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Abstract—This paper addresses the overarching research 

problem: How can an Artificial Intelligence(AI)-based water-

level monitoring service be implemented and deployed for 

effective flood prediction in an urban environment? To explore 

this, three research questions are posed: RQ1—What type of 

network architecture can be used in AI-based monitoring of 

water levels? RQ2—How can the AI-based water-level 

monitoring service be implemented regarding devices, 

components, and AI models? and RQ3—Which challenges are 

related to the implementation and deployment of the AI-based 

water-level monitoring service? A private LoRaWAN network 

was set up in Kuopio, Finland, integrating 16 Elsys ELT 

Ultrasonic sensors with Kerlink and RAK gateways to monitor 

stormwater wells despite structural obstacles. The study 

spanned from Fall 2023 to Spring 2025, employing iterative 

field tests, AI model comparisons (linear regression, decision 

trees, random forest), and Information Technology 

Infrastructure Library (ITIL)-based pattern matching. The 

findings demonstrate the feasibility and robustness of a 

tailored IoT network, highlighting best practices for sensor 

placement, gateway configuration, and predictive analytics. 

These insights provide a blueprint for other cities aiming to 

harness low-power technologies and AI for early flood 

warnings and data-driven urban water management. 
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I.  INTRODUCTION 

The rapid evolution of the Internet of Things (IoT) has 
led to the emergence of wireless communication 
technologies designed for low-power, long-range 
applications. Among these, LoRa (Long Range) and its 
associated LoRaWAN protocol have attracted significant 
attention due to their extended coverage, minimal energy 
requirements, and cost effectiveness [1][2]. In many regions, 
including Kuopio, commercial networks may be either 
expensive, unavailable, or unsuitable for specific monitoring 

needs. In response, deploying a dedicated private LoRaWAN 
network becomes a viable alternative. 

Climate change and urbanization are anticipated to cause 
more urban floods due to changing precipitation patterns. 
This necessitates a review of current design practices and the 
incorporation of climate change impacts into urban drainage 
systems [3]. In built-up areas where new design methods 
cannot be fully implemented, focus should shift to early 
warning and prediction systems based on IoT solutions. IoT 
refers to systems in which devices automatically transmit 
data used for monitoring or control over the internet. 
Wireless communication is typically essential, often relying 
on Low-Power Wide-Area Networks (LPWAN) [4]. Some of 
these networks utilize 3GPP-based 5G standards enabling 
massive Machine Type Communications (mMTC) [5]. 

Now in the era of Artificial Intelligence (AI), data serve 
as the foundation for warning and prediction models. In 
particular, data aggregation and appropriate latency 
considerations—edge or cloud processing—are crucial to 
achieving reliable and timely predictions [15]. This paper 
introduces an AI-assisted IoT system for urban flood 
prediction built on a private LoRaWAN network in Kuopio, 
Finland. The system employs three RAK7289 V2 WisGate 
Edge Pro Gateways with Elsys ELT Ultrasonic Industrial 
Distance Sensors installed in stormwater wells. Additionally, 
the Loriot platform was incorporated for network 
management, and the Tulvia.ai application was developed to 
provide real-time visualization and alerting services for 
water-level changes. The paper is organized as follows. 
Section II describes the theoretical framework. Section III 
explains the methodology. Section IV discusses the results 
and analysis, and Section V includes further discussion. 
Finally, Section VI presents conclusions.  

II. THEORETICAL FRAMEWORK 

LoRaWAN has gained prominence within the broader 
ecosystem of low-power wide-area networks (LPWAN) due 
to its capacity for energy-efficient, long-range data 
communications in Internet of Things (IoT) applications [1], 
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[2]. Competing LPWAN architectures (e.g., NB-IoT, Sigfox) 
also prioritize low power consumption and extended 
coverage, but LoRaWAN’s unique attributes—including 
license-free frequency operation, adaptable spreading 
factors, and a star-of-stars topology—make it a compelling 
choice in challenging urban environments. Finland, for 
instance, experiences frequent snowfall and sub-zero 
temperatures that accelerate battery depletion, so the network 
design must ensure both robust signal propagation and 
reliable sensor operation. LoRaWAN’s ability to support 
different Classes (A, B, and C) of end devices further 
enhances flexibility, enabling developers to balance factors, 
such as latency, power consumption, and communication 
patterns in varied use cases. 

In the context of water-level monitoring, LoRaWAN 
devices, often placed underground in stormwater wells or 
obstructed by metal covers, must maintain connectivity 
despite physical barriers. Chirp Spread Spectrum (CSS) 
modulation underpins LoRaWAN’s robustness, allowing 
signals to remain intelligible across relatively long distances 
and through moderate interference [7][16]. Moreover, 
Adaptive Data Rate (ADR) can automatically adjust a node’s 
spreading factor, power settings, and bandwidth to optimize 
transmission based on real-world conditions. This 
adaptability helps preserve device battery life, an essential 
concern when sensors cannot be easily retrieved for 
replacement or recharging. Alongside these connectivity 
advantages, LoRaWAN employs a network server for packet 
handling, encryption, and device authentication. When 
environmental monitoring expands to dozens or hundreds of 
sensors, centralized management enables administrators to 
handle large volumes of traffic with relative ease. 

Despite the importance of reliable data transmission, 
mere connectivity is not enough in applications where timely 
interventions, such as flood warnings are critical. Integrating 
Artificial Intelligence (AI) into environmental monitoring 
frameworks addresses this gap. Linear regression models, for 
example, are straightforward to implement but assume direct 
proportionality between input features (rainfall or 
temperature) and output (water levels). While suitable for 
quick or basic predictions, such models can be inadequate 
when water-level fluctuations exhibit non-linear patterns. 
Decision trees capture these complexities more effectively, 
yet they risk overfitting unless carefully tuned. Random 
forest ensembles, by contrast, aggregate multiple decision 
trees to produce more robust, accurate forecasts in noisy, 
real-world data settings [6]. Given the variability of 
precipitation, runoff, and well infrastructure across city 
districts, ensemble methods often offer superior performance 
for short-term water-level prediction. 

In line with recent urban flood management studies, such 
as Kostopoulos et al. [11] and Keung et al. [12], effective 
solutions often hinge on combining IoT-based sensing 
networks with sophisticated data analytics pipelines. Recent 
applications include AI-driven flood depth sensors and real-
time dashboards for urban drainage monitoring [12][13][14]. 
Moreover, Chang and Chang [15] underscore how advanced 
machine-learning methods and time-series modeling can 
further refine water-level forecasting, enabling targeted 

warnings that mitigate flood-related impacts. Together, these 
studies reinforce the importance of integrated approaches—
merging hardware resilience with algorithmic intelligence—
to address the multifaceted challenges of urban flooding. 

Effective AI-based water-level monitoring also hinges on 
an appropriate balance between edge and cloud analytics. In 
many LoRaWAN setups, gateways forward sensor data to 
network and application servers located in the cloud, 
leveraging extensive computing and storage capacities for 
model training and large-scale analytics [4][5]. This 
configuration is generally sufficient for daily or hourly 
forecasts, but certain mission-critical scenarios—such as 
sudden flood events—may demand edge analytics to 
mitigate latency or manage intermittent connectivity. 
Whether fully cloud-based or employing a hybrid approach, 
the final design must consider the computational cost of AI 
models, sensor data volume, and reliability of internet 
backhaul. 

An additional layer of complexity emerges from the 
human and organizational factors surrounding IoT 
deployments. Technical execution alone does not guarantee 
long-term success. The ITIL 4 framework emphasizes the 
interplay of multiple dimensions—Information and 
Technology, People and Processes, Value Streams and 
Processes, and Partners and Suppliers—to guide service 
management [8]. For water-level monitoring, “Information 
and Technology” challenges might include selecting 
gateways robust enough for harsh conditions. “People and 
Processes” could manifest in training requirements for field 
technicians who manage sensor installation and for data 
scientists who refine AI models. “Value Streams and 
Processes” directs focus to how data flows from sensor to 
predictive model, ensuring that insights are delivered to 
relevant stakeholders in time to prevent or mitigate flooding 
events. Finally, “Partners and Suppliers” become critical 
when firmware updates, hardware end-of-life, or differing 
service-level agreements can undermine a well-designed 
system. A practical strategy for coping with these variables is 
the pattern matching technique [9], where observed 
challenges such as a high sensor failure rate are 
systematically compared to theoretical predictions from 
existing literature or known constraints, confirming or 
refuting underlying assumptions. 

By synthesizing the technical benefits of LoRaWAN 
with AI-driven analytics and structured service management, 
water-level monitoring systems can transcend basic data 
collection to achieve near real-time environmental 
intelligence and situational awareness. LoRaWAN’s 
extended coverage, battery-friendly design, and flexible 
MAC-layer controls facilitate data acquisition in obstructed 
urban environments, while AI models transform these data 
into actionable alerts and forecasts. Simultaneously, 
frameworks like ITIL 4 ensure that human factors, partner 
dynamics, and operational workflows receive due attention, 
creating a holistic service that is both technologically sound 
and sustainably managed. This integrated view 
encompassing resilient low-power communication, adaptive 
AI analytics, and a multidimensional approach to service 
orchestration—underpins the feasibility of deploying robust, 
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AI-enhanced water-level monitoring solutions in Kuopio’s 
city area. 

III. METHODOLOGY 

The methodology of this study was structured around an 
explorative single case study approach [9] spanning from 
Fall 2023 to Spring 2025 in Kuopio’s city area. In alignment 
with Yin’s definition of a single-case design, the case can be 
framed as the deployment project of a LoRaWAN-based 
urban flood prediction system in Kuopio. This approach 
allowed for an in-depth, context-rich examination of how the 
network architecture, AI models, and stakeholder processes 
interact within a real-world setting. Within-case analysis, as 
described by Eisenhardt [10], was adopted to deepen the 
understanding of the dynamics at play in this specific 
municipal context. During the first phase in Fall 2023, 
sixteen ultrasonic sensors were acquired (Elsys ELT 
Ultrasonic) and placed in designated stormwater wells. 
Preliminary site surveys identified each well’s physical 
constraints, such as metal covers and limited space, guiding 
decisions on sensor mounting and gateway installation. A 
Kerlink Wirnet iFemtoCell LoRaWAN Gateway served as 
the core node. Trial runs were performed to verify sensor 
connectivity and data transmission intervals, after which 
battery drain studies commenced. Results indicated that 
sensors operating at high transmission frequency could 
deplete batteries in roughly 9 months under winter 
conditions, aligning with the local data logs. Figure 1 
illustrates the daily fluctuations in link-quality indicators 
(RSSI, SNR) and gateway reach, highlighting why adaptive 
data-rate and multi-gateway diversity are essential for a 
resilient smart-city LoRaWAN network. 

 

 

Figure 1.   Understanding signal variability helps in designing more 

resilient networks for smart cities. 

In Spring 2024, additional RAK7289 gateways were 
deployed in strategic locations across Kuopio, aiming to 
improve coverage in areas where high-rise buildings or 
underground infrastructure attenuated signals. Antenna 
orientations and power settings were systematically tested. 
Network management during this phase was facilitated by 
the Loriot platform, which provided real-time oversight of 
gateway status, packet routing, and sensor activations. The 
Tulvia.ai application was also conceptualized to eventually 
deliver front-end visualizations and alerts based on 
aggregated data. The Tulvia.ai application—conceptualised 
and developed within this project—offers an interactive 
dashboard for real-time situational awareness (see Figure 2) 
During these pilot tests, each sensor reported ultrasonic 
distance measurements at set intervals, enabling near real-
time monitoring of water levels alongside signal quality 
indices like RSSI and SNR.  
 

 

Figure 2.  Screenshot of the Tulvia.ai web dashboard (site 295, Kuopio) 

From Fall 2024 to Spring 2025, the project shifted 
toward optimization and AI model integration. Different 
antenna types, including 5.8 dBi fiberglass antennas and 
smaller 2 dBi SubG versions, were tested to identify the most 
effective configuration under Kuopio’s urban conditions. 
Two AI models were then developed: an initial model 
trained on approximately 10,000 sensor readings, which 
compared linear regression, decision trees, and random 
forests for short-term water-level forecasting; and a 
subsequent model that integrated precipitation and 
temperature data. As illustrated in Figure 3, the random 
forest approach consistently demonstrated the highest 
predictive performance, particularly for the two-hour 
horizon. The internal structure of the Random-Forest 
ensemble is illustrated in Figure 4, where the Pythagorean-
forest view depicts key splits across the 1 000 constituent 
trees, revealing heterogeneous yet complementary decision 
patterns. Maintenance staff feedback led to refined 
procedures for sensor inspections, especially under winter 
conditions when snow accumulation, ice, or wind could 
disturb gateway enclosures. 
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Figure 3.  Comparative performance of the AI models 

 

Figure 4.  Pythagorean Forest Visualization of Random Forest Models in 

Orange Data Mining Software 

Throughout these phases, both quantitative and 
qualitative data were collected, reflecting Yin’s emphasis on 
multiple sources of evidence [9] to build a comprehensive 
case study database. Sensors continuously logged water-level 
readings, while gateway telemetry captured battery 
performance, signal strength, and firmware health. 
Supplementary stakeholder interviews with maintenance 
technicians, data scientists, and city officials offered 
perspectives on device calibration, mag-mount reliability, 
and the complexities of scheduling on-site inspections. 
Participant observation further enriched the dataset, as 
researchers took part in the physical tasks of installing 
gateways, opening wells, and retrieving sensors. Physical 
artifacts (e.g., sensor mounting hardware, gateway 
enclosures) also provided tangible evidence for 
understanding real-world constraints. 

The within-case analysis approach advocated by 
Eisenhardt [10] allowed researchers to delve deeply into the 
specific operational, technical, and organizational factors 
shaping the project’s outcomes. Data were triangulated 
across different sources—sensor logs, interviews, field notes, 
and artifacts—to identify emerging themes and refine 
implementation practices. A pattern matching analysis [9] 
systematically compared observed challenges—such as 
disruptions from metal well covers or sensor detachments—
to establish theoretical constraints, confirming the 
importance of organizational readiness and robust hardware 
selection for stable LoRaWAN-based monitoring. By 
incorporating iterative feedback loops, the methodology 
ensured that insights from each phase informed subsequent 
optimization, culminating in a data-driven framework for AI-
based flood prediction in Kuopio’s urban environment.  

IV. RESULTS AND ANALYSIS 

A. Research Question 1 (RQ1): Network Architecture 

RQ1 asks: What type of network architecture can be used 
in AI-based monitoring of water levels? In Kuopio’s city 
context, the LoRaWAN-based architecture proved effective 
due to its low power needs, modular design, and adaptability 
to various obstructions. Table I summarizes key findings 
regarding coverage improvement, antenna orientation, power 
optimization, and the importance of gateway placement near 
tall buildings. 

TABLE I.  FINDINGS RELATED TO NETWORK ARCHITECTURE 

Finding Data Source 

Multiple gateways improved coverage 

and reliability. 
Field tests, coverage logs 

Proper antenna orientation reduced 
signal degradation in urban areas. 

Pilot test measurements 

Adjusting transmit power optimized 

energy consumption 
Battery discharge records 

Gateway placement was critical for line-
of-sight near tall buildings. 

GPS-based signal mapping 

Well covers and sensor magnetic 

mounts can impede signal transmission, 
especially below ground. 

Field notes, pilot test 

results 

Strong above-ground signal coverage 

does not guarantee adequate 
underground coverage (LoRaWAN 

signals attenuate quickly); NB-IoT 

could be tested as an alternative. 

Winter field observations 

Routers (gateways) and their antennas 

should be placed as high as possible, 

ideally with clear line-of-sight, to 

maximize coverage. 

Implementation logs 

Changing sensor antenna orientation 

(vertical vs. horizontal) can modestly 

improve transmission quality. 

Pilot test measurements 

Different antenna types feature varying 

coverage patterns; certain models 

“hear” better from all directions but 
with a smaller range, which can be 

advantageous for underground 

reception. 

Lab and field testing 

Building a private LoRaWAN network 

can be an effective solution in areas 

with many sensors or lacking a 
commercial network. 

Stakeholder interviews 

 

Through iterative testing, positioning gateways at 
elevated points and experimenting with different antennas 
proved beneficial in mitigating coverage blind spots in 
Kuopio’s dense city environment.  

B. Research Question 2 (RQ2): Implementation of the AI-

based Service 

RQ2 asks: How can the AI-based water level monitoring 
service be implemented regarding devices, components, and 
AI models? A combination of hardware and software 
components was employed, including resilient LoRaWAN 
sensors, multiple gateways, the Loriot network server for 
device authentication and packet forwarding, and an 
application server that hosted AI-based analytics and the 
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Tulvia.ai interface. Table II highlights the main 
implementation aspects, findings, and data sources. 

TABLE II.  IMPLEMENTATION ASPECTS, FINDINGS, AND DATA 

SOURCES 

Implementation 

Aspect 
Finding Data Source 

Data Network 5.8 dBi antennas provided 

adequate coverage in open areas 

Interviews, 

physical artifacts 

Sensor 

Deployment 

Magnetic mounts interfered with 

signal in certain wells. 

Field notes, pilot 

test results 

AI Model Random forest outperformed 
linear regression & decision 

trees for short-term forecasting. 

Model training 
logs, local 

dataset 

Maintenance 
Scheduling 

Battery drain rate required 
adjustments in transmission 

intervals (~9 months when 

sending data every two minutes). 

Testing data, 

system logs 

Well Access Stormwater well covers may be 
buried and not opened for a long 

time; GPS data can be 

inaccurate, so extra tools (e.g., 
shovels, manual searches) are 

needed to locate and expose the 

well. 

Field notes, 

additional 
observations 

Mount 

Reliability 

Magnetic sensor mounts do not 

always hold under winter 

conditions; two sensors fell into 
the well, yet one continued to 

transmit despite immersion. 

Winter pilot test 

results 

Weather 
Conditions 

Strong winds, freezing 
temperatures, and snow 

accumulation can complicate 

outdoor gateway installation and 
affect sensor placement 

feasibility. 

Implementation 

logs 

Private 
Network 

Feasibility 

Setting up a self-managed 
LoRaWAN network can be 

advantageous if there is no 

commercial LoRaWAN or if a 
large number of sensors are 

concentrated in one location. 

Stakeholder 

interviews 

Network 
Management 

Platforms like Loriot, WisGate 
support remote gateway updates, 

device authentication, and 

encryption key management, but 
require technical expertise and 

adherence to frequency/duty 

cycle regulations. 

Network server 

logs, vendor docs 

AI Model 

Complexity 

If large volumes of sensor data 

are collected, training AI models 

(e.g., random forests) can 
become resource-intensive; 

cloud computing resources may 

be required. 

Model training 
logs, interviews 

Algorithm 

Comparison 

Lighter models (e.g., linear 

regression) may be faster to run, 

while more complex models 
(e.g., random forest) offer higher 

accuracy, so balancing speed vs. 

accuracy is crucial. 

Model 
evaluations 

 

By combining robust network hardware with advanced 
AI models, the solution ensures both continuous data capture 
and accurate water-level forecasting, enabling effective early 
urban flood warning mechanisms. The Tulvia.ai application 

leverages this data to display real-time water levels, issue 
alerts, and provide predictive insights to municipal 
authorities. 

C. Research Question 3 (RQ3): Challenges and Pattern 

Matching 

RQ3 asks: Which challenges are related to the 
implementation and deployment of the AI-based water level 
monitoring service? Numerous challenges arose, ranging 
from physical obstructions like metal well covers to 
organizational factors, such as firmware updates and staff 
training. These were categorized using a pattern matching 
technique [9] aligned with ITIL 4 service management 
dimensions [8]. Table III illustrates the primary findings. 

TABLE III.  CHALLENGES BY ITIL 4 SERVICE MANAGEMENT 

DIMENSIONS 

Dimension 
Finding 

Data 

Source 

Information 

and 
Technology 

Metal well covers and magnetic mounts 

disrupted signals; hardware selection 
proved critical. 

Interviews

, field 
notes 

People and 

Processes Technicians needed re-training on 
sensors and updated software tools. 

Interviews

, 
documenta

tion 

Value Streams 
and Processes 

Delays in data flow due to suboptimal 
network routes impacted real-time 

analytics. 

Network 

server logs 

Partners and 
Suppliers 

Third-party gateway firmware updates 
occasionally caused minor downtime 

for gateways. Also misscommunication 

caused minor delays for logistics 
(antennas delivery time).  

Vendor 

communic

ation 

Information 

and 
Technology 

Surface-level coverage does not 

guarantee underground connectivity; 
thorough on-site testing is required to 

mitigate well cover interference. 

Field 

notes, 

pilot tests 

People and 

Processes 

Multiple stakeholders in the installation 

process can delay schedules; staff must 
coordinate to handle well openings, 

seasonal conditions, and sensor 

calibrations. 

Maintenan
ce logs, 

interviews 

Value Streams 

and Processes 

Strict duty cycle and frequency 

regulations must be followed to avoid 

network congestion and data loss, 
requiring updated processes for device 

configuration. 

Vendor 
documenta

tion, local 

regs 

People and 
Processes 

Maintaining a private network demands 
specialized knowledge of gateway 

configuration, encryption key 

management, and sensor 

troubleshooting. 

Stakeholde

r 

interviews 

Information 

and 
Technology 

Winter weather can damage or dislodge 

gateways and sensors, necessitating 
adjustments to both hardware selection 

and maintenance schedules. 

Field 

notes, 
pilot test 

results 

 

By systematically aligning observed issues with 
theoretical patterns, the project team was able to implement 
targeted improvements. This approach confirmed that both 
technological and human factors must be addressed 
throughout the entire service lifecycle. 
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V. DISCUSSION 

The findings validate the premise that integrating a 
private LoRaWAN network with AI-driven analytics can 
enhance water-level monitoring and urban flood prediction 
in Kuopio’s city area. Early in the research, theoretical 
arguments emphasized LoRaWAN’s adaptability and 
coverage potential, particularly if antennas and gateways 
were strategically positioned to overcome obstacles like 
metal stormwater covers and tall buildings. Empirical results 
backed these claims; field tests revealed that coverage 
reliability improved markedly when multiple gateways were 
installed at higher vantage points, and when antenna power 
settings were tuned based on real-world signal 
measurements. 

On the AI front, experimental comparisons confirmed 
that random forests excel in handling non-linear and rapidly 
changing hydrological data. These findings underscore the 
value of ensemble methods, particularly when aided by 
contextual information, such as precipitation and temperature 
logs. The two-hour forecast window aligns well with the 
need for timely interventions, granting local authorities 
enough lead time to respond to imminent surges in well 
levels or potential flood events. By incorporating these 
predictive tools into the Tulvia.ai application, city personnel 
receive actionable updates capable of prompting proactive 
drainage checks or other preventative measures. 

From an organizational standpoint, pattern matching 
revealed that sensor calibration, firmware updates, and staff 
training often dictated the project’s day-to-day success as 
much as the underlying technology. Metal well covers, for 
instance, necessitated repeated on-site adjustments to ensure 
signals could penetrate effectively. Firmware updates from 
hardware vendors occasionally introduced compatibility 
issues, demanding swift responses from the technical team to 
maintain continuity. Coupled with winter conditions that 
tested battery performance and sensor stability, these factors 
reaffirmed the importance of an integrated service 
management framework (ITIL 4). Ensuring that all 
stakeholders—maintenance crews, data analysts, municipal 
decision-makers—operated with a coherent workflow helped 
preserve the system’s overall reliability. 

Lastly, the study’s results hint at promising avenues for 
future exploration. Although LoRaWAN proved effective in 
Kuopio’s urban environment, alternative LPWAN 
technologies, such as NB-IoT, may offer better underground 
penetration under certain conditions. On the AI side, 
advanced ensemble or deep-learning models could prove 
even more accurate given larger datasets that incorporate 
seasonality and extended climate patterns. Enhanced security 
measures, including advanced encryption methods and 
anomaly detection, are also increasingly relevant as IoT data 
sensitivity grows. 

VI. CONCLUSIONS 

This study demonstrated the feasibility of deploying a 
private LoRaWAN network, augmented by AI-based 
prediction models, to monitor and forecast water levels in 
Kuopio’s city environment. Systematic refinement of 

network architecture—through gateway placement, antenna 
configuration, and iterative transmit power adjustments—
addressed key challenges linked to metal well covers, tall 
buildings, and subzero temperatures. The project’s phased 
approach, from sensor installation in Fall 2023 to 
comprehensive field tests and AI integration by Spring 2025, 
effectively resolved practical obstacles tied to hardware 
setup, coverage blind spots, and battery limitations. 

Empirical comparisons of AI models indicated that 
ensemble learning methods, especially random forests, 
delivered robust short-term forecasts when coupled with 
local sensor data and environmental metrics. These 
predictive enhancements can significantly improve 
municipal responses to sudden well-level changes or urban 
flooding. At the same time, incorporating an ITIL 4-inspired 
pattern matching technique confirmed that human factors—
ranging from technician retraining to vendor firmware 
compatibility—must be integrated into planning and 
operations for the system to remain durable. 

Overall, the alignment of low-power IoT infrastructure 
with AI-driven analytics shows strong potential for 
proactively managing stormwater wells in Kuopio. In 
addition to improving local flood preparedness, the results 
illuminate how future studies might delve deeper into 
alternative LPWAN technologies, develop advanced 
machine learning architectures, and strengthen IoT security 
protocols. By balancing innovative technical solutions with 
consistent service management practices, this project 
provides a replicable model for cities seeking to harness IoT 
data in mitigating flood risks.  
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