International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

12

Improving the Effectiveness of Web Application Vulnerability Scanning

Marc Rennhard

School of Engineering
Zurich University of Applied Sciences
Winterthur, Switzerland
Email: rema@zhaw.ch

Abstract—Using web application vulnerability scanners is very
appealing as they promise to detect vulnerabilities with minimal
configuration effort. However, using them effectively in practice
is often difficult. Two of the main reasons for this are limitations
with respect to crawling capabilities and problems to perform
authenticated scans. In this paper, we present JARVIS, which
provides technical solutions that can be applied to a wide range
of vulnerability scanners to overcome these limitations and to
significantly improve their effectiveness. To evaluate JARVIS, we
applied it to five freely available vulnerability scanners and tested
the vulnerability detection performance in the context of seven
deliberately insecure web applications. A first general evaluation
showed that by using the scanners with JARVIS, the number
of detected vulnerabilities can be increased by more than 100 %
on average compared to using the scanners without JARVIS.
A significant fraction of the additionally detected vulnerabilities
is security-critical, which means that JARVIS provides a true
security benefit. A second, more detailed evaluation focusing on
SQL injection and cross-site scripting vulnerabilities revealed that
JARVIS improves the vulnerability detection performance of the
scanners by 167% on average, without increasing the fraction
of reported false positives. This demonstrates that JARVIS not
only manages to greatly improve the vulnerability detection rate
of these two highly security-critical types of vulnerabilities, but
also that JARVIS is very usable in practice by keeping the
false positives reasonably low. Finally, as the configuration effort
to use JARVIS is small and as the configuration is scanner-
independent, JARVIS also supports using multiple scanners in
parallel in an efficient way. In an additional evaluation, we
therefore analyzed the potential and limitations of using multiple
scanners in parallel. This revealed that using multiple scanners
in a reasonable way is indeed beneficial as it further increases the
number of detected vulnerabilities without a significant negative
impact on the reported false positives.

Keywords—Web Application Security; Vulnerability Scanning;
Vulnerability Detection Performance; Authenticated Scanning;
Combining Multiple Scanners.

I. INTRODUCTION

This paper is an extended and revised version of our
conference paper [1] that was published at ICIMP 2018 (the
thirteenth International Conference on Internet Monitoring and
Protection). Compared to the original version, this paper con-
tains a much more elaborate evaluation to further demonstrate
the effectiveness and usefulness of the presented approach.

Security testing is of great importance to achieve security
and trustworthiness of software and systems. Security testing
can be performed in different ways, ranging from completely
manual methods (e.g., manual source code analysis), to semi-
automated methods (e.g., analyzing a web application using

Damiano Esposito, Lukas Ruf, Arno Wagner

Consecom AG
Zurich, Switzerland
Email: Damiano.Esposito, Lukas.Ruf,
Arno.Wagner@consecom.com

an interceptor proxy), to completely automated ways (e.g.,
analyzing a web service using a vulnerability scanner).

Ideally, at least parts of security testing should be auto-
mated. One reason for this is that it increases the efficiency of
a security test and frees resources for those parts of a security
test that cannot be easily automated. This includes, e.g., access
control tests, which cannot really be automated as a testing
tool does not understand which users or roles are allowed
to perform what functions. Another reason is that automating
security tests enables performing continuous and reproducible
security tests, which is getting more and more important in
light of short software development cycles.

There are different options to perform automated security
testing. The most popular approaches include static and dy-
namic code analysis and vulnerability scanning. Vulnerability
scanners test a running system “from the outside” by send-
ing specifically crafted data to the system and by analyzing
the received response. Among vulnerability scanners, web
application vulnerability scanners are most popular, as web
applications are very prevalent, are often vulnerable, and are
frequently attacked [2]. Note also that web applications are
not only used to provide typical services such as information
portals, e-shops or access to social networks, but they are also
very prevalent to configure all kinds of devices attached to the
Internet, which includes, e.g., switches, routers and devices
in the Internet of Things (IoT). This further underlines the
importance of web application security testing.

At first glance, using web application vulnerability scanners
seems to be easy as they claim to uncover many vulnerabilities
with little configuration effort — as a minimum, they only
require the base URL of the application to test as an input.
However, the effective application of web application vulner-
ability scanners in practice is far from trivial. The following
list summarizes some of the limitations:

1) The detection capabilities of a scanner are directly
dependent on its crawling performance: If a scanner
cannot find a specific resource in a web application,
it cannot test it and will not find vulnerabilities
associated with this resource. Previous work shows
that the crawling performance of different scanners
varies significantly [3], [4].

2) To test areas of a web application that are only reach-
able after successful user authentication, the scanners
must authenticate themselves during crawling and
testing. While most scanners can be configured so
they can perform logins, they typically do not support

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

all authentication methods used by different web
applications. Also, scanners sometimes log out them-
selves (e.g., by following a logout link) during testing
and sometimes have problems to detect whether an
authenticated session has been invalidated. Overall,
this makes authenticated scans unreliable or even
impossible in some cases.

3) To cope with these limitations, scanners usually pro-
vide configuration options, which can increase the
number of detected vulnerabilities [5]. This includes,
e.g., specifying additional URLs that can be used by
the crawler as entry points, manually crawling the
application while using the scanner as a proxy so
it can learn the URLs, and specifying an authenti-
cated session ID that can be used by the scanner to
reach access-protected areas of the application if the
authentication method used by the web application
is not supported. However, using these options com-
plicate the usage of the scanners and still does not
always deliver the desired results.

4) With respect to the number and types of the re-
ported findings, different vulnerability scanners per-
form differently depending on the application under
test [6]-[10]. Therefore, when testing a specific web
application, it is reasonable to use multiple scanners
in parallel and combine their findings. However, the
limitations described above make this cumbersome
and difficult, as each scanner has to be configured
and optimized differently.

In this paper, we present JARVIS, which provides technical
solutions to overcome limitations 1 and 2 in the list above.
Using JARVIS requires only minimal configuration, which
overcomes limitation 3. And finally, JARVIS and its usage
are independent of specific vulnerability scanners and can be
applied to a wide range of scanners available today, which
overcomes limitation 4 and which provides an important basis
to use multiple scanners in parallel in an efficient way.

To demonstrate the effectiveness and usefulness of JARVIS,
to quantify how much it can improve the vulnerability detec-
tion performance of scanners, and to learn more about the
potential and limitations of combining multiple scanners, this
paper also includes a detailed evaluation. In this evaluation,
JARVIS was applied to the five freely available scanners listed
to Table I.

TABLE I. ANALYZED WEB APPLICATION VULNERABILITY SCANNERS

Scanner Version/Commit URL

Arachni 1.5-0.5.11 http://www.arachni-scanner.com

OWASP ZAP 25.0 https://www.owasp.org/index.php/
OWASP_Zed_Attack_Proxy_Project

Skipfish 2.10b https://code.google.com/archive/p/
skipfish/

Wapiti r365 http://wapiti.sourceforge.net

w3af cb8e91af9 https://github.com/andresriancho/w3af

The choice for using freely available scanners was mainly
driven by the desire to evaluate the performance of using
multiple scanners in parallel. This is a much more realistic
scenario with freely available scanners as commercial ones
often have a hefty price tag. Also, several previous works
concluded that freely available scanners do not perform worse
than commercial scanners [3], [4], [11], [12]. Arguments for

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

13

using the scanners in Table I instead of using others include our
previous experience with these scanners, that these scanners
are among the most popular used scanners in practice, and
that they perform well in general according to [4], [11], [12].

The main contributions of this paper are the following:

e Technical solutions to improve the crawling coverage
and the reliability of authenticated scans of web appli-
cation vulnerability scanners. In contrast to previous
work (see Section II), our solutions cover both aspects,
can easily be applied to a wide range of scanners
available today, and require only minimal, scanner-
independent configuration.

e A general evaluation that shows that by using these
technical solutions, the vulnerability detection perfor-
mance of the scanners included in the evaluation can
be improved by more than 100% on average. Many of
the additionally reported vulnerabilities are security-
critical, which means that JARVIS provides a true
security benefit.

e A more detailed evaluation focusing on SQL injection
and cross-site scripting vulnerabilities that demon-
strates that the vulnerability detection performance of
the scanners with respect to these two types of highly
relevant vulnerabilities can be increased by 167% on
average, without increasing the fraction of reported
false positives.

e A final evaluation that shows that using multiple
scanners in a reasonable way is beneficial as it fur-
ther increases the number of detected vulnerabilities
without a significant negative impact on the reported
false positives.

The remainder of this paper is organized as follows:
Section II covers relevant related work. Section III describes
the technical solutions to overcome the limitations of today’s
web application vulnerability scanners. Section IV contains
the general evaluation results and Section V provides a more
detailed evaluation focusing on SQL injection and cross-site
scripting vulnerabilities. The final part of the evaluation is
provided in Section VI, where the benefits and limitations of
using multiple scanners in parallel are analyzed. Section VII
concludes this work.

II. RELATED WORK

Several work has been published on the crawling coverage
and detection performance of web application vulnerability
scanners. In [3], more than ten scanners were compared, with
the main results that good crawling coverage is paramount to
detect many vulnerabilities and that freely available scanners
perform as well as commercial ones. The same is confirmed in
[4], which covers more than 50 free and commercial scanners.
The works by Chen [11], which covers about 20 scanners
and which is updated regularly, and by El Idrissi et al. [12],
which includes 11 scanners in its evaluation, also result in the
conclusion that free scanners perform as well as commercial
ones. In [5], Suto concludes that when carefully training or
configuring a scanner, detection performance is improved, but
this also significantly increases the complexity and time effort
needed to use a scanner. Furthermore, Bau et al. demonstrate
that the eight scanners they used in their analysis have different
strengths, i.e., they find different vulnerabilities [6]. The same

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is confirmed by Vega et al. [7], which in addition compare the
vulnerabilities detected by the four scanners in their evaluation
with alerts reported by the intrusion detection system (IDS)
Snort [13]. Qasaimeh et al. conclude that the five scanners used
in their evaluation not only perform differently with respect to
the number of findings detected, but also with respect to the
number of false positives [8]. Smaller studies by using two and
three scanners were done in [9] and [10], respectively, which
confirm that different scanners have different strengths with
respect to detection capabilities.

Other work specifically aimed at improving the coverage
of vulnerability scanning. In [14], it is demonstrated that by
considering the state changes of a web application when it
processes requests, crawling and therefore scanning perfor-
mance can be improved. In [15], van Deursen et al. present
a Selenium WebDriver-based crawler called Crawljax, which
improves crawling of Ajax-based web applications. The same
is achieved by Pellegrino et al. by dynamically analyzing
JavaScript code in web pages [16]. In [17], Zulla discusses
methods to improve web vulnerability scanning in general,
including approaches to automatically detect login forms on
web pages.

Our work presented in this paper builds upon this previous
work, in particular on the observations that freely available
scanners perform similarly as commercial ones, that different
scanners have different strengths with respect to detection
capabilities, and that good crawling coverage is paramount
to detect many vulnerabilities. Besides this, however, our
work goes significantly beyond existing work. First of all, the
presented solution — JARVIS — not only addresses crawling
coverage but also the reliability of authenticated scans, which
has a significant impact on the number of vulnerabilities that
can be detected. In addition, JARVIS is scanner-independent,
which means it can easily be applied to most vulnerability
scanners available today. Furthermore, we provide a detailed
evaluation using several scanners and several test applications
that truly demonstrates the benefits and practicability of our
technical solutions. And finally, to our knowledge, our work
is the first one to quantitatively evaluate the benefits and
limitations when combining multiple scanners.

III. TECHNICAL SOLUTIONS TO IMPROVE WEB
APPLICATION VULNERABILITY SCANNING

One way to improve the vulnerability detection perfor-
mance of web application vulnerability scanners is to directly
adapt one or more scanners that are available today. However,
the main disadvantage of this approach is that this would only
benefit one or a small set of scanners and would be restricted to
scanners that are provided as open source software. Therefore,
a proxy-based approach was chosen. The advantages of this
approach are that it is independent of any specific scanner,
that it does not require adaptation of any scanner, and that it
can be used with many scanners that are available today and
most likely also with scanners that will appear in the future.
The basic idea of this proxy-based approach is illustrated in
Figure 1.

A proxy-based approach means that JARVIS, which pro-
vides the technical solutions to overcome the limitations of
web application vulnerability scanners, acts as a proxy between
the scanner and the web application under test. This gives
JARVIS access to all HTTP requests and responses exchanged

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

14
I]| HTTP
I | Requests o
! JARVIS | | 7] Web
I Scanner (Proxy) Application
I < L. I under Test
[[HTTP
| Computer of Tester JI Responses

Figure 1. Proxy-based Approach of JARVIS.

between the scanner and the web application, which enables
JARVIS to control the entire crawling and scanning process
and to adapt requests or responses as needed. This proxy-
based approach is possible because most scanners are proxy-
aware, i.e., they support configuring a proxy through which
communication with the web application takes place. Note that
JARVIS can basically be located on any reachable host, but the
typical scenario is using JARVIS on the same computer as the
web application vulnerability scanner (e.g., on the computer
of the tester).

As a basis for JARVIS, the community edition version
1.7.19 of Burp Suite [18] is used. Burp Suite is a tool that
is intended to assist a tester during web application security
testing. It is usually used as a proxy between the browser of the
tester and the web application under test and supports record-
ing, intercepting, analyzing, modifying and replaying HTTP
requests and responses. Therefore, Burp Suite already provides
many basic functions that are required to implement JARVIS.
In addition, Burp Suite provides an application programming
interface (API) so it can be extended and JARVIS makes use
of this APIL.

JARVIS consist of two main components. The first is
described in Section III-A and aims at improving the test
coverage of scanners. This component should especially help
scanners that have a poor crawling performance. The second
component, described in Section III-B, aims at improving the
reliability of authenticated scans and should assist scanners
that have limitations in this area. Finally, Section III-C gives
a configuration example when using JARVIS to demonstrate
that the configuration effort is small.

A. Improving Test Coverage

Improving test coverage could be done by replacing the
existing crawler components of the scanners with a better one
(see, e.g., [14]-[16]). While this may be helpful for some
scanners, it may actually be harmful for others, in particular
if the integrated crawler works well. Therefore, an approach
was chosen that does not replace but that assists the crawling
components that are integrated in the different scanners. The
idea is to supplement the crawlers with additional URLSs
(beyond the base URL) of the web application under test.
These additional URLs are named seeds as they are used to
seed the crawler components of the scanners. Intuitively, this
should significantly improve crawling coverage, in particular
if the integrated crawler is not very effective. To get the
additional URLs of a web application, two different approaches
are used: endpoint extraction from the source code of web
applications and using the detected URLs of the best available
crawler(s).

Endpoint extraction means searching the source code (in-
cluding configuration files) of the web application under test

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for URLs and parameters. The important benefits of this
approach are that it can detect URLs that are hard to find
by any crawler and that it can uncover hidden parameters of
requests (e.g., debugging parameters). To extract the endpoints,
ThreadFix endpoint CLI [19] was used, which supports many
common web application frameworks (e.g., JSP, Ruby on
Rails, Spring MVC, Struts, .NET MVC and ASPNET Web
Forms). In addition, further potential endpoints are constructed
by appending all directories and files under the root directory
of the source code to the base URL that is used by the
web application under test. This is particularly effective when
scanning web applications based on PHP.

Obviously, endpoint extraction is only possible if the source
code of the application under test is available. If that is not the
case, the second approach comes into play. The idea here is
to use the best available crawler(s) to gather additional URLs.
As will be shown later, the scanner Arachni provides good
crawling performance in general, so Arachni is a good starting
point as a tool for this task. Of course, it is also possible to
combine both approaches to determine the seeds: extract the
endpoints from the source code (if available) and get URLs
with the best available crawler(s).

Once the seeds have been derived, they must be injected
into the crawler component of the scanners. To do this,
most scanners provide a configuration option. However, this
approach has its limitations as such an option is not always
available and usually only supports GET requests but no POST
requests. Therefore, the seeds are injected by JARVIS. To do
this, four different approaches were implemented based on
robots.txt, sitemap.xml, a landing page, and the index page.

Using robots.txt and sitemap.xml is straightforward. These
files are intended to provide search engine crawlers with infor-
mation about the target web site and are also evaluated by most
crawler components of scanners. When the crawler component
of a scanner requests such a file, JARVIS supplements the
original file received from the web application with the seeds
(or generates a new file with the seeds in case the web
application does not contain the file at all). Both approaches
work well but are limited to GET request.

The other two approaches are more powerful as they
also support POST request. The landing page-based approach
places all seeds as links or forms into a separate web page
(named landing.page) and the scanner is configured to use
this page as the base URL of the web application under test
(e.g., http://www.example.site/landing.page instead of http:
/Iwww .example.site). When the crawler requests the page,
JARVIS delivers the landing page, from which the crawler
learns all the seeds and uses them during the remainder of the
crawling process. One limitation of this approach is that the
altered base URL is sometimes interpreted as a directory by the
crawler component of the scanners, which means the crawler
does not request the landing page itself but tries to fetch
resources below it. This is where the fourth approach comes
into play. The index page-based approach injects seeds directly
into the first page received from the web application (e.g.,
just before the </body> tag of the page index.html). Overall,
these four approaches made it possible to successfully seed all
scanners in Table I when used to test the web applications in
the test set (see Section IV-A).

As an example, the effectiveness of the landing page-based
approach is demonstrated. To do this, WIVET version 4 [20]

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

15

is used, which is a benchmarking project to assess crawling
coverage. Table II shows the crawling coverage that can be
achieved with OWASP ZAP (in headless mode) and Wapiti
when they are seeded with the crawling results of Arachni via
a landing page.

TABLE II. CRAWLING COVERAGE

Raw Coverage when Seeded with
Scanner Coverage the Crawling Results of Arachni
Arachni 92.86%
OWASP ZAP 14.29% 96.43%
Wapiti 48.21% 96.43%

Table II shows that the raw crawling coverage of Arachni
is already very good (92.86%), while Wapiti only finds about
half of all resources and OWASP ZAP only a small fraction.
By seeding OWASP ZAP and Wapiti with the crawling results
of Arachni, their coverage can be improved drastically to
96.43%. This demonstrates that seeding via a landing page
indeed works very well.

B. Improving Authenticated Scans

Performing authenticated scans in a reliable way is chal-
lenging for multiple reasons. This includes coping with various
authentication methods, prevention of logouts during the scans,
and performing re-authentication when this is needed (e.g.,
when a web application with integrated protection mechanisms
invalidates the authenticated session when being scanned) to
name a few. It is therefore not surprising that many scanners
have difficulties to perform authenticated scans reliably.

To deal with these challenges, several modules were im-
plemented in JARVIS. The first one serves to handle vari-
ous authentication methods, including modern methods based
on HTTP headers (e.g., OAuth 2.0). The module provides
a wizard to configure authentication requests, can submit
the corresponding requests, stores the authenticated cookies
received from the web applications, and injects them into
subsequent requests from the scanner to make sure the re-
quests are interpreted as authenticated requests by the web
application. The main advantages of this module are that it
enables authenticated scans even if a scanner does not support
the authentication method and that it provides a consistent way
to configure authentication independent of a particular scanner.

Furthermore, a logout prevention module was implemented
to make sure a scanner is not doing a logout by following
links or performing actions which most likely invalidate the
current session (e.g., change password or logout links). This
is configured by specifying a set of corresponding URLs
that should be avoided during the scan. When the proxy
detects such a request, it blocks the request and generates a
response with HTTP status code 200 and an empty message
body. In addition, a flexible re-authentication module was
developed. Re-authentication is triggered based on matches of
configurable literal strings or regular expressions with HTTP
response headers (e.g., the location header in a redirection
response) or with the message body of an HTTP response
(e.g., the occurrence of a keyword such as login).

C. Configuration Example

To give an impression of the configuration effort needed
when using JARVIS, Table III lists the parameters that must

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be configured when scanning the test application Bodgelt (see
Section IV-A). In this example, the seeds are extracted from
the source code.

TABLE III. EXAMPLE CONFIGURATION WHEN SCANNING BODGEIT

Parameter Value(s)

Base URL http://bodgeit/
Source code ~/bodgeit/
Authentication mode POST

Authentication URL
Authentication parameters

http://bodgeit/login.jsp
username=test @test.test
password=password
http://bodgeit/password.jsp
http://bodgeit/register.jsp
http://bodgeit/logout.jsp
HTTP response body

Out of scope

Re-auth. search scope

Re-auth. keywords Login, Guest, user

Re-auth. keyword interpretation Literal string(s)

Re-auth. case-sensitive True

Re-auth. match indicates Invalid session

Seeding approach(es) Landing page, robots.txt,
sitemap.xml

The entries in Table IIl are self-explanatory and show
that the configuration effort is rather small. In particular,
the configuration is independent of the actual scanner, which
implies that when using multiple scanners in parallel (see
Section VI), this configuration must only be done once and
not once per scanner.

IV. GENERAL EVALUATION

This section starts with a description of the evaluation
setup. Then, it is analyzed how many vulnerabilities are
reported when the scanners are used with and without the
technical improvements described in Section III. Next, these
vulnerabilities are analyzed in more detail to check how many
unique vulnerabilities are detected and how severe they are.
Finally, it is analyzed whether all vulnerabilities that can be
detected by the scanners without using JARVIS are always also
detected when JARVIS is used.

A. Evaluation Setup

Table IV lists the web applications that were used to
evaluate the scanners (Cyclone Transfers and WackoPicko do
not use explicit versioning).

TABLE IV. WEB APPLICATIONS USED FOR THE EVALUATION

Application Version URL

Bodgelt 1.4.0 https://github.com/psiinon/bodgeit

Cyclone Transfers - https://github.com/thedeadrobots/bwa_cyclone_
transfers

InsecureWebApp 1.0 https://www.owasp.org/index.php/Category:
OWASP_Insecure_Web_App_Project

Juice Shop 2.17.0 https://github.com/bkimminich/juice-shop

NodeGoat 1.1 https://github.com/OWASP/NodeGoat

Peruggia 1.2 https://sourceforge.net/projects/peruggia/

‘WackoPicko - https://github.com/adamdoupe/WackoPicko

All these applications are deliberately insecure and well
suited for security training and to test vulnerability scanners.
The main reason why the applications in Table IV were chosen
is because they cover various technologies, including Java,
PHP, Node.js and Ruby on Rails.

The evaluation uses four different configurations that are
identified as -/-, S/-, /A and S/A. Basically, S indicates that
seeding is used and A indicates that authenticated scans are

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

16

used. The four configurations are described in more detail in
Table V.

TABLE V. CONFIGURATIONS USED DURING THE EVALUATION

JARVIS

Config. is Used The Scans are Executed...

-/- No ...without seeding and non-authenticated
(i.e., using the basic configuration of the
scanners by setting only the base URL)

S/- Yes ...with seeding but non-authenticated
(i.e., using the technical solution described
in Section III-A)

-/A Yes ...authenticated but without seeding
(i.e., using the technical solution described
in Section III-B)

S/A Yes ...with seeding and authenticated

(i.e., using both technical solutions described
in Sections III-A and III-B)

As the source code of all the test applications is available,
the endpoint extraction approach described in Section III-A is
used for seeding in configurations S/- and S/A.

The test applications were run in a virtual environment that
was reset to its initial state before each test run to make sure
that every run is done under the same conditions and is not
influenced by any of the other scans.

B. Total Number of Reported Vulnerabilities

The first evaluation analyzes the total number of vulner-
abilities that are reported by the scanners when using the
four different configurations described in Table V. Figure 2
illustrates the evaluation results. The height of the bars rep-
resents the number of vulnerabilities reported over all seven
test applications and the different colors of the bars represent
the number of reported vulnerabilities per test application. The
table in the lower part of the figure also contains the number
of vulnerabilities reported per test application.

The first observation when looking at Figure 2 is that some
scanners identify many more vulnerabilities than others. For
example, Skipfish reports about ten times as many findings as
Arachni or w3af. However, this does not mean that Skipfish is
the best scanner, because Figure 2 depicts the “raw number of
vulnerabilities” reported by the scanners and does not consider
whether the vulnerabilities include false positives or duplicate
findings, or how severe the findings are. For instance, as will
be seen in Section IV-C, about 75% of the vulnerabilities
reported by Skipfish are rated as info or low (meaning they
have only little security impact in practice), while the other
scanners report a much smaller fraction of such findings.

More importantly, Figure 2 allows to do a first assessment
about the impact of using JARVIS. By comparing the total
number reported vulnerabilities in configuration S/- with the
one in configuration -/~, it can easily be seen that the technical
solution to improve test coverage works well with all scanners:
With every scanner, the number is always higher when seeding
is used. For instance, when adding up the reported vulnera-
bilities of all test applications, Arachni reports 254 findings
in configuration S/- compared to only 162 in configuration
-/-. The same behavior can also be observed with the other
four scanners. In addition, the benefit of seeding is not only
obvious when looking at the combined results of all test appli-
cations, but also when looking at individual test applications:
The number of vulnerabilities reported when seeding is used

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2400
2200
2000
1800
wv
£ 1600
2 1400
[}
i=
S 1200
>
3 1000
£
& 800
o
600
400
200 | .
0 N = S
Sk A
Arachni OWASP ZAP
W WackoPicko 39 50 36 54 101 137 79 117
m Peruggia 4 20 4 20 79 98 62 78
m NodeGoat 22 24 44 42 83 84 79 80
Juice Shop 47 64 47 60 29 29 49 49
InsecureWebApp 11 24 7 26 59 102 58 75
M Cyclone Transfers 20 23 28 32 58 85 90 103
M Bodgelt 19 49 12 39 126 149 102 125

313
25
235
20
66
154
51

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

17
p——
e . — ==
N 1 I8
S/- /A S/A [s/- -/A S/A
Skipfish Wapiti w3af
484 526 617 14 21 14 20 28 55 26 34
81 27 69 1 17 2 18 2 14 2 7
327 262 293 3 32 23 49 14 19 25
229 33 104 19 19 19 19 7 4 8
128 130 183 9 36 8 31 19 30 15 22
359 183 886 62 102 119 158 11 25 12 31
145 90 252 70 89 134 110 74 9% 70 92

Figure 2. Total Number of Reported Vulnerabilities per Scanner and Test Application.

is nearly always higher than without seeding. For instance,
Arachni reports 64 vulnerabilities in Juice Shop in configu-
ration S/- compared to 47 in configuration -/-. Among all 35
combinations of the five scanners and seven test applications,
there is an improvement in 33 cases and overall, there are just
two exceptions where the number of reported vulnerabilities
is not increased and remains unchanged (OWASP ZAP and
Wapiti when scanning Juice Shop).

The benefit of the technical solution to improve authenti-
cated scans is less obvious from the results in Figure 2. Using
again Arachni as an example, the 178 vulnerabilities reported
over all test applications in configuration -/A are only a small
improvement compared to the 162 vulnerabilities reported in
configuration -/-. With Wapiti, the results are much better with
an improvement from 178 to 319 reported vulnerabilities. But
in the case of OWASP ZAP, the numbers even get slightly
lower when authenticated scans are used, from 535 to 519.
When looking at individual test applications, the results vary
as well. For instance, when scanning Cyclone Transfer, Wapiti
reports 62 findings in configuration -/~ and 119 findings in
configuration -/A, which is significant improvement. But when
scanning Peruggia with OWASP ZAP, 79 findings are reported
in configuration -/-, which drops to 62 in configuration -/A. In
general, more analysis is required to assess the impact of the
technical solution to improve authenticated scans, which will
follow in Sections IV-C and IV-D.

Furthermore, Figure 2 provides insights into the benefit of
using both technical solutions at the same time (configuration
S/A). Intuitively, one would expect this configuration to deliver
clearly the highest number of vulnerabilities with all scanners,
but this is not the case. With OWASP ZAP and w3af, the

number of reported vulnerabilities over all test applications
is slightly lower than in configuration S/-, with Arachni it is
almost the same as in configuration S/-, and only Skipfish and
Wapiti report clearly the highest number of vulnerabilities in
configuration S/A. So just like when using only the solution to
improve authenticates scans (see above), this result is currently
non-conclusive and more analysis is required.

Note that to make sure that authenticated scans were carried
out reliably, the involved requests and responses were analyzed
after each scan. This showed that it was indeed possible to
maintain authentication during all these scans, which confirms
that the technical solution to improve authenticated scans is
sound and works well in practice.

C. Reported Unique Vulnerabilities and Severity of Vulnera-
bilities

The previous evaluation in Section IV-B demonstrates that
when considering just the raw number of reported vulnera-
bilities, JARVIS works well, in particular with respect to the
technical solution to improve test coverage. However, it is not
clear whether there is a true benefit in practice because it
may be that the additionally found vulnerabilities are mainly
duplicates of vulnerabilities that are already found in the
basic configuration -/-, or are mainly non-critical issues. For
instance, it could be that the increased number of reported
vulnerabilities is mainly because the scanners report a higher
number of issues related to missing HTTP response headers
(e.g., missing X-Frame-Options headers), which are sometimes
reported once for every requested URL (which implies many
duplicate findings) and which are usually not very security-
relevant.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

900
800
700
wv
a
£ 600
Q
©
2 500
=]
>
B 400
S
Q.
& 300
2 - -
100 NN [
., - I -
Sk A SIA oS A
Arachni OWASP ZAP
B Critical 33 47 36 65 0 0 0
High 19 27 16 25 13 20 16
Medium 0 0 0 0 138 169 162
Low 25 21 20 21 155 181 146
u Info 64 99 65 103 0 0 0

S/A

30
188
157

0

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

18

e

S/- -/A S/A -/ S/- -/A S/A
Skipfish w3af
23 70 25 58 0 0 0 0
58 88 92 118 14 19 11 27
27 78 38 60 33 94 31 63
299 575 427 529 21 30 24 29
75 113 80 99 75 84 79 87

Figure 3. Reported Unique Vulnerabilities per Scanner over all Test Applications, according to Severity.

To analyze this in more detail, the reports of the scanners
were processed with ThreadFix [21]. ThreadFix provides the
functionality to normalize reports of different scanners, to
eliminate duplicate findings, and to compare the results of
different scanners or different runs by the same scanner. Elim-
inating duplicate findings means that if a specific vulnerability
such as a missing HTTP response header is reported, e.g.,
ten times by a scanner, then it will be only included as
one vulnerability in the output generated by ThreadFix. In
addition, ThreadFix maps the severity levels of vulnerabilities
reported by different scanners to five standard severity levels:
critical, high, medium, low and info. The results of this
processing with ThreadFix are illustrated in Figure 3. For each
scanner, it shows the number of reported unique vulnerabilities
(i.e., without duplicates) over all test applications when using
the four different configurations. In addition, the number of
vulnerabilities is separated according to the standard severity
levels.

Note that Figure 3 and also the remainder of Section IV do
not include the scanner Wapiti, because at the time of writing,
Wapiti was not supported by ThreadFix. In addition, not every
scanner uses all five standard severity levels from critical to
info, as this depends on the scanner-specific severity mappings
done by ThreadFix. Specifically, ThreadFix maps the severity
levels of Arachni to the standard severity levels critical, high,
low and info (without using medium), in the case of OWASP
ZAP, only three levels high, medium and low are used (so
critical and info are not used), and in the case of w3af, level
critical is not used. The only scanner in Figure 3 that uses all
five standard levels is Skipfish.

When comparing Figure 3 with Figure 2, one can see
that the absolute heights of the bars, i.e., the total number of
reported vulnerabilities, are lower in Figure 3. For instance,

in the case of OWASP ZAP, the total number of reported
vulnerabilities went down from 535 to 306 in the basic
configuration -/- and from 684 to 370 in configuration S/-.
This is not surprising as duplicate findings (in this case 229
and 314, respectively) were eliminated by ThreadFix. As all the
bars got lower, this also shows that all scanners tend towards
reporting duplicate vulnerabilities, no matter whether JARVIS
is used or not. However, the more important result that can
be seen from Figure 3 is that for each scanner, the relative
heights of the bars when using different configurations are
still very similar as in Figure 2, which means that many of
the additional vulnerabilities that are reported when JARVIS
is used are indeed new vulnerabilities, and not just duplicates
of vulnerabilities detected in the basic configuration -/-. As a
side note, Figure 3 also puts the high number of vulnerabilities
reported by Skipfish into perspective, as a significant portion
of them have severity low and info and which are therefore
typically not very security-critical.

To quantify the benefit of JARVIS in more detail, Table VI
contains the numbers of reported unique vulnerabilities and
the relative improvements when using JARVIS.

First, the improvement that can be achieved with the
technical solution to increase test coverage is analyzed. For
instance, Table VI shows that when using Arachni, 141
unique vulnerabilities are reported in configuration -/-, which
is increased to 194 vulnerabilities in configuration S/-. This
corresponds to an improvement of reported vulnerabilities of
38%. With the other three scanners, the improvements are
21%, 92% and 59%. In the last row of Table VI, the reported
vulnerabilities of the four scanners are added up. This shows
that on average, the number of reported unique vulnerabilities
is increased by 60% when moving from configuration -/~ to
S/-, which demonstrates that the technical solution to increase

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. REPORTED UNIQUE VULNERABILITIES PER SCANNER, AND
IMPROVEMENT BY USING JARVIS

Reported Unique Improvement

Scanner Config. Vulnerabilities by using JARVIS
Arachni -/- 141
S/- 194 38%
-IA 137 -3%
S/A 214 52%
OWASP -/- 306
ZAP S/- 370 21%
-IA 324 6%
S/A 375 23%
Skipfish -/- 482
S/- 924 92%
-IA 662 37%
S/A 864 79%
w3af -/- 143
S/- 227 59%
-IA 145 1%
S/A 206 42%
All four -/- 1°072
Scanners S/- 1’715 60 %
-IA 1268 18%
S/A 1’659 55%

test coverage works very well.

Next, the improvement of the technical solution to im-
prove authenticated scans is analyzed. As already seen in
Section I'V-B, the improvement is much smaller. For instance,
Table VI shows that when using Arachni and when using
configuration -/A instead of configuration -/-, the number of
reported unique vulnerabilities actually goes down, from 141
to 137, which is a reduction of 3%. With the other scanners,
the improvements are 6%, 37% and 1%, and adding up
the reported vulnerabilities of the four scanners shows that
on average, the number of reported unique vulnerabilities is
improved by 18% when moving from configuration -/~ to -/A.
It therefore can be concluded that the solution to improve
authenticated scans results in a significantly smaller improve-
ment with respect to the absolute number of reported unique
vulnerabilities than the solution to increase test coverage,
which confirms the observation made in Section I'V-B.

Finally, the combined effect of using both technical solu-
tions is analyzed, i.e., configuration S/A. For the four scanners,
this results in improvements between 23% and 79% and on
average, an improvement of 55% can be achieved compared
to configuration -/-. As these numbers are quite similar as the
numbers that can be achieved in configuration S/-, i.e., when
using only the technical solution to increase test coverage, and
as the improvement that can be achieved in configuration -/A
(see above) is relatively small, this further underlines that the
effect of the technical solution to improve authenticated scans
only has a relatively small effect on the absolute number of
reported unique vulnerabilities.

Another important result that can be seen by looking at
Figure 3 is that the increased number of vulnerabilities when
using JARVIS is not just because several additional non-
security-critical issues were detected (i.e., severity levels low
and info). Instead, for each of the four scanners in Figure 3,
the distribution of the different severity levels appears to be
more or less constant, independent of the configuration that is
used. To quantify this in more detail, Table VII contains the
numbers of reported unique vulnerabilities and the absolute
and relative number of security-critical vulnerabilities among
them. For simplicity, we assume that severity levels critical,

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

19

high and medium are considered security-critical, while levels
low and info are considered non-security-critical.

TABLE VII. REPORTED UNIQUE VULNERABILITIES PER SCANNER AND
CONFIGURATION, AND FRACTION OF SECURITY-CRITICAL
VULNERABILITIES

Number of
Security-critical

Fraction of

Reported Unique Security-critical

Scanner Config. Vulnerabilities Vulnerabilities Vulnerabilities
Arachni -/- 141 52 37%
S/- 194 74 38%
-/A 137 52 38%
S/A 214 90 42%
OWASP -/- 306 151 49%
ZAP S/- 370 189 51%
-IA 324 178 55%
S/A 375 218 58%
Skipfish -/- 482 108 22%
S/- 924 236 26%
-/A 662 155 23%
S/A 864 236 27%
w3af -/- 143 47 33%
S/- 227 113 50%
-IA 145 42 29%
S/A 206 90 44%
All four -/- 1°072 358 33%
Scanners S/- 1’715 612 36%
-/A 17268 427 34%
S/A 17659 634 38%

To explain Table VII, the numbers of scanner Arachni
are discussed in detail. For instance, in configuration -/-,
Arachni reports 141 unique vulnerabilities, 52 of them are
security-critical (i.e., severity levels critical, high or medium).
This corresponds to a fraction of 37%. In configuration S/-,
74 of the 194 reported vulnerabilities are security-critical,
which corresponds to 38%. In the other two configurations
-/A and S/A, these fractions are 38% and 42%, respectively.
This shows that in the case of Arachni, the fraction of
security-critical vulnerabilities is approximately the same for
all four configurations. The same can be observed for the other
scanners in Table VII, with the exception of w3af, where the
fractions vary a bit more. The last row in the table contains
the added up numbers of all four scanners, which shows a
fraction of 33% security-critical vulnerabilities in configuration
-/- and slightly higher fractions of 36%, 34% and 38% in
the other three configurations, i.e., when using JARVIS. This
demonstrates that on average, JARVIS not only increases the
number of reported unique vulnerabilities, but that many of the
additionally reported vulnerabilities are security-critical, which
means that JARVIS provides a true security benefit.

To summarize this subsection, the following can be con-
cluded:

e The technical solution to increase test coverage sig-
nificantly increases the absolute number of reported
unique vulnerabilities. On average, the number of
reported vulnerabilities is improved by 60% when
moving from configuration -/- to S/-.

e The technical solution to improve authenticated scans
only has a small positive impact on the absolute
number of reported unique vulnerabilities. On average,
the number of reported vulnerabilities is improved by
18% when moving from configuration -/~ to -/A.

e Using both technical solutions at the same time also
significantly increases the absolute number of reported
unique vulnerabilities. On average, the number of

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reported vulnerabilities is improved by 55% when
moving from configuration -/- to S/A. As this number
is similar to what is achieved in configuration S/-, i.e.,
when using only the technical solution to increase test
coverage, this further underlines that the effect of the
technical solution to improve authenticated scans only
has a relatively small effect on the absolute number
of reported unique vulnerabilities.

e JARVIS slightly improves the fraction of security-
critical vulnerabilities among all reported vulnerabil-
ities. This means the practical benefit of JARVIS is
even slightly better than the figures above. So, for
instance, when the number of reported vulnerabilities
can be improved by 60% when moving from config-
uration /- to S/- (see above), then the improvement
of security-critical vulnerabilities is even a bit higher
than 60%.

For completeness, Figure 4 shows the number of unique
vulnerabilities reported per scanner and test application when
using the four different configurations, again separated ac-
cording to the severity levels. Without going into the details,
Figure 4 confirms that the conclusions of this subsection are
also valid when considering the test applications individually:
Using JARVIS results in a higher number of detected unique
vulnerabilities and the distribution of the different severity
levels per scanner and test application is more or less constant,
independent of the configuration that is used.

D. Re-Detection of Vulnerabilities in Advanced Configurations

Intuitively, additionally seeding a scanner and/or perform-
ing authenticated scans (i.e., using configurations S/-, -/A and
S/A) should always also report all vulnerabilities that are
detected when scanning without additional seeding and without
using authentication (i.e., in configuration -/-). However, this
is not the case. To demonstrate this, Figure 5 illustrates how
many of the vulnerabilities reported in the basic configuration
are also found when scanning in the other three configurations.
Just like in Section IV-C, this analysis is also based on the
vulnerabilities after they have been processed with ThreadFix,
which means that the scanner Wapiti is again not included and
which implies that the heights of the bars (i.e., the total number
of reported unique vulnerabilities) are exactly the same as in
Figure 3.

Once more, the results of scanner Arachni are used to
explain Figure 5 in details. The leftmost bar shows that in
configuration -/-, Arachni reports 141 unique vulnerabilities.
When using configuration S/-, then 194 findings are reported in
total. Of these 194 findings, 128 are “new” findings compared
to configuration -/~ (indicated by the green part of the bar), and
66 are “old” findings compared to configuration -/~ (indicated
by the gray part of the bar), i.e., findings that were already
detected in configuration -/-. This means that only 66 of the
141 vulnerabilities reported in configuration -/- are detected
again in configuration S/~ while 75 of the 141 vulnerabilities
are missing, i.e., are not detected in configuration S/-. The same
can be observed with all scanners and with all configurations:
Whenever configurations S/-, -/A or S/A are used, a significant
portion of the vulnerabilities detected in the basic configuration
-/- are no longer detected. This means that in general, using
JARVIS delivers a significant number of new findings, but also

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

20

misses several of the findings that are reported when JARVIS
is not used.

The direct consequence of this observation is that the in-
crease of newly detected vulnerabilities is significantly higher
than the increase of the absolute number of detected vulnera-
bilities as discussed in Section IV-C. To analyze this in detail,
the relevant numbers are included in Table VIIL.

TABLE VIII. REPORTED UNIQUE NEW VULNERABILITIES PER SCANNER,
AND IMPROVEMENT BY USING JARVIS

Reported Unique Improvement

Scanner Config. New Vulnerabilities by using JARVIS
Arachni -/- 141
S/- 128 91%
-/A 59 42%
S/A 161 114%
OWASP -/- 306
ZAP S/- 116 38%
-/A 126 41%
S/A 183 60%
Skipfish -/- 482
S/- 611 127%
-/A 419 87%
S/A 606 126%
w3af -/- 143
S/- 153 107%
-/A 85 59%
S/A 144 101%
All four -/- 1°072
Scanners S/- 1°008 94%
-/A 689 64%
S/A 17094 102%

The third column in Table VIII contains the number of
reported new vulnerabilities per scanner and configuration and
directly correspond to the “New Vulnerabilities” numbers in
Figure 5. Looking at the numbers of Arachni, one can see
that in configuration S/-, 128 new vulnerabilities are detected.
Compared to the 141 vulnerabilities detected in configura-
tion -/-, this corresponds to an increase of newly detected
vulnerabilities of 91%. Likewise, 59 new vulnerabilities are
detected in configuration -/A, an increase of 42% compared
to configuration -/-. And finally, configuration S/A yields an
increase of 114% compared to the basic configuration -/-.
Similar results can be observed for the other three scanners.
Adding up the numbers of all four scanners result in an
increase of 94% in configuration S/-, 64% in configuration
-/A, and 102% in configuration S/A.

This analysis clearly shows that the effective benefit of
JARVIS, i.e., the increase of new vulnerabilities that can be
detected by using JARVIS, is significantly higher than the
increase of the absolute number of detected vulnerabilities
that was discussed in Section IV-C and listed in Table VI.
For instance, in configuration S/-, there is an improvement
of 60% on average with respect to the absolute number of
vulnerabilities (see Table VI), but there is an improvement of
94% on average with respect to newly detected vulnerabilities.
In addition, this analysis puts into perspective the previous
conclusion that the technical solution to improve authenticated
scans has only a relatively small positive impact. While the
increase of the absolute number of vulnerabilities is indeed
relatively small (18% on average, see Table VI), the increase
of newly detected vulnerabilities is 64% on average, which
is significantly higher. And in configuration S/A, the newly
detected vulnerabilities can be increased by 102% on average,
whereas the absolute increase according to Table VI is only

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

Reported Vulnerabilities Reported Vulnerabilities Reported Vulnerabilities

Reported Vulnerabilities

21
60
: i_n
= 40 || ||
S 30 —
u —
" == I l
-/- S/- -/A S/A -/~ Sl -/A S/A -[- S/~ -/A S/A S/~ -/A S/A -/- S/- -/A S/A -/- S/~ -/A S/A -/- S/~ -/A S/A
Bodgelt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko
M Critical 5 6 5 6 2 3 2 1 4 7 2 9 5 16 6 14 5 4 11 22 0 3 0 3 12 8 10 10
High 3 5 1 4 4 4 5 5 1 2 0 2 5 8 6 7 2 3 1 2 0 3 0 3 2 3
Medium 0
Low 4 3 1 2 5 6 8 9 2 1 1 1 5 5 4 5 3 2 1 0 1 2 1 2 2 4
m Info 4 7 4 7 6 7 9 13 4 9 4 9 26 28 26 28 9 9 6 6 3 9 3 9 12 30 13 31
90
80
a 70
< 60
e 50
2 40
g 30
20
& 10
0
-/- S/~ -/A SIA -[- S/ -/A S/A -f- S} -/A S/A -/~ S/~ -/A S/A -/~ S[- -/A S/A -[- S| -/A S/A -~ S[- -/A S/A
Bodgelt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WoackoPicko
mCritical 0
High 2 4 1 3 0 0 0 2 3 6 1 8 0 0 0 0 3 3 11 11 0 2 0 2 5 5 3 4
Medium 51 42 41 39 17 20 37 36 16 22 19 19 1 1 1 1 22 24 30 30 4 13 4 12 27 47 30 51
Low 13 16 11 14 22 24 29 27 17 25 15 15 22 22 42 42 39 38 21 21 6 17 5 12 36 39 23 26
m Info 0
350 —
300 —
- 250
§ — -
= — 1 B
2 100 [— |
50 = — _— — L
-/- S/~ -/A S/A -/- S/- -/A S/A -/~ S/ -/A SIA -/- S/- -/A S/A -/- S/ -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
Bodgelt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko
m Critical 1 0 7 6 8 8 2 0 0 1 0 2 41 3 31 13 14 12 6 0 0 0 0 1 6 1 12
High 4 6 2 16 17 27 19 29 2 3 1 2 0 0 2 1 29 39 45 43 1 3 1 2 5 10 22 25
Medium 2 3 4 3 2 3 3 7 1 5 3 6 2 37 4 20 18 23 18 20 1 4 1 2 1 3 5 2
Low 20 57 37 43 12 41 31 49 33 64 51 64 3 37 4 16 62 108 67 76 11 31 11 28 158 237 226 253
m Info 0 2 3 1 5 10 8 14 3 5 8 6 2 21 4 100 23 17 14 11 3 4 4 5 39 54 39 52
90
80
70
60
‘:%3 50
40
; 30
20
10
0 __——----_________—_—___—
S/ -/A S/A -~ S/- -/A S/A -/~ S/~ -/A S/A -/~ S/ -/A S/A -[- S| -/A S/A -~ Sl -/A S/A -/~ S/~ -/A S/A
Bodgelt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko
m Critical 0
High 6 11 2 13 1 1 1 3 2 3 1 3 0 0 0 1 2 2 5 4 0 0 0 3 2 2 3
Medium 11 22 11 20 6 16 6 20 6 13 1 6 0 1 0 2 4 4 10 10 O 8 0 2 6 30 3 3
Low 2 2 2 0 1 3 1 1 2 2 2 1 1 2 1 2 0 0 1 0 2 0 2 15 19 17 22
= Info 54 55 54 55 3 3 5 5 9 13 11 13 2 3 2 3 2 3 2 3 2 4 2 4 3 3 3 4

Figure 4. Reported Unique Vulnerabilities per Scanner and Test Application, according to Severity.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

900
800
700
600
500
400

300

200
m..—.
0
-/- S/- -/A S/A -/-

Arachni

Reported Vulnerabilities

S/- -/A
OWASP ZAP

B New Vulnerabilities 141 128 59 161 306 116 126
Old Vulnerabilities 0 66 78 53 0 254 198

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

22

. .]
S/A -/- S/- -/A

S/A -/- S/- -/A S/A
Skipfish w3af

183 482 611 419 606 143 153 85 144

192 0 313 243 258 0 74 60 62

Figure 5. Reported Unique Vulnerabilities per Scanner, according to New and Old Vulnerabilities.

55% on average. To summarize, this analysis demonstrates
that not only the technical solution to increase test coverage,
but also the technical solution to improve authenticated scans
significantly helps to uncover vulnerabilities that would not
be found otherwise and therefore, it can be concluded that
both technical solutions integrated in JARVIS provide a major
benefit to increase the number of detected vulnerabilities.

Determining the exact reasons why several of the vulnera-
bilities found in configuration -/- are no longer detected when
using the advanced configurations would require a detailed
analysis of the crawling components of the scanners, of
the specific behavior of the scanners when carrying out the
vulnerability tests, and of the web applications in the test set,
which is beyond the scope of this work. Nevertheless, it is
certainly possible to give some arguments that explain that the
observed behavior is reasonable:

e Providing the crawler component of a scanner with
additional seeds has a direct impact on the order
in which the pages are requested. A different order
implies different internal state changes within the web
application under test [14], which typically leads to a
different behavior of the web application both during
crawling and during testing, and therefore to different
findings.

e When doing authenticated scans, some of the re-
sources that do not require authentication are often
no longer reachable, e.g., registration, login and for-
gotten password pages. As deliberately insecure web
applications often use such resources to place common
vulnerabilities and as the evaluation of JARVIS is
based on deliberately insecure applications (see Sec-
tion IV-A), this most likely has a noticeable impact
on the evaluation results.

An important consequence of the observation that not all
vulnerabilities found in the basic configuration -/- are also
found when using the three advanced configurations is that
when testing a web application, a scanner should be used in all

four configurations to maximize the total number of reported
unique vulnerabilities (this will be analyzed in more detail in
Section V). And obviously, although this was not analyzed in
detail, an application that provides different protected areas for
different roles should be scanned with users of all roles, i.e.,
configurations -/A and S/A should be used once per role.

For completeness, Figure 6 shows how many of the vul-
nerabilities reported in the basic configuration are also found
when scanning in other configurations, this time separated
per scanner and per test application. Without going into the
details, Figure 6 confirms that the conclusions made above
are also valid when considering the test applications individ-
ually: When using the advanced configurations, several new
vulnerabilities are reported and at the same time, several of
the findings detected in the basic configuration are no longer
reported.

V. DETAILED EVALUATION FOCUSING ON SQL
INJECTION AND CROSS-SITE SCRIPTING VULNERABILITIES

The evaluations done in Section IV demonstrate that
JARVIS works very well to increase the number of detected
vulnerabilities in the sense that in the advanced configurations,
many additional vulnerabilities are detected and a significant
fraction of them are security-critical. Two questions are still
open, however. The first one is whether the additionally
detected vulnerabilities are true vulnerabilities or merely false
positives. In the context of a web application vulnerability
scanner, a false positive is a vulnerability that is reported by
the scanner, but that does not actually exist in the application
under test. Conversely, a true positive is a vulnerability that is
correctly identified by the scanner, i.e., one that is truly present
in the tested application. The second question is whether it
is indeed true that a scanner should always be used in all
four configurations to maximize the total number of reported
unique vulnerabilities. Based on the observations made in
Section IV-D, this is most likely the case, but it should
nevertheless be verified and quantified.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

23

by Arachni

=
o

Reported Vulnerabilities

30
T ll i I I I
1 | ol | ® 1IRR_0_1

S/~ -/A S/A -/- S/~ -/A S/A -/~ S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/ -/A S/A -/~ S/- -/A S/A
Bodgelt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko
= New Vulnerabilites 16 10 3 10 17 11 9 18 11 15 5 15 41 35 15 37 19 8 16 29 4 15 1 16 33 34 10 36
m Old Vulnerabilites 0 11 8 9 0 9 15 10 0 4 2 6 0 22 27 17 0 10 3 1 0 2 3 1 0 8 20 9

-/- S/- -/A S/A -~ S/~ -/A S/A -/- S/- -/A S/A -~ S/- -/A S/A -/- S/- -/A S/A -/~ S/~ -/A S/A -/- S/- -/A S/A

Bodgelt Cyclone Transfers = InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko
m New Vulnerabilities 66 18 5 17 39 9 31 33 36 29 16 28 23 0 20 20 64 4 43 43 10 16 O 7 68 40 10 34
= Old Vulnerabilities 0 44 48 39 0 35 35 32 0 24 19 14 0 23 23 23 0 61 19 19 0 16 9 19 0 51 46 47

90
80
70
60
50
40

Reported Vulnerabilities
by OWASP ZAP

350
w
2 300
5 250
° g
E = 200
23 150
35
£
o
: pulul.Een A B
= o Wl - - - —-—-

-/- S/~ -/A S/A -/- S/~ -/A S/A -/~ S/- -/A S/A -/- S/- /A S/A -/- S/~ -/A S/A -/- S/~ -/A S/A -/- S/- -/A S/A
Bodgelt Cyclone Transfers = InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

m New Vulnerabilities 27 48 31 55 42 49 45 64 39 54 42 54 9 130 8 68 145 93 102 105 16 32 8 27 204 210 182 234
m Old Vulnerabilities 0 21 15 15 0 40 24 37 0 23 22 24 0 6 9 10 O 108 54 51 0 10 9 10 O 100 111 110

90
80
70
60
50
40
30
20
10

0

Reported Vulnerabilities
by w3af

-/- S/~ -/A S/A -/- S/~ -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/JA S/A / S/- -/A S/A -/- S/- -/A S/A
Bodgelt Cyclone Transfers = InsecureWebApp Juice Shop NodeGoat Peruggia WoackoPicko

® New Vulnerabilites 73 71 51 70 11 13 2 19 19 21 12 16 3 4 O 6 8 2 16 16 2 12 0 6 27 30 4 11

m Old Vulnerabilites 0 19 18 18 o0 10 11 10 O0 10 3 7 0 2 3 2 o0 7 2 2 0 2 2 2 0 24 21 21

Figure 6. Reported Unique Vulnerabilities per Scanner and Test Application, according to New and Old Vulnerabilities.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

80

70

60
50

N
o

Reported SQLi and XSS Vulnerabilities

SA Al -/ S/ -/A S/A Al -/
Arachni OWASP ZAP
M False Positives 0 0 0 0 0 0 0 3 5 5 9
M True Positives 17 23 20 36 41 12 18 11 22 27

.II II.I III -Illlll.l
S/-

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

24

S/- /A S/A Al -/~ S/l -/A S/A Al -/~ S/ -/A S/A Al
Skipfish Wapiti w3af

24 15 24 60 0 0 0 0 0 4 8 1 11 21

3 7 10 13 7 20 12 18 22 12 17 13 20 25

Figure 7. Reported Unique SQLi and XSS Vulnerabilities per Scanner, over all Test Applications, according to True and False Positives.

To answer these final two questions, a more detailed anal-
ysis focusing on SQL injection (SQLi) and cross-site scripting
(XSS) vulnerabilities was done. To do this, all vulnerabilities
of these types were first extracted from the original reports of
the scanners. Then, the vulnerabilities were manually verified
to identify them as either true or false positives. This required
a lot of effort, which is the main reason why the focus was set
on these two types. Nevertheless, this serves well to answer the
two open questions and also to evaluate the true potential of
JARVIS in general as both vulnerabilities are highly relevant
in practice and highly security-critical. In addition, the test
applications contain several of them, which means SQLi and
XSS vulnerabilities represent a meaningful sample size. The
results are illustrated in Figure 7, for each scanner and over all
test applications. The green parts of the bars correspond to true
positives (true vulnerabilities) and the red parts correspond to
false positives (incorrectly reported vulnerabilities). Duplicates
were manually removed, so the bars represent the number of
unique vulnerabilities that were reported. In addition, Figure 7
not only shows the number of reported unique vulnerabilities
per configuration, but also the total number of reported unique
vulnerabilities when the findings of all four configurations are
combined (this is identified as configuration All).

The first observation when analyzing Figure 7 is that the
conclusions made in Section IV-C are still valid in the sense
that for each scanner, the number of reported unique SQLi and
XSS vulnerabilities is significantly increased when using the
advanced configurations compared to the basic configuration
-/- . This is not very surprising based on the analyses that were
done so far, but it demonstrates that JARVIS not only improves
the vulnerability detection performance when considering all
reported vulnerabilities, but also when focusing on specific and
highly relevant SQLi and XSS vulnerabilities.

In addition, Figure 7 delivers the answer to the first of
the final two questions. Looking at the bars in the figure, it
can be seen that using JARVIS does not have a significant
impact on the number of false positives that are reported. For
instance, Arachni, OWASP ZAP and Wapiti all produce no
false positives when used in the basic configuration -/~. When
using the advanced configurations, Arachni and Wapiti still do
not report any false positives, while OWASP ZAP produces

a relatively small fraction of false positives in configurations
/A and S/A. On the other hand, scanners that report false
positives in the basic configurations (w3af and especially
Skipfish, which does not report a single true positive in the
basic configuration) also do so in the advanced configurations,
but overall, the fraction of false positives reported in the
advanced configurations remains in a similar order as in the
basic configuration and is not significantly increased. As an
example, the fractions of false positives reported by w3af
are 25% in configuration -/-, 32% in configuration S/-, 7%
in configuration -/A, and 35% in configuration S/A, so the
fraction of false positives reported in any of the advanced
configurations is not significantly higher than the 25% reported
in configuration -/-. The same is true in the case of Skipfish,
with the difference that the fraction of reported false positives
is very high in general. Overall, the conclusion therefore is
that JARVIS does not have a negative impact on the fraction
of reported false positives. This is a very important finding
because if using JARVIS resulted in a significantly increased
fraction of reported false positives, then the value in practice
would be very limited, even if the absolute number of true
positives were also increased.

Furthermore, Figure 7 also answers the second open ques-
tion and confirms what was already stated in Section IV-D: It
is important to perform scans in all four configurations and to
combine the detected vulnerabilities to maximize the number
of reported unique vulnerabilities. This can easily be seen by
comparing the heights of the bars: For each scanner, the height
of the bar labeled with All is always greater than any of the
other four bars, which means that the sum of the vulnerabilities
detected in the four configuration (i.e., configuration All) is
always higher than the number of vulnerabilities detected in
any of the individual configurations (i.e., configurations -/-,
S/-, -/A and S/A). For instance, in the case of OWASP ZAP,
the four individual configurations report 12, 18, 14 and 27
unique vulnerabilities, and combining all these vulnerabilities
results in 32 unique vulnerabilities, which is more than what
was detected in any of the individual configurations. This is
not only true when considering all vulnerabilities, i.e., true and
false positives combined, but also when just considering the
true positives. To analyze this in more detail, Table IX is used,
which is based on the numbers in Figure 7, but which only

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

considers the true positive vulnerabilities.

TABLE IX. REPORTED UNIQUE TRUE POSITIVE SQLI AND XSS
VULNERABILITIES PER SCANNER, AND IMPROVEMENT BY USING JARVIS

Reported SQLi and XSS Improvement

Scanner Config. Vulnerabilities by using JARVIS

Arachni -I- 17
S/- 23 35%
-/A 20 18%
S/A 36 112%
All 41 141%

OWASP -/- 12

ZAP S/- 18 50%
-IA 11 -8%
S/A 22 83%
All 27 125%

Skipfish -/- 0
S/- 3 —%
-/A 7 —%
S/A 10 —%
All 13 —%

Wapiti -/- 7
S/- 20 186%
-/A 12 71%
S/A 18 157%
All 22 214%

w3af -I- 12
S/- 17 42%
-/A 13 8%
S/A 20 67%
All 25 108%

All five -/- 48

Scanners S/- 81 69%
-/A 63 31%
S/A 106 121%
All 128 167 %

From Table IX, it can be seen that for each of the five
scanners, combining the results of all configurations deliv-
ers more true positives than are reported in any individual
configuration. With Arachni, for instance, the best individual
configuration (S/A) reports 36 findings, but when combining
all four configurations, 41 findings are detected. The same
observation can be made for the other scanners, which demon-
strates that combining the vulnerabilities reported in all four
configurations always results in the highest number of unique
true positive vulnerabilities.

Compared to the basic configuration /-, using configuration
All more than doubles the number of reported unique true
positive SQLi and XSS with every scanner. The smallest
improvement is achieved with w3af, where the number of
vulnerabilities is increased from 12 to 25 (a plus of 108%),
followed by OWASP ZAP (125%), then Arachni (141%), then
Wapiti (214%), and in the case of Skipfish, where not a single
vulnerability (true positive) could be detected in the basic
configuration, using JARVIS manages to detect 13 vulnera-
bilities (no %-benefit is included in Table IX with Skipfish
as configuration -/- reports O true positives). Combining the
numbers of all five scanners (see final row of Table IX)
shows that on average and by combining the vulnerabilities
reported in any of the four configurations, JARVIS manages
to increase the number of reported true positive SQLi and
XSS vulnerabilities by 167% compared to using the scanners
without JARVIS.

Finally, Figure 7 and Table IX also make it possible
to compare the scanners. In particular, based on the test
applications used in the evaluation and focusing on SQLi and
XSS vulnerabilities, it shows that Arachni performs best as it
finds the highest number of vulnerabilities without producing

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

25

a single false positive, followed by OWASP ZAP and Wapiti.
OWASP ZAP finds more true vulnerabilities than Wapiti, but
also reports a few false positives. Next, there is w3af, which
already reports a considerable fraction of false positives and
finally, there is Skipfish, which performs quite poorly, not only
with respect to true positives but especially also with respect
to false positives. This once more puts into perspective the
results of the first evaluation (see Figure 2), where Skipfish
reported many more vulnerabilities than the other scanners.

VI. EVALUATION OF COMBINING MULTIPLE SCANNERS

As the configuration effort to use JARVIS is small and
the configurations are scanner-independent (see Section III-C),
JARVIS makes it possible to use multiple scanners in parallel
in an efficient way. Therefore, in a final evaluation, the benefits
and limitations of using multiple scanners in parallel are
analyzed. To do this, the same vulnerabilities as in the previous
subsection are used, i.e., only SQLi and XSS vulnerabilities are
considered, which makes it possible to precisely analyze the
impact of using multiple scanners on the reported true and false
positives. Figure 8 shows the reported unique true and false
positive vulnerabilities when using individual scanners and
different combinations of multiple scanners and when using
the scanners in the basic configuration -/~ and when combining
the results of all four configurations (i.e., configuration All).
The results are ranked from left to right in ascending order
according to the number of true positives that are identified in
configuration All.

Looking at the results in configuration All, the rightmost
bar combines the results of all five scanners, which obviously
delivers most true positives (51), but which also delivers most
false positives (86). The results also show that in this test
setting, Arachni performs very well on its own, as it finds 41
true positives (without a single false positive), which means
that the other four scanners combined can only detect 10
true positives that are not found by Arachni. Looking at
combinations of scanners, then the combination of Arachni
& Wapiti (Ar/Wa) performs well and manages to identify 45
of the 51 true positives without any false positives. Combining
Arachni, OWASP ZAP & Wapiti (Ar/OZ/Wa) is also a good
choice as it finds 47 true positives with only a few false
positives. This demonstrates that combining multiple scanners
is indeed beneficial to increase the number of detected true
positives without a significant negative impact on the number
of reported false positives. However, blindly combining as
many scanners as possible (e.g., all five scanners used here) is
not a good idea in general because although this results in most
true positives, it also maximizes the number of reported false
positives. Finally, comparing the results in configuration All
with the ones in configuration -/- demonstrates that even when
combining multiple scanners, configuration All increases the
number of detected true positives by more than 100% in every
single case, which again underlines the benefits of JARVIS.

Note that since seven test web applications that cover sev-
eral technologies were used in this evaluation, the results are at
least an indication that the suitable combinations of scanners
identified above (Arachni & Wapiti and Arachni, OWASP ZAP
& Wapiti) should perform well in many scenarios. However,
this is certainly no proof and it may be that other combinations
of scanners are better suited depending on the web application
under test. This means that in practice, one has to experiment

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

140
120
100
80
60

40

20
o N 7.—

-/- All All All All
Skipfish Wapiti w3af OW.ZAP
M False Positives 9 60 0 0 4 21 0 5 0

Reported SQLi and XSS Vulnerabilities

mlm

M True Positives 0 13 7 22 12 25 12 27 17 41

All

Arachni

-/- All -/ All -/ All -/- All -/ All -/ All

Ar/0Z Ar/Wa Ar/w3 Ar/OZ/Wa A/O/W/w All
0 5 0 0 4 21 0 5 4 26 13 86
19 43 17 45 21 46 19 47 22 49 22 51

Figure 8. Reported Unique SQLi and XSS Vulnerabilities using different Scanner Combinations, over all Test Applications.

with different scanner combinations to determine the one that
is best suited in a specific scenario.

VII. CONCLUSION

In this paper, we presented JARVIS, which provides tech-
nical solutions to overcome some of the limitations — notably
crawling coverage and reliability of authenticated scans — of
web application vulnerability scanners. As JARVIS is inde-
pendent of specific scanners and implemented as a proxy,
it can be applied to a wide range of existing vulnerability
scanners. The evaluation based on five freely available scanners
and seven test web applications covering various technologies
demonstrates that JARVIS works well in practice. In particular,
JARVIS manages to significantly improve the number of
reported vulnerabilities without increasing the fraction of false
positives, and many of the additionally found vulnerabilities
are security-critical. The most relevant evaluation results are
summarized in the following list:

e The technical solution to increase test coverage has
a major positive impact on the number of detected
vulnerabilities. Compared to using the scanners with-
out JARVIS (i.e., in the basic configuration -/-), the
absolute number of reported unique vulnerabilities can
be increased by 60% on average in configuration S/-.
When only considering newly detected vulnerabilities,
i.e., vulnerabilities that are not detected in the basic
configuration -/~, the increase is 94% on average.

e The technical solution to improve authenticated scans
has a relatively small impact on the absolute number
of reported unique vulnerabilities. On average, the ab-
solute number of reported vulnerabilities is increased
by 18% when moving from configuration -/~ to -/A.
However, when considering the newly detected vulner-
abilities, the improvement is 64% on average, which
means the technical solution to improve authenticated
scans also has a significant positive impact on the
number of detected vulnerabilities.

e Using both technical solutions, i.e., when using con-
figuration S/A instead of configuration -/-, the absolute
number of reported vulnerabilities is increased by 55%
and the number of newly detected vulnerabilities is

increased by 102% on average. This means that on
average, using JARVIS with both technical solutions
more than doubles the newly detected vulnerabilities
compared to scanning without using JARVIS.

e JARVIS slightly improves the fraction of security-
critical vulnerabilities among all reported vulnerabil-
ities. This underlines the practical benefit of JARVIS
as it does not just report many additional irrelevant
findings, but truly increases the number of security-
critical issues that can be found

e A significant portion of the vulnerabilities that are
detected when a scanner is used without JARVIS (i.e.,
in the basic configuration -/-) are not detected again
when the scanner is used with JARVIS (i.e., in the
advanced configurations S/-, -/A and S/A). A direct
consequence of this observation is that the scanners
should always be used in all four configurations, i.e.,
in configuration -/- without using JARVIS and in
configurations S/-, -/A and S/A with using JARVIS to
maximize the total number of detected vulnerabilities.

e A detailed analysis using SQLi and XSS vulnerabil-
ities showed that JARVIS does not have a negative
impact on the fraction of false positives that are
reported. Scanners that report no false positives in
configuration -/- deliver no or only very few vul-
nerabilities when using JARVIS. And scanners that
report some false positives in the basic configuration
also do so in the advanced configurations, but overall,
the fraction of false positives remains more or less
constant, independent of the configuration. This result
is highly relevant for the applicability of JARVIS in
practice, as otherwise, the practical benefit would be
very limited.

e The same analysis demonstrated that it is indeed
important to perform scans in all four configurations
and to combine the detected vulnerabilities, as the
sum of the vulnerabilities that are detected in the
four different configurations is always greater than
the number of vulnerabilities detected in any of the
individual configurations. Also, this analysis showed
that by using JARVIS, the effectiveness of each of the

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

five scanners used in the evaluation could be more
than doubled and on average, the number of detected
true positive SQLi and XSS vulnerabilities could be
increased by 167%. This underlines that JARVIS is
both an effective and truly scanner-independent so-
lution to increase the number of detected security-
critical vulnerabilities.

The configuration effort to use JARVIS is small and the
configurations are scanner-independent. Therefore, JARVIS
also provides an important basis to use multiple scanners
in parallel in an efficient way. The provided analysis shows
that combining multiple scanners is indeed beneficial as it
increases the number of true positives, which is not surprising
as different scanners detect different vulnerabilities. However,
it was also demonstrated that blindly combining as many
scanners as possible is not a good idea in general because
although this results in most true positives, it also delivers
the sum of all false positives reported by the scanners. In the
evaluation, the combination of Arachni & Wapiti or Arachni,
OWASP ZAP & Wapiti yielded the best compromise between a
high rate of true positives and a low rate of false positives. As a
representative set of web application technologies was used in
the evaluation, it can be expected that these combinations work
well in many scenarios, but this is no proof and in practice, one
has to experiment with different combinations to determine the
one that is best suited in a specific scenario.

ACKNOWLEDGMENT

This work was partly funded by the Swiss Confederation’s
innovation promotion agency CTI (project 18876.1 PFES-ES).

REFERENCES

[1] D. Esposito, M. Rennhard, L. Ruf, and A. Wagner, “Exploiting the
Potential of Web Application Vulnerability Scanning,” in Proceedings of
the 13th International Conference on Internet Monitoring and Protection
(ICIMP). Barcelona, Spain: IARIA, 2018, pp. 22-29.

[2] WhiteHat Security, “2018 Application Security Statistics Report,” Tech.
Rep., 2018, URL: https://www.whitehatsec.com/blog/2018-whitehat-
app-sec-statistics-report/ [accessed: 2019-05-03].

[3] A. Doupé, M. Cova, and G. Vigna, “Why Johnny can’t Pentest: An
Analysis of Black-Box Web Vulnerability Scanners,” in Proceedings
of the 7th International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, ser. DIMVA’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 111-131.
[4] S. Chen, “SECTOOL Market,” 2016, URL: http:/

www.sectoolmarket.com/price-and-feature-comparison-of- web-
application-scanners-unified-list.html [accessed: 2019-05-03].

[5] L. Suto, “Analyzing the Accuracy and Time Costs of Web Application
Security Scanners,” Tech. Rep., 2010, URL: http://www.think-
secure.nl/pdf/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
[accessed: 2019-05-03].

[6] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the Art:
Automated Black-Box Web Application Vulnerability Testing,” in Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, 2010,
pp. 332-345.

[71 E. A. A. Vega, A. L. S. Orozco, and L. J. G. Villalba, “Benchmarking
of Pentesting Tools,” International Journal of Computer, Electrical,
Automation, Control and Information Engineering, vol. 11, no. 5, 2017,
pp. 602-605.

[8] M. Qasaimeh, A. Shamlawi, and T. Khairallah, “Black Box Evaluation
of Web Application Scanners: Standards Mapping Approach,” Journal
of Theoretical and Applied Information Technology, vol. 96, no. 14,
2018, pp. 4584—-4596.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

27

Y. Makino and V. Klyuev, “Evaluation of Web Vulnerability Scanners,”
in Proceedings of the IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), vol. 1, Warsaw, Poland, 2015, pp. 399-402.

N. I. Daud, K. A. A. Bakar, and M. S. M. Hasan, “A Case Study on
Web Application Vulnerability Scanning Tools,” in 2014 Science and
Information Conference, London, UK, 2014, pp. 595-600.

S. Chen, “Security Tools Benchmarking: WAVSEP 2017/2018
- Evaluating DAST against PT/SDL Challenges,” 2017, URL:
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-
dast-against.html [accessed: 2019-05-03].

S. El Idrissi, N. Berbiche, F. Guerouate, and S. Mohamed, “Performance
Evaluation of Web Application Security Scanners for Prevention and
Protection against Vulnerabilities,” International Journal of Applied
Engineering Research, vol. 12, no. 21, 2017, pp. 11068-11076.

SNORT, “Network Intrusion and Prevention System,” URL: https:
/Iwww .snort.org [accessed: 2019-05-03].

A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the State:
A State-aware Black-Box Web Vulnerability Scanner,” in Proceedings
of the 21st USENIX Security Symposium (USENIX Security 12).
Bellevue, WA: USENIX, 2012, pp. 523-538.

A. v. Deursen, A. Mesbah, and A. Nederlof, “Crawl-based Analysis
of Web Applications: Prospects and Challenges,” Science of Computer
Programming, vol. 97, 2015, pp. 173-180.

G. Pellegrino, C. Tschiirtz, E. Bodden, and C. Rossow, “jik: Using
Dynamic Analysis to Crawl and Test Modern Web Applications,” in
Research in Attacks, Intrusions, and Defenses, H. Bos, F. Monrose,
and G. Blanc, Eds. Cham: Springer International Publishing, 2015,
pp. 295-316.

D. Zulla, “Improving Web Vulnerability Scanning,” DEF CON, 2012,
URL: https://www.defcon.org/images/defcon-20/dc-20-presentations/
Zulla/DEFCON-20-Zulla-Improving- Web- Vulnerability- Scanning. pdf
[accessed: 2019-05-03].

PortSwigger, “Burp Suite,” URL: https://portswigger.net/burp [ac-
cessed: 2019-05-03].

ThreadFix, “ThreadFix Endpoint CLI,” URL: https://github.com/
denimgroup/threadfix/tree/master/archived/threadfix-cli-endpoints [ac-
cessed: 2019-05-03].

B. Urgun, “WIVET: Web Input Vector Extractor Teaser,” URL: https:
//github.com/bedirhan/wivet [accessed: 2019-05-03].

ThreadFix, “Application Vulnerability Correlation with ThreadFix,”
URL: https://threadfix.it [accessed: 2019-05-03].

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

