
430

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cost Considerations About Multi-Tenancy in Public Clouds

Uwe Hohenstein, Stefan Appel

Corporate Technology

Siemens AG, Corporate Technology, Otto-Hahn-Ring 6

D-81730 Munich, Germany

Email: {Uwe.Hohenstein,Stefan.Appel}@siemens.com

Abstract— Multi-tenancy is often considered as the key element

to economical Software-as-a-Service as it represents an

architecture model where one software instance serves a set of

multiple clients of different organizations – the so-called

tenants. This reduces operational costs due to the decrease of

the number of application instances and required resources.

Since nearly every multi-tenant system requires a database,

this paper focuses on database aspects of multi-tenancy and

particularly stresses on cost aspects in public cloud

environments. Starting with an investigation of the price

schemes of cloud providers, this paper illustrates the broad

variety of price factors and schemes. It is discussed in detail

why this makes it difficult to set up vendor-independent

strategies to achieve cost-efficient multi-tenancy and what

challenges arise. Anyway, the paper derives certain, vendor-

specific strategies, which require adapting multi-tenant

architectures to fit the respective cloud providers’ specifics.

Keywords-multi-tenancy; databases; cost; SaaS.

I. INTRODUCTION

Software is more and more becoming an on-demand
service drawn from the Internet, known as Software-as-a-
Service (SaaS). SaaS is a delivery model that enables
customers, the so-called tenants, to lease services without
local installations and license costs. Tenants benefit from a
"happy-go-lucky package": The SaaS vendor takes care of
hardware and software installation, administration, and
maintenance. Moreover, a tenant can use a service
immediately due to a fast and automated provisioning.

Multi-tenancy is a software architecture principle
allowing SaaS to make full use of the economy of scale: A
shared infrastructure for several tenants saves operational
cost due to an increased utilization of hardware resources
and improved ease of maintenance. Thus, multi-tenancy is
often considered as the key to SaaS.

Several authors discuss architectures according to what is
shared by tenants: the topmost web frontend, middle tier
application server, and underlying database. Concerning the
database, a number of patterns exist, which support the
implementation of multi-tenancy.

This paper extends the work presented in [1]. We report
on industrial experiences when deploying multi-tenant SaaS
in public clouds. Particularly, we focus on cost aspects of
multi-tenancy for SaaS because we feel economical aspects
not appropriately tackled so far in research. Indeed,
economic concerns are important as SaaS providers need to
operate with high profit to remain competitive. This is

challenging due to diverging price schemes. Since nearly
every multi-tenant system requires a database, we focus on
database aspects of multi-tenancy. Even if various software
engineering techniques propose NoSQL databases, relational
systems are still often used in industrial applications,
especially if being migrated to the Cloud. We elaborate on
the huge differences of price schemes for relational database
systems of public cloud providers and discuss the impact on
multi-tenancy.

Compared to our previous work in [1], we here update
the price schemes and take into account two further Cloud
offerings. Comparing both papers thus illustrate how prices
and price schemes evolve over time. Moreover, we applied a
uniform and systematic analysis for all Cloud database
offerings.

Section II presents some related work and motivates why
further investigations about cost aspects are necessary. We
introduce general cost aspects in Section III before
discussing the price models of various well-known public
cloud providers in two broad categories: Virtual databases in
Section IV and virtual database servers in Section V. The
particular offerings are from Amazon Web Services (AWS),
HP Cloud, IBM, Microsoft Azure, and Oracle. We discuss in
detail the impact of the price models on multi-tenancy
strategies and the difficulties to optimize costs. In particular,
we quantify the respective costs for implementing multi-
tenancy by comparing a 1-DB-per-tenant and a 1-global-DB
strategy. The first one provides a virtual database (DB) of its
own for each tenant, thus achieving high data isolation. In
the second variant, several tenants share a common database
without physical data isolation. Since some offerings provide
a virtual database server (instead of a single database), the
same distinction can be made for DB servers. Further
variants as discussed by [2] are irrelevant in this work. For
Virtual Machines (VMs) with a database server, we
investigate scale-out scenarios. Section VI summarizes some
major findings. Finally, conclusions are drawn in Section
VII.

II. STATE OF THE ART

The work in [3] considers performance isolation of
tenants, scalability issues for tenants from different
continents, security and data protection, configurability, and
data isolation as the main challenges of multi-tenancy. These
topics are well investigated. For instance, [4] discusses
configurability of multi-tenant applications in case studies.

431

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The possible variants of multi-tenancy have been
described, among others, by [2][5][6]. Based on the number
of tenants, the number of users per tenant, and the amount of
data per tenant, [7] makes recommendations on the best
multi-tenant variant to use.

Armbrust et al. [8] identify short-term billing as one of
the novel features of cloud computing and [9] consider cost
as one important research challenge for cloud computing.
However, cost aspects do need seem to be a recent research
topic since most work is about 5 years old. Moreover,
existing work on economic issues around cloud computing
mostly focus on cost comparisons between cloud and on-
premises and lease-or-buy decisions [10]. For example, [11]
provides a framework that can be used to compare the costs
of using a cloud with an in-house IT infrastructure, and [12]
presents a formal mathematical model for the total cost of
ownership (TCO) identifying various cost factors. Other
authors such as [9][13], focus on deploying scientific
applications on Amazon, thereby pointing at major cost
drivers. [14] performs the TPC-W benchmark for a Web
application with a backend database and compares the costs
for operating the web application on several major cloud
providers. A comparison of various equivalent architectural
solutions, however, using different components, such as
queue and table storage, has been performed by [15]. The
results show that the type of architecture can dramatically
affect the operational cost.

Cost aspects in the context of multi-tenancy are tackled
by [16][17]. They consider approaches to reduce resource
consumption as a general cost driver, looking at the
infrastructure, middleware and application tier, and what can
be shared among tenants. Another approach, discussed by
[18], reduces costs by putting values of utilization and
performance models in genetic algorithms.

The authors of [19] develop a method for selecting the
best database, in which a new tenant should be placed, while
keeping the remaining database space as flexible as possible
for placing further tenants. Their method reduces overall
resource consumptions in multi-tenant environments. Cost
factors taken into account are related to on-premises
installations: hardware, power, lighting, air conditioning, etc.

Based on existing single-tenant applications, [20] stresses
on another cost aspect for multi-tenant applications:
maintenance efforts. The recurrence of maintenance tasks
(e.g., patches or updates) raises operating cost as well.

The work in [21] recognizes a viable charging model
being crucial for the profitability and sustainability for SaaS
providers. Moreover, the costs for redesigning or developing
software must not be ignored in SaaS pricing. Accordingly,
[16] discusses a cost model for reengineering measures.

The challenges of calculating the costs each tenant ge-
nerates for a SaaS application in a public cloud are discussed
in [22]. This is indispensable to establish a profitable billing
model for a SaaS application. The paper shows that only
rudimentary support is available by cloud providers.

To sum up, the profitable aspects of multi-tenancy for
SaaS providers are researched insufficiently. All the
mentioned work is quite general and does mostly not take
into account common public cloud platforms and their price

schemes. Even best practices of cloud providers, for instance
[17] and [23], do not support SaaS providers to reduce cost.
As the next section illustrates, there is a strong need to
investigate cost aspects for those platforms.

III. COST CONSIDERATIONS

Deploying multi-tenant applications in a public cloud
causes expenses for the consumed resources, i.e., the pricing
scheme of cloud providers comes into play. Unfortunately,
the price schemes for cloud providers differ a lot and are
based upon different factors such as the data volume, data
transfer, etc. That is why we investigate the price schemes
for databases of some major public cloud providers. The goal
is to discuss variances in price schemes and how these affect
multi-tenancy strategies for SaaS applications.

Please note it is not our intention to compare different
cloud providers with regard to costs or features: For
example, The Oracle cloud offers Oracle database servers,
which are not provided by the Microsoft cloud, and vice
versa. Hence, there is no common basis for a direct
comparison of providers. This is also the reason why we
keep the providers anonymous. Furthermore, the price
schemes of cloud providers are quite diverging and
incorporate different factors. We rather illustrate the variety
of price schemes and service offerings leading to different
strategies. Moreover, the prices are changing frequently,
while the scheme usually remains stable. We here refer to the
state as of August 2016. The price information can be found
at their homepages.

We only consider resources that are available on-demand
to fully benefit from the cloud. This excludes, e.g., reserved
instances since those require long-term binding and thus
impose a financial risk.

To structure the discussion, we distinguish between two
major categories in Section IV and V, virtual databases and
virtual database servers, respectively. While a virtual
database server offers full control like operated on premises,
particularly allowing one to create several databases within
that server, a virtual database is just one database managed
by the provider without further control.

IV. VIRTUAL DATABASES

In this section, we assume that each tenant demands a
certain amount of database storage. We then compare the
costs for storage that is provided using a dedicated database
per tenant (1-DB-per-tenant) with a global database for all
tenants (1-global-DB) to guide a decision. Please note the
term “database” is used in the sense of something that can be
authenticated individually.

A. Offering 1

Offering 1 is a database server available as Platform-as-
a-Service (PaaS) in a public cloud. PaaS is one of three
delivery models according to the NIST definition [24]: “The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
or storage, but has control over the deployed applications and
possibly configuration settings for the application-hosting
environment.“ That is, a database can be provisioned without

432

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

any installation and administration. PaaS performs an
automatic management (patches etc.) and internal replication
of data. In particular, PaaS includes software licenses, which
seems to be reasonable for multi-tenancy. There will be no
elasticity without PaaS, since licenses must be ordered in
time.

TABLE I. PRICE SCHEME FOR OFFERING 1.

Consumption Price Additional GB

0 to 100 MB $4.995 (fix price)

100 MB to 1 GB $9.99 (fix price)

1 to 10 GB $9.99 for 1st 1 GB $3.996

10 to 50 GB $45.96 for 1st 10 GB $1.996

50 to 150 GB $125.88 for 1st 50 GB $0.999

Figure 1. Price difference per tenant for Offering 1.

Table I presents the recent prices for a Microsoft SQL
Server in the US East region. In addition, outgoing data is
charged for each database individually with a decreasing
rate. The first 5 GB are for free, each additional GB is
charged with 8.7ct/GB and 8.3ct/GB above 10 TB,
decreasing to 5ct/GB for more than 350TB. However, the
cost reduction is insignificant unless there is extremely high
outgoing transfer. There is only a 40ct benefit for 100GB of
outgoing data.

The storage consumption is the main cost driver. Each
database is paid for the amount of stored data. There is no
cost difference between using one or several database servers
for hosting the databases due to virtualization. We even
could not detect any performance difference between placing
databases on one virtual server or several ones. One has to
pay for the consumed storage in every database
independently of how many databases and servers are used.

At a first glance, the price scheme suggests the same
costs for 1-DB-per-tenant and 1-global-DB (keeping all
tenants). There seems to be no cost benefit for sharing one
database amongst several tenants, since SaaS providers are
charged for the total amount of used storage. However, there
are indeed higher costs for individual tenant databases since

 sizes larger than 1 GB are rounded up to full GBs;

 smaller databases are more expensive per GB than
larger ones due to a progressive reduction.

Since pricing occurs in increments of 1 GB, hundred
tenants with each a 1.1 GB database are charged with 100*2

GB, i.e., 100 * $13.986 = $1398.60 a month. In contrast, one
database with 100 * 1.1GB = 110 GB is charged with
$185.82, i.e., a total difference of $1212.78 or a difference of
$12.13 for each tenant (per-tenant difference).

Figure 1 compares the costs of both strategies for various
numbers of tenants (10,20,...,100). The x-axis represents the
database size, the y-axis the per-tenant difference in US$,
i.e., the additional amount of money a SaaS provider has to
pay for each tenant compared to a 1-global-DB strategy
(note that the prices in Figure 1 must be multiplied by the
number of tenants to obtain the total costs). The difference
stays below $10 for tenant sizes up to 3 GB. The number of
tenants is mostly irrelevant. This is why the lines are
superposing; only the “10 tenants” line is noticeable. In the
worst case, we have to pay $50 more for each tenant with a
1-DB-per-tenant strategy. A linear price drop occurs after 50
GB because even 1-DB-per-tenant uses larger and cheaper
databases. Anyway, a 1-DB-per-tenant strategy can become
quite expensive compared to a 1-global-DB strategy.

Please note the amount of used storage is charged. That
is, an empty database is theoretically for free. However, even
an empty database stores some administrative data so that the
costs are effectively $4.995 per month (for < 100MB).
Anyway, these are small starting costs for both a 1-DB-per-
tenant and a 1-global-DB strategy.

There is no difference between provisioning a 10 GB and
a 150 GB database from a cost point of view as the stored
data counts. A 1-global-DB strategy, having the problem not
to know how many tenants to serve, can start with 150 GB,
thus avoiding the problem of later upgrading databases and
possibly risking a downtime while having low upfront cost.
Even for a 1-DB- per-tenant strategy, larger databases can be
provisioned in order to be able to handle larger tenants
without risk.

However, there is a limitation of 150 GB per database,
which hinders putting a high amount of tenants with larger
storage consumption in a single database. Reaching the limit
requires splitting the database into two.

Along with this comes the challenge to determine a cost-
efficient placement strategy. Assume an existing 90 GB
database and that we need 40 and 30 GB more space for two
further tenants: Putting 60 GB into the existing 90 GB data-
base and 10 GB into a new one is the cheapest option with
$225.75 + $45.96 = $271.71, more than $70 cheaper than
using a new 40 GB and a new 30 GB database: $165.84 +
$105.84 + $85.88 = $357.56. Even using a new 70 GB is
more expensive with $311.70. An appropriate tenant
placement strategy is to fill databases up to the 150 GB
threshold, maybe minus some possible space for tenants’
expansions, e.g., $286.58 = $205.80 (90+40 GB) + $85.88
(30 GB).

Please note this offering has been deprecated and
replaced with Offering 2 by the cloud provider since our last
analysis in [1].

B. Offering 2

This candidate offers three tiers (Basic, Standard, Pre-
mium). Table II shows the Microsoft SQL Server prices in
the US East region for various performance levels inside.

433

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. PRICE SCHEME FOR OFFERING 2.

Level
Price/

month

DB

size

Session

limit

Max. concurrent

logins & requests

Transaction

rate / hour

B ~$5 2 300 30 20,160

S0 ~$15 250 600 60 31,320

S1 ~$30 250 900 90 61,200

S2 ~$75 250 1,200 120 165,600

S3 $150 250 2400 200 367,200

P1 ~$465 500 2,400 200 457.200

P2 ~$930 500 4,800 400 946,800

P4 ~$1,860 500 9,600 800 1,778,400

P6 ~$3,720 500 19,200 1,600 3,988,800

P11 ~$7,001 1000 32,000 3,200 6,339,600

Figure 2. 1-DB-per-tenant vs. 1-global-DB for Offering 2.

Again, this is a PaaS offering for a virtual database. Each
individual database is paid according to the price scheme.
But in contrast to Offering 1, the provisioning of the tier is
relevant, not the effective storage consumption.

Figure 2 compares per-tenant costs for the 1-DB-per-
tenant and 1-global-DB strategies in the same way as in
Figure 1. We here use S0 databases for 1-global-DB because
S0 are the cheapest option: To store 50GB each for 20
tenants, we can use 4*S0 ($60), 2*P1 ($930) or 1*P11
($7,001). But it is important to note that the global DB is
then distributed over several databases. 1-DB-per-tenant uses
B (<= 2 GB) and S0 (> 2 GB) depending on the required
size. It becomes obvious that a global database with 2*P1
(with $930) is even more expensive than 1-DB-per-tenant
with 20*S0 ($300).

One of the worst cases that could happen for 1-DB-per-
tenant is to have 100 tenants with 2.2 GB (S0) each, resulting
in $1500 per month since each tenant cannot be satisfied
with the B tier. In contrast, 1 * 220 GB (S0) for 1-global-DB
costs $15. That is a per tenant difference of $14.85.

However, it is unclear here whether an S0 level is
sufficient for handling 100 tenants from a performance point
of view.

A 1-DB-per-tenant strategy is about $5 more expensive if
the size is lower than 2 GB, and about $15 otherwise. The
difference is never higher than $14.77, and drops to $12 for
50 GB and to $9 for 100 GB.

For each database, we have to pay at least $5 a month for
at most 2 GB and $15 for up to 250 GB. The costs occur

even for an empty database. These upfront costs have to be
paid for a 1-gobal-DB, too, starting with the first tenant.

Especially for a 1-global-DB approach, a new challenge
arises: Each service level determines not only an upper limit
for the database size but also for the number of allowed
parallel sessions and the number of concurrent requests.
Furthermore, there is an impact on the transaction rate (cf.
Table II). We have to stay below these limits. Upgrading the
category in case of reaching the limit happens online, i.e.,
without any downtime – in theory: if the database size limit
is reached, no further insertions are possible until the
upgrade has finished. According to our experiences, such a
migration can take several minutes up to hours depending on
the database size. If the allowed number of sessions is
reached, no further clients can connect unless sessions are
released by other users. And if the transaction rate is
insufficient, the performance will degrade. Hence, a
prediction of tenants’ data and usage behavior is required.
The number of sessions might become the restrictive factor
for a 1-global-DB strategy. In the following, we discuss the
impact of the number of users and required sessions on costs
by means of sample calculations.

Keeping 100 tenants in 1*S0 offers 600 sessions, i.e., 6
sessions per tenant (which might be too small); the monthly
costs are $15. We can scale-up to 1*P3 with 19,200 sessions,
i.e., 192 per tenant, for a high price of $3720. To achieve the
same number of sessions, we can also scale out to 32*S0 for
$480 or use 64*B for $360 if each database is smaller than 2
GB. In contrast, a pure 1-DB-per-tenant strategy for 100
tenants costs $500 for B: This seems to be affordable,
especially because of 30,000 available sessions. For the price
of one P3, we also get 248*S0 databases with 148,000
sessions (6 times more than 1*P3) and a 3 times higher
transaction rate of 7,752,480.

For serving 100 tenants with 20 parallel users each, we
need 2000 sessions in total. We can achieve this by either
7*B (for $35), 4*S0 ($60), 3*S1 ($90), 1*P1 ($465), or 2*S2
($500) with very different prices. A pure 1-DB-per-tenant for
B is with $500 in the price area of the last two options, but
supporting 300 sessions per tenant instead of 20.

Figure 3 illustrates the costs in US$ to achieve x sessions
for 100 tenants. B1 represents a pure 1-DB-per-tenant
strategy using B-level instances. The P levels are most
expensive, even S2 is quite expensive. An obvious question
is what the benefit of higher levels in the context of multi-
tenancy is. Table III compares several configurations with
same prices. There is no consistent behavior. However,
several smaller machines seem to be superior to same priced
larger ones with a few exceptions. One exception is row (c)
where 1*P2 is a little better than 2*P1. More sessions can
usually be achieved if n smaller tiers are used instead of one
larger one for the same price.

Considering Table II again, we also notice that the
session and transaction rates increase from tier to tier within
each group less proportional than the prices. Exceptions for
transaction rates are S1->S2 and P1->P2. It seems to be
reasonable to scale out instead of scaling-up to obtain more
sessions and transactions.

434

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Costs to achieve x sessions per tenant for Offering 2.

TABLE III. COMPARISON OF CONFIGURATIONS.

 Configuration

1 vs. 2

sessions for

1 vs. 2

Transaction rate

1000/h (1 vs. 2)

a 5*S0 1*S2 3000 1200 156 154

b 2*S0 1*S1 1200 900 62 56

c 2*P1 1*P2 4800 4800 756 820

d 4*P2 1*P3 19200 19200 3283 2646

e 31*S0 1*P1 18600 2400 969 378

Another advantage is that upfront costs can be saved. A

1-global-DB strategy requires a high-level database with a
high price already for the first tenant independent of the
number of eventually stored tenants.

Indeed, it is difficult to derive a strategy for identifying a
suitable configuration. Important questions arise:

 Is an upgrade possible in short time, without outage?
This would allow for 1-global-DB to start small for
few tenants and upgrade if performance suffers or
the number of sessions increases. For 1-DB-per-
tenant, we could start with B and upgrade to S0.

 Are only the session and transaction rates of a level
relevant, or are there any other (invisible)
performance metrics to consider? The doc-
umentation mentions only that the predictability, i.e.,
the consistency of response times, is increasing from
B to Px, however being the same within a tier.

C. Offering 3

Offering 3 provides a MySQL database as PaaS. The
regular prices are for virtualized databases on an hourly
basis. The payment is based upon the following factors:

 The instance type, which limits the maximal data-
base size and determines the RAM (cf. Table IV).

 The outgoing data transfer: the first GB is for free,
we then pay 12ct/GB up to 10 TB, further GBs for
9ct up to 40 TB etc.

TABLE IV. PRICE SCHEME FOR OFFERING 3.

Instance Type RAM Storage Price/month

XS 1 GB 15 GB $73

S 2 GB 30 GB $146

M 4 GB 60 GB $292

L 8 GB 120 GB $584

XL 16 GB 240 GB $1,168

XXL 32 GB 480 GB $2,336

In contrast to Offering 1, the provisioned storage is paid.
The prices and the features increase with the instance type
linearly, i.e., each next higher instance type doubles the
RAM and maximal database size for a doubled price.

Comparing the strategies, we notice that 5 tenant
databases à 15 GB (XS) are charged with $365. One global
database à 75 GB is more expensive (!) with $584 since we
are forced to provision a 120 GB (L) database. The
difference per tenant is $43.80. However, using 15 GB (XS)
increments for 1-global-DB, we can achieve the cheaper
price.

Hence, we should use XS partitions in order not to pay
for unused storage. Thus, an appropriate cost strategy for 1-
global-DB is to fill XS databases one by one with tenants.
However, this has architectural implications in order to
connect each tenant to the right database instances. A 1-DB-
per-tenant approach could also benefit that way. There is no
need to use larger instances unless we do not want to spread
tenant data across databases due to implementation effort.
However, an implication is that additional administrative
effort (e.g., for backup) becomes necessary, and even more,
the application’s code is affected by distributing and
collecting data from several XS databases in case of
customer data “fragmentation”. This has an impact on the
total cost (cf. [3]) but is beyond the scope of this paper.

A worst case scenario is storing 15 tenants with 100 MB
each. 1-DB-per-tenant is charged with $1095 = (15*XS),
while one global XS database costs $73 for 1.5 GB. That is a
difference per tenant of $68.13.

Figure 4. Price diff. of 1-DB-per-tenant vs. 1-global-DB for Offering 3.

Figure 4 illustrates that 1-DB-per-tenant, compared to 1-
global-DB based upon XS databases, is more expensive for
sizes much smaller than the storage threshold. Reaching the
threshold, the difference diminishes. Hence, it is reasonable
to use one database for each tenant if the storage size is near
a threshold. In summary, we observe larger per-tenant
differences depending on database sizes. The range where
the difference stays below $20 is very small. Moreover, the
variances for different numbers of tenants are small. Note,
Figure 4 has a different scale compared to Figure 1 and 2,
but the saw tool behavior is repetitive up to 100 tenants and
beyond.

An incremental acquisition of XS databases even saves
upfront costs. However, it is an open issue to be investigated

435

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

whether larger instances provide a better performance. The
time for upgrading from one instance type to another is not
important here.

D. Offering 4

Three database types are available in this PaaS offering,
each limiting the maximal amount of storage. Table V shows
that each type also limits the allowed data transfer.

TABLE V. PRICE SCHEME FOR OFFERING 4.

Type Max database size Data Transfer Price/month

5GB 5 GB 30 GB $175

20GB 20 GB 120 GB $900

50GB 50 GB 300 GB $2,000

A comparison of the types gives some first insights:

20GB is 5 times more expensive than 5GB, but offers only 4
times more data transfer and storage. 50GB is 2.2 times more
expensive than 20GB, but offers 2.5 times more data transfer
and storage. And 50GB is 11 times more expensive than
5GB, but offers only 10 times more resources. Hence, 20GB
has the worst price ratio, 5GB the best one. Obviously, using
5GB databases seems to be reasonable for either strategy un-
less we do not want to spread tenant data across databases.

Table VI compares a 1-DB-per-tenant configuration (the
first line in each group) with others. For 200 tenants à 4GB,
using 20GB databases is more expensive than 1-DB-per-
tenant; the same holds for 100 tenants à 5GB.

TABLE VI. COMPARISON OF SAMPLE CONFIGURATIONS

Config #tenants database

 size

Costs Data

transfer

Per-tenant

costs

100*5GB 100 1 GB 17,500 3000 175

2*50GB 4,000 600 40

5*20GB 4,500 600 45

20*5GB 3,500 600 35

200*5GB 200 4 GB 35,000 6000 175

16*50GB 32,000 4800 160

40*20GB 36,000 4800 180

100*5GB 100 5 GB 17,500 3000 175

10*50GB 20,000 3000 200

25*20GB 22,500 3000 225

Figure 5. Price Diff. of 1-DB-per-tenant vs. 1-global-DB for Offering 4.

Figure 5 summarizes the price-per-tenant differences if
5GB increments are used in both strategies. A 1-DB-per-

tenant strategy is only reasonable if the database size is near
a multiple of 5 GB, or if the required data transfer is high.
The larger the distance is, the higher will be the per-tenant
costs compared to a 1-global-DB. This saw tooth behavior is
repeating. The number of tenants has again no real impact.
The per-tenant costs can be even higher in this offering than
for Offering 3.

Since the data transfer is limited by the instance type, a
challenge arises for the 1-global-DB strategy: this can stop
several or all tenants from accessing the database. Additional
data transfer cannot be acquired even for extra charges.

A possible strategy for 1-global-DB is to start with 5GB
and to add further ones later; this means less upfront costs.
Moreover, 5GB is the cheapest category wrt. gains.

Please also note that downsizing is not possible. This
causes further costs in case a tenant stops using the SaaS
service.

V. VIRTUAL DATABASE SERVERS

As a major difference to the offerings in the previous
section, in this category a virtual machine (VM) with a
database server is provisioned and paid instead of a single
database. The database server offers full control like
operated on-premises. Several databases can be managed in
that server, especially one dedicated database for each tenant
with individual credentials. This directly implies that a 1-
DB-per-tenant strategy is feasible. A strong isolation is thus
given without any extra charge. As a consequence, the
question is not about 1-global-DB vs. 1-DB-per-Tenant, but
instead how many database servers with what equipment we
have to apply for the expected number of tenants and users.
To perform an evaluation, we assume that the number of
tenants, the amount of data, and the access profiles are
known. The question is what VM configuration is sufficient
for a given number of tenants and amounts of data. This
allows for a better comparison of equipments for given
prices.

Unfortunately, the tenants are coming time after time.
This means that the upfront costs for the cheapest database
server are important, since these are the starting costs.

Moreover, we investigate how the costs evolve with the
number of tenants. There are basically two strategies: The
first scale-up strategy uses a cheap database server and sets
up another database within this server for each new tenant
until the overall performance decreases. Whenever the
existing server reaches performance limits, the type of server
is upgraded to a higher tier being better equipped; a high
number of tenants/databases can be handled by a larger VM.
However, this implies that such an upgrade must be possible
within short time and without downtime in the meantime.
Due to our experiences, this is not always the case. In the
best case, the new VM is set up while the existing one is still
running. However, the data has to be migrated from old to
new, and depending on the amount of data this process could
take some minutes. That is two VMs have to be paid during
the transfer. A deeper empirical performance evaluation of
candidates should be performed to clarify these issues. As an
alternative, a larger machine with better equipment can be

436

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provisioned from the beginning, however, causing high
upfront costs already for some few tenants.

If an upgrade could cause a downtime or other problems,
one can apply a scale-out strategy which starts small with a
single server and then extends the number of servers
whenever the used servers get overloaded. Then, the
expenses increase tenant by tenant. An incremental
provisioning can help to avoid an upgrade and its
consequences and also to reduce tenant-independent upfront
investments, which occur already with the first tenant.
Hence, the difference between n small DB servers and a less
number of larger DB servers, having similar equipment, will
be analyzed.

A. Offering 5

Offering 5 provides a virtual machine (VM) with a
Microsoft SQL Server for various operating systems. The
price model is quite complex covering several factors.

TABLE VII. PRICE SCHEME FOR OFFERING 5

Tier vCores RAM TempDisk VM/month DBS #disks

A0 1 768 MB 20 GB $15 $298 1

A1 1 1.75 GB 70 GB $67 $298 2

A2 2 3.5 GB 135 GB $134 $298 4
A3 4 7 GB 285 GB $268 $298 8

A4 8 14 GB 605 GB $536 $595 16

A5 2 14 GB 135 GB $246 $298 4

A6 4 28 GB 285 GB $492 $298 8

A7 8 56 GB 605 GB $983 $595 16

A8 8 56 GB 382 GB $1,823 $595 16

A9 16 112 GB 382 GB $3,646 $1190 16

D1 1 3.5 GB 50 GB $127 $298 1

D2 2 7 GB 100 GB $254 $298 2

D3 4 14 GB 200 GB $509 $298 4

D4 8 28 GB 400 GB $1,018 $595 8

D11 2 14 GB 100 GB $600 $298 2

D12 4 28 GB 200 GB $1,080 $298 4

D13 8 56 GB 400 GB $1,943 $595 8

D14 16 112 GB 800 GB $2,611 $1190 15

At first, a VM has to be chosen for hosting the database

server. Table VII summarizes the prices for a Windows OS
in the East US region. Each tier has a different number of
virtual cores (vCores), RAM, and temporary disk space. A0-
A7 covers the standard tier. A8 and A9 are network-
optimized instances adding an InfiniBand network with
remote direct memory access (RDMA) technology. The D-
tier is compute-optimized with 60% faster CPUs, more
memory, and a local SSD. An OS disk space of 127 GB is
available and must be paid with ignorable 2.4ct per
GB/month.

Furthermore, the database server (i.e., the software) is
charged per minute (cf. column DBS in Table VII). The
prices depend on the number of cores of the used VM: $298
for 1- to 4-core machines, $595 for 8 cores, and $1190 for 16
cores for a SQL Server Standard Edition in a month. The
Enterprise Edition is more expensive, e.g., $4464 for a 16-
core VM.

Additional costs occur for attached storage. There is a
maximum of number of 1TB data disks (#disks in Table
VII). The costs are 5ct/GB-month for the first 4000 TB of

consumed storage in a page blob; the price decreases by
0.5ct per GB-month for more than 4000 TB. The gain by
using one VM instead of several ones is thus extremely
small. In general, the costs are dominated by other factors
than disk space.

The question is what configuration is sufficient for a
given number of tenants and amounts of data. Unfortunately,
no performance hints are provided to ease the decision. Table
VIII presents a brief evaluation of an SQL Server Standard
Edition compares an A9 tier with several smaller machines
summing up to the same price of about $4836.

TABLE VIII. CONFIGURATIONS COMPARABLE TO A9 VM.

configuration # vCores RAM

15,4 * A0 15.4 11.6

13,2 * A1 13.2 23.2

11,2 * A2 22.4 39.2

8,5 * A3 34.2 59.8

4,2 * A4 34.2 59.8

8.9 * A5 17.8 124.5

6 * A6 24.5 171.4

3 * A7 24.5 171.5

2 * A8 16 111.9

1 * A9 16 112

The configurations 8.5*A3 and 4.2*A4 obviously

provide the highest number of vCores, more than twice
compared to the reference 1*A9, while 6*A6 and 3*A7 offer
the highest amount of RAM, again much more than 1*A9.
That is, 1*A9 is not the best choice. Using A0s or A1s offers
the least equipment because of the high portion of $298 for
the database software for each instance, e.g., here are high
minimal costs of at least $311 per month for each database
server ($13 for the smallest Windows VM A0 Basic plus the
database server). In general, it looks reasonable to avoid
high-class VMs such as A9 and to use several middle-class
VMs depending on whether favoring vCores or RAM.
Moreover, a larger VM can be used for other purposes as
well if being idle.

Similar considerations can be made to achieve a certain
amount of RAM or number of vCores. For example, Table
IX shows several options to achieve 112 GB RAM with very
different prices and numbers of vCores. Analogously, there
are many variants for 14 or 28 GB RAM, each yielding
different vCores with prices ranging from $246 to $600 for
14GB RAM, and from $492 to $1089 for 28 GB RAM.

TABLE IX. CONFIGURATIONS TO ACHIEVE 112 GB RAM.

configuration # vCores price (decreasing)

8*D11 16 $4,800

8*A4 64 $4,288

8*D3 32 $4,072

2*D13 16 $3,886

1*A9 16 $3,646

2*A8 16 $3,646

1*D14 16 $2,611

8*A5 16 $1,968

2*A7 16 $1,966

Next, we investigate another scenario: We assume that a

new tenant arrives each day. A scale-out strategy starts with

437

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an A0 instance, since this has the lowest price with $313, and
to add further A0 instances whenever performance degrades.
Let us assume that such a situation occurs with every new
tenant, i.e., every tenant requires a new A0 VM. We compare
this configuration with two others that immediately start with
1*A9 and 6*A6 respectively. Figure 6 shows the daily cost
for each variant. After 15 days, we obtain the following
cumulated costs:

a) 15*A0: $1271
b) 6*A6: $948
c) 1*A9: $2418

The cumulated costs for A9 are clear: that is exactly the
price for half a month. In case of A0 VMs, we start with 1
VM for the first day, two VMs for the second day etc. In
case of A6 VMs, we can use the first instance for the first 4
days (1 VM is comparable to 4*A0 wrt. vCores), and so on.
Obviously, A6 VMs are a good choice. Using 6*A6
incrementally is cheaper than A0 VMs with the beginning of
the third day. Already starting with a high-end A9 VM is
about twice as expensive even after 15 days.

Figure 6. 15-day scale-out scenario for Offering 5.

B. Offering 6

Similar to Offering 5, this option again offers a VM
running a database server, however, with some differences
regarding pricing. Several database systems such as MySQL,
Oracle, PostgreSQL, and SQL Server are supported in
various database instance types.

TABLE X. PRICE SCHEME FOR OFFERING 6.

Category Instance type Price / month vCPU RAM

Standard M $478.15 1 3.75

L $594.95 2 7.5

XL $981.85 4 15

XXL $1960.05 8 30

Memory-
optimized

(MemOpt)

L $744.60 2 15

XL $1489.20 4 30.5

XXL $2219.20 8 61

4XL $4409.20 16 122

8XL $8818.40 32 244

The prices depend on the chosen instance type, the type

of database server, and the region. The prices for a SQL
Server Standard Edition in the US East region are presented
in Table X. The underlying VM and the SQL Server license
are already included in the price. The instance type

determines the number of virtual CPUs (vCPU) and the main
memory. Please note that other database systems such as
MySQL also support cheaper VMs in a micro edition.

An additional cost factor is the outgoing data transfer to
the Internet: 1 GB-month is for free. The prices then start
with 12ct/GB and decrease to 9ct/GB for data volumes
exceeding 40TB. For instance, if we have 100 tenants with
512GB data transfer each (in total 50TB), using one database
server for all tenants will be charged with $5836.80 (40 TB à
12ct/GB + 10 TB à 0ct/GB) while using 50 DB servers will
end up with $6144 (100 * 512GB * 12ct/GB). Hence, the
savings are $308, i.e., $3 for each tenant, for quite a high
amount of data transfer.

Furthermore, the amount of data is charged according to
two alternative classes of database storage:

(1) General purpose SSD for 11.5ct per GB-month with

a range from 5 GB to 3 TB; 3 IOPS per GB are included

(this is the base performance; 3,000 I/O requests per second

are temporarily allowed).

(2) Provisioned IOPS for 12.5ct per GB-month and

additional $0.10 per requested IOPS/month, with a range

from 100 GB to 1 TB and 1,000 IOPS to 10,000 IOPS.
IOPS (IO per second) determines an upper limit for IO.

IO itself is not charged.
The upfront costs for each database server are determined

by the minimal settings: The smallest installation in terms of
cost for a SQL Server is Standard Medium (M) with
$478.15/month. Provisioned IOPS storage is available at a
minimum of 100 GB and 1000 IOPS, i.e., $12.50
(100*12.5ct) plus $100 (1000 IOPS à 10ct) ending up with
costs of at least $112.50 per server. Using alternate general
purpose storage, we have to provision at least 5 GB for
57.5ct (5*11.5ct); but then only 15 IOPS are available (see
(1) above). Hence, setting up a minimal SQL Server, e.g., for
each tenant, comes with at least $478.73 using general
purpose storage, while provisioned storage is much more
expensive with $590.65.

Again, we have to decide how many servers of what type
are reasonable for a multi-tenant environment. We use a
Standard XXL VM as a reference and compare it with
several smaller VMs of the same overall price in Table XI.

TABLE XI. CONFIGURATIONS COMPARABLE TO XXL VM

configuration # vCores RAM

4.1*M 15.4 4.1

3.3*L 24.7 6.6

2*XL 29.9 7.9

1*XXL 30 8

The provided equipment differs a lot. Here, both 1*XXL
and 2*XL offer the best price/equipment ratio.

Next, we again perform the 15-day scale-out scenario in
Figure 7 comparing a scale-out with M, XL, and XXL for
5GB general purpose storage. We here consider 4*M being
equivalent to 1*XL and 8*M equivalent to 1*XXL. We
obtain the following cumulated costs after 15 days:

a) 8*M Standard: $1913
b) 2*XL Standard: $1178
c) 1* XXL Standard: $1437

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ri

ce
s

in
 U

S$

day

A0

A6

A9

438

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. 15-day scale-out scenario for Offering 6.

Obviously, b) is the best option after 15 days, and
starting with the third day it becomes cheaper than 8*M. XL
benefits from an incremental provisioning compared to
XXL. This also gives more flexibility for provisioning IOPS
according to tenants’ requirements.

A high-end server might be more appropriate since the
network performance also increases with a higher instance
class according to the documentation.

It is important to note that the provisioned numbers are
relevant, not the effective usage. This means, the required
storage for each tenant has to be estimated in order not to
overpay for unused resources. The same holds for the IOPS
rate. These costs occur already for the first tenant
independently of consumed resources.

Another important question is what IOPS rate is
sufficient since the IOPS rate is a limiting factor: Throttling
of users can occur if the limit is reached. Obviously, keeping
several tenants in one server requires higher IOPS rates. It is
unclear what the advantage of provisioned storage is
compared to general purpose storage. From a pure cost
perspective, 6000 IOPS are charged with $600 for
provisioned storage. To achieve 6000 IOPS with general
purpose storage, we have to use 2TB (remind the factor in
(a)), i.e., being much cheaper with $230 and already
including storage cost. Since there is an upper database limit
of 1 TB in any case, general purpose IOPS ends with 9,000
IOPS; provisioned storage can handle up to 6,000 IOPS.

C. Offering 7

This offering provides a DB2 server in two editions:
Standard and Advanced (Enterprise Server Edition).
Standard corresponds to the DB2 Workgroup Server Edition,
while Advanced is based on the DB2 Advanced Enterprise
Server Edition, thus offering some advanced features such as
compression, database partitioning, materialized query
tables, query parallelism, multi-dimensional clustering etc. in
addition. Both editions are offered for different tiers, S to
XXL, each determining the physical hardware with the
number of cores, RAM, IOPS, and attached storage. The S-L
tiers use SAN, while XL and XXL both use SSDs and
RAID10 for the first and RAID1 for the second disk array.
Standard/Advanced S/M/L all have a 1 Gbps network, in

contrast to a 10 Gbps redundant network for XL/XXL. Table
XII presents the monthly prices for the region US.

TABLE XII. PRICE SCHEME FOR OFFERING 7.

Tier Cores
RAM

[GB]
IOPS DB Size

Price/month [US$]

Standard Advanced

S 2

à 2 GHz

8 100GB,

500 IOPS

100 GB +

500 GB

1,000 1,250

M 4
à 2 GHz

16 100 GB,
1200 IOPS

100 +
1000 GB

1,700 2,200

L 8

à 2 GHz

32 100 GB,

1600 IOPS

100 GB +

2000 GB

3,000 4,000

XL 12
(2.4 GHz)

128 10 Gbps 6 * 1.2 TB +
2 * 800 GB

6,000 8,000

XXL 32

(2.7 GHz)

1024 10 Gbps 16 * 1.2 TB +

2 * 800 GB

-

16,000

TABLE XIII. CONFIGURATIONS COMPARABLE TO XL VM.

configuration # vCores RAM IOPS DB Size

6*S 12 48 3000 3600

3.5*M 14 56 4235 3882

2*L 16 64 3200 4200

1*XL 12 128 - 8973

Again, the major concern is how many instances of what

type should be used. The decision between Standard and
Advanced must be based upon functional requirements and
is not mainly affected by multi-tenancy cost aspects.

Table XIII compares several standard edition
configurations the prices of which are the same as 1*XL.
Again, the equipment differs a lot. 1*XL is best except for
the number of cores, where 2*L has the lead. 2*L seems to
be quite balanced. IOPS numbers are not given for XL.

TABLE XIV. CONFIGURATIONS COMPARABLE TO L VM.

Configuration cores RAM [GB] DB Size IOPS Price [US$]

4 * S 8 32 2,400 GB 2,000 4,000

2* M 8 32 2,200 GB 2,400 3,400

1 * L 8 32 2,100 GB 1,600 3,000

Table XIV compares several variants for the standard

edition with 8 cores and 32 GB RAM each. The alternatives
are nearly equally equipped except the storage that is slightly
decreasing. But concerning IOPS, 2*M seems to be the best
choice. The L instance suffers here. However, one L
machine is much cheaper than several smaller instances.
Taking XL into account, the prices double L obtaining 4
times of RAM and about 4 times of disk space. The same
behavior is visible for the advanced edition. XL has 2*12
virtual cores due to hyper-threading with 2 threads per core,
and thus 3 times more virtual cores.

Every tier doubles the equipment of the previous one for
less money more or less. As a conclusion, it seems to be
reasonable to start with low upfront cost, i.e., an S instance,
until performance, database size, or IOPSs reach its limit.
Then an upgrade to the next tier becomes necessary.

In a 15-day scale-out scenario we compare a scale-out
with S, L, and XL. Figure 8 displays the result. We consider
6*S being equivalent to 1*XL. After 15 days, we obtain the
following cumulated costs:

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ri

ce
s

in
 U

S$

day

M

XL

XXL

439

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a) 6*S: 4000
b) 2*L: 2200
c) 1*XL: 5400

Obviously, b) is the best option after 15 days, and
starting with the third day it becomes cheaper than 8*M.

Figure 8. 15-day scale-out scenario for Offering 7.

D. Offering 8

This offering provides again a database server, in this
case either Oracle 11gR2 or Oracle 12cR1. That is, a 1-DB-
per-Tenant strategy is at no additional cost. Several choices
have to be made:

 Compute: General purpose (GP) or High-memory
(HM).

 Editions: Standard (SE), Enterprise (EE), High
performance (HP), Extreme performance (XP). XP
covers all the database enterprise management packs
except RAC One Node, while HP has no Active
Data Guard, in-memory feature, and RAC (Real
Application Cluster).

 Service level: Virtual image or DBaaS (Database-as-
a-Service). Virtual Image provides a compute
environment with pre-installed VM images that
include all software needed to run an Oracle server.
All maintenance operations, including backup,
patching and upgrades, are not automatically
performed. DBaaS provides everything that the
Virtual Image option offers, but also includes a pre-
configured server through streamlined provisioning
as well as automatic backup, patching and upgrades,
and point-in-time recovery.

 Virtual CPU (vCPU): 1, 2, 4, 8, or 16. 1 vCPU
corresponds to 1 physical Intel Xeon processor with
hype-threading (or 2 virtual CPUs): 1 vCPU has 7.5
GB RAM for a GP instance and the RAM scales
linearly up to 120 GB for 16 vCPU; a HM compute
instance doubles the RAM compared to GP.

The choice of edition is only affected by functional
requirements. Similarly, the decision for the service level
depends on the desired level of comfort.

Table XV shows the monthly prices for an Oracle
database server with its variants; it is important to note that
these prices are per vCPU! Further costs occur for:

 compute: Each vCPU is charged with $75 per month
(hourly metering);

 data transfer: 1 GB/month for free, then 12ct for
each additional GB/month, increasing to 5ct for
more than 150 TB;

 block storage: 5ct per GB/month;

 I/O requests: 5ct per 1,000,000 requests per month
outbound.

TABLE XV. PRICE SCHEME FOR OFFERING 8 (FOR 1 VCPU).

Service level & compute /

Edition

DBaaS [US$] Virtual Image [US$]

GP HM GP HM

SE 400 500 600 700

EE 1500 1600 3000 3100

HP 2000 2100 4000 4100

XP 3000 3100 5000 5100

For multi-tenancy considerations, the prices for data

transfer, storage, and I/O requests can be neglected since
they do not affect the per-tenant cost. There is gain for
handing multiple tenants in one server in this respect.

Concerning the upfront cost, the smallest configuration is
available for $475 (1 vCPU (SE, GP) for $75 + $400 for
standard edition) plus storage, data transfer, and I/O requests.

One important observation is that a HM instance offers
twice as much RAM as a GP, i.e., a standard edition with 1
vCPU HM compute is available for $500, while a standard
edition with 2 vCPU GP is charged with $800, both offering
the same 15 GB RAM. HM is thus a cheap option if RAM is
important.

Quite obviously, the number of vCPUs is crucial for cost
considerations, as the number is a multiplier for the cost of
the DB server and the compute instance: 2 vCPUs double the
prices for both and also RAM and cores. As a consequence,
there is no cost difference between n * 1-vCPU machines
and 1 * n-vCPU machine. Consequently, an incremental
provisioning of 1-vCPU VMs for an increasing number of
tenants is reasonable. That is, the 15-day scenario,
comparing 1 vCPU wih 4 vCPU, yields some expected
results presented in Figure 9. Using incrementally 1*vCPU is
even on a per-day base starting with the first day cheaper,
which let the cumulated cost become after 15 days:

a) 1 vCPU: $1900
b) 4 vCPU: $2280

Figure 9. 15-day scale-out scenario for Offering 8.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ri

ce
s

 in
 U

S$

day

S

L

XL

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ri

ce
s

in
 U

S$

day

1 vCPU

4 vCPU

440

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, one important question remains open: What is
the advantage of a better n-vCPU instance, particularly
compared to several smaller instances? Unfortunately, no
specification beside the increase of RAM can be found in
this respect. Further investigations are thus required.

VI. SUMMARY

Several differences have become apparent in the previous
section and lead to several orthogonal facets:

 Database vs. database server: Sometimes, databases
are paid (cf. Offerings 1-4); sometimes DB servers
are provisioned (cf. Offering 5-8). The latter allows
one to set up several databases within the database
server, each database having specific credentials,
i.e., tenant isolation comes for free. However, it
becomes difficult to determine the right size of the
VM, especially for avoiding upfront costs.

 Provision vs. consumption: Some offerings charge
for provisioned storage (Offering 2-8), i.e., upfront
costs occur even if small data is stored. Others
(Offering 1) charge for storage consumption thus
avoiding starting costs. However, the consumption
approach is less prominent.

 Certain thresholds: Each offering has different tiers
to choose from. Such a tier defines some thresholds.
In most cases, each tier comes with an upper limit on
the database size. Offerings 2 and 4 define certain
limits on transaction rates, data transfer, or number
of sessions, Offering 7 a limit on IOPS. Reaching
such a limit could stop a SaaS application for serving
tenants.

 For Offerings 3, 5, 6, 7, and 8, equipment such as
RAM increases with each level, while this is not
controllable and visible in Offerings 1, 2, and 4.

 Prices depend on the features such editions (Offering
7 and 8) or installation comfort (DBaaS in Offering
8). However, the decision is not affected by multi-
tenancy considerations.

Moreover, we can distinguish between direct and indirect
cost factors. Direct cost factors are immediately visible in the
price scheme such as storage, IOPS, sessions, cores, or data
transfer. We detected indirect cost factors, too. For example,
it might be necessary to use and pay a larger virtual machine
(VM) in order to achieve a certain transaction rate, e.g.,
Offering 2, or IOPS (Offering 7).

VII. CONCLUSION NAD FUTURE WORK

This paper took a deeper look into the price schemes of
popular cloud database providers and investigated their cost
impact on multi-tenancy. We thereby focused on storing
tenants’ data in relational databases. We showed that a cost-
efficient database deployment for multi-tenancy heavily
depends on providers due to very different price schemes.

The broad spectrum of price schemes makes it difficult to
find an appropriate provider-independent cost-optimized
configuration for multi-tenant applications. However, we
could present some analyses for virtual databases by
comparing the cost of a 1-DB-per-tenant and a 1-global-DB

strategy and displaying the characteristics for different tenant
sizes. The results also have a strong impact on the cloud
provider selection. For example, if a strong isolation is
requested, a provider with too high prices for a 1 DB-per-
tenant strategy might not be qualified for a selection.

Furthermore, we investigated the category of virtual
database servers. Here, we could derive some vendor-
specific strategies what category of database servers is
suited.

As a consequence, it is difficult to select the best provider
from the cost perspective. But we think that our analysis
helps architects of multi-tenant software to decide upon a
cloud offering for the anticipated requirements. Besides
architects, cloud providers can benefit from our analysis
when it comes to adjust their service offerings.

This all affects portability of SaaS applications, too. It is
not easy to define an economic provider-independent
strategy for multi-tenancy. Furthermore, architectures must
take into account several aspects. For example, monitoring
consumption becomes necessary [22] because of thresholds
such as a database upper limit of parallel sessions, IO limits,
or any other type of throttling. This is indispensable to react
in time if a threshold is reached because a service is in
danger of being stopped [25].

Future work will tackle open questions, including practi-
cal investigations. One important question is about the pro-
visioning time. This point is relevant in any strategy since
additional databases have to be acquired. Similarly, upgrad-
ing a database level is important for saving upfront costs.

Finally, we intend to collect further challenges from an
industrial perspective.

REFERENCES

[1] U. Hohenstein and S. Appel, “The Impact of Public Cloud
Price Schemes on Multi-Tenancy”, in 7th Int. Conf. on Cloud
Computing, Grids and Virtualization, Rome (2016), pp. 22-
29.

[2] F. Chong, G. Carraro, and R, Wolter, “Multi-Tenant Data
Architecture,“ June 2006, http://msdn.microsoft.com/en-us
/library/aa479086.aspx [retrieved: November 2016].

[3] C. Bezemer and A. Zaidman, “Challenges of Reengineering
into Multitenant SaaS Applications,“ in: Technical Report of
Delft Uni. of Technology, TUD-SERG-2010-012, 2010.

[4] R. Mietzner, F. Leymann, and M. Papazoglou, “Defining
Composite Configurable SaaS Application Packages Using
SCA, Variability Descriptors and Multi-Tenancy Patterns,“ in
3rd Int. Conf. on Internet and Web Applications and Services
(ICIW), 2008, pp. 156-161.

[5] S. Walraven, E. Truyen, and W. Joosen, “A Middleware
Layer for Flexible and Cost-Efficient Multi-Tenant
Applications,“ in Proc. on Middleware, 2011 (LNCS 7049),
pp. 370-389.

[6] R. Krebs, C. Momm, and S. Kounev, “Architectural Concerns
in Multi-Tenant SaaS Applications,“ in CLOSER 2012, pp.
426-431.

[7] Z. Wang et al, “A Study and Performance Evaluation of the
Multi-Tenant Data Tier Design Pattern for Service Oriented
Computing,” in IEEE Int. Conf. On eBusiness Engineering,
(ICEBE) 2008, 94-101

[8] M. Armbrust et al., “A View of Cloud Computing,”
Communications of the ACM, 53(4), April 2010, pp. 50-58.

441

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] A. Khajeh-Hosseini, I. Sommerville, and I. Sriram, “Research
Challenges for Enterprise Cloud Computing,“ in Proc. 1st
ACM Symposium on Cloud Computing, SOCC 2010,
Indianapolis, pp. 450-457.

[10] E. Walker, “The Real Cost of a CPU Hour,“ Computer 2009,
Vol. 42(4), pp. 35-41.

[11] M. Klems, J. Nimis, and S. Tai, “Do Clouds Compute? A
Framework for Estimating the Value of Cloud Computing,” in
Designing E-Business Systems. Markets, Services, and
Networks, Lecture Notes in Business Information Processing,
Vol. 22, 2008, pp.110-123.

[12] B. Martens, M., Walterbusch, and F. Teuteberg, “Evaluating
Cloud Computing Services from a Total Cost of Ownership
Perspective,“ 45th Hawaii International Conference on
System Sciences (HICSS-45), 2012, pp. 1564-1572.

[13] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D.
Anderson, “Cost-Benefit Analysis of Cloud Computing
versus Desktop Grids,“ in Proc. of the 2009 IEEE Int. Symp.
on Parallel&Distributed Processing, May 2009, pp 1-12.

[14] D. Kossmann, T. Kraska, and S. Loesing, “An Evaluation of
Alternative Architectures for Transaction in Processing in the
Cloud,” ACM SIGMOD 2010, pp. 579-590.

[15] U. Hohenstein, R. Krummenacher, L. Mittermeier, and S.
Dippl, “Choosing the Right Cloud Architecture - A Cost
Perspective,“ in Proc. on Cloud Computing and Services
Science (CLOSER), 2012, pp. 334-344.

[16] C. Momm and R. Krebs, “A Qualitative Discussion of
Different Approaches for Implementing Multi-Tenant SaaS
Offerings,“ in Proc. Software Engineering 2011, pp. 139-150.

[17] C. Osipov, G. Goldszmidt, M. Taylor, and I. Poddar,
“Develop and Deploy Multi-Tenant Web-Delivered Solutions
Using IBM Middleware: Part 2: Approaches for Enabling
Multi-Tenancy,” in: IBM’s technical library, 2009.

[18] D. Westermann and C. Momm, “Using Software Performance
Curves for Dependable and Cost-Efficient Service Hosting,“
in Proc. on Quality of Service-Oriented Software Systems
(QUASOSS), 2010, pp. 1-6.

[19] T. Kwok and A. Mohindra, “Resource Calculations With
Constraints, and Placement of Tenants and Instances for
Multi-Tenant SaaS Application,“ in Proc. Int. Conf. on
Service-Oriented Computing, (ICSOC) 2008. LNCS, Vol.
5364, pp. 633-648.

[20] C. Bezemer, A. Zaidman, B. Platzbeecke, T. Hurkmans, and
A. Hart, “Enabling Multitenancy: An Industrial Experience
Report,” in: Technical Report of Delft Uni. of Technology,
TUD-SERG-2010-030, 2010.

[21] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues
and Challenges,“ in Proc. 24th Int. Conf. on Advanced
Information Networking and Applications, 2010, pp. 27-33.

[22] A. Schwanengel and U. Hohenstein, “Challenges with
Tenant-Specific Cost Determination in Multi-Tenant
Applications,“ in 4th Int. Conf. on Cloud Computing, Grids
and Virtualization, Valencia (2013), pp. 36-42.

[23] Microsoft, “Developing Multitenant Applications on
Windows Azure“. http://msdn.microsoft.com/en-us/library
/ff966499.aspx [retrieved: January 2016]

[24] P. Mell and T. Grance, “The NIST definition of cloud
computing,” National Institute of Standards and Technology,
Sept. 2011. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf [retrieved: November 2016].

[25] A. Schwanengel, U. Hohenstein, and M. Jaeger, “Automated
Load Adaptation for Cloud Environments in Regard of Cost
Models,“ in Proc. on CLOSER, 2012, pp. 562-567.

[26] B. Berriman, G. Juve, E. Deelman, M. Regelson, and P.
Plavchan, “The Application of Cloud Computing to
Astronomy: A Study of Cost and Performance,” Proc. of 6th
IEEE Int. Conf. on e-Science, 2010, pp. 1-7.

[27] M. Lindner, F. Galán, and C. Chapman, “The Cloud Supply
Chain: A Framework for Information, Monitoring,
Accounting and Billing,“ in Proc. on ICST Cloud Computing,
2010, pp. 1-22.

