
132

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Forwarding on Gates Architecture:
Flexible Placement of QoS Functions and States in Inter-Networks

Florian Liers, Thomas Volkert, and Andreas Mitschele-Thiel
Integrated Communication Systems Group

Technical University of Ilmenau
Ilmenau, Germany

e-mail: {Florian.Liers, Thomas.Volkert, Mitsch}@tu-ilmenau.de

Abstract—A main driver of Future Internet applications and
services is Quality of Service (QoS). Current Internet
technologies provide no suitable QoS support for end-to-end
connections due to several drawbacks of IntServ and DiffServ.
In this article, we propose the “Forwarding on Gates” (FoG)
architecture, which answers the QoS questions by the help of a
new inter-network architecture. It applies its own new network
protocol, which was designed to handle IntServ and DiffServ in
an integrated way. FoG supports resource reservations for
QoS guarantees in IntServ scenarios and prioritized traffic in
DiffServ scenarios as well as a combination of both. As core
advantage, the QoS support of FoG works in a scalable way by
allowing a network to move QoS states and delegate decisions
about the QoS usage to the entities demanding for QoS. This
article describes the architecture, its network protocol, and
solutions for interoperability with current networks. The
evaluation includes theoretical descriptions of network
configurations for a use case not supported by IP. Moreover,
simulations show that the protocol overhead is comparable to
IPv6, although packets can select QoS explicitly. Measured
routing graph sizes for various setups show the flexibility of the
FoG architecture.

Keywords—Future Internet; network protocol; architecture;
QoS; routing graph; interoperability.

I. INTRODUCTION

The Future Internet will be faced with much more
applications requiring Quality of Service (QoS) than today’s
networks. In the broad field of Future Internet research, we
focus on the applied protocol of the network layer. In [1], we
started to describe an inter-network architecture that supports
QoS support in a flexible and scalable way. In this article, we
give more details about our inter-network architecture
“Forwarding on Gates” (FoG) such as its incremental routing
process and possible interoperability with IP. Moreover, we
present recent evaluation results for its routing.

Applications requiring QoS support will be the main
driver for protocols in future networks. The most important
application is video streaming, which already stresses
today’s networks, especially the Internet. Forecasts predict
that in 2015 about 62% of the traffic in the Internet will be
video data [2]. For live video streams, as required for remote
medical operations and for football games, QoS is required.
Due to the large number of hosts and connections in the
Internet, scalability is the crux for QoS.

For IP (both version 4 and 6), add-ons called IntServ and
DiffServ have been developed in order to tackle QoS
requirements in the Internet. However, both have pros and
cons. The IntServ approach [3], with its signaling protocol
“Resource Reservation Protocol“ (RSVP), provides end-to-
end QoS by introducing states on each intermediate router,
which is passed by a flow. According to [4], RSVP is used to
distribute states for classification, scheduling and
reservation. The classification state defines how incoming
packets are mapped to flows. With RSVP, such a mapping
consists of a source address, a destination address and a
protocol number (and optionally port numbers). A
scheduling state defines how flows are handled. For
example, on a node a flow can be assigned to an own
prioritized packet queue for the outgoing hardware interface.
Finally, signaling states represent management information,
e.g., authentication data and timers. For each flow, an
intermediate node requires one set of the described states.
Due to memory limitations, such an approach causes
scalability problems for scenarios with many flows [5].

DiffServ [6] was developed with main focus on
scalability. It introduces a small set of QoS classes, which
are used inside networks. Each QoS class defines a type of
service and requires scheduling and signaling states. Thus, in
comparison to IntServ, the number of states does not depend
on the number of connections. However, DiffServ is not able
to provide guarantees, since it is not aware of each individual
flow. For a DiffServ network, edge routers of a network store
and handle the classification states in order to map incoming
packets to network internal QoS classes. The classification
states represent the rules for this mapping. Since most
interfaces with incoming traffic transport multiplexed flows,
e.g., multiple TCP connections over the same Ethernet link,
the classification is mainly done by (more or less deep)
packet inspection. For example, protocol numbers, port
numbers and even packet sizes are used for such
classifications.

Besides their single application, IntServ and DiffServ can
also be used in a combined way in order to leverage the
advantages of both approaches. IntServ provides the
signaling for flows between ingress routers and DiffServ
provides a set of QoS classes used inside networks [7, 8].
However, the scalability problem of IntServ now appears at
the ingress routers. They have to store the classification
states per flow. Since the amount of scheduling and signaling

133

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

states remains limited due to the limitation of possible
DiffServ classes, the distribution of classification states is the
main problem. In order to maintain the states, signaling is
required. The processing load of handling these messages
increases the burden on a network. In the past, proposals
focused on reducing the number of flows, e.g., through
aggregation [4].

Our key contribution is the proposal of an orthogonal
strategy: move the classification states away from ingress
routers to routers handling smaller amounts of flows.
Furthermore, some decision-making authority is delegated
from the QoS provider to the entity using QoS in order to
reduce the required signaling overhead. As discussed in more
detail in Section IV, today’s network protocol IP is not able
to support both in all required use cases. Therefore, we focus
on a network protocol enabling the movement of
classification states and the delegation of decisions between
routers. Our solution is suitable both for IntServ and
DiffServ scenarios. It is further able to handle combinations
of both. Its main feature is the flexible placement of the
classification states according to the network graph and the
load in the system. It enables the handling of both QoS
approaches in a single mechanism.

The remainder of this article is structured as follows:
Section II describes our system architecture. Section III
introduces the protocol and how its header is processed.
Afterwards, in Section IV, the implementation of the use
cases based on our architecture and protocol are presented.
Subsequently, Section V shows possibilities for
interoperability with current networks. Afterwards, Section
VI shows our recent evaluation results from protocol
simulations and Section VII shows how FoG is classified
within related work. In the end, the main results of this work
are summarized and an outlook about future steps is given.

II. FORWARDING ON GATES ARCHITECTURE

As fundamental design aspect, the “Forwarding on
Gates” (FoG) architecture separates the forwarding from the
routing. It splits them into two logical components, which
encapsulate their specific tasks. The forwarding component
is responsible for relaying packets between routers and hosts.
It handles the resource management and enforcement of
resource reservations in order to take non-functional
properties such as delay and bandwidth into account. The
routing component is responsible for calculating paths
through the network with respect to non-functional
requirements given by applications [9]. Both are linked via a
route definition. The routing component specifies a route and
the forwarding component forwards packets along this route.
The authentication component is the third logical component
of FoG. It checks the authentication of the sender of
signaling messages in order to secure access to management
functions. This authentication component is the basis for
authorization decisions and accounting for QoS provisioning.
Figure 1 depicts these components and their interactions.

For the following discussion, we introduce the term QoS
function, which generalizes QoS provisioning regardless of

the underlying QoS architecture. A QoS function represents
the setup, which is required to send packets with QoS
constraints. Examples of QoS functions are setups
implementing a DiffServ class or an IntServ reservation.
QoS functions can provide guarantees ranging from “hard”,
with fixed limits, over “soft”, with probabilistic QoS
guarantees, to vague goals, e.g., “optimized for delay” or
“best-effort”. A QoS function comprises its scheduling and
signaling states. The classification states are not included.

In addition to the separation of routing and forwarding
[10], our architecture has some more features. It reduces
forwarding table sizes [11], enables routers to choose their
address format [12], hides addresses from applications, and
supports various intra-network techniques. However, they
are shared with other approaches from related work (see
references) and are not in the focus of this article.

FoG applications specify their QoS requirements
explicitly via an interface and FoG reacts accordingly. The
interface is based on the “G-Lab Application-to-Network
Interface” (GAPI) defined in [9].

A. Forwarding component

Today’s Internet operates over interfaces of routers and
hosts and links in between. FoG’s forwarding component
uses a virtual representation of the network in the form of a
graph. Hosts and routers are represented by one or more
vertices, which are called forwarding nodes (FNs). Edges
between forwarding nodes are called gates and represent uni-
directional (virtual) links between them. In order to support
QoS, multiple edges between adjacent nodes are allowed. An
edge is equivalent to a link with a QoS function between two
routers or hosts. Each outgoing gate of a forwarding node is
assigned to a gate number. The gate number is always
unique to the scope of the forwarding node, to which the gate
belongs to. Each FoG packet includes a header, which
describes explicitly the order of gates the packet has to pass.

Forwarding on Gates

Forwarding
component

Routing component

Authentication
component

Gates and
forwarding nodes

Applications

Layer 2 (e.g., Ethernet)

Routing
information bases

GAPI

Figure 1: Logical components of the FoG architecture

134

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Details about such a route, and how a forwarding node
processes it, are given in Section III.

Gates are set up with a FoG-specific management
protocol. The forwarding nodes process the signaling
messages of that protocol and modify the graph of
forwarding nodes and gates as requested. In order to secure
this management, signaling messages are signed via the
authentication service by the sender. The receiver uses the
authentication service to verify the signature again.

The forwarding component informs the routing
component about available gates and forwarding nodes to
enable route calculations based on this information.
However, gates that are not intended for other data flows
(either connection based or connectionless) can be hidden in
order to exclude them from the routing calculations.

B. Routing component

The interaction between the forwarding and routing is
most important for FoG. Routes define how both are
interacting. Whenever a route ends and the destination is not
reached, the forwarding has to contact the routing component
for the next (partial) route leading closer to the destination.

FoG routes are defined as stacks of segments. Two types
of segments are possible:

 Explicit route segment: a stack of gate numbers

 Destination segment: the name or address of the
destination, if a route is a partial one. The format and
length depend on the routing and might range from
DNS names to IPv4/6 addresses. Additionally, the
QoS requirements are included. They describe the
desired application requirements, which have to be
considered by further route calculations.

A forwarding node uses the topmost segment of the route
for its forwarding decision. If it is an explicit route segment,
the forwarding node extracts the topmost gate number. This
number is used for the following lookup for the next
outgoing gate. In the simplest implementation, the gate
number is an index representing the position of the outgoing
gate in a stored gate vector. The packet passes this outgoing
gate with a route, which is shortened by the used gate
number. If the route segment is empty, it is removed from
the route and the forwarding node proceeds with the next
segment. If this is a destination segment, the forwarding
node has to contact the routing component in order to know
the next partial route towards the packet destination. For
such a request, the forwarding node itself is the starting point
for the route calculation. In general, the architecture does not
restrict the format of the name or address, which are used in
order to describe the packet destination. An implementation
of the routing component can operate with its own format. If
the destination segment includes QoS requirements, they are
also included in the route request. Otherwise, best-effort
routing based on hop costs is provided. The request result
from the routing component is added to the route in the
packet header by the forwarding component and the
forwarding node will re-start its forwarding procedure once

again. If there are no more route segments, the packet has
reached its destination.

Destination segments can also be combined. In such a
case, a destination segment is not necessarily the last
segment in a route. It might define only the ingress router to
an AS and a subsequent explicit route segment defines the
rest of the route to the destination host. Theoretically,
multiple destination segments in one route are possible. This
allows for an incremental routing process, which is
comparable to loose source routing of IP. Due to security
considerations [13], policies can limit the utilization of this
routing method. Since such limitations are mainly important
at AS borders, multiple destination segments could be used
within intra-networks. For example, this could be used to
select the route through a local network.

In general, the subset of a network that is known to a
routing component is a connected graph, which represents
the nodes and links of the network itself and its
surroundings. The knowledge about the parts outside of this
subset is more abstract. A routing component knows about
the connectivity but does not know the gate numbers, which
are required to specify the route explicitly. Such abstract
connectivity information can be represented by gates without
gate numbers. They represent connectivity enabled by an
unknown set of forwarding nodes and gates. This is
comparable with the situation known from the Border
Gateway Protocol (BGP). A BGP entity knows about the
existence of a route (and its cost) but does not know the
outgoing ports of each distant intermediate router, which has
to be used in order to reach the destination.

If there are insufficient gates to form an end-to-end route,
a routing component can contact the forwarding component
and request the setup of new gates, depending on the
physical connectivity. In particular, routing components can
request gates with specific QoS capabilities in order to
satisfy the QoS requirements of a particular route request.

The routing component can be implemented in multiple
ways and with various protocols. We have developed a
hierarchical approach for the implementation of the FoG
routing component. It supports QoS and is called
“Hierarchical Routing Management” (HRM). It clusters
proactively the network at different hierarchical levels where
each cluster has its own coordinator instance. The higher
such a coordinator is located in the hierarchy, the more
abstract is its network topology view. HRM uses these
coordinators for distributing aggregated topology
information among the physical nodes. As a result of this,
each node knows the next hop for every existing destination
without having global knowledge about the entire network
topology. Further details about the approach are described in
[14]. Additionally, we have already showed [15] the
qualitative advantages of HRM for QoS demanding
applications.

C. Authentication component

The authentication component is used to generate
signatures for signaling messages and to check such

135

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

signatures. Based on the authentication check, authorization
decisions and accounting are done. It is mainly used by the
forwarding component to secure the gate management.
Furthermore, applications can use the authentication in order
to sign data packets. Thus, the authentication has an impact
on the packet structure described in the next section.
However, due to the QoS focus of this article, the
authentication component is not described in more detail.

III. FOG PACKETS

The FoG packet structure is shown in Figure 2. It starts
with a header comprising all information required to decide
the next hop. This enables a router to make a forwarding
decision before the packet is fully received. The packet ends
with a trailer containing all information that can be added to
a packet after receiving it completely. The trailer is optional
and can be omitted. The header and trailer elements are
defined as follows:

 Header

o Header size in bytes: This field is required to access
the payload as subsequent versions of the FoG
protocol specification could add more fields to the
protocol header and before the payload.

o Flags indicate:

 if the reverse route in the trailer is present,

 if the packet is a signaling message, and

 if the authentication information in the trailer is
present.

o Modification counter, which is used to avoid infinite
routing loops due to invalid gate setups

o Payload size in bytes

o Route for the packet

 Trailer

o Authentication information (including a size field,
which stores the length of the authentication
information in bytes)

o Reverse route for answers: This field includes the
reverse route as it was recorded by already passed
forwarding nodes.

Each route starts with a length field followed by a stack
of route segments. Each stack entry contains the following
fields:

 Segment type indication, where two types are allowed:

1. An explicit route segment: This is a stack of gate
numbers, defining explicitly a sequence of gates,
which have to be passed by the packet.

2. A destination segment: It contains the name or the
address of the desired destination, and the
requirements for the remaining route to this
destination.

 Segment length in bytes

 Segment content with variable size: It contains the gate
numbers of an explicit route segment or an address plus
requirements of a destination route segment.

Each forwarding node processes the route of a packet as
shown in Figure 3. If the route is empty, the packet has
reached its destination. If the signaling flag is set, the packet
contains signaling information dealing with the setup of
gates and connection establishment between applications.
The signaling message is handled by the host or router, and it
updates the gate and forwarding node graph accordingly. If
the signaling flag is not set and the forwarding node has an
attached socket to an application, it removes the FoG header
and trailer and stores the payload in the receive buffer of the
socket. If the route is not empty, the forwarding node
processes the topmost segment. If it is an explicit route
segment, it removes the topmost gate number and uses it as
locally unique identification for addressing one of its
outgoing gates. If there is an outgoing gate with this gate

Figure 3: Forwarding node procedure without error cases

Route
empty?

Segment
type?

Process
locally

Call routing:
r = routing(this, S)

Insert r to route
of packet

yes

no

Destination

Explicit route

Pop gate number
and determine

next gate

Gate
numbers?

Forward
packet to
gate

Update reverse
route

Pop
segment

Pop segment S and
mod. counter‐‐

yes
no

yes

no

Extract
payload

yes no

Signal‐
ing?

yes

Drop
packet

Mod.
counter
> 0

no

Trace
reverse
route?

H
ea

de
r

size

F
la

gs

M
o

dification
co

un
te

r

P
a

yloa
d

size

Header Trailer*

R
ou

te

P
a

yloa
d

A
u

the
ntica

tion
in

form
atio

n*

R
e

verse
ro

ute
*

* Optional field

Figure 2: FoG protocol packet structure

136

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

number, the packet is handed over to this gate for further
processing. If the explicit route segment is empty, it is
removed from the route and the procedure starts again. If the
topmost segment is a destination segment, the forwarding
node has to contact the routing component in order to get the
next explicit route segment. Based on the received request
data, the routing component calculates a route from the
current forwarding node to the destination. The requirements
given in the destination segment are used as requirements for
the route. The resulting route from the routing component is
added to the route of the packet by the forwarding
component and the forwarding procedure is started again.

In order to reduce the impact of routing loops, a
modification counter is decremented by one each time the
route is changed in a way that loops might occur. As a result
of this, a routing loop can be limited by forwarding only
packets with a modification counter above 0 and dropping all
other packets.

To allow a receiver of a packet to reply to the sender
without knowing its exact address, the reverse route of a
packet is recorded if the reverse route flag in the packet
header is set. A forwarding node has to derive the reverse
gate number from the gate chosen for the forward direction.
The reverse route can be asymmetric to the forward route.
Furthermore, an intermediate forwarding node, which is not
able or allowed to record the reverse route, using explicit
route segments, can add a destination segment to the reverse
route instead. Such a reverse route can be used by the
receiver of a packet to reply to the sender. The main benefit
of using such reverse routes instead of an address is twofold.
First, routing requests for reply packets are avoided and
second, addresses for request-sending nodes are not required.
The latter is useful for hosts acting only as clients. A server
can reply by using the reverse route without forcing the
client to have a unique and routable address. If a reply with a
traced backward route is received by a client, it knows the
route the received request packet has taken. In most cases,
this route contains less destination segments and more
explicit route segments. Therefore, the client can use this
route for subsequent packets in order to reduce the routing
overhead and the delay for its packets.

Section II.B describes that a destination segment of a
route may define only an intermediate node of the route
because not all network details (e.g., gate numbers) are
known. Theoretically, multiple destination segments in one
route are possible, which is comparable to loose source
routing of IP. This is utilized in the use cases presented in the
next sections.

Due to clarity reasons, Figure 3 does not show the error
cases, which cause the drop of a packet. Example error cases
are invalid formatted packet headers, invalid segment types,
and data packets that routes end at forwarding nodes that do
not represent a connection end point.

IV. USE CASES

Based on the FoG architecture and its network protocol,
this section describes three different use cases showing the
provisioning of QoS functions ranging from IntServ to
DiffServ and a combination of both. For simplicity, the same
example network is used in each case. Only the gate setup
and the responsibility for the classification states (CS) differ.

Figures 4 and 5 show three networks with network 3
providing QoS functions in form of gates to networks 1 and
2. Gates are depicted as straight lines between the forwarding
nodes (FNi), which are shown as dots. The dotted lines
represent connectivity through some other network, where
the gate numbers are not known. Known gate numbers are
labeled with small letters. Each network includes not only
the forwarding component but also the routing component Ri
as defined by the architecture. The routing components are
depicted as extra round boxes with their network view inside.

The scenarios assume that at least one node within each
network runs an instance of each component type. For
simplicity reasons, each network can be seen as a network
with just a single node running all three components. In real
world deployments, edge nodes typically have to host
instances of the forwarding component. There may be more
instances of the forwarding component on core nodes, if a
network uses FoG also as intra-network technology. The
locations of the instances of the routing component differ
depending on their implementations. An example may be a
central routing instance within a network with proxies on
edge nodes.

The following description further assumes that each
component can be implemented and focuses on the
architectural level. The protocols used by components, e.g.,
the routing component, depend on their specific
implementation. More details about our implementation are
given in Section VI. However, there may be other ways to
implement the same architecture.

In the following, gate numbers are represented by italic
letters. Routes and route segments are encapsulated with
square brackets. For example, [[b]] is a route (outer brackets)
with a single explicit route segment (inner brackets), which
contains only the single gate number b.

A. IntServ gates

Figure 4 shows a scenario, in which networks 1 and 2
have requested QoS functions from network 3. Depending on
the implementation, they might have used a simple
request/response signaling procedure. Network 3 has set up
one gate for each request with the gate numbers b and c. As
stated in Section II.A, these numbers have to be unique only
in the scope of FN3. Thus, network 3 is allowed to select
freely the numbers b and c according to the needs of the
components implementation. Networks 1 and 2 have
informed their routing component about these gates. For
example, each gate represents a (virtual) link providing 100
MBit/s. The router, which is represented by FN3, has to store
the scheduling and signaling states required to provide and

137

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enforce these QoS functions. However, the classification
states are not stored by FN3 but have been moved to
networks 1 and 2, respectively. Their routing components
know about gates b and c, and handle the decision about
which flows are mapped to these gates.

If network 1 wants to establish a flow, the entity that is
responsible for flow creation (e.g., a control node or a node
at the network edge) starts sending a signaling message with
a route, which contains only one destination segment
containing the destination address and the requirements for
the route, e.g., a minimum bandwidth of 10 MBit/s. In this
example, the destination is FN4. The packet with the route
[[address(FN4)]] is inserted into the forwarding component
FN1, which proceeds as described in Section III. Since the
topmost segment of the route is a destination segment, it
contacts the routing component R1. In the given case, R1
knows a route with all gate numbers to the destination. We
assume that R1 did not map too many flows on these gates
and enough capacity is available. R1 maps this new flow on
the gates a and b, and updates its classification states. It
returns the route [[a, b]] containing only one explicit route
segment. FN1 removes the destination segment from the
packet and inserts this new route into the route field in the
packet. FN1 restarts the procedure with the explicit route
segment as topmost segment. It pops the gate number a from
the gate number stack and looks up this number in its list of
outgoing gates. Afterwards, it hands over the packet to gate
a. The gate transports the packet to the next hop via a link
layer, e.g., Ethernet. The packet arrives at FN3 with the route
[[b]]. This forwarding node extracts (and removes) b from
the stack and hands over the packet to gate b. FN4 receives
the packet with an empty route and processes the packet
locally.

For network 2, the process is similar. However, the route
required to reach FN3 is different. R2 calculates a route with
three route segments: [[d], [address(FN3)], [c]]. In contrast to
the route calculated by network 1, one more request has to be

used. FN5 receives a packet with [address(FN3)] as topmost
segment, which triggers an additional route request at FN5.

B. DiffServ gates

Figure 5 depicts a scenario, in which network 3 provides
one gate with a high priority and a best effort gate with a low
priority. The latter is included in the scenario to demonstrate
the integration of non-QoS links in FoG. The routing
components of networks 1 and 2 have slightly different
views on this situation. R1 only knows e and R2 knows both e
and f. The reason might be that R1 decided to omit f or
network 1 did not request a best-effort gate from network 3.
Moreover, R1 and R2 have different strategies for tracking
the flows mapped to these gates. R1 stores the classification
states as in the previous scenario. However, the criterion for
using gate e differs. Instead of bandwidth metric, as in the
previous example, R1 might use a cost metric (e.g., money to
pay to network 3) to decide which flow is important enough
to justify the usage of gate e. R2 does not limit the usage of
gate e and f and does not store any classification states. It
basically treats both as virtual best-effort links.

The calculated routes of this scenario are similar to the
previous scenario. The main difference is the applied policy
for selecting gates in R1 and R2. In addition to the previous
scenario, R2 shows the benefit of knowing a broader set of
gates available for a link. Depending on the requirements for
a route, R2 can decide to use e or f. For example, it can return
the route [[d], [address(FN3)], [f]] for flows without QoS
requirements. Gate e can be used by R2 without having to
signal to FN3. Furthermore, FN3 does not have to know the
details about flows and can just follow the gate numbers
given in a packet. This reduces the load of the router hosting
FN3, e, and f.

C. Combined scenario

Both gate types can be combined in a single scenario.
Such a scenario can be constructed by merging the two
scenarios shown before. This combined scenario has four
gates between FN3 and FN4 representing different QoS

Figure 4: Gates representing IntServ reservations

Network1

Network3
FN1

FN3

a

R1

FN4

FN1 FN4

Network2

FN2

FN3

b

a

R2

FN2 FN4FN3

b

c

c

CS

CS

R3
100MBit/s link

100MBit/s link

FN5

d

d

FN5

Figure 5: Gates representing DiffServ classes

Network1

Network3
FN1

FN3

a

R1

FN4

FN1 FN4

Network2

FN2

FN3

e

a

R2

FN2 FN4FN3

e

f

e

CS

R3
Best‐effort link

High priority link

FN5

d

d

FN5 f

138

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

functions. In such a scenario, R1 would have two options
(since it does not know all gates) for a route from FN3 to
FN4:

 Gate b: The usage is limited by the bandwidth, which is
already reserved by R1 for other flows. By proper
management of R1, a minimal bandwidth could be
guaranteed.

 Gate e: The usage is limited by the costs, which
network 1 is willing to pay for a flow (if it is charged
by network 3). A certain amount of bandwidth cannot
be guaranteed. However, the delay is minimized.

Which gate has to be chosen depends on the requirements
for a flow and the requesting entity.

D. Discussion

Neither network 1 nor network 2 knows about the
techniques used by network 3 to provide QoS. These
implementation details are hidden from the routing, based on
the abstract gate description, and from the forwarding, based
on the used gate numbers.

In all scenarios, FN3 does not store any classification
states and does not know which flows are mapped to its gates
by networks 1 and 2. It delegates the decision to these
networks. However, the states required to enforce the
characteristics of the gates remain in network 3. Thus, even
though network 3 does not know, which and how many
flows are mapped to a gate, it can enforce that the combined
traffic does not use better QoS than requested. Another
benefit of this delegation is a reduced signaling overhead. In
particular, no signaling messages from networks 1 or 2 are
required to inform FN3 about new mappings.

The routes calculated by network 2 indicate an important
case showing the difference between FoG and a combined
MPLS / IP solution. The route [[d], [address(FN3)]] could be
implemented by the help of MPLS, handling the explicit
route segment, and IP, handling the destination segment.
However, a subsequent explicit route segment ([c] in the
example) is not supported by MPLS and IP. In IP, the ingress
router doing the IP forwarding has to have some
classification states, which link a packet to the subsequent
explicit route segment. However, FoG moves this state to
other routers and thus reduces the number of states to be
maintained by the ingress router.

The main use case of FoG consists of a network that
provides some degree of QoS to its customers (its own end
users and other networks). Thus, deploying FoG in order to
implement a best effort network provides only limited
advantages compared to IP. However, the degree of
deployment is also critical for QoS scenarios. The delegation
of states and decisions cannot be done only by network 3,
since it requires the support of networks 1 and 2.
Consequently, a partial deployment in today’s Internet might
not benefit from these two features. However, the more
networks support FoG, the better is the exploitation of the
advantages.

A migration strategy for introducing FoG to existing
networks depends mainly on the legacy systems, which
should be supported. For example, MPLS might be
integrated by representing each “label switching path” (LSP)
by gates.

V. INTEROPERABILITY WITH CURRENT NETWORKS

In the previous section, we discussed how FoG handles
QoS functions. However, the architecture and its gates
enable much more in-network functions. From an abstract
point of view, gate numbers represent decisions of the
routing, which are executed in the forwarding. Interpreting
them as indices in a gate vector of a forwarding node is the
simplest case. In general, gate numbers can be used to move
information from an intermediate AS to the hosts at the
border of the network or up-stream ASs without telling them
about that shift. However, the usage of gate numbers is not
limited to this.

A. Using layer 2 addressing

A gateway could store the MAC address of the
destination node in a route. The forwarding would not need
to create gates for all nodes, which are connected to an
Ethernet domain. It would just use the MAC address given in
the route. This enables stateless gateways, which do not have
to store an address mapping (e.g., between IP and MAC
addresses). The shift is transparent, since others see a list of
gate numbers and do not need to know the meaning of each
number. If the network has to prevent others from guessing
MAC addresses, the routing can encrypt the address with a
key, which is only known by the forwarding component.
Based on this, the forwarding component can check whether
a MAC address, given in a route, has actually been provided
by the official routing component. In general, the resulting
scheme, which is used to encode the routing decisions, can
be adapted to the level of security, which is required for the
network.

B. Network policies

Knowing the representation of decisions and how they
are secured, introduces dependencies between the routing
and forwarding component. In an inter-network scenario, this
requires both components being operated by the same
provider. Fortunately, the incremental routing process can be
used to ensure this. By not announcing gates, others are
forced to involve the forwarding of an AS in the route
calculation, as shown in use case 1. Thus, ASs have the
opportunity to insert self-generated route segments into the
route. How these route segments encode the decisions for the
forwarding instance is solely up to the AS

C. Protocol tunnels

Since gates hide the implementation of the QoS-aware
data transport, any technology (e.g., MPLS) can be used.
Therefore, gates can be interpreted as tunnels transporting
packets through networks. By constructing explicit routes,
tunnels are concatenated. Such a tunnel semantic can be
implemented by having “tunnel gates”. In particular, such
gates are useful for hiding intermediate structures and to

139

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

s
a
w

F
n
n
d
a
t
f
h
s
n
k
p
f
t
c
t
n

D

t
F
w
v

a
a
t

d
g
n
I
t
s
t
n
I
c
a
a

shorten route
approach can b
with IP based

Figure 6 s
FoG networks
network. If no
node D, loca
description [[1
and 4. Gate 5
tunneling func
fragments, wh
header. These
sent via the IP
network inter
know the IP
packets by ch
from received
this, FN2 is ab
continues thei
to forward t
network.

D. Gateway i

The goal
transparent m
FoG and an I
where applica
via FN2 with a

For addre
addresses and
a data exchang
transport proto

If an IP c
dedicated gate
gateway node
network serve
IP based pack
these packets
service provid
the applicatio
network socke
IP network) to
client, the app
a dedicated Fo
a reverse mapp

Figure 6: Two

 descriptions
be utilized in o
networks.

shows an exa
s, which are c
ode A of netwo
ated in netwo
1, 5, 4]]. This
is located on

ction by splitti
hich are heade
e fragments ha
P based networ
face of FN2.
address of F

hecking the “p
d packets for a
ble to reconstr
r processing a

them towards

nteroperabilit

of gateway
mechanism for
IP based netw
ations on node
applications on

ssing purpose
layer 4 port n

ge has to use T
ocol, which us

client wants to
eway applicati
e (FN2 in Fig
er socket towa
kets from IP cl

into FoG pac
ding node in th
on has to kn
et (providing t
o a FoG servi
plication store
oG connection
ping for answe

o FoG networks ar

in packets.
order to imple

ample scenario
connected via
ork FoG1 want
ork FoG2, it
s directs pack

n FN1 and imp
ing each FoG
ed by an addit
ave to fit into
rk interface of
For this purp

FN2. FN2 dete
protocol” fiel
a FoG specific
ruct the origin
as described in
s their destin

ty with IP

interoperabilit
direct data e

work. Figure 7
e A and B exc
n the IP based

es on the IP
numbers are us
TCP, UDP or
ses port numbe

o send data to
ion has to be s
gure 7). The
ards the IP ne
lients. The app
ckets and send
he FoG networ
now a static
the service en
ice name. For
s an additiona

n and IP status
er packets from

re connected via a

For example
ement interope

o consisting o
an IP based t

ts to send pack
can use the

kets along gate
plements the d
packet into pa

tional fragmen
IP packets an

f FN1 to the IP
pose, gate 5 h
ects such tunn
ld of the IP h
c ID. As a res

nal FoG packet
n Section III in
nation in the

ty is to prov
xchange betw
shows an ex

change directly
node C.

side, both la
sed. Therefore
SCTP (or any

ers) on IP side

o a FoG serv
started before o
application ow

etwork and rec
plication trans
ds them toward
rk. For this pu
mapping fro

nd point towar
each new IP

al mapping be
s data, which a
m the FoG ser

an IP transit netw

e, this
eration

of two
transit
kets to

route
e 1, 5

desired
ayload
ntation
nd are
based

has to
neling
header
sult of
ts and

n order
FoG

vide a
ween a

ample
y data

ayer 3
e, such
y other
.

vice, a
on the
wns a
ceives
sforms
ds the

urpose,
om its
rds the
based

etween
allows
rvice.

serv
the
FoG
suc
its
cor
spe
rece
has
des
side

Qo
the
sca
on
resu
wit
eac

imp

work

For a transm
vice, a dedica
previous par

G client starts
ch an applicati

packets towa
rrect receiver a
ecial destinatio
eiver. For eac

s to store a m
stination. This
e for each answ

The applicab
S for our use c
following, w

alability of FoG
one type of g
ults are genera
th more gate t
ch gate type.

We measured

Length of
overhead in
measured th
overhead is

Size of the
store inform
previous us
by the rout
gates known
for differen
for source ro

Number of
knowledge
incremental
routing com
the number
routing over

For the functi
plemented the

Figure 7: Direct

mission from a
ated gateway a
ragraph, it is
s a communic
on instance is

ards the gatew
at IP side, the r
on route segm
ch FoG connec
mapping from

is also used fo
wer packet fro

VI. EVA

bility of FoG
cases was show

we present sim
G for large ne

gates such as p
al and can be i
types by comb

d three importa

explicit route
nduced by t
he length of ex
compared to t

routing graph
mation about
e cases, the si
ting componen
n from others

nt setups and c
outing and IP

f request for
of the routin

l routing pro
mponent more
r of requests
rhead.

ional evaluatio
e entire FoG

connection betwe

a FoG client
application is
located on FN

cation to an IP
created. The F

way node. For
route in each p
ment, which d
ction, the gate
a FoG client

or deriving the
om an IP servic

ALUATION

to combine v
wn in the prev

mulation resul
etworks. The
prioritized rel
interpreted eas
bining individ

ant metrics:

es: In order
the FoG pac
xplicit end-to-
the overhead o

h required by
networks: As

ize of the rout
nt depends on
. We measure
compare them
networks.

r (partial) ro
ng component
ocess may ha
e or less often

in order to

on and measur
architecture

een a FoG and an

to an IP bas
used. Similar

N2. Each time
P based servi
FoG client sen
r addressing t
packet include
describes the
eway applicati
t to an IP bas
e receiver at F
ce.

various types
vious sections.
lts analyzing t
analysis focu

laying. Thus, t
sily for situatio
dual analyses

to evaluate t
cket header,
-end routes. T
of IP.

y a FoG node
s shown by t
ting graph stor
n the number
ed the graph s

m to the situati

utes: Since t
ts can vary, t
ave to call t
n. We measur
approximate t

rements, we ha
in a Java-bas

IP based network

sed
r to
e a
ice,
nds
the

es a
IP

ion
sed
oG

of
. In
the
ses
the
ons
for

the
we

This

 to
the
red
of

size
ion

the
the
the
red
the

ave
sed

k

140

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

discrete event simulator called “FoGSiEm”. It can be
switched to an emulator mode that handles events in real
time. The FoG emulator includes interoperability solutions
combining FoG and IP based networks [16]. The software
supports Windows, Linux and OS X and is available as
open-source [17]. It includes the gateway interoperability as
described in Section V.D with client and server sockets on
FoG and IP side. We demonstrated this feature for web
browsing and video streaming [18].

A. Simulation setup

The evaluation relies on simulations of large inter-
networks. We derived the simulated networks from
generated graphs modeling the Internet on the level of
autonomous systems.

1) Network graph
The network used for evaluation matches the

characteristics of today’s Internet but has a smaller size in
order to enable simulations. Its network graph has been
generated with the GLP algorithm implemented in BRITE
[19] and the parameters derived in [20]. Therefore, the graph
has similar characteristics as the real world Internet graph on
the autonomous system level. It consists of 5,000 nodes and
12,437 links between them. In addition, a different graph
generated with the default parameters (α=0.45, β=0.64) of
BRITE (5,000 nodes and 8,974 links) was used for
simulation. Since the results do not differ significantly, only
the results from the first graph are presented.

Each node of a graph represents an autonomous system.
In the simulation, such a node is represented by one
forwarding node per edge and one forwarding node
representing the core of an autonomous system. The edge
forwarding nodes are linked to the core forwarding node
with a star topology, which represents the internal
connectivity within the autonomous system. Each link
between autonomous systems is represented with a link
between two edge forwarding nodes.

2) Announcing gates to neighbors
The use cases discussed in the previous sections

comprises only a small excerpt from a whole network. For
the evaluation of the routing graph sizes, we need to define
how many gates are known to the routing components of
each FoG node of a large network. In the following, the
algorithm used to configure the routing component instances
used by our simulation is described.

We assume that FoG nodes join groups. Those group
members trust each other and exchange information about
gates with them. More specific, all members of a group
announce their gates and gate numbers to all other members
of the group. They are allowed to reuse these gates in the
incremental routing process of Section II.B.

Groups are defined by clustering the nodes of a network.
Clusters are generated by choosing cluster heads randomly at
the start of a simulation. Nodes that are no cluster head join
the cluster represented by the nearest cluster head. If two or
more cluster heads are available within the same distance,

one is chosen randomly. If no node decides to become a
cluster head, a single node is selected randomly by the
simulation.

Within a cluster, routing components exchange their
knowledge. With nodes outside of a cluster, only abstract
information is exchanged. This abstract information enables
nodes to determine the shortest path to a destination but does
not include any gate numbers. Thus, this information is
comparable to the information exchanged in IP networks,
e.g., between BGP entities.

The clustering is a possible and simple way to define the
announcement policy. In reality, nodes will follow a more
complex scheme based on the business plans of their
operators. Our approach reduces the complexity but includes
typical setups of today’s networks as shown later on.

B. Overhead due to explicit route

The route length of explicit route segments is a specific
concern. The more hops a packet has to travel, the more gate
numbers are required and the longer is the header. In order to
estimate the FoG protocol overhead, the length of explicit
routes for large-scale scenarios has been analyzed.

1) Results
The analysis is based on the lengths of explicit routes of

100,000 connections between randomly chosen FoG nodes.
Figure 8 shows the empirical distribution function of the
route lengths. Since each intermediate node uses three gate
numbers and each end node uses two gate numbers in order
to encode its routing decision, only specific route lengths
such as 4 and 7 are possible. An end-to-end route contains
11.95 gate numbers in average. The average number of hops
between two FoG nodes L = 3.65 matches the expectations
for an Internet-like graph [21].

2) Discussion
Figure 8 shows the distribution of the route lengths in

number of gate numbers. For a comparison with the address
length of IP, an encoding of the routes is required. If a gate
number, the route length field, the route segment length field,
and the route segment type field from a FoG header (cp.
packet format in Section III) are encoded with a single octet,
a route with 13 gate numbers requires 16 octets in total.
Thus, such a route would require the same number of octets

Figure 8: Empirical distribution function of end-to-end route lengths

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20

R
el
at
iv
e
fr
eq

u
en

cy

Route length in number of gates

141

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as an IPv6 address. According to Figure 8, 87% of the routes
have 13 gate numbers or less. Thus, most routes have a
length, which is shorter or equal to an IPv6 address.

Since the setup requires three gate numbers to cross one
node, the encoding with one octet per gate number seems to
be realistic (in other words: three octets per hop). Thus, the
overhead induced by transporting explicit routes seems to be
acceptable in comparison with IPv6.

In average, only half of the gate numbers are transported
over links, because gate numbers are successively removed
from the packet header by the forwarding component. Since
FoG may trace a reverse route, which increases the packet
size again, the average route length mentioned above
includes both routes. Thus, two routes with a total average
size of 12 gate numbers replace the source and destination
addresses of an IP packet. Even if the encoded size of a gate
number is doubled to two bytes, 87% of the FoG packets
contain less overhead than an IPv6 packet.

C. Routing graph size

In order to evaluate the scalability of the routing
component, we simulated different setups of FoG’s routing
by varying the knowledge base of the routing components.
Therefore, we cluster a network to model groups of trusted
nodes as described in Section V.A.2. There are two extreme
cases of the clustering:

 There is just a single cluster including all nodes. All
network elements know the entire network graph and,
thus, can use all gates for constructing routes. Such
nodes can calculate complete end-to-end routes. This is
equivalent to source routing.

 Each node forms its own cluster. All nodes know only
their own gates. Additionally, they know the other
network parts in an abstract way in order to find a
shortest path. This setup is comparable to the
operations of IP, since routing is done in a hop-by-hop
manner.

In our simulations, a node knows the gates and
forwarding nodes of the cluster it belong to and can calculate
only partial routes for the cluster. For the construction of an
end-to-end route, FoG has to combine multiple partial routes
as described by the incremental routing process presented in
Section II.B. Basically, an ingress node of a cluster
calculates the route through its cluster, since it has the
required knowledge.

1) Results
The results shown in the following are average results

derived from 10 simulation runs with randomly chosen
cluster heads. Error bars indicate the min/max results of the
10 runs. Each run contains 25,000 flows, which exist
between randomly chosen nodes.

Figure 9 shows the number of gates and forwarding
nodes (edges and vertices) of the detailed routing graph a
node has to store. Figure 10 shows the same numbers for the
abstract graph, which does not include gate numbers. For

example, R2 in Figure 4 has 4 vertices and 2 edges in its
detailed graph. In its abstract graph, R2 has one gate (dotted
one) and its start and end forwarding nodes. Since a node has
to store both graphs, Figure 11 shows the average graph sizes
(vertices plus edges) of both graphs and the sum of both.

Figure 9: Number of gates and forwarding nodes (FNs) for detailed
graph. Maximum values for probability zero: 76k gates and 30k FNs

Figure 10: Number of gates and forwarding nodes (FNs) for abstract
network graph.

Figure 11: Average routing graph sizes

0

100

200

300

400

500

0 0,2 0,4 0,6 0,8 1

N
u
m
b
er

Probability of becoming a cluster head

Gates

FNs

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

0 0,2 0,4 0,6 0,8 1

N
u
m
b
er

Probability of becoming a cluster head

Gates

FNs

0

20000

40000

60000

80000

100000

120000

0 0,2 0,4 0,6 0,8 1

G
ra
p
h
 s
iz
e

Probability of becoming a cluster head

Detailed

Abstract

Total

142

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The x-axes of these three figures show the probability of
a node to become a cluster head at the start of a simulation.
In the source-routing setup (probability is zero) on the left
hand side, each routing component knows the entire network
with all gates. As expected, the graph for such approaches is
very big. For hop-by-hop setups (probability is one), the
amount of detailed information is significantly smaller as
shown on the right hand side. Each node knows only the
gates it hosts and remote gate numbers are not known.
However, the abstract graph is rather big, since a lot of
clusters and gates connecting them are known. In total, a
routing component in a network configured in a hop-by-hop
manner has to store slightly more information than a routing
component in a source-routing network.

2) Discussion
The evaluation shows that there are a lot of

configurations beside the extreme cases: source- and hop-by-
hop routing. They require smaller overall routing component
graphs. For example, the average routing component size for
a probability of 0.025 with approximately 52k elements is
half of the average sizes of the two extreme cases. From the
perspective of the use cases, these intermediate
configurations seem to be the more realistic ones. Some
nodes request gates from remote peers and their routing
components have the knowledge about these gates. They can
combine them to routes for their data flows. These nodes are
not interested in all gates as in the source routing
configuration. They delegate decisions about route parts,
which are “unimportant” for them, to others by using the
incremental routing process. For the important parts, they
exploit FoG’s partial routes in order to define these route
parts explicitly.

In relation to BGP, the results represent a worst-case
scenario, because the nodes store information about all links.
A BGP peer would filter the information according to its
policy (e.g., only shortest path) and not announce all
information to its peers.

D. Number of routing requests

The overall overhead of the routing is not only
determined by the graph size. It also depends on the number
of route calculations within this graph. Thus, we measured
the average number of requests required to setup one end-to-
end route. Figure 12 shows the results that are based on 10
simulation runs and 25,000 flows per run.

1) Results
The x-axis of Figure 12 shows the probability that a

single node decides to become a cluster head at the start of a
simulation run as described in the previous section. If the
probability is zero, the source-routing configuration induces
a single route calculation per flow. Between zero and 0.1, the
number of route requests increases disproportionately.
Above 0.1, the number continues to increase nearly linearly.
If the probability is one, the hop-by-hop configuration
requires 4.7 requests on average. This number includes one
request per hop (3.7 hops on average as mentioned in Section

V.B) plus a last calculation at the destination in order to
determine the forwarding node within the destination node.

2) Discussion
A request has to be answered by a routing component

with a partial route towards the destination. This answer has
to be calculated by an algorithm based on the graphs
analyzed in the previous section. Thus, the computational
overhead depends on the number of requests, the graph sizes
and the applied algorithms. If the algorithm is fixed and its
runtime complexity depends on the graph size, a trade-off
between the number of requests and the graph size is
required. In our example, we used the Dijkstra for each
calculation. Thus, a probability of 0.0125 provides an
optimal trade-off with a graph size of around 40k and 1.6
requests.

However, such a trade-off depends on the algorithm.
Thus, different algorithms may lead to different optimal
trade-offs. For example, if a forwarding information base
(FIB) is introduced, the runtime of the algorithm does not
depend directly on the graph size anymore. We refrain from
analyzing FIBs in this article, because they depend strongly
on the distribution of addresses. Since FoG supports a variety
of implementations of the routing component, neither the
algorithm nor the addressing or the type of addresses are
fixed. For example, FoG can operate with IP addresses, BGP
or with HRM with its hierarchical addresses. Thus, the
optimal trade-off depends on the implementation. Our
analysis underpins the flexibility of FoG and the new
opportunities for designing routing components.

VII. RELATED WORK

The question about how to provide an adequate QoS for
networks has a long research history. A survey about today’s
approaches is given in [22]. As discussed in the introduction,
IntServ [3] and DiffServ [6] can be used to provide QoS.
However, they do not support the transparent movement of
QoS classification states among nodes as it is enabled by the
FoG architecture. By combining MPLS with IP, many QoS
use cases can be implemented. However, Section IV.D

Figure 12: Average number of requests for (partial) routes in order to
construct one end-to-end route.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0 0,2 0,4 0,6 0,8 1

N
u
m
b
er
 o
f
ro
u
ti
n
g
re
q
u
es
ts
 p
er

co
n
n
ec
ti
o
n

Probability of becoming a cluster head

143

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

points out important cases where the combination of IP and
MPLS does not allow the movement of classification states.
Furthermore, the FoG architecture does not require a
standardization of gate numbers as it is required for the IP
TOS field in an inter-network scenario [23].

In general, FoG implements a strict split of packet
processing into forwarding and routing components similar
to PFRI [10], which uses labeled “channels” and anonymous
nodes to model the available connectivity of lower layers.
The channel labels are globally bijective and are comparable
to FoG gates representing lower layer connections. However,
the PFRI channel labels are not comparable to gate numbers,
since gate numbers in FoG are only bijective in the scope of
a forwarding node.

Other forwarding approaches use a stack of locally valid
numbers to describe routes, e.g., PARIS [24], Sirpent [25] or
Pathlet [11]. In PFRI [10], these numbers are even globally
unique in order to enable the end host to specify a loose
source route based on links. Such entries in a forwarding
table represent either virtual [11] or physical [26] next hops.
In a FoG network, each gate has a locally unique number in
the scope of a node. The number assignment is controlled by
the corresponding parent node. Globally unique numbers are
not mandatory in a FoG network. But server application
must have globally unique addresses to be addressable by
clients, which can be located everywhere in the entire
network. Furthermore, FoG uses names for forwarding nodes
and not gates, because we expect a network to have more
links than nodes.

Some older architecture approaches [24, 25] are focused
on intra-networks. Other proposals for new inter-network
architectures focus more on the overall architecture and do
not address scalability of state distribution, e.g., NewArch
[27], IPC [12], RNA [28]. The Pathlet approach, as the
newest one, deals specifically with policy issues in inter-
network routing. However, QoS and other application
requirement aspects are not discussed in detail. In the Pathlet
descriptions, QoS is only mentioned but any details about
how to integrate IntServ or DiffServ, and a network protocol
are missing. The FoG architecture includes these aspects
with respect to scalability. It is focused mainly on inter-
networks. QoS path reservation protocols, e.g., RSVP or
NSIS [29], signal QoS requirements. One of these protocols
or similar approaches are suitable to trigger the setup of
gates.

The combination of function blocks can either be done at
design time (similar to Netlets [30]) or at runtime (similar to
SONATE [31]). The architecture of FoG decides everything
during runtime. It reacts dynamically on inputs from
applications (e.g., QoS requirements) and network states
(network policies and available routes). While SONATE
[31] is focused on selecting and composing function blocks
on end hosts, FoG can also be used to integrate function
blocks residing on intermediate routers.

The impact of using heap structures for header
information as proposed by the Role-based Architecture [32]

has not been analyzed. The “roles” of this architecture are
comparable to gates. However, RoleIDs (and, thus, role
addresses) are not comparable to gate numbers because a
RoleID contains an identifier for the type of function and not
for a special instance.

VIII. CONCLUSION AND OUTLOOK

In this article, we presented the Future Internet
architecture “Forwarding on Gates” (FoG). It applies its own
network protocol in order to provide three different ways for
selecting a route for packets: define the route explicitly,
define the route indirectly based on the destination address
plus requirements or – as third way – use a combination of
both. This enables the movement of classification states
between routers. IntServ and DiffServ are merged by
introducing QoS functions, which are represented by
directed gates in the FoG architecture. Routes can be defined
by using the gates without knowing about their
implementation. FoG enables the flexibility to move
classification states from the router, which implements a
QoS function, to other routers, which take over the mapping
of flows to QoS functions. This delegation of mapping
decisions reduces the amount of required signaling
messages.

Based on three use cases, we described the setup of gates
in IntServ, DiffServ and mixed scenarios. Although the route
length is dynamic, the protocol overhead remains low. A
protocol simulation in a large-scale network with 5000 nodes
showed that 87% of the routes are shorter than an IPv6
address. Simulations of a basic version of the routing
component showed the flexibility of FoG by using partial
routes. Depending on the knowledg a node and its routing
component have, FoG can be used for a trade-off between
hop-by-hop routing (with many routing requests) and source
routing (with only one routing request). FoG’s routing
component implementation can exploit this flexibility and
can use new address types or routing algorithms.

The results presented in this article show the flexibility of
FoG in providing QoS in a scalable way. It indicates that the
FoG architecture is a promising basis for a network layer
architecture that can replace IP in a Future Internet. Since a
complete replacement of IP seems to be unrealistic, Section
V outlined several interoperability solutions for partial
deployment scenarios. They are similar to the
interoperability solutions for IPv4 and IPv6. Thus, running
FoG in parallel to IP is an deployment option as well.

In the future, we plan to use route repair techniques
known from MPLS to evaluate the robustness of FoG routes
against link and node failures. Additionally, we will evaluate
the FoG architecture in comparison to other existing
architectures for selected Internet-like scenarios.
Furthermore, we plan to extend the existing qualitative
evaluation [15] of the routing component infrastructure
“Hierarchical Routing Management” [14] by measuring its
quantitative advantages and management overhead for
selected complex network scenarios.

144

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work is funded by the German Federal Ministry of
Education and Research under the project G-Lab_FoG (code
01BK0935). The project is part of the German Lab [33]
research initiative.

REFERENCES
[1] F. Liers, T. Volkert, and A. Mitschele-Thiel, “The

Forwarding on Gates architecture: Merging IntServ and
DivServ,” Proc. of International Conference on Advances in
Future Internet (AFIN) 2012, pp. 7-13, August 2012.

[2] Cisco Systems, “Cisco Visual Networking Index: Forecast
and Methodology, 2010–2015,” white paper, 2011,
http://www.cisco.com/en/US/solutions/collateral/ns341/ns52
5/ns537/ns705/ns827/white_paper_c11-481360.pdf, last
access: December 2013.

[3] R. Braden, D. Clark, and S. Shenker, “Integrated Services in
the Internet Architecture: an Overview,” IETF, RFC 1633,
June 1994.

[4] C. Deleuze and Serge Fdida, “A scalable IntServ architecture
through RSVP aggregation,” Networking and Information
Systems Journal, vol. 2, no. 5-6, pp. 665-681, 1999.

[5] B. E. Carpenter and K. Nichols, “Differentiated service in the
Internet,” Proc. IEEE, vol. 90, no. 9, pp.1479-1494 , 2002.

[6] S. Blake et al., “An Architecture for Differentiated Services,”
IETF RFC 2475, December 1998.

[7] Y. Bernet et al., “A Framework for Integrated Services
Operation over DiffServ Networks,” IETF RFC 2998,
November 2000.

[8] X. Masip-Bruin et al., “The EuQoS System: A solution for
QoS Routing in Heterogeneous Networks,” IEEE
Communications Magazine, vol. 45, no. 2, pp. 96-103,
February 2007.

[9] F. Liers, et al., “GAPI: A G-Lab Application-to-Network
Interface,” 11th Würzburg Workshop on IP: Joint ITG and
Euro-NF Workshop "Visions of Future Generation
Networks" (EuroView2011) , Würzburg, Germany, August
2011.

[10] K. L. Calvert, J. Griffioen, and L. Poutievski, “Separating
Routing and Forwarding: A Clean-Slate Network Layer
Design,” Proc. of the Broadnets 2007 Conference, pp. 261-
270, September 2007.

[11] P. B. Godfey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet
Routing,” Proc. of SIGCOMM 2009, pp. 111-122, August
2009.

[12] J. Day, I. Matta, and K. Mattar, “Networking is IPC: A
Guiding Principle to a Better Internet,” Proc. of ReArch’08,
Article no. 67, Madrid, Spain, December 2008.

[13] A. Reitzel, “Deprecation of Source Routing Options in IPv4,
IETF,” Internet-Draft, August 29, 2007.

[14] T. Volkert, M. Osdoba, A. Mitschele-Thiel, and M. Becke,
„Multipath Video Streaming Based on Hierarchical Routing
Management,“ Proc. of 27th IEEE International Conference
on Advanced Information Networking and Applications
(AINA), Barcelona/Spain, March 2013.

[15] T. Volkert and A. Mitschele-Thiel, “Hierarchical routing
management for improving multimedia transmissions and
QoE,” Proc. of IEEE International Symposium on a World of
Wireless Mobile and Multimedia Networks (WoWMoM),
San Francisco/USA, June 2012.

[16] F. Liers, T. Volkert, and A. Mitschele-Thiel, “Scalable
Network Support for Application Requirements with
Forwarding on Gates,” Demo at 11th Würzburg Workshop
on IP: Joint ITG and Euro-NF Workshop "Visions of Future

Generation Networks" (EuroView2011), Würzburg,
Germany, August 2011.

[17] “FoGSiEm” on GitHub, web site: https://github.com/ICS-
TU-Ilmenau/fog/wiki, last access: December 2013.

[18] T. Volkert and F. Liers, “Video transcoding and rerouting in
Forwarding on Gates networks,” 12th Würzburg Workshop
on IP: ITG Workshop "Visions of Future Generation
Networks" (EuroView2012), Würzburg, Germany, August
2012.

[19] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: an
approach to universal topology generation,” In IEEE
MASCOTS, pp. 346–353, Cincinnati, OH, USA, August
2001.

[20] H. Haddadi, D. Fay, S. Uhlig, A.W. Moore, R. Mortier, A.
Jamakovic, and M. Rio, “Tuning Topology Generators
Using Spectral Distributions,” Proc. of SIPEW, pp. 154-173,
2008.

[21] CAIDA, “Comparative analysis of the Internet AS-level
topologies extracted from different data sources,”
http://www.caida.org/~dima/pub/as-topo-comparisons.pdf,
last access: December 2013.

[22] D. Vali, S. Paskalis, L. Merakos, and A. Kaloxylos, “A
Survey of Internet QoS Signaling,” IEEE Communications
Surveys & Tutorials, vol. 6, Fourth Quarter, pp. 32-43, 2004.

[23] Cisco Systems, “Implementing Quality of Service Policies
with DSCP,”
http://www.cisco.com/application/pdf/paws/10103/dscpvalue
s.pdf, last access: December 2013.

[24] I. Cidon, and I. S. Gopal, “PARIS: An approach to integrated
high-speed private networks,” International Journal of
Digital ans Analog Cable Systems, pp. 77-85, 1988.

[25] D. R. Cheriton, “Sirpent: a high-performance
internetworking approach,” Proc. of ACM SIGCOMM '89:
Symposium Proceedings on Communications architectures
& protocols, pp. 158-169, 1989.

[26] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A.
Gandhi, “BANANAS: An evolutionary framework for
explicit and multipath routing in the Internet,” Proc. ACM
SIGCOMM 2003, pp. 277-288, FDNA Workshop, August
2003.

[27] D. Clark, K. Sollins, J. Wrolawski, D. Katabi, J. Kulik, X.
Yang, R. Braden, T. Faber, A. Falk, V. Pingali, M. Handley,
and N. Chiappa, “NewArch: Future Generation Internet
Architecture,” Technical Report, 2003,
http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf, last
access: December 2013.

[28] J. Touch, and V. Pingali, “The RNA Metaprotocol,” Proc.
IEEE International Conf. on Computer Comm. (ICCCN), pp.
1-6, August 2008.

[29] R. Hancock et al., “Next Steps in Signaling (NSIS):
Framework,” IETF, RFC4080, June 2005.

[30] L. Völker, D. Martin, C. Werle, M. Zitterbart, and I. El
Khayat, “Selecting concurrent network architectures at
runtime,” Proc. of the 2009 IEEE international conference on
Communications, ser. ICC’09. Piscataway, NJ, USA: IEEE
Press, 2009, pp. 2124–2128.

[31] P. Müller and B. Reuther, “Future internet architecture - a
service oriented approach,” it - Information Technology, vol.
50, no. 6, pp. 383–389, 2008.

[32] R. Braden, T. Faber, and M. Handley, “From protocol stack
to protocol heap: role-based architecture,” SIGCOMM
Comput. Commun. Rev., vol. 33, no. 1, pp. 17-22, January
2003.

[33] German Lab, web site: http://www.german-lab.de, last
access: December 2013.

