Moreover, it is easy
to interpret by non-specialists. This second feature seems to
us very important if we have to use it in a simple health-care
monitoring procedure.

B. Operating procedure
Operating procedure of the proposed control chart for resid-

uals, applied for differences between consecutive observations
of the monitored process, is the same as in the case of a
classical Shewhart control chart. Using the estimated process
model, we calculate the predicted value of the difference be-
tween the next two observations of the monitored process. An
alarm signal is generated when an observed residual (difference
between an observed and predicted values) falls beyond control
lines. In Figure 5, we present a one-sided (with an upper
control limit) control chart for residuals calculated for the
process of differences between consecutive measurements of
blood pressure displayed in Figure 1. The model of the process
of differences Di was estimated using first 20 observations of
the monitored process of blood pressure measurements. Let us
start our analysis from the case when residuals are calculated
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using the model estimated from the Yule-Walker equations.
The estimated model is the AR model of the fourth order
AR(−0.9062,−0.6613,−0.1419,−0.0955) with the constant
µ equal to 0.2953. The sample residuals calculated using
this model have the mean value equal to 0.63, and standard
deviation equal to 6.575. Hence, the upper control limit of the
Shewhart control chart is equal to 20.356, and this chart is
presented in Figure 4. The residuals displayed in Figure 4 are
only slightly autocorrelated (ρ(1) = 0.087), so the estimated
model well describes the considered model. However, sam-
ple residuals are moderately autocorrelated (ρ(1) = 0.431).
Therefore, the parameters of the designed Shewhart control
chart may be improved.

Figure 4. Control chart for first differences.

When the process model is estimated using Burg’s al-
gorithm the designed control chart is very similar. We
have found that in this case the considered autoregres-
sion process is represented by the set of four parameters
(−0.987,−0.805,−0.217,−0.133). Then, residuals calculated
for differences D5, . . . , D19 have been used for the design of
a control chart with the upper control limit equal to 20.29.
The estimated model has been used for the calculation of
residuals related to the next 80 observations. These residuals
are displayed on the control chart. We can see that the
monitored process seems to be under control, as all calculated
residuals are located below the upper control limit.

Figure 5. Control chart for residuals of differences of the first order related
to measurements of blood pressure (Burg’s method of prediction).

In comparison to a classical control chart for original ob-
servations, a control chart for residuals of differences has one
important disadvantage: self-adaptation to a changed pattern
of data. In order to explain this feature, let us transform our
exemplary data by adding 20 to each observation starting from
the 10th. The control chart in this case is presented in Figure
6.

From Figure 6, we can see that starting from the 10th
point until the 12th point on the chart the values of displayed
residuals sharply increase, but do not exceed the control limit.
Later on, the process has returned to the previous level. It
means that our chart is able to detect shifts of the monitored

process only immediately after the jump. This is in sharp
contrast to the classical Shewhart control chart (if it can
be applied), where all data points observed after the shift
indicate the deterioration of the monitored process. Thus, if
the alarm is not generated immediately, it will be generated in
the future quite randomly, despite the obvious deterioration of
the monitored process. Therefore, we have to add an additional
mechanism that will increase the probability of detection just
after the shift.

Figure 6. Control chart for residuals of differences of the first order related
to measurements of blood pressure with a shifted process level,(Burg’s

method of prediction).

One of possible solutions of the problem mentioned above
is to use an additional control chart. It can be a control chart
for residuals calculated for second order differences defined
as D2i = Xi+2 − Xi. The methodology for the design of
this chart is exactly the same as that already described in this
paper. Additional advantage of this approach is due to a fact
that differences of the second order decrease or even cancel the
impact of short cycles in the observed time series. A “weak”
alarm signal is generated if it is generated on only one of
these two charts. A “strong” alarm signal, that detects possible
persistent deterioration, is generated when two consecutive
points on the second chart are located beyond its control limits.

In our numerical example of shifted data, the model of the
time series of differences of the second order, estimated from
the sample of 20 observations, is the autoregression process of
the second order AR(−0.444,−0.555). Using this model, we
can calculate residuals and design a respective control chart,
presented in Figure 7. We can see that in the case of this
control chart, deterioration of the process has been revealed
with a delay of one measurement. Thus, if we have used both
charts, we would detect the change of the process.

Figure 7. Control chart for residuals of differences of the second order
related to measurements of blood pressure with a shifted process level

(Burg’s method of prediction).

Another possible solution, which is simpler for imple-
mentation, but theoretically less justified, is to calculate an
additional residual as the difference between the observed
difference of the second order and the predicted difference
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of the first order, but calculated for the previous observation,
and to plot the maximum of these two residuals on the chart
designed for the case of differences of the first order. A “weak”
alarm is generated when a point on the chart is located beyond
the control limits. For a “strong” alarm it is necessary to
observe at least two consecutive points on the chart situated
beyond the control limits.

It has to be stressed here, that the proposed procedures
are based on rather heuristic reasoning, based on observations
of a particular series of measurements. Unfortunately, closed
mathematical formulae that describe statistical properties of
a control chart when observed values of measurements are
statistically dependent, as for now, do not exist (except for
the simplest cases). Therefore, the properties of the proposed
procedures have to be investigated in the future using complex
simulation experiments.

IV. USING THE SXWAM CONTROL CHART FOR SHORT
PROCESS RUNS

One of the most important characteristics of a control chart
is its rate of false alarms. An alarm is considered false if it
is generated in a period of time when a monitored process
is stable. False alarm rate is usually accompanied with good
abilities to detect process disorders, so if this falsity does not
lead to serious consequences, higher false alarm rates may
be considered acceptable. However, when an alarm cannot be
neglected because of its serious consequences, the false alarm
rate should be very low. For example, in certain pharmaceutical
production processes an alarm should trigger a stop of a
process, and this may be very costly if the triggering alarm
is false. In the case of a stable process, described by the
model AR(−0.987,−0.805,−0.217.− 0.133) estimated from
a sample of n = 20 observations, a chart presented in Figure
8 exhibits two false alarms.

Figure 8. Control chart for residuals with two false alarms.

It has been observed by many authors (see [8], for more
information) that control charts for autocorrelated data, es-
pecially those designed using small samples of observations,
have elevated false alarm rates. Hryniewicz and Kaczmarek-
Majer [8] have noted that this rather unfavorable property
is somewhat related to the problem of bad predictability in
short time series. Inspired by the very good properties of their
prediction algorithm for short time series [20], they proposed
in [8] a new control chart for residuals, named the XWAM
control chart, based on the concept of model averaging.

Let us denote by M0 the model of a monitored process
estimated from a (usually) small sample, and describe its
parameters by a vector (a1,0, . . . .ap0,0). We assign to this
estimated model a certain weight w0 ∈ [0, 1]. We also consider
k alternative models Mj , j = 1, . . . , k, each described by a

vector of parameters (a01,j , . . . , a
0
pj ,j

). In general, any model
with known parameters can be used as an alternative one,
but in this paper we restrict ourselves to the models chosen
according to an extended version of the algorithm described
in [13]. Let w

′

1, . . . , w
′

k denote the weights assigned to models
M1, . . . ,Mk by this algorithm when only alternative models
are considered. Because the total weight of the chosen alter-
native models is 1 − w0, to the estimated model we assign
the weight w0, and to each chosen alternative model we will
assign a weight wj = (1− w0)w

′

j , j = 1, . . . , k.
When we model our process using k+ 1 models (one esti-

mated from data, and k alternatives) each process observation
generates k+1 residuals. In the case of differences of the first
order considered in this paper, they are calculated using the
following formula

zi,j = di − (µ+ a1,jdi−1 + . . .+ apj ,jdi−pj ),
j = 0, . . . , k; i = pj + 1, . . . .

(12)

In (12), we have assumed that for a model with pj , j =
0, . . . , k parameters we need exactly pj previous consecutive
observations in order to calculate the first residual. Therefore,
we need imin = max(p0, . . . , pk) + 1 observations for the
calculation of all residuals in the sample. For the calculation of
the parameters of the XWAM control chart we use n−imin+1
weighted residuals calculated from the formula

z?i =

k∑
j=0

wjzi,j , i = imin, . . . , n. (13)

The central line of the chart is calculated as the mean of
z?i , and the control limits are equal to the mean plus/minus
three standard deviations of z?i , respectively. The operation
of the XWAM control chart is a classical one. First decision
is made after imin observations. The weighted residual for
the considered observation is calculated according to (13), and
compared to the control limits. An alarm is generated when
the weighted residual falls beyond the control limits.

The method for the construction of the XWAM chart
was firstly proposed by Hryniewicz and Kaczmarek in [8]
where they proposed an algorithm for the calculation of the
weights of alternative models. This algorithm is based on the
methods of computational intelligence, namely the DTW (Dy-
namic Time Warping) algorithm for comparison of time series.
Unfortunately, this algorithm is computationally demanding,
so in [13] they proposed its simplification, coined as the
sXWAM (simplified XWAM). In this approach, Hryniewicz
and Kaczmarek proposed not to compare original time series
(observed and alternative), but their summarizations in terms of
the autocorrelation functions of the pth order. Let r1, r2, . . . , rp
be the consecutive p values of the sample autocorrelation func-
tion, calculated using (5). Similarly, let r1,i, r2,i, . . . , rp,i, i =
1, . . . , J be the consecutive p values of the autocorrelation
function of an alternative model. For given parameters of the
alternative autoregression process a1,i, . . . , ap,i, i = 1, . . . , J
the values of r1,i, r(2, i), . . . , rp,i, i = 1, . . . , J can be found
by solving the Yule - Walker equations (6). In general, the
consecutive values of rp can be computed using the following
recursion equation

rp = a1rp−1 + a2rp−2 + · · ·+ ap (14)
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Just like in [13], in this paper we consider only processes
of the maximum fourth order. In such a case, explicit formulae
for the first three autoregression coefficients are the following
[13]:

r1 = A1, (15)

r2 = a1A1 + a2, (16)

r3 =
a1B1 + a3 + (a2 + a4)(A1 +A2B1)

1− a1B2 − (a2 + a4)(A2B2 +A3)
, (17)

where
A1 =

a1
1− a2

, (18)

A2 =
a3

1− a2
, (19)

A3 =
a4

1− a2
, (20)

B1 =
A1(a1 + a3) + a2

1− (a1 + a3)A2 − a4
, (21)

B2 =
A3(a1 + a3)

1− (a1 + a3)A2 − a4
. (22)

Hence, the consecutive values of r4, r5, . . . can be directly
computed from (14).

As the measure of distance between the estimated au-
tocorrelations r1, r2, . . . , rp and the correlations calculated
for the ith alternative model r1,i, r2,i, . . . , rp,i, i = 1, . . . , J
Hryniewicz and Kaczmarek-Majer [13] used a simple sum
of absolute differences (called the Manhattan distance in the
community of data mining)

disti,MH =

p∑
k=1

|rk − rk,i|, i = 1, . . . , J. (23)

In [1] Hryniewicz and Kaczmarek considered a slightly
more general version of the sXWAM chart. As alternative
models, they considered those autoregression models with k
lowest values of disti,MH . Their weights, after some standard-
ization, are inversely proportional to the distances of the closest
models. The design of the sXWAM chart for residuals is thus
much simpler than the original XWAM chart. The values of
the autoregression functions for different alternative models
can be computed in advance, and stored in an external file.
This file can be read by a computer program, and used for
choosing the model that fits to the observed sample (and its
estimated autoregression function).

In this paper we try to improve the method used for
finding alternative models. In order to do this we propose
to use not only the autocorrelation functions (ACF (p)), but
also the partial autocorrelation functions (PACF (p)). The
kth value of the PACF (p) function of the AR(p) process,
ψp(k), is defined as the correlation between random variables
Xt and Xt+k when the effect of the intermediate variables
Xt+1 . . . Xt+k−1 that affect Xt and Xt+h has been removed.
For the autoregression processes the PACF (p) function has
a very practical property. When the considered process is the
AR process of the pth order, AR(p), then all values of the
PACF (p) function are equal to zero for all k > p. The values

of ψp(k) can be found by solving the following system of
equations

r1 = ψp(1) + ψp(2)r1 + . . .+ ψp(p)rp−1

r2 = ψp(1)r1 + ψp(2) + . . .+ ψp(p)rp−2

. . .
rp = ψp(1)rp−1 + ψp(2)rp−2 + . . .+ ψp(p)

(24)

The system (24) is the so-called Toeplitz system of linear
equations, and can be solved using the Durbin-Levinson re-
cursion (see [14] for more information). The estimated values
of the PACF (p) functions can be calculated from (24) if
we put estimated values of autocorrelations instead of their
theoretical values. The distance between the estimated (from
the sample) PACF (p) function and the theoretical PACF (p)
of an alternative model is calculated using (23) with values of
rk and rk,i replaced, respectively, by ψk and ψk,i. Then, the
sum of both distances, for the ACF (p) and the PACF (p)
functions, is used for choosing the best alternative models and
their weights.

V. RESULTS AND DISCUSSION

In this section we present the results of computational
experiments. In these experiments we use the original real-life
data, and artificial data generated by adding some disturbances
to the original data.

A. sXWAM control chart

The example of the sXWAM chart is presented in Figure
9 for the same original data that have been used for the
construction of the control chart presented in Figure 8. For
the design of this chart it was assumed that the weight for
sample data is w0 = 0.7. Five alternative process mod-
els have been found using the algorithm described above:
AR(−0.9, 0.5, 0.4,−0.3) with relative weight w

′

1 = 0.201,
AR(0.8, 0.7,−0.5,−0.3) with relative weight w

′

2 = 0.201,
AR(0.9, 0.5,−0.4,−0.3) with relative weight w

′

3 = 0.200,
and AR(−0.8, 0.7, 0.5,−0.3) with relative weight w

′

4 =
0.199, and AR(0.8, 0.5,−0.3, 0.4) with relative weight w

′

5 =
0.199. We can see that in this case we have observed only one
alarm generated at the same time point as one of the alarms
generated on the control chart with non-weighted residuals.
Experiments with artificially shifted process levels have shown
that the detection ability of the proposed sXWAM chart are
similar to that observed for the chart with non-weighted
residuals.

Figure 9. Control chart for weighted residuals with one false alarm.
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B. Forecasting performance

Finally, we evaluate the forecasting performance of the
proposed weighted model averaging approach with ACF (p)
and PACF (p) (called WAM∗, for short). We now present
in detail the results obtained for the considered process of
blood pressure measurements and the training database of
AR processes of the first order. We assume that the model
is estimated basing on a small sample (n = 20), and then,
its verified for 6-step-ahead forecasts (h = 1, 2, ..., 6). The
considered process has 480 observations that are used to
create 454 samples. Each sample is divided into the first 20
observations that are used to estimate the predictive model, and
the remaining 6 observations are used to verify its predictive
performance. Alternative models and forecasts are calculated
for each sample.

For example, the first sample is created for the first
26 observations of the process. The WAM∗ approach
delivers the following best alternative models and their
weights: AR(−0.4), w1 = 0.34, AR(−0.5), w2 = 0.33,
AR(−0.3), w3 = 0.33. For the next sample (starting with n=2
element of the blood pressure measurements and ending with
n=21 element of this process), exactly the same best alternative
models are calculated. Slightly different models are calculated
for the fourth sample (starting with n=4 element of the blood
pressure measurements and ending with n=23 element of this
process): AR(−0.3), w1 = 0.35, AR(−0.2), w2 = 0.34,
AR(−0.1), w3 = 0.31. In Table I, the frequency of the applied
alternative models is presented.

TABLE I. Frequency of alternative models calculated with the WAM∗
approach within all samples of the process with blood pressure

measurements.

M1 M2 M3

AR(0.2) - 0.00 0.00
AR(0.1) 0.00 0.00 0.01
AR(0.0) 0.01 0.02 0.05
AR(-0.1) 0.06 0.04 0.07
AR(-0.2) 0.07 0.14 0.21
AR(-0.3) 0.18 0.27 0.24
AR(-0.4) 0.39 0.21 0.15
AR(-0.5) 0.19 0.19 0.14
AR(-0.6) 0.07 0.06 0.11
AR(-0.7) 0.03 0.03 0.02
AR(-0.8) 0.01 0.03 0.00

As observed in Table I, the most frequent best alternative
model is AR(−0.4), selected in 39% of cases. As the second
best model, AR(−0.3) is selected in 27% of the cases. As
the third best alternative model, again AR(−0.3) is selected
in 24% of the cases.

Finally, we summarize the forecasting results to evalu-
ate the accuracy of the proposed approach. The following
measures are applied for evaluation: the mean absolute error
(MAE), the standard deviation of the MAE (stdD-MAE) the
mean squared error (MSE) and the standard deviation of the
MSE (stdD-MSE). As observed, we compute the commonly
used scale-dependent measures (MAE, MSE, MDAE) because
they are useful when comparing different methods applied to
the same set of data, and this is our case.

Table II shows the accuracy measures depending on the
forecast horizon. It is observed that in all cases, the proposed
WAM∗ method delivers forecasts that are more accurate than

the forecasts calculated according to the AR process estimated
with the Yule-Walker equations.

TABLE II. Forecast accuracy (the horizon up to 6-step-ahead) measured
with MSE, stdD-MSE, MAE and stdD-MAE according to the proposed

WAM∗ approach and the respective estimated AR process.

Fcst. hor. Method MSE stdD-MSE MAE stdD-MAE
1 WAM∗ 57.32 85.92 5.92 4.72
1 est AR 60.08 92.59 6.07 4.83
2 WAM∗ 64.82 76.00 6.30 4.05
2 est AR 68.91 81.64 6.51 4.12
3 WAM∗ 66.51 65.69 6.39 3.46
3 est AR 70.01 69.56 6.58 3.52
4 WAM∗ 67.21 58.56 6.43 3.06
4 est AR 69.96 61.46 6.57 3.12
5 WAM∗ 67.49 52.76 6.44 2.75
5 est AR 69.77 54.89 6.56 2.79
6 WAM∗ 67.64 48.21 6.45 2.52
6 est AR 69.64 49.79 6.56 2.55

For example, the average MSE of the 6 forecasts for
6-steps-ahead amounts to 67.64 according to the proposed
approach and to 69.64 for the estimated process. For the
comparative purposes, we calculate the errors obtained for
the proposed model averaging approach in comparison to the
errors of the forecasts calculated from the process estimated
basing on the Yule-Walker equations (referenced as ‘est AR’
forecast). The relative errors for the aforementioned measures
are presented in Table III.

TABLE III. Relative change of MSE, stdD-MSE, MAE and stdD-MAE for
forecasts (up to 6-step horizon) of the proposed WAM∗ approach

compared to the respective estimated AR process.

Fcst. hor. Method R-MSE R-stdD-MSE R-MAE R-stdD-MAE
1 WAM∗ 0.95 0.93 0.98 0.98
2 WAM∗ 0.94 0.93 0.97 0.98
3 WAM∗ 0.95 0.94 0.97 0.98
4 WAM∗ 0.96 0.95 0.98 0.98
5 WAM∗ 0.97 0.96 0.98 0.98
6 WAM∗ 0.97 0.97 0.98 0.99

As observed in Table III, the proposed model averaging
WAM∗ approach enables to improve all forecasts estimated
with the traditional Yule-Walker equations. The improvement
ranges from 0.93 to 0.99 depending on the considered accuracy
measure.

C. Control chart for residuals of differences of the first order
Now, let us show how this new improved method of

prediction can be utilized in the construction of a control chart.
For calculation of residuals of first differences we will use
predictions calculated according the autoregression model (4).
The estimated process model minimizes the modified Akaike’s
BIC criterion, calculated according to (10). Suppose, that our
control chart has to be put into operation after observing first
20 measurements of blood pressure. Hence, our sample of first
differences consists of 19 observations. The optimal (with re-
spect to the BIC criterion) model, estimated from this sample,
is the following: µ0 = 0.1642 and a0,1 = −0.559. Thus, our
residuals a described by the autoregression model of the first
order. Let us assume now that our alternative models have
to be chosen from among autoregression models of first and
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second order. In this case, three best alternative models are the
following: (µ1 = 0.263, a1,1 = −0.9, a1,2 = −0.6) with the
relative weight 0.371, (µ2 = 0.232, a2,1 = −0.8, a2,2 = −0.5)
with the relative weight 0.359, and (µ3 = 0.253, a3,1 =
−0.9, a3,2 = −0.5) with the relative weight 0.269. Because
all our alternative models are of the second order, we can
calculate only 18 prediction of first differences, and thus only
18 residuals. When we take into account only the estimated
model, the mean value of calculated residuals is equal to
0.673, and sample standard deviation is equal to 10.393.
Hence, the Shewhart two-sided control chart for the mean
value, calculated using only estimated model, has the following
control limits: LCL = −30.50, and UCL = 31.85. When we
use the estimated model for the calculation of residuals for
the remaining 460 measurements, the control chart will look
like this presented in Figure 10. As we can see, both control
lines are rather distant from the charted process values. Thus,
this chart may not be effective in the detection of process
instability.

Figure 10. Control chart for residuals of differences of the first order related
to measurements of blood pressure (estimated AR model used for

prediction).

Now, let us consider a chart designed using only weighted
residuals calculated according to the chosen alternative models.
In this case, the mean value of calculated residuals is equal
to 0.303, and sample standard deviation is equal to 6, 628.
Hence, the Shewhart two-sided control chart for the mean
value, calculated using only estimated model, has the following
control limits: LCL = −19.58, and UCL = 20.19. Note, that
in this case the standard deviation is significantly smaller, and
the control lines a closer to the process observations. When
we use the weighted alternative models for the calculation
of residuals for the remaining 460 measurements, the control
chart will look like this presented in Figure 11. We can see
from Figure 11 that in this case four points on the chart
fall beyond the control limits. Thus, we observe four alarms,
and two of them (these showing significant increase of blood
pressure) are definitely false. Moreover, insignificant (from a
medical point of view) shifts of the monitored process may
cause many false alarms.

Finally, let us use the WAM∗ approach, and construct
a chart for which we assign the weight w0 to the estimated
model, and the weight 1 − w0 to the alternative models.
Suppose, that we take w0 = 0.5. In this case, the mean value of
calculated residuals is equal to 0.3488, and sample standard
deviation is equal to 8, 294. Hence, the Shewhart two-sided
control chart for the mean value, calculated using the WAM∗
approach, has the following control limits: LCL = −24.39,
and UCL = 25.37. When we use the WAM∗ approach for the
calculation of residuals for the remaining 460 measurements,
the control chart will look like this presented in Figure 12.

Figure 11. Control chart for residuals of differences of the first order related
to measurements of blood pressure (weighted alternative AR models used

for prediction).

Figure 12. Control chart for residuals of differences of the first order related
to measurements of blood pressure (WAM∗ approach used for prediction).

The control chart displayed in Figure 12 represents a
compromise between a chart designed using only an estimated
model, and a chart designed using alternative models. On the
one hand, in contrast to the chart presented in Figure 10,
it should react to dangerous shifts of blood pressure, as the
control limits are not so wide, as in the case presented in
Figure 10. However, on the other hand, in contrast to the chart
presented in Figure 11, where the control limits seem to be too
narrow, no alarm signals are displayed for this seemingly stable
process. It means that the control limits are not too narrow, and
the chart should not generate too many false alarms in the case
of insignificant variations of the monitored process. One has
to stress here, that the behavior of a control chart presented in
Figure 10 may lead to dangerous consequences (no necessary
alarm signals). Observing too many false alarms is not so
dangerous, but may decrease reliance on the used control chart.
Therefore, in statistical process control we are always looking
for compromise solutions, such as that presented in Figure 12.

In the design of our control chart we have used AR models
of maximal second order. One could ask, however, about a
similar design using models of higher order. In our calculations
we also considered models of the fourth order. Predictions
using such models are definitely more accurate. However,
when the number of available measurements is, as in our case,
strongly limited, then the effective sample size (the number of
calculated residuals) becomes smaller. For example, when we
use models of the fourth order, the sample size decreases to
15. Thus, the total variability of residuals may even increase,
and the designed chart may be less effective.

VI. CONCLUSIONS

This paper has to be considered as a methodological one.
As an illustrative example we have considered monitoring
stability of a short and non-stationary processes using a simple
tool such as a Shewhart control chart. We consider a monitored
process stable, if its predicted future values are not very
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different from the observed ones. Such processes are often
encountered in practice, and in this paper are represented by
a certain health-recovery process, where natural randomness
of measured health-related characteristics is accompanied by
random or deterministic trends. Statistical analysis of non-
stationary processes is usually very difficult and costly for
implementation, as it requires large amount of available data
and sophisticated specialized software. It can be used at
intensive-care hospital units or in cases when patient’s life is
endangered. However, in many cases, it is completely sufficient
to monitor the state of health using personal measuring devices,
and to alarm a patient (or his/hers physician) only in the
case of unexpected events. We are of the opinion that this
can be done using simple tools, like Shewhart control charts.
Such procedures using simple software implemented, e.g., in
personal measurement equipments. The chart proposed in this
paper should definitely fulfill such requirements of simplicity.

In our research, we assume, as it is often done in statistical
process control (SPC), that at its initial stage the monitored
process is supervised (e.g., by a physician), and considered as
stable. Data from this stable period, considered as our sample
data, are used for the identification of the monitored process
and construction of a control chart. Because simple methods
for monitoring non-stationary processes do not exist, we pro-
pose to monitor differences of the first order (i.e,, differences
between values of consecutive measurements). This approach
is effective for linear or approximately linear trends. When
we consider, as in this paper, short series of observations,
this assumption seems to be rather realistic. However, it is
possible to apply the proposed methodology for differences of
a higher order. For example, in this paper, we also consider
differences of the second order which can be used in the case of
processes with alternating (e.g., morning and evening) process
levels. In our investigations we have assumed that our series
of observations are rather short, and the monitored process has
to be identified using a small sample of measurements. This
assumption reflects reality when health-recovery processes is
evaluated by a physician for only short time, and the period in
which the process has to be stable is also short (e.g., until a
next treatment is applied). For this reason, we have proposed
a novel statistical tool, sXWAM chart, developed recently by
us, and the new chart, designed using the WAM∗ approach,
proposed by us in this paper.

The performance of the proposed method has been verified
using real-life data obtained from a patient recovering from a
hypertension episode, who measured his blood tension once a
day for a period of 480 consecutive days. Statistical analysis of
these data has shown that basic assumptions about statistical
independence of consecutive measurements, which are used
in the design of control charts applied in the monitoring of
hypertension patients, and used in the procedures described in
Solodky et al. [21], and Hebert and Neuhauser [22], have not
been fulfilled. Despite the limited amount of data considered
in this research, the presented results show that the proposed
method is promising. The proposed methodology is general,
and can be used for the analysis of any type of health-related
measurements. One has to admit, however, that the particular
prediction model - described by the equation (2) - is too simple
for a proper description of continuous 24/7 measurements,
either in clinical environment or taken from wearable sensors.
In such applications much more complicated models, that take

into account, e.g., periodical changes of a measured process
level, must be used. A good presentation of this problem can
be found in the analysis of the results of the 10th Annual
PhysioNet/Computers in Cardiology Challenge 2009, which
was devoted to predicting the Acute Hypotension Episodes
(AHE), and described in the paper by Moody and Lehman
[23]. Its participants provided various sophisticated solutions
such as: neural networks, a rule-based approach, decision trees
or support vector machines. A short review of other recent
approaches for the AHE prediction can be also found in the
paper by Jiang et al. [24]. Some of these methods may be used
in our approach as replacements for our prediction model (2).
Unfortunately, their computational complexity is currently too
high for such personal devices like tablets or smartphones.
Therefore, their usage in our approach is possible, but only in
the case of external data processing by sufficiently powerful
computers.

In our current research (with participation of clinical psy-
chiatrists) we apply the proposed methodology for the analysis
of self-assessment data provided by patients suffering from
psychiatric bipolar disorder. It is known from the investigations
described recently by Bonsall et al. [25], Maxhuni et al.
[26], and Vasquez-Montes et al. [27] that classical control
charts cannot be used for monitoring the behavior of such
patients. Preliminary results of the application of the procedure
described in this paper, described in Kaczmarek-Majer et al.
[28], are considered by psychiatrists as very promising, and
show great potential of the proposed methodology.

Finally, one has to note, that despite great progress in the
application of statistical process control (SPC) in health care
the proposed solutions, like the one presented in this paper, are
still in an experimental stage. Therefore, it will take some time
before their application in medical devices will be approved
by regulatory bodies.
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