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Abstract—A main driver of Future Internet applications and 
services is Quality of Service (QoS). Current Internet 
technologies provide no suitable QoS support for end-to-end 
connections due to several drawbacks of IntServ and DiffServ. 
In this article, we propose the “Forwarding on Gates” (FoG) 
architecture, which answers the QoS questions by the help of a 
new inter-network architecture. It applies its own new network 
protocol, which was designed to handle IntServ and DiffServ in 
an integrated way. FoG supports resource reservations for 
QoS guarantees in IntServ scenarios and prioritized traffic in 
DiffServ scenarios as well as a combination of both. As core 
advantage, the QoS support of FoG works in a scalable way by 
allowing a network to move QoS states and delegate decisions 
about the QoS usage to the entities demanding for QoS. This 
article describes the architecture, its network protocol, and 
solutions for interoperability with current networks. The 
evaluation includes theoretical descriptions of network 
configurations for a use case not supported by IP. Moreover, 
simulations show that the protocol overhead is comparable to 
IPv6, although packets can select QoS explicitly. Measured 
routing graph sizes for various setups show the flexibility of the 
FoG architecture. 

Keywords—Future Internet; network protocol; architecture; 
QoS; routing graph; interoperability. 

I.  INTRODUCTION 

The Future Internet will be faced with much more 
applications requiring Quality of Service (QoS) than today’s 
networks. In the broad field of Future Internet research, we 
focus on the applied protocol of the network layer. In [1], we 
started to describe an inter-network architecture that supports 
QoS support in a flexible and scalable way. In this article, we 
give more details about our inter-network architecture 
“Forwarding on Gates” (FoG) such as its incremental routing 
process and possible interoperability with IP. Moreover, we 
present recent evaluation results for its routing. 

Applications requiring QoS support will be the main 
driver for protocols in future networks. The most important 
application is video streaming, which already stresses 
today’s networks, especially the Internet. Forecasts predict 
that in 2015 about 62% of the traffic in the Internet will be 
video data [2]. For live video streams, as required for remote 
medical operations and for football games, QoS is required. 
Due to the large number of hosts and connections in the 
Internet, scalability is the crux for QoS. 

For IP (both version 4 and 6), add-ons called IntServ and 
DiffServ have been developed in order to tackle QoS 
requirements in the Internet. However, both have pros and 
cons. The IntServ approach [3], with its signaling protocol 
“Resource Reservation Protocol“ (RSVP), provides end-to-
end QoS by introducing states on each intermediate router, 
which is passed by a flow. According to [4], RSVP is used to 
distribute states for classification, scheduling and 
reservation. The classification state defines how incoming 
packets are mapped to flows. With RSVP, such a mapping 
consists of a source address, a destination address and a 
protocol number (and optionally port numbers). A 
scheduling state defines how flows are handled. For 
example, on a node a flow can be assigned to an own 
prioritized packet queue for the outgoing hardware interface. 
Finally, signaling states represent management information, 
e.g., authentication data and timers. For each flow, an 
intermediate node requires one set of the described states. 
Due to memory limitations, such an approach causes 
scalability problems for scenarios with many flows [5]. 

DiffServ [6] was developed with main focus on 
scalability. It introduces a small set of QoS classes, which 
are used inside networks. Each QoS class defines a type of 
service and requires scheduling and signaling states. Thus, in 
comparison to IntServ, the number of states does not depend 
on the number of connections. However, DiffServ is not able 
to provide guarantees, since it is not aware of each individual 
flow. For a DiffServ network, edge routers of a network store 
and handle the classification states in order to map incoming 
packets to network internal QoS classes. The classification 
states represent the rules for this mapping. Since most 
interfaces with incoming traffic transport multiplexed flows, 
e.g., multiple TCP connections over the same Ethernet link, 
the classification is mainly done by (more or less deep) 
packet inspection. For example, protocol numbers, port 
numbers and even packet sizes are used for such 
classifications.  

Besides their single application, IntServ and DiffServ can 
also be used in a combined way in order to leverage the 
advantages of both approaches. IntServ provides the 
signaling for flows between ingress routers and DiffServ 
provides a set of QoS classes used inside networks [7, 8]. 
However, the scalability problem of IntServ now appears at 
the ingress routers. They have to store the classification 
states per flow. Since the amount of scheduling and signaling 
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states remains limited due to the limitation of possible 
DiffServ classes, the distribution of classification states is the 
main problem. In order to maintain the states, signaling is 
required. The processing load of handling these messages 
increases the burden on a network. In the past, proposals 
focused on reducing the number of flows, e.g., through 
aggregation [4]. 

Our key contribution is the proposal of an orthogonal 
strategy: move the classification states away from ingress 
routers to routers handling smaller amounts of flows. 
Furthermore, some decision-making authority is delegated 
from the QoS provider to the entity using QoS in order to 
reduce the required signaling overhead. As discussed in more 
detail in Section IV, today’s network protocol IP is not able 
to support both in all required use cases. Therefore, we focus 
on a network protocol enabling the movement of 
classification states and the delegation of decisions between 
routers. Our solution is suitable both for IntServ and 
DiffServ scenarios. It is further able to handle combinations 
of both. Its main feature is the flexible placement of the 
classification states according to the network graph and the 
load in the system. It enables the handling of both QoS 
approaches in a single mechanism. 

The remainder of this article is structured as follows: 
Section II describes our system architecture. Section III 
introduces the protocol and how its header is processed. 
Afterwards, in Section IV, the implementation of the use 
cases based on our architecture and protocol are presented. 
Subsequently, Section V shows possibilities for 
interoperability with current networks. Afterwards, Section 
VI shows our recent evaluation results from protocol 
simulations and Section VII shows how FoG is classified 
within related work. In the end, the main results of this work 
are summarized and an outlook about future steps is given. 

II. FORWARDING ON GATES ARCHITECTURE 

As fundamental design aspect, the “Forwarding on 
Gates” (FoG) architecture separates the forwarding from the 
routing. It splits them into two logical components, which 
encapsulate their specific tasks. The forwarding component 
is responsible for relaying packets between routers and hosts. 
It handles the resource management and enforcement of 
resource reservations in order to take non-functional 
properties such as delay and bandwidth into account. The 
routing component is responsible for calculating paths 
through the network with respect to non-functional 
requirements given by applications [9]. Both are linked via a 
route definition. The routing component specifies a route and 
the forwarding component forwards packets along this route. 
The authentication component is the third logical component 
of FoG. It checks the authentication of the sender of 
signaling messages in order to secure access to management 
functions. This authentication component is the basis for 
authorization decisions and accounting for QoS provisioning. 
Figure 1 depicts these components and their interactions. 

For the following discussion, we introduce the term QoS 
function, which generalizes QoS provisioning regardless of 

the underlying QoS architecture. A QoS function represents 
the setup, which is required to send packets with QoS 
constraints. Examples of QoS functions are setups 
implementing a DiffServ class or an IntServ reservation. 
QoS functions can provide guarantees ranging from “hard”, 
with fixed limits, over “soft”, with probabilistic QoS 
guarantees, to vague goals, e.g., “optimized for delay” or 
“best-effort”. A QoS function comprises its scheduling and 
signaling states. The classification states are not included. 

In addition to the separation of routing and forwarding 
[10], our architecture has some more features. It reduces 
forwarding table sizes [11], enables routers to choose their 
address format [12], hides addresses from applications, and 
supports various intra-network techniques. However, they 
are shared with other approaches from related work (see 
references) and are not in the focus of this article. 

FoG applications specify their QoS requirements 
explicitly via an interface and FoG reacts accordingly. The 
interface is based on the “G-Lab Application-to-Network 
Interface” (GAPI) defined in [9]. 

A. Forwarding component 

Today’s Internet operates over interfaces of routers and 
hosts and links in between. FoG’s forwarding component 
uses a virtual representation of the network in the form of a 
graph. Hosts and routers are represented by one or more 
vertices, which are called forwarding nodes (FNs). Edges 
between forwarding nodes are called gates and represent uni-
directional (virtual) links between them. In order to support 
QoS, multiple edges between adjacent nodes are allowed. An 
edge is equivalent to a link with a QoS function between two 
routers or hosts. Each outgoing gate of a forwarding node is 
assigned to a gate number. The gate number is always 
unique to the scope of the forwarding node, to which the gate 
belongs to. Each FoG packet includes a header, which 
describes explicitly the order of gates the packet has to pass. 
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Figure 1: Logical components of the FoG architecture 
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Details about such a route, and how a forwarding node 
processes it, are given in Section III.  

Gates are set up with a FoG-specific management 
protocol. The forwarding nodes process the signaling 
messages of that protocol and modify the graph of 
forwarding nodes and gates as requested. In order to secure 
this management, signaling messages are signed via the 
authentication service by the sender. The receiver uses the 
authentication service to verify the signature again.  

The forwarding component informs the routing 
component about available gates and forwarding nodes to 
enable route calculations based on this information. 
However, gates that are not intended for other data flows 
(either connection based or connectionless) can be hidden in 
order to exclude them from the routing calculations.  

B. Routing component 

The interaction between the forwarding and routing is 
most important for FoG. Routes define how both are 
interacting. Whenever a route ends and the destination is not 
reached, the forwarding has to contact the routing component 
for the next (partial) route leading closer to the destination.  

FoG routes are defined as stacks of segments. Two types 
of segments are possible:  

 Explicit route segment: a stack of gate numbers  

 Destination segment: the name or address of the 
destination, if a route is a partial one. The format and 
length depend on the routing and might range from 
DNS names to IPv4/6 addresses. Additionally, the 
QoS requirements are included. They describe the 
desired application requirements, which have to be 
considered by further route calculations.  

A forwarding node uses the topmost segment of the route 
for its forwarding decision. If it is an explicit route segment, 
the forwarding node extracts the topmost gate number. This 
number is used for the following lookup for the next 
outgoing gate. In the simplest implementation, the gate 
number is an index representing the position of the outgoing 
gate in a stored gate vector. The packet passes this outgoing 
gate with a route, which is shortened by the used gate 
number. If the route segment is empty, it is removed from 
the route and the forwarding node proceeds with the next 
segment. If this is a destination segment, the forwarding 
node has to contact the routing component in order to know 
the next partial route towards the packet destination. For 
such a request, the forwarding node itself is the starting point 
for the route calculation. In general, the architecture does not 
restrict the format of the name or address, which are used in 
order to describe the packet destination. An implementation 
of the routing component can operate with its own format. If 
the destination segment includes QoS requirements, they are 
also included in the route request. Otherwise, best-effort 
routing based on hop costs is provided. The request result 
from the routing component is added to the route in the 
packet header by the forwarding component and the 
forwarding node will re-start its forwarding procedure once 

again. If there are no more route segments, the packet has 
reached its destination.  

Destination segments can also be combined. In such a 
case, a destination segment is not necessarily the last 
segment in a route. It might define only the ingress router to 
an AS and a subsequent explicit route segment defines the 
rest of the route to the destination host. Theoretically, 
multiple destination segments in one route are possible. This 
allows for an incremental routing process, which is 
comparable to loose source routing of IP. Due to security 
considerations [13], policies can limit the utilization of this 
routing method. Since such limitations are mainly important 
at AS borders, multiple destination segments could be used 
within intra-networks. For example, this could be used to 
select the route through a local network.  

In general, the subset of a network that is known to a 
routing component is a connected graph, which represents 
the nodes and links of the network itself and its 
surroundings. The knowledge about the parts outside of this 
subset is more abstract. A routing component knows about 
the connectivity but does not know the gate numbers, which 
are required to specify the route explicitly. Such abstract 
connectivity information can be represented by gates without 
gate numbers. They represent connectivity enabled by an 
unknown set of forwarding nodes and gates. This is 
comparable with the situation known from the Border 
Gateway Protocol (BGP). A BGP entity knows about the 
existence of a route (and its cost) but does not know the 
outgoing ports of each distant intermediate router, which has 
to be used in order to reach the destination. 

If there are insufficient gates to form an end-to-end route, 
a routing component can contact the forwarding component 
and request the setup of new gates, depending on the 
physical connectivity. In particular, routing components can 
request gates with specific QoS capabilities in order to 
satisfy the QoS requirements of a particular route request. 

The routing component can be implemented in multiple 
ways and with various protocols. We have developed a 
hierarchical approach for the implementation of the FoG 
routing component. It supports QoS and is called 
“Hierarchical Routing Management” (HRM). It clusters 
proactively the network at different hierarchical levels where 
each cluster has its own coordinator instance. The higher 
such a coordinator is located in the hierarchy, the more 
abstract is its network topology view. HRM uses these 
coordinators for distributing aggregated topology 
information among the physical nodes. As a result of this, 
each node knows the next hop for every existing destination 
without having global knowledge about the entire network 
topology. Further details about the approach are described in 
[14]. Additionally, we have already showed [15] the 
qualitative advantages of HRM for QoS demanding 
applications.  

C. Authentication component 

The authentication component is used to generate 
signatures for signaling messages and to check such 
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signatures. Based on the authentication check, authorization 
decisions and accounting are done. It is mainly used by the 
forwarding component to secure the gate management. 
Furthermore, applications can use the authentication in order 
to sign data packets. Thus, the authentication has an impact 
on the packet structure described in the next section. 
However, due to the QoS focus of this article, the 
authentication component is not described in more detail. 

III. FOG PACKETS  

The FoG packet structure is shown in Figure 2. It starts 
with a header comprising all information required to decide 
the next hop. This enables a router to make a forwarding 
decision before the packet is fully received. The packet ends 
with a trailer containing all information that can be added to 
a packet after receiving it completely. The trailer is optional 
and can be omitted. The header and trailer elements are 
defined as follows: 

 Header 

o Header size in bytes: This field is required to access 
the payload as subsequent versions of the FoG 
protocol specification could add more fields to the 
protocol header and before the payload. 

o Flags indicate: 

 if the reverse route in the trailer is present, 

 if the packet is a signaling message, and 

 if the authentication information in the trailer is 
present. 

o Modification counter, which is used to avoid infinite 
routing  loops due to invalid gate setups 

o Payload size in bytes 

o Route for the packet 

 

 Trailer 

o Authentication information (including a size field, 
which stores the length of the authentication 
information in bytes) 

o Reverse route for answers: This field includes the 
reverse route as it was recorded by already passed 
forwarding nodes. 

Each route starts with a length field followed by a stack 
of route segments. Each stack entry contains the following 
fields: 

 Segment type indication, where two types are allowed: 

1. An explicit route segment: This is a stack of gate 
numbers, defining explicitly a sequence of gates, 
which have to be passed by the packet. 

2. A destination segment: It contains the name or the 
address of the desired destination, and the 
requirements for the remaining route to this 
destination. 

 Segment length in bytes 

 Segment content with variable size: It contains the gate 
numbers of an explicit route segment or an address plus 
requirements of a destination route segment. 

Each forwarding node processes the route of a packet as 
shown in Figure 3. If the route is empty, the packet has 
reached its destination. If the signaling flag is set, the packet 
contains signaling information dealing with the setup of 
gates and connection establishment between applications. 
The signaling message is handled by the host or router, and it 
updates the gate and forwarding node graph accordingly. If 
the signaling flag is not set and the forwarding node has an 
attached socket to an application, it removes the FoG header 
and trailer and stores the payload in the receive buffer of the 
socket. If the route is not empty, the forwarding node 
processes the topmost segment. If it is an explicit route 
segment, it removes the topmost gate number and uses it as 
locally unique identification for addressing one of its 
outgoing gates. If there is an outgoing gate with this gate 

 
 

Figure 3: Forwarding node procedure without error cases 
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number, the packet is handed over to this gate for further 
processing. If the explicit route segment is empty, it is 
removed from the route and the procedure starts again. If the 
topmost segment is a destination segment, the forwarding 
node has to contact the routing component in order to get the 
next explicit route segment. Based on the received request 
data, the routing component calculates a route from the 
current forwarding node to the destination. The requirements 
given in the destination segment are used as requirements for 
the route. The resulting route from the routing component is 
added to the route of the packet by the forwarding 
component and the forwarding procedure is started again. 

In order to reduce the impact of routing loops, a 
modification counter is decremented by one each time the 
route is changed in a way that loops might occur. As a result 
of this, a routing loop can be limited by forwarding only 
packets with a modification counter above 0 and dropping all 
other packets. 

To allow a receiver of a packet to reply to the sender 
without knowing its exact address, the reverse route of a 
packet is recorded if the reverse route flag in the packet 
header is set. A forwarding node has to derive the reverse 
gate number from the gate chosen for the forward direction. 
The reverse route can be asymmetric to the forward route. 
Furthermore, an intermediate forwarding node, which is not 
able or allowed to record the reverse route, using explicit 
route segments, can add a destination segment to the reverse 
route instead. Such a reverse route can be used by the 
receiver of a packet to reply to the sender. The main benefit 
of using such reverse routes instead of an address is twofold. 
First, routing requests for reply packets are avoided and 
second, addresses for request-sending nodes are not required. 
The latter is useful for hosts acting only as clients. A server 
can reply by using the reverse route without forcing the 
client to have a unique and routable address. If a reply with a 
traced backward route is received by a client, it knows the 
route the received request packet has taken. In most cases, 
this route contains less destination segments and more 
explicit route segments. Therefore, the client can use this 
route for subsequent packets in order to reduce the routing 
overhead and the delay for its packets. 

Section II.B describes that a destination segment of a 
route may define only an intermediate node of the route 
because not all network details (e.g., gate numbers) are 
known. Theoretically, multiple destination segments in one 
route are possible, which is comparable to loose source 
routing of IP. This is utilized in the use cases presented in the 
next sections.  

Due to clarity reasons, Figure 3 does not show the error 
cases, which cause the drop of a packet. Example error cases 
are invalid formatted packet headers, invalid segment types, 
and data packets that routes end at forwarding nodes that do 
not represent a connection end point. 

IV. USE CASES 

Based on the FoG architecture and its network protocol, 
this section describes three different use cases showing the 
provisioning of QoS functions ranging from IntServ to 
DiffServ and a combination of both. For simplicity, the same 
example network is used in each case. Only the gate setup 
and the responsibility for the classification states (CS) differ. 

Figures 4 and 5 show three networks with network 3 
providing QoS functions in form of gates to networks 1 and 
2. Gates are depicted as straight lines between the forwarding 
nodes (FNi), which are shown as dots. The dotted lines 
represent connectivity through some other network, where 
the gate numbers are not known. Known gate numbers are 
labeled with small letters. Each network includes not only 
the forwarding component but also the routing component Ri 
as defined by the architecture. The routing components are 
depicted as extra round boxes with their network view inside. 

The scenarios assume that at least one node within each 
network runs an instance of each component type. For 
simplicity reasons, each network can be seen as a network 
with just a single node running all three components. In real 
world deployments, edge nodes typically have to host 
instances of the forwarding component. There may be more 
instances of the forwarding component on core nodes, if a 
network uses FoG also as intra-network technology. The 
locations of the instances of the routing component differ 
depending on their implementations. An example may be a 
central routing instance within a network with proxies on 
edge nodes. 

The following description further assumes that each 
component can be implemented and focuses on the 
architectural level. The protocols used by components, e.g., 
the routing component, depend on their specific 
implementation. More details about our implementation are 
given in Section VI. However, there may be other ways to 
implement the same architecture.  

In the following, gate numbers are represented by italic 
letters. Routes and route segments are encapsulated with 
square brackets. For example, [[b]] is a route (outer brackets) 
with a single explicit route segment (inner brackets), which 
contains only the single gate number b. 

A. IntServ gates 

Figure 4 shows a scenario, in which networks 1 and 2 
have requested QoS functions from network 3. Depending on 
the implementation, they might have used a simple 
request/response signaling procedure. Network 3 has set up 
one gate for each request with the gate numbers b and c. As 
stated in Section II.A, these numbers have to be unique only 
in the scope of FN3. Thus, network 3 is allowed to select 
freely the numbers b and c according to the needs of the 
components implementation. Networks 1 and 2 have 
informed their routing component about these gates. For 
example, each gate represents a (virtual) link providing 100 
MBit/s. The router, which is represented by FN3, has to store 
the scheduling and signaling states required to provide and 
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enforce these QoS functions. However, the classification 
states are not stored by FN3 but have been moved to 
networks 1 and 2, respectively. Their routing components 
know about gates b and c, and handle the decision about 
which flows are mapped to these gates. 

If network 1 wants to establish a flow, the entity that is 
responsible for flow creation (e.g., a control node or a node 
at the network edge) starts sending a signaling message with 
a route, which contains only one destination segment 
containing the destination address and the requirements for 
the route, e.g., a minimum bandwidth of 10 MBit/s. In this 
example, the destination is FN4. The packet with the route 
[[address(FN4)]] is inserted into the forwarding component 
FN1, which proceeds as described in Section III. Since the 
topmost segment of the route is a destination segment, it 
contacts the routing component R1. In the given case, R1 
knows a route with all gate numbers to the destination. We 
assume that R1 did not map too many flows on these gates 
and enough capacity is available. R1 maps this new flow on 
the gates a and b, and updates its classification states. It 
returns the route [[a, b]] containing only one explicit route 
segment. FN1 removes the destination segment from the 
packet and inserts this new route into the route field in the 
packet. FN1 restarts the procedure with the explicit route 
segment as topmost segment. It pops the gate number a from 
the gate number stack and looks up this number in its list of 
outgoing gates. Afterwards, it hands over the packet to gate 
a. The gate transports the packet to the next hop via a link 
layer, e.g., Ethernet. The packet arrives at FN3 with the route 
[[b]]. This forwarding node extracts (and removes) b from 
the stack and hands over the packet to gate b. FN4 receives 
the packet with an empty route and processes the packet 
locally. 

For network 2, the process is similar. However, the route 
required to reach FN3 is different. R2 calculates a route with 
three route segments: [[d], [address(FN3)], [c]]. In contrast to 
the route calculated by network 1, one more request has to be 

used. FN5 receives a packet with [address(FN3)] as topmost 
segment, which triggers an additional route request at FN5. 

B. DiffServ gates  

Figure 5 depicts a scenario, in which network 3 provides 
one gate with a high priority and a best effort gate with a low 
priority. The latter is included in the scenario to demonstrate 
the integration of non-QoS links in FoG. The routing 
components of networks 1 and 2 have slightly different 
views on this situation. R1 only knows e and R2 knows both e 
and f. The reason might be that R1 decided to omit f or 
network 1 did not request a best-effort gate from network 3. 
Moreover, R1 and R2 have different strategies for tracking 
the flows mapped to these gates. R1 stores the classification 
states as in the previous scenario. However, the criterion for 
using gate e differs. Instead of bandwidth metric, as in the 
previous example, R1 might use a cost metric (e.g., money to 
pay to network 3) to decide which flow is important enough 
to justify the usage of gate e. R2 does not limit the usage of 
gate e and f and does not store any classification states. It 
basically treats both as virtual best-effort links. 

The calculated routes of this scenario are similar to the 
previous scenario. The main difference is the applied policy 
for selecting gates in R1 and R2. In addition to the previous 
scenario, R2 shows the benefit of knowing a broader set of 
gates available for a link. Depending on the requirements for 
a route, R2 can decide to use e or f. For example, it can return 
the route [[d], [address(FN3)], [f]] for flows without QoS 
requirements. Gate e can be used by R2 without having to 
signal to FN3. Furthermore, FN3 does not have to know the 
details about flows and can just follow the gate numbers 
given in a packet. This reduces the load of the router hosting 
FN3, e, and f. 

C. Combined scenario 

Both gate types can be combined in a single scenario. 
Such a scenario can be constructed by merging the two 
scenarios shown before. This combined scenario has four 
gates between FN3 and FN4 representing different QoS 

 

Figure 4: Gates representing IntServ reservations 
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Figure 5: Gates representing DiffServ classes 
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functions. In such a scenario, R1 would have two options 
(since it does not know all gates) for a route from FN3 to 
FN4: 

 Gate b: The usage is limited by the bandwidth, which is 
already reserved by R1 for other flows. By proper 
management of R1, a minimal bandwidth could be 
guaranteed. 

 Gate e: The usage is limited by the costs, which 
network 1 is willing to pay for a flow (if it is charged 
by network 3). A certain amount of bandwidth cannot 
be guaranteed. However, the delay is minimized. 

Which gate has to be chosen depends on the requirements 
for a flow and the requesting entity. 

D. Discussion 

Neither network 1 nor network 2 knows about the 
techniques used by network 3 to provide QoS. These 
implementation details are hidden from the routing, based on 
the abstract gate description, and from the forwarding, based 
on the used gate numbers. 

In all scenarios, FN3 does not store any classification 
states and does not know which flows are mapped to its gates 
by networks 1 and 2. It delegates the decision to these 
networks. However, the states required to enforce the 
characteristics of the gates remain in network 3. Thus, even 
though network 3 does not know, which and how many 
flows are mapped to a gate, it can enforce that the combined 
traffic does not use better QoS than requested. Another 
benefit of this delegation is a reduced signaling overhead. In 
particular, no signaling messages from networks 1 or 2 are 
required to inform FN3 about new mappings. 

The routes calculated by network 2 indicate an important 
case showing the difference between FoG and a combined 
MPLS / IP solution. The route [[d], [address(FN3)]] could be 
implemented by the help of MPLS, handling the explicit 
route segment, and IP, handling the destination segment. 
However, a subsequent explicit route segment ([c] in the 
example) is not supported by MPLS and IP. In IP, the ingress 
router doing the IP forwarding has to have some 
classification states, which link a packet to the subsequent 
explicit route segment. However, FoG moves this state to 
other routers and thus reduces the number of states to be 
maintained by the ingress router. 

The main use case of FoG consists of a network that 
provides some degree of QoS to its customers (its own end 
users and other networks). Thus, deploying FoG in order to 
implement a best effort network provides only limited 
advantages compared to IP. However, the degree of 
deployment is also critical for QoS scenarios. The delegation 
of states and decisions cannot be done only by network 3, 
since it requires the support of networks 1 and 2. 
Consequently, a partial deployment in today’s Internet might 
not benefit from these two features. However, the more 
networks support FoG, the better is the exploitation of the 
advantages.  

A migration strategy for introducing FoG to existing 
networks depends mainly on the legacy systems, which 
should be supported. For example, MPLS might be 
integrated by representing each “label switching path” (LSP) 
by gates.  

V. INTEROPERABILITY WITH CURRENT NETWORKS 

In the previous section, we discussed how FoG handles 
QoS functions. However, the architecture and its gates 
enable much more in-network functions. From an abstract 
point of view, gate numbers represent decisions of the 
routing, which are executed in the forwarding. Interpreting 
them as indices in a gate vector of a forwarding node is the 
simplest case. In general, gate numbers can be used to move 
information from an intermediate AS to the hosts at the 
border of the network or up-stream ASs without telling them 
about that shift. However, the usage of gate numbers is not 
limited to this.  

A. Using  layer 2 addressing 

A gateway could store the MAC address of the 
destination node in a route. The forwarding would not need 
to create gates for all nodes, which are connected to an 
Ethernet domain. It would just use the MAC address given in 
the route. This enables stateless gateways, which do not have 
to store an address mapping (e.g., between IP and MAC 
addresses). The shift is transparent, since others see a list of 
gate numbers and do not need to know the meaning of each 
number. If the network has to prevent others from guessing 
MAC addresses, the routing can encrypt the address with a 
key, which is only known by the forwarding component. 
Based on this, the forwarding component can check whether 
a MAC address, given in a route, has actually been provided 
by the official routing component. In general, the resulting 
scheme, which is used to encode the routing decisions, can 
be adapted to the level of security, which is required for the 
network. 

B. Network policies 

Knowing the representation of decisions and how they 
are secured, introduces dependencies between the routing 
and forwarding component. In an inter-network scenario, this 
requires both components being operated by the same 
provider. Fortunately, the incremental routing process can be 
used to ensure this. By not announcing gates, others are 
forced to involve the forwarding of an AS in the route 
calculation, as shown in use case 1. Thus, ASs have the 
opportunity to insert self-generated route segments into the 
route. How these route segments encode the decisions for the 
forwarding instance is solely up to the AS 

C. Protocol tunnels 

Since gates hide the implementation of the QoS-aware 
data transport, any technology (e.g., MPLS) can be used. 
Therefore, gates can be interpreted as tunnels transporting 
packets through networks. By constructing explicit routes, 
tunnels are concatenated. Such a tunnel semantic can be 
implemented by having “tunnel gates”. In particular, such 
gates are useful for hiding intermediate structures and to 
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discrete event simulator called “FoGSiEm”. It can be 
switched to an emulator mode that handles events in real 
time. The FoG emulator includes interoperability solutions 
combining FoG and IP based networks [16]. The software 
supports Windows, Linux and OS X and is available as 
open-source [17]. It includes the gateway interoperability as 
described in Section V.D with client and server sockets on 
FoG and IP side. We demonstrated this feature for web 
browsing and video streaming [18]. 

A. Simulation setup 

The evaluation relies on simulations of large inter-
networks. We derived the simulated networks from 
generated graphs modeling the Internet on the level of 
autonomous systems. 

1) Network graph 
The network used for evaluation matches the 

characteristics of today’s Internet but has a smaller size in 
order to enable simulations. Its network graph has been 
generated with the GLP algorithm implemented in BRITE 
[19] and the parameters derived in [20]. Therefore, the graph 
has similar characteristics as the real world Internet graph on 
the autonomous system level. It consists of 5,000 nodes and 
12,437 links between them. In addition, a different graph 
generated with the default parameters (α=0.45, β=0.64) of 
BRITE (5,000 nodes and 8,974 links) was used for 
simulation. Since the results do not differ significantly, only 
the results from the first graph are presented. 

Each node of a graph represents an autonomous system. 
In the simulation, such a node is represented by one 
forwarding node per edge and one forwarding node 
representing the core of an autonomous system. The edge 
forwarding nodes are linked to the core forwarding node 
with a star topology, which represents the internal 
connectivity within the autonomous system. Each link 
between autonomous systems is represented with a link 
between two edge forwarding nodes. 

2) Announcing gates to neighbors 
The use cases discussed in the previous sections 

comprises only a small excerpt from a whole network. For 
the evaluation of the routing graph sizes, we need to define 
how many gates are known to the routing components of 
each FoG node of a large network. In the following, the 
algorithm used to configure the routing component instances 
used by our simulation is described. 

We assume that FoG nodes join groups. Those group 
members trust each other and exchange information about 
gates with them. More specific, all members of a group 
announce their gates and gate numbers to all other members 
of the group. They are allowed to reuse these gates in the 
incremental routing process of Section II.B. 

Groups are defined by clustering the nodes of a network. 
Clusters are generated by choosing cluster heads randomly at 
the start of a simulation. Nodes that are no cluster head join 
the cluster represented by the nearest cluster head. If two or 
more cluster heads are available within the same distance, 

one is chosen randomly. If no node decides to become a 
cluster head, a single node is selected randomly by the 
simulation. 

Within a cluster, routing components exchange their 
knowledge. With nodes outside of a cluster, only abstract 
information is exchanged. This abstract information enables 
nodes to determine the shortest path to a destination but does 
not include any gate numbers. Thus, this information is 
comparable to the information exchanged in IP networks, 
e.g., between BGP entities. 

The clustering is a possible and simple way to define the 
announcement policy. In reality, nodes will follow a more 
complex scheme based on the business plans of their 
operators. Our approach reduces the complexity but includes 
typical setups of today’s networks as shown later on. 

B. Overhead due to explicit route 

The route length of explicit route segments is a specific 
concern. The more hops a packet has to travel, the more gate 
numbers are required and the longer is the header. In order to 
estimate the FoG protocol overhead, the length of explicit 
routes for large-scale scenarios has been analyzed. 

1) Results 
The analysis is based on the lengths of explicit routes of 

100,000 connections between randomly chosen FoG nodes. 
Figure 8 shows the empirical distribution function of the 
route lengths. Since each intermediate node uses three gate 
numbers and each end node uses two gate numbers in order 
to encode its routing decision, only specific route lengths 
such as 4 and 7 are possible. An end-to-end route contains 
11.95 gate numbers in average. The average number of hops 
between two FoG nodes L = 3.65 matches the expectations 
for an Internet-like graph [21]. 

2) Discussion 
Figure 8 shows the distribution of the route lengths in 

number of gate numbers. For a comparison with the address 
length of IP, an encoding of the routes is required. If a gate 
number, the route length field, the route segment length field, 
and the route segment type field from a FoG header (cp. 
packet format in Section III) are encoded with a single octet, 
a route with 13 gate numbers requires 16 octets in total. 
Thus, such a route would require the same number of octets 

Figure 8: Empirical distribution function of end-to-end route lengths 
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as an IPv6 address. According to Figure 8, 87% of the routes 
have 13 gate numbers or less. Thus, most routes have a 
length, which is shorter or equal to an IPv6 address. 

Since the setup requires three gate numbers to cross one 
node, the encoding with one octet per gate number seems to 
be realistic (in other words: three octets per hop). Thus, the 
overhead induced by transporting explicit routes seems to be 
acceptable in comparison with IPv6. 

In average, only half of the gate numbers are transported 
over links, because gate numbers are successively removed 
from the packet header by the forwarding component. Since 
FoG may trace a reverse route, which increases the packet 
size again, the average route length mentioned above 
includes both routes. Thus, two routes with a total average 
size of 12 gate numbers replace the source and destination 
addresses of an IP packet. Even if the encoded size of a gate 
number is doubled to two bytes, 87% of the FoG packets 
contain less overhead than an IPv6 packet. 

C. Routing graph size 

In order to evaluate the scalability of the routing 
component, we simulated different setups of FoG’s routing 
by varying the knowledge base of the routing components. 
Therefore, we cluster a network to model groups of trusted 
nodes as described in Section V.A.2. There are two extreme 
cases of the clustering: 

 There is just a single cluster including all nodes. All 
network elements know the entire network graph and, 
thus, can use all gates for constructing routes. Such 
nodes can calculate complete end-to-end routes. This is 
equivalent to source routing. 

 Each node forms its own cluster. All nodes know only 
their own gates. Additionally, they know the other 
network parts in an abstract way in order to find a 
shortest path. This setup is comparable to the 
operations of IP, since routing is done in a hop-by-hop 
manner. 

In our simulations, a node knows the gates and 
forwarding nodes of the cluster it belong to and can calculate 
only partial routes for the cluster. For the construction of an 
end-to-end route, FoG has to combine multiple partial routes 
as described by the incremental routing process presented in 
Section II.B. Basically, an ingress node of a cluster 
calculates the route through its cluster, since it has the 
required knowledge. 

1) Results 
The results shown in the following are average results 

derived from 10 simulation runs with randomly chosen 
cluster heads. Error bars indicate the min/max results of the 
10 runs. Each run contains 25,000 flows, which exist 
between randomly chosen nodes. 

Figure 9 shows the number of gates and forwarding 
nodes (edges and vertices) of the detailed routing graph a 
node has to store. Figure 10 shows the same numbers for the 
abstract graph, which does not include gate numbers. For 

example, R2 in Figure 4 has 4 vertices and 2 edges in its 
detailed graph. In its abstract graph, R2 has one gate (dotted 
one) and its start and end forwarding nodes. Since a node has 
to store both graphs, Figure 11 shows the average graph sizes 
(vertices plus edges) of both graphs and the sum of both. 

 

Figure 9: Number of gates and forwarding nodes (FNs) for detailed 
graph. Maximum values for probability zero: 76k gates and 30k FNs 

 

 

Figure 10: Number of gates and forwarding nodes (FNs) for abstract 
network graph. 

 

Figure 11: Average routing graph sizes 
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The x-axes of these three figures show the probability of 
a node to become a cluster head at the start of a simulation. 
In the source-routing setup (probability is zero) on the left 
hand side, each routing component knows the entire network 
with all gates. As expected, the graph for such approaches is 
very big. For hop-by-hop setups (probability is one), the 
amount of detailed information is significantly smaller as 
shown on the right hand side. Each node knows only the 
gates it hosts and remote gate numbers are not known. 
However, the abstract graph is rather big, since a lot of 
clusters and gates connecting them are known. In total, a 
routing component in a network configured in a hop-by-hop 
manner has to store slightly more information than a routing 
component in a source-routing network. 

2) Discussion 
The evaluation shows that there are a lot of 

configurations beside the extreme cases: source- and hop-by-
hop routing. They require smaller overall routing component 
graphs. For example, the average routing component size for 
a probability of 0.025 with approximately 52k elements is 
half of the average sizes of the two extreme cases. From the 
perspective of the use cases, these intermediate 
configurations seem to be the more realistic ones. Some 
nodes request gates from remote peers and their routing 
components have the knowledge about these gates. They can 
combine them to routes for their data flows. These nodes are 
not interested in all gates as in the source routing 
configuration. They delegate decisions about route parts, 
which are “unimportant” for them, to others by using the 
incremental routing process. For the important parts, they 
exploit FoG’s partial routes in order to define these route 
parts explicitly. 

In relation to BGP, the results represent a worst-case 
scenario, because the nodes store information about all links. 
A BGP peer would filter the information according to its 
policy (e.g., only shortest path) and not announce all 
information to its peers. 

D. Number of routing requests 

The overall overhead of the routing is not only 
determined by the graph size. It also depends on the number 
of route calculations within this graph. Thus, we measured 
the average number of requests required to setup one end-to-
end route. Figure 12 shows the results that are based on 10 
simulation runs and 25,000 flows per run. 

1) Results 
The x-axis of Figure 12 shows the probability that a 

single node decides to become a cluster head at the start of a 
simulation run as described in the previous section. If the 
probability is zero, the source-routing configuration induces 
a single route calculation per flow. Between zero and 0.1, the 
number of route requests increases disproportionately. 
Above 0.1, the number continues to increase nearly linearly. 
If the probability is one, the hop-by-hop configuration 
requires 4.7 requests on average. This number includes one 
request per hop (3.7 hops on average as mentioned in Section 

V.B) plus a last calculation at the destination in order to 
determine the forwarding node within the destination node. 

2) Discussion 
A request has to be answered by a routing component 

with a partial route towards the destination. This answer has 
to be calculated by an algorithm based on the graphs 
analyzed in the previous section. Thus, the computational 
overhead depends on the number of requests, the graph sizes 
and the applied algorithms. If the algorithm is fixed and its 
runtime complexity depends on the graph size, a trade-off 
between the number of requests and the graph size is 
required. In our example, we used the Dijkstra for each 
calculation. Thus, a probability of 0.0125 provides an 
optimal trade-off with a graph size of around 40k and 1.6 
requests. 

However, such a trade-off depends on the algorithm. 
Thus, different algorithms may lead to different optimal 
trade-offs. For example, if a forwarding information base 
(FIB) is introduced, the runtime of the algorithm does not 
depend directly on the graph size anymore. We refrain from 
analyzing FIBs in this article, because they depend strongly 
on the distribution of addresses. Since FoG supports a variety 
of implementations of the routing component, neither the 
algorithm nor the addressing or the type of addresses are 
fixed. For example, FoG can operate with IP addresses, BGP 
or with HRM with its hierarchical addresses. Thus, the 
optimal trade-off depends on the implementation. Our 
analysis underpins the flexibility of FoG and the new 
opportunities for designing routing components. 

VII. RELATED WORK 

The question about how to provide an adequate QoS for 
networks has a long research history. A survey about today’s 
approaches is given in [22]. As discussed in the introduction, 
IntServ [3] and DiffServ [6] can be used to provide QoS. 
However, they do not support the transparent movement of 
QoS classification states among nodes as it is enabled by the 
FoG architecture. By combining MPLS with IP, many QoS 
use cases can be implemented. However, Section IV.D 

Figure 12: Average number of requests for (partial) routes in order to 
construct one end-to-end route. 
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points out important cases where the combination of IP and 
MPLS does not allow the movement of classification states. 
Furthermore, the FoG architecture does not require a 
standardization of gate numbers as it is required for the IP 
TOS field in an inter-network scenario [23]. 

In general, FoG implements a strict split of packet 
processing into forwarding and routing components similar 
to PFRI [10], which uses labeled “channels” and anonymous 
nodes to model the available connectivity of lower layers. 
The channel labels are globally bijective and are comparable 
to FoG gates representing lower layer connections. However, 
the PFRI channel labels are not comparable to gate numbers, 
since gate numbers in FoG are only bijective in the scope of 
a forwarding node.  

Other forwarding approaches use a stack of locally valid 
numbers to describe routes, e.g., PARIS [24], Sirpent [25] or 
Pathlet [11]. In PFRI [10], these numbers are even globally 
unique in order to enable the end host to specify a loose 
source route based on links. Such entries in a forwarding 
table represent either virtual [11] or physical [26] next hops. 
In a FoG network, each gate has a locally unique number in 
the scope of a node. The number assignment is controlled by 
the corresponding parent node. Globally unique numbers are 
not mandatory in a FoG network. But server application 
must have globally unique addresses to be addressable by 
clients, which can be located everywhere in the entire 
network. Furthermore, FoG uses names for forwarding nodes 
and not gates, because we expect a network to have more 
links than nodes. 

Some older architecture approaches [24, 25] are focused 
on intra-networks. Other proposals for new inter-network 
architectures focus more on the overall architecture and do 
not address scalability of state distribution, e.g., NewArch 
[27], IPC [12], RNA [28]. The Pathlet approach, as the 
newest one, deals specifically with policy issues in inter-
network routing. However, QoS and other application 
requirement aspects are not discussed in detail. In the Pathlet 
descriptions, QoS is only mentioned but any details about 
how to integrate IntServ or DiffServ, and a network protocol 
are missing. The FoG architecture includes these aspects 
with respect to scalability. It is focused mainly on inter-
networks. QoS path reservation protocols, e.g., RSVP or 
NSIS [29], signal QoS requirements. One of these protocols 
or similar approaches are suitable to trigger the setup of 
gates.  

The combination of function blocks can either be done at 
design time (similar to Netlets [30]) or at runtime (similar to 
SONATE [31]). The architecture of FoG decides everything 
during runtime. It reacts dynamically on inputs from 
applications (e.g., QoS requirements) and network states 
(network policies and available routes). While SONATE 
[31] is focused on selecting and composing function blocks 
on end hosts, FoG can also be used to integrate function 
blocks residing on intermediate routers. 

The impact of using heap structures for header 
information as proposed by the Role-based Architecture [32] 

has not been analyzed. The “roles” of this architecture are 
comparable to gates. However, RoleIDs (and, thus, role 
addresses) are not comparable to gate numbers because a 
RoleID contains an identifier for the type of function and not 
for a special instance. 

VIII. CONCLUSION AND OUTLOOK 

In this article, we presented the Future Internet 
architecture “Forwarding on Gates” (FoG). It applies its own 
network protocol in order to provide three different ways for 
selecting a route for packets: define the route explicitly, 
define the route indirectly based on the destination address 
plus requirements or – as third way – use a combination of 
both. This enables the movement of classification states 
between routers. IntServ and DiffServ are merged by 
introducing QoS functions, which are represented by 
directed gates in the FoG architecture. Routes can be defined 
by using the gates without knowing about their 
implementation. FoG enables the flexibility to move 
classification states from the router, which implements a 
QoS function, to other routers, which take over the mapping 
of flows to QoS functions. This delegation of mapping 
decisions reduces the amount of required signaling 
messages. 

Based on three use cases, we described the setup of gates 
in IntServ, DiffServ and mixed scenarios. Although the route 
length is dynamic, the protocol overhead remains low. A 
protocol simulation in a large-scale network with 5000 nodes 
showed that 87% of the routes are shorter than an IPv6 
address. Simulations of a basic version of the routing 
component showed the flexibility of FoG by using partial 
routes. Depending on the knowledg a node and its routing 
component have, FoG can be used for a trade-off between 
hop-by-hop routing (with many routing requests) and source 
routing (with only one routing request). FoG’s routing 
component implementation can exploit this flexibility and 
can use new address types or routing algorithms. 

The results presented in this article show the flexibility of 
FoG in providing QoS in a scalable way. It indicates that the 
FoG architecture is a promising basis for a network layer 
architecture that can replace IP in a Future Internet. Since a 
complete replacement of IP seems to be unrealistic, Section 
V outlined several interoperability solutions for partial 
deployment scenarios. They are similar to the 
interoperability solutions for IPv4 and IPv6. Thus, running 
FoG in parallel to IP is an deployment option as well. 

In the future, we plan to use route repair techniques 
known from MPLS to evaluate the robustness of FoG routes 
against link and node failures. Additionally, we will evaluate 
the FoG architecture in comparison to other existing 
architectures for selected Internet-like scenarios. 
Furthermore, we plan to extend the existing qualitative 
evaluation [15] of the routing component infrastructure 
“Hierarchical Routing Management” [14] by measuring its 
quantitative advantages and management overhead for 
selected complex network scenarios. 
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