
417

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SpMV Runtime Improvements with Program
Optimization Techniques on Different Abstraction

Levels

Rudolf Berrendorf

Computer Science Department
Bonn-Rhein-Sieg University
Sankt Augustin, Germany

e-mail: rudolf.berrendorf@h-brs.de

Max Weierstall

Computer Science Department
Bonn-Rhein-Sieg University
Sankt Augustin, Germany

e-mail: max.weierstall@h-brs.de

Florian Mannuss

EXPEC Advanced Research Center
Saudi Arabian Oil Company

Dhahran, Saudi Arabia
e-mail: florian.mannuss@aramco.com

Abstract—The multiplication of a sparse matrix with a dense
vector is a performance critical computational kernel in many
applications, especially in natural and engineering sciences. To
speed up this operation, many optimization techniques have
been developed in the past, mainly focusing on the data layout
for the sparse matrix. Strongly related to the data layout is
the program code for the multiplication. But even for a fixed
data layout with an accommodated kernel, there are several
alternatives for program optimizations. This paper discusses
a spectrum of program optimization techniques on different
abstraction layers for six different sparse matrix data format
and kernels. At the one end of the spectrum, compiler options
can be used that hide from the programmer all optimizations
done by the compiler internally. On the other end of the
spectrum, a multiplication kernel can be programmed that use
highly sophisticated intrinsics on an assembler level that ask
for a programmer with a deep understanding of processor
architectures. These special instructions can be used to efficiently
utilize hardware features in processors like vector units that
have the potential to speed up sparse matrix computations. The
paper compares the programming effort and required knowledge
level for certain program optimizations in relation to the gained
runtime improvements.

Keywords–Sparse Matrix Vector multiply (SpMV); vector units;
Single Instruction Multiple Data (SIMD); OpenMP; unrolling;
intrinsics.

I. INTRODUCTION

This paper is an extended version of the conference paper
[1]. Sparse matrices arise from the discretization of partial
differential equations and are therefore widely used in many
areas of natural and engineering sciences [2], especially in
simulations. Examples of applications areas are mechanical
deformation, fluid flow and electromagnetic wave propagation.
An often used operation on such matrices is the multiplication
of a sparse matrix with a dense vector (SpMV). This operation
is often the most time consuming operation in iterative solvers
(e.g., CG, GMRES [2]), which are among the most time
consuming operations in many simulations. Therefore, much
attention has been given to optimize this operation. As SpMV
is a memory bandwidth bound operation and as sparse matrices
can get very large, much attention has to be given to the

management and access to the matrix data [3], [4]. One
important point in an optimization discussion is the choice
of an appropriate storage format for the sparse matrix. More
than 50 storage formats have been published in the past,
among them [5]–[10]. The choice of format depends mainly
on the given matrix structure (e.g., diagonal, high / low matrix
bandwidth, etc.) and the target architecture, e.g., multicore
CPU, multiprocessor system, Graphics Processor Unit (GPU).
For example, Compressed Sparse Row (CSR) [2] is a rather
general storage format for sparse matrices that performs quite
well on CPU-based systems and is used in many applications.
Strongly related to a storage format is the way how the SpMV
operation is actually implemented, i.e., how the data stored in
the format is processed. This computational kernel is mainly a
traversal over the data structures in a certain way given by the
storage format. But even for a fixed storage format like CSR,
there are quite different ways how to program the CSR kernel
for the SpMV, with opportunities for program optimization
on different abstraction levels. This paper deals with the
spectrum of opportunities and discusses some alternatives,
their programming effort, the required level of expertise and
the achieved performance gain.

CPUs and memory systems are optimized for specific
workloads in programs. Other than utilizing the memory hier-
archy, instruction pipelining and vector units in processors can
have a significant influence on a program’s performance [11].
For instruction pipelining, large basic blocks are favorable in a
program. All recent processors have also some implementation
of vector registers and related vector instructions [12], [13] that
can significantly speed up computations that exploit this archi-
tectural feature. Compilers can optimize code with large basic
blocks with much room for optimizations and by vectorizing
loops [14]–[18], as long as all data dependencies are respected
[19]. A general problem with many SpMV implementations
is, that the SpMV kernel is quite small, often only a single
or a few lines of code surrounded by one or two loops, and
therefore the basic block is rather small. Fig. 1 shows as an
example a simplified and non-optimized basic version of a
SpMV operation appropriate for the CSR format.

Some high level programming models, especially designed
for parallel (and therefore resource intensive) computing, have

418

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

void SpMV_Basic(Vector &v, Vector &u) {
// iterate over all rows of the matrix
for(int i=0; i<nRows; i++) {
// handle all non-zero elements in a row
for(int j=rowStart[i]; j<rowStart[i+1]; j++) {
u[i] += values[j] * v[columnIndex[j]];

}
}

}

Figure 1. Basic code version for the SpMV operation for the CSR data
format (simplified).

some notations to give hints to a compiler concerning the
vectorization of code. For example, OpenMP [20] as the de
facto standard for shared memory parallelism has got in the
recent version 4 some annotations to guide a compiler in using
vector units in a processor. But vectorizing compilers and
directives to give a compiler hints have a long history and
existed already before OpenMP [21]. Such annotations can
be used to speed up computational kernels like the SpMV to
supply a compiler in a non-standardized way with additional
semantic information, if necessary.

One way to optimize a program is to use certain opti-
mization options of a compiler, e.g., a single meta option -O3

enables already many individual compiler optimizations. Other
than leaving all optimizations to a compiler, there are program
optimization techniques known that allow to restructure a
program to optimize certain operations (that a compiler may
not detect). This restructuring of source code can be done by
an expert programmer or by a sophisticated tool [16], [22],
[23].

And, in a fourth way, if, for example, a compiler is not
able to generate fast code because, for example, complex index
expressions exist, a programmer may use vector intrinsics on
a rather low abstraction level to program the hardware directly
on a more or less assembler level [24]. For some high level
language like C / C++, this can be accomplished by using
compiler extensions called intrinsics that look like functions
calls in the programming language and correspond to one or
few assembler instructions.

In a summary, there are certain levels on which a time
consuming operation may be speed up. In this paper, the
question will be answered for the SpMV operation what the
programming effort is that is needed for an optimization and
what performance improvement one can get, if any.

The paper is structured as follows. Section II gives an
overview on related work. After that, Section III discusses
some program optimization techniques in more detail that are
used for the investigations in this paper. Section IV describes
the test environment for our evaluation. Section V shows and
discusses performance results. The paper is summarized in
Section VI.

II. RELATED WORK

There are several dimensions of related work.
Compiler writers give hints in user guides [14], [25], [26]

and technical notes [27] how to optimize programs and how
to write programs in a way such that a compiler can apply
optimizations. Further than that, there exist often optimization

guides with a detailed description of hardware features that a
programmer can use and should use to get performance [28]–
[30].

In [31], Wende discusses the use of SIMD (Single Instruc-
tion Multiple Data [12]) functions, i.e., vector intrinsics, to
improve the performance on Intel Xeon processors and Xeon
Phi coprocessors [32] especially for branching and conditional
functions calls. He found that for this special application
scenario there are only rare situations with a performance
improvement by using vector intrinsics. This was mostly the
case if the ratio of arithmetic operations to control logic is low.

Dedicated to the SpMV operation, many papers were pub-
lished describing performance related program optimizations
of various types (e.g., register blocking) that were applied in
[33]–[36].

There exist various reference implementation of storage
formats for sparse matrices where a highly optimized SpMV
code uses vector intrinsics. Among them are the formats /
implementations CSR5 [6] / [37] and CSB [38] / [39]. As only
an implementation exists that uses intrinsics, there is neither
a comparism of programming effort in relation to runtime
improvement nor an estimation of programming effort. But
just to give the reader an estimate how complex such an
optimization can be to optimize the SpMV operation for a
certain platform, the reference implementation of yaSpMV
[40] can be used. The (non-optimized) code for a CPU has
16 lines of C++ code while the highly optimized version for
a GPU has approx. 700 lines of rather complex code.

Code optimization is often a multi-dimensional problem, as
various architectural features likes register usage, vector units,
caches, pipeling among others combined with implementation
parameters of storage formats for sparse matrixes (e.g., slice
sizes, blocking) influence each other. Different to a manual
code optimization done by a programmer using to his knowl-
edge a good combination of such parameters, auto tuning is
a way to explore such a large parameter space automatically
through extensive offline testing and eventually an additional
and faster online testing finding experimentally a good com-
bination of all parameters that fit to the given architecture
and given sparse matrix. For the SpMV operation, there exist
various implementations that use this technique, e.g. Poski
[35], [41], CSX [42] and yaSpMV [40]. The programming
effort to generate such an auto tuning framework is very high.
The overhead to determine good hardware parameter values
out of a large space of possible values can be high, but this is
not important as such an exhaustive search has to be done once
per system and offline. But also the online runtime overhead
can be quite substantial that has to be done once when the
non-zero structure of a sparse matrix is known. Often this
is only profitable if many SpMV exectutions are done in the
following with a fixed matrix structure and the tuning overhead
can be compensated with an appropriate runtime improvement
for the SpMV operation. Such research is more related to
automate code optimization for certain hardware architectures
rather than relating optimization techniques to each other.

Additional work was done to select good parameter values
in a large parameter space for the SpMV using machine
learning techniques. In [43] Lehnert et al. use linear regression,
gradient boosting and k Nearest Neighbor techniques to decide
at runtime, which matrix format / SpMV kernel should be

419

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

used for a given matrix and, which thread mapping should be
used, dependend on a few statistical parameters describing the
matrix structure. In an offline training phase data is gathered in
many program runs. While the runtime for these offline tests
can be quite substantial (but need to be done only once), the
overhead for the online decision is quite low (in the order of
10 % of a SpMV operation) for the linear regression / gradient
boosting approach while the k Nearest Neighbor approach has
a larger runtime overhead that can be in the order of tens
to hundreds of SpMV operations. Additional work in using
machine learning techniques to improve the SpMV execution
was done by Sedaghati et al. [44], [45] using decision trees.
Li [7] uses a probalistic approach for that.

III. PROGRAM OPTIMIZATIONS

Nowadays, processor and memory architectures are rather
complex. Many architectural optimizations have been done
in last decade’s processor architectures that may improve
the performance of programs significantly. Such architectural
improvements include multi scalarity, out-of-order execution,
pipelining, hardware prefetching and many others [12], [13].
For all enumerated hardware optimizations it is favorable to
have large basic blocks (code without any branch).

A significant performance boost for many applications is
the use of vector registers / units that are available in almost
all recent processor architectures [28], [46], [47]. These vector
architectures follow the well-known SIMD principle [48] that
one instruction is applied to several operands at the same
time. For a vector width of n data elements, this may result
in a speedup of up to n. Recent processors eligible in High
Performance Computing (HPC) have a vector register / unit
width of up to 256 bits, corresponding to 4 double precision
elements that are mostly used in scientific simulations, each
64 bits. Recent announcements show [49], [50] that the vector
width will double in the near future with a nominal floating
point performance increase of a factor of two. The SpMV
operation is eligible to utilize vector units. How efficient such
vector units can be utilized depends mainly on the chosen
storage format and non-zero structure of the matrix. The CSR
format is an example of such a format that can benefit from
vector units. Vector units and instruction sets utilizing such
units have evolved over time. Newer processor architectures of
the Intel family have vector registers and units of size 256 bits
and support the AVX (Advanced Vector Extensions) instruction
set [51] (processor lines Sandy Bridge EP and Ivy Bridge EP)
or the instruction set AVX2 (the most recent Haswell EP and
Broadwell EP). Among other things, AVX2 enhances AVX
with additional instructions for integer operations and fused
multiply add that is of interest with SpMV operations.

The enlargement of basic blocks in a loop body and
the use of vector registers are two techniques that can be
used to speed up a SpMV operation. There are now certain
levels of abstraction on which a programmer may influence
these and other optimizations. In the following, in more detail
opportunities are discussed a programmer may use to speed
up the SpMV operations (and others).

A. Compiler Flags
A simple optimization strategy is to leave any optimization

to a compiler. This is the strategy used most often by nearly
all programmers. A programmer may specify on a rather

coarse scope of one complete source file a general com-
piler optimization level (i.e., -O0, -O1, -O2, -O3, -Ofast as
available with most compilers) leaving any detailed decisions
and optimization strategies related to that optimization levels
solely to the compiler according to the specified optimization
level. Such flags are merely meta flags turning on/off a
bunch of optimizations or a finer level specific to a compiler.
All compiler understand the same meta flags, but the exact
meaning of these flags (i.e., which specific optimizations are
turned on) is open to a compiler.

An optimization level of -O0 disables any optimization and
is only useful for debugging and should not be used for pro-
ductions runs. Specifying an optimization level of -O1 enables
basic optimizations that are often sufficient to generate efficient
code for programs that have a not too complex program
structure. A level of -O2 instructs many compilers to enable
more, advanced and more costly optimization techniques but
that have no influence on the semantics of a program, i.e., no
optimizations are applied that may change the meaning of a
program as, for example, using a faster floating point arith-
metic. A level of -O3 often includes additional optimizations
that allows the use of operations that may change (slightly)
the meaning of a program; therefore this level has to be
chosen with care. Even further is the optimization level -fast
that enables optimizations that may change the semantic of a
program using faster arithmetic or even speculative execution,
generate processor specific code (that may not execute on
processors of a previous generation), and do interprocedural
and link-time optimizations that may take significantly more
compile/link time as with other optimization levels.

Additionally, on a finer level special compiler options can
be used to include certain optimization techniques or to utilize
certain architectural features. An example for that is to allow
the generation of code that utilizes the latest additions in the
instruction set of a specific processor generation. For example,
the compiler option -march=haswell of the GNU compiler g++
[25] allows the generation of advanced instructions only avail-
able on Intel Haswell processors. Alternatives would be for the
previous generations of Intel processors -march=ivybridge or
-march=sandybridge. The code may be no longer executable
on processors of generations previous to the one specified.
Other compilers have the same possibilities but with a different
syntax of such an option. Without the specification of such
an architectural option the compiler generates code with an
instruction set that corresponds by default to a rather old
processor family to allow the compiled program to run on
many systems, even older ones.

The PGI compiler [26] offers an option to instruct the
compiler to generate vector code utilizing vectors of a specific
size. For example, the option -tp=haswell -Mvect=simd:256

directs the compiler to generate code for Haswell processor,
i.e., utilizing the Advanced Vector Extensions 2 (AVX2) in-
struction extensions, and to work with vectors of up to 256
bits.

Usually, compilers have flags to generate reports on various
levels of details what they could optimize, what not, and in
this case why. For example, the Intel compiler generates with
the options -qopt-report=5 -qopt-report-phase=vec a very
detailed report with information concerning the vectorization
of code. An example for a report for a simple SpMV imple-
mentation with two nested loops is shown in Fig. 2. According

420

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

LOOP BEGIN at SparseMatrixCSR.cpp(568,3)
remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at SparseMatrixCSR.cpp(573,5)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at SparseMatrixCSR.cpp(573,5)
remark #15388: vectorization support: reference this has aligned access [SparseMatrixCSR.cpp(575,7)]
remark #15389: vectorization support: reference this has unaligned access [SparseMatrixCSR.cpp(575,7)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15305: vectorization support: vector length 2
remark #15399: vectorization support: unroll factor set to 4
remark #15309: vectorization support: normalized vectorization overhead 0.533
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15458: masked indexed (or gather) loads: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 14
remark #15477: vector loop cost: 7.500
remark #15478: estimated potential speedup: 1.810
remark #15488: --- end vector loop cost summary ---

LOOP END

LOOP BEGIN at SparseMatrixCSR.cpp(573,5)
<Remainder loop for vectorization>
LOOP END

LOOP END

Figure 2. Example of a detailed Vectorization Report as given by the Intel Compiler.

to this report, the inner loop was vectorized and the outer
loop not. The way how the information is presented makes
clear that such a report should only be used by an experienced
programmer who is aware of the meaning of the terms used
in the report and the consequences that a programmer should
take.

B. Loop Unrolling
The SpMV operation is an operation that often contributes

to a large portion (e.g., 50 %) of the runtime of a simulation
that itself can run for hours, days or even weeks. Therefore
performance aware programmers are willing to spend time to
speed up such computational kernels if a compiler would not
be able to do so.

Unfortunately, the non-optimized SpMV has for many ma-
trix storage formats a rather small loop body of the innermost
loop (one or a few lines of code) as, for example, shown in Fig.
1. This means that all these hardware optimizations described
in the introduction of this section cannot be utilized efficiently
if a compiler cannot handle this by itself, i.e., enlarging the
innermost loop body to a larger basic blocks.

A well-known technique called loop unrolling [16], [17]
enlarges the basic block of a loop body. This can be favorable
if the loop body is rather small (as for most formats with the
SpMV operation) and therefore the instruction pipeline runs
soon out of instructions. Additionally, with a larger basic block
a compiler may have more opportunities to optimize, e.g., to
keep reused index values in registers.

Loop unrolling can be realized manually by a programmer
(which is often tedious and error-prone), by using appropriate
directives / annotations in a code that instruct a compiler to

void SpMV_Unroll(Vector &v, Vector &u) {
// iterate over all rows of the matrix
for(int i=0; i<nRows; i++) {

// handle all non-zero elements in a row
#pragma unroll(4)

for(int j=rowStart[i]; j<rowStart[i+1]; j++) {
u[i] += values[j] * v[columnIndex[j]];

}
}

}

Figure 3. Example of an explicitly unrolled loop using a directive.

unroll a loop by a certain factor, or internally by a compiler
without a programmer’s intervention. Explicit loop unrolling
using directives will be used as one of the optimization
techniques discussed later, which could be profitable if a
compiler is not able to enlarge a basic block by himself. An
example for an unrolled loop using such directives is given in
Fig. 3.

C. Language Directives for Vectorization
Sometimes, a compiler may not be able to recognize that

certain optimization techniques could be applied to a code
sequence. For example, this may be the case because the
compiler cannot know at compile time the value of certain
variables, the alignment of variables or cannot exclude data
dependencies because of complex index expressions. But, if
a programmer can assure that, for example, a certain variable
is always larger than 100 the compiler could optimize this
program code. There exist program annotations for exactly
these situations to tell a compiler some additional semantic

421

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

void SpMV_SIMD(Vector &v, Vector &u) {
// iterate over all rows of the matrix
for(int i=0; i<nRows; i++) {
// handle all non-zero elements in a row
double s = 0;

#pragma omp simd reduction(+:s)
for(int j=rowStart[i]; j<rowStart[i+1]; j++) {
u[i] += values[j] * v[columnIndex[j]];

}
u[i] = s;
}

}

Figure 4. Example of the use of a OpenMP SIMD directive.

information. Dependent on the programming language or com-
piler this may be done in different ways.

An example is OpenMP [20] where in the fourth version
of this standard certain extensions were added that allow a
programmer to specify (among parallelism, which is the main
focus of OpenMP) that certain parts of a program should be
vectorized by the compiler, including hints how to do that or
assumptions that a compiler can rely on at that point of the
program.

A small example for that is the piece of code shown in
Fig. 4. Here, the pragma tells the compiler to vectorize the
inner loop and to handle the variable s as a reduction variable
with a special treatment (this is necessary due to the loop
carried data dependence on s).

The simd directive requests an OpenMP compiler to vec-
torize that part of a program that is in the scope of this
directive. For the simd directive there are additional clauses
beside the shown reduction clause possible, mainly assuring
certain program properties. Among them are:

• aligned specifies that the specified data objects are
aligned to a certain byte boundary.

• safelen guaranties that n consecutive iterations can
be executed in parallel / are independent.

• linear tells the compiler that the loop variable has a
linear increase.

Similar compiler directives simd (vectorize code) and
ivdep (ignore vector dependencies) outside of the OpenMP
standard are known to several compilers with a similar mean-
ing. We have seen no large differences in performance results
for these alternatives.

As explained already before, a programmer can be guided
for using such directives in an appropriate way by looking at
a compiler report that tells whether a piece of code could be
vectorized or not (see Fig. 2 for an example). If code could
not be vectorized, the reason for that is also given. But this
statement must be restricted as the output is often presented in
a way that most times only an experienced programmer that
understands how a compiler works internally can understand
this information in all details.

To use the vector directives in our code, it was necessary
with appropriate directives to assure the compiler that the
vectors used were aligned (and which must be the case).
Additionally, it was necessary (taken from the output of the
vectorization report) to copy values of C++ member variables

double haddSum(__m256d tmp) {
// vecA := (x2 , x1)
const __m128d vecA = _mm256_castpd256_pd128(tmp);
// vecB := (x4 , x3)
const __m128d vecB = _mm256_extractf128_pd(tmp,1);
// vecC := (x4+x3 , x2+x1)
const __m128d vecC = _mm_hadd_pd(vecA,vecB);
// vecS := (x4+x3+x2+x1 , x4+x3+x2+x1)
const __m128d vecS = _mm_hadd_pd(vecC,vecC);
// returns x4+x3+x2+x1 as double
return mm_cvtsd_f64(vecS);

}

Figure 5. Example code for the use of compiler intrinsics.

to block local variables. Otherwise, no vectorization of the
code took place.

D. Vector Intrinsics

A compiler needs to generate special vector instructions to
utilize the vector units in a processor. Sometimes a compiler
may not be able to detect an appropriate situation because the
data dependence analysis in the compiler cannot safely exclude
any dependencies. Or a compiler generates sub-optimal code
for that situation. In such situations, a programmer may
himself “generate“ vector instructions by using so called vector
intrinsics.

Vector intrinsics [24] are available with some widely used
compilers, e.g., GNU g++ [25], Intel compiler icpc [14]. With
these intrinsics a programmer has more or less direct access
to vector instructions of the underlying hardware. But please
be aware that this functionality is on the level of assembler
instructions where one has to manage vector registers and
vector instructions directly. Also at most (or better exactly) 4
double values have to be handled in parallel for recent vector
units. This means that the code has usually an additional loop
that iterates in an appropriate way over blocks of 4 consecutive
double values. Needless to say that such an intrinsic code looks
quite different to an original code in a high-level programming
language.

The example in Fig. 5 shows how to add 4 values using
vector intrinsics (this is a small sub problem of a SpMV
operation). __m128d and __256d are special vector types that
must be used and _mm... are function calls that correspond to
vector instructions. This small example makes it very clear
that using intrinsic functionality makes a program hard to
read / understand because hardware features are programmed
embedded within a high level language like C or C++.

E. How to Choose the Right Program Optimization Strategy?

As already explained, performance aware programmers are
willing to write rather complex code if an operation like the
SpMV that contributes to a large portion of the runtime of
a program can be speed up. The spectrum of optimization
techniques shown above has consequences for programmers.
The first approach (use a compiler switch) leaves any decision
and optimization to the compiler. This is a possibility that
is quite comfortable for a programmer and does not require
any sophisticated skills from a programmer unless options are
chosen that may influence the semantics of a program. If this

422

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach produces the most efficient code, this should be the
way to go.

The next possibility is to leave many things to the compiler
but to give additional hints to the compiler using pragmas /
directives at a finer granularity (e.g., with the scope of one
loop). A compiler bases its decision concerning vectorizability
(and many other optimizations) on data dependency infor-
mation [19]. When a compiler cannot decide if a part of a
program is optimizable / vectorizable, the opportunities that
a hardware architecture gives to dispose cannot be utilized.
But giving additional hints to a compiler, a programmer needs
experience and expert knowledge how a compiler works and
what information it may miss in certain parts of a program.
If a programmer assures wrong properties (e.g., safe distance
of iterations) a compiler may even generate wrong code. If
a programmer uses such directives, the programming effort
(additional lines of code) is rather small but the required level
of expertise is high.

The last option is to allow a programmer direct access to
the functionality a hardware provides. This allows to utilize
the available functionality in an efficient way. Although this
may look for a normal programmer scary, performance-aware
programmers are used to such things. But this has severe
consequences. One point is that the programming level is quite
low and the resulting program is therefore hard to write and
read (see the example in Fig.r̃effig:Intrinsics). Additionally,
programming is now getting platform specific, i.e., a program
kernel developed and optimized for an Intel Haswell system
is not executable on / not optimized for an older Ivy Bridge
/ Sandy Bridge system. This means that any company using
such advanced features in their programs has to provide an
expert that is aware of all architectural features of hardware
generations in use and how to use them properly. Additionally,
different code versions have to be maintained.

Comfortability to the programmer is one aspect of con-
sideration. If this would be the only aspect it is clear that
the approach that would be used is to leave everything to the
compiler. Many simulations in natural science run for hours,
days or even weeks. Often a large part of the runtime is
executed in rather small parts of the program, computationally
intense program kernels like the above mentioned SpMV oper-
ation. For such really performance critical parts of a program
all possibilities are analyzed that may lead to a decrease in
runtime, even on the intrinsic level. Therefore, the question
at this point is whether and if yes how much can a program
benefit from optimization techniques in the spectrum discussed
above? Or is an optimizing compiler able to deliver the same
(or even better) performance? And what is the programming
effort in relation to a possible gain in performance?

The discussion and the following evaluation is done for
a sequential program version. We have seen, that the results
discussed in the following sections are transferable to parallel
programming models like OpenMP [20] as well. But additional
problems have to be handled as well, like processor locality,
thread mapping and load balance. A comparism of using
different parallel programming models for the SpMV on a
GPU can be found, for example, in [52].

IV. EXPERIMENTAL SETUP

To answer these questions raised above the rather small
SpMV program kernel was used. As this kernel has only

TABLE I. SYSTEMS USED.

system name SB HW
instruction set AVX AVX2
architecture Sandy Bridge EP Haswell EP
processor (Intel Xeon) E5-2670 E5-2680 v3
cyle time in GHz (TurboBoost) 2,6 2,5

(dependent on the matrix storage format and the optimization
technique) few lines of code, the influence of the optimization
techniques could be clearly seen.

Sparse matrices can get in production runs very large (for
example, up to 109 rows). They are stored is an appropriate
storage format that takes advantage of the sparsity and the
non-zero structure of a sparse matrix. A proper SpMV kernel
code is needed that fits the storage format. We used our own
implementation of the SpMV operation in C++ using storage
formats of different code complexity. Beside the rather simple
structured storage formats COO and CSR [2], we used also
more sophisticated storage formats with more complex SpMV
kernels, namely BRO-ELL [53], SELL-C-σ [5], VBL [54]
and ESB [55]. An example for a basic implementation of the
simple CSR format we use in our subsequent comparism was
already shown in Fig. 1 (in a rather simplified and compact
version).

We used four different versions for the optimizations for
each format. As an information in parentheses the number of
lines of code for the CSR format to realize that:

• normal: the unmodified version similar to the version
in Fig. 1 (9 lines)

• unroll: the compiler was told with a directive to unroll
a loop four times, similar to the version shown in
Fig. 3 (12 lines)

• simd: the compiler was told with a directive to vector-
ize the code / to generate vector instructions similar
to the version shown in Fig. 4 (16 lines)

• intrinsics: our own implementation using vector intrin-
sics (68 lines). The code often contains distinctions,
which vector instruction set AVX or AVX2 should be
used and different intrinsics must be used in some
parts of the program, dependent on the instruction set.

To measure performance numbers we use systems of
different generations of Intel processors (Intel Sandy Bridge
and Haswell). Table I gives an overview of relevant sys-
tem parameters and systems names. The older Sandy Bridge
generation supports only the AVX instruction set, in newer
Haswell systems additional features are available in the AVX2
instruction set.

As data sets we used sparse matrices with different proper-
ties that may influence the performance of a SpMV operation.
For example, the distribution of non-zero values over the
matrix and in a row may have an influence on the utilization
of vector units and loop unrolling. In total, 111 matrices were
used. The matrices are taken form the Florida Sparse Matrix
collection [56] and from the Society of Petroleum Engineers
(SPE) challenge [57].

We used two compilers in recent versions:

• g++: GNU g++ version 5.3.0 [25]
• icpc: Intel icpc version 16.0.2 [14]

423

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. PARAMETER SPACE IN THE EVALUATION.

parameter count
processor families 2
compilers 2
matrix formats 6
test matrices 111
SpMV iterationsper run 100
optimization techniques 4

In the compiler options we always specified the target
architecture to allow processor specific optimizations. In differ-
ence to the program version discussed in [1], additional code
was added / changed to enable more compiler optimizations.
These changes that were necessary to improve even further
the runtime of the SpMV operation are partially discussed in
the following chapter. It should be noted, that without these
code optimizations that are now already incorporated into the
basic version this version would perform substantially slower
in certain cases.

To filter accidental effects that may happen on any system,
each SpMV measurement was repeated 100 times and the
median was taken as the measurement value.

Table II gives an overview over the parameter space in our
evaluation. It follows that for our experimental setup 2× 2×
6×111×100×4 = 106, 560 SpMV executions were executed.

V. EVALUATION

Each optimization is discussed independently and after-
wards an overall comparism is done. For generalizable state-
ments, statistical result values over all 111 matrices are given.
Additionally, absolute result values are given for one single
matrix, the SPE matrix spe5Ref_a, which shows often a similar
behavior compared to many other matrices. This matrix is used
as a representative for more detailed analysis.

After a discussion of the influence of compiler options, the
results for the three optimization techniques unrolling, vector
directives and intrinsics are each presented in a common way:

1) a chart showing the percentage of test instances with
a runtime improvement,

2) a chart with average speedup values over all matrices.

The charts differentiate between the matrix storage formats.

A. Influence of Compilers and Compiler Levels
Both compilers in use provide comfortable compiler

switches to turn on certain global optimization levels: -O0 up
to -O3. The optimization level 0 should be used for debugging
only and not for production runs. The Intel compiler provides
further an additional level -fast and the GNU compiler
the option -Ofast to additionally turn on processor specific
optimizations as well as interprocedural optimizations and
link time optimizations for the Intel compiler. But with this
option the code eventually runs no longer on processors of
previous generations while with the option -O3 the code is
still runnable on all recent systems. The default value for g++
is no optimization, the default for icpc is level 2.

To evaluate the influence of an optimization level, a basic
SpMV kernel version was used for each sparse matrix storage
format, but already modified in a way that a compiler can
generate efficient code out of this (see remarks above). This

Figure 6. Average runtime improvements for each additional optimization
level over all matrices.

leaves many opportunities for a compiler but places also
challenges to the compiler to detect how the code looks like
(in the sense of optimization potential) and what the best
alternative for code generation is.

Table III shows as a representative example the detailed
results for the matrix spe5Ref_a on the Sandy Bridge system
and Haswell system. The results are transferable to the other
matrices and are therefore general statements concerning our
SpMV implementation. Both compiler show a significant per-
formance increase going from -O0 to -O1. Again the remark,
that the level -O0 should only used for debugging purposes
and not used in any production version. The further transition
to -O2 shows some minor additional performance increase
with the GNU compiler and s small perormance degradation
with the Intel compiler. But all levels above -O2 show no
or only a small increase in performance. The compiler do
already optimizations with -O2 and even -O1 that contribute
to the best runtime performance. An older version of the Intel
compiler that was used in [1] has shown a significant increase
in performance on a Haswell system using the compiler option
-fast that could be attributed to the fact that only with
this option architectural features of the Haswell processor
generation were utilized. The recent Intel compiler version
utilizes the AVX2 units already with lower optimization levels.
There are also a few cases where a lower optimization level
(sometimes even the level -O1) produces a better result than
a higher level. And in some of these cases, the difference
was quite significant. This can be seen, for example, in Table
III with the SELL-C-σ format. Here, compilers do aggressive
optimizations that tend to be counter-productive in this cases.

While Table III shows absolute performance numbers for
one example matrix and three matrix formats, Fig. 6 shows
summarized statistics over all matrices and all 6 matrix for-
mats. In this table, the average improvement factor over all
matrices is shown going from one optimization level to the
next. A factor higher than 1 means an average increase in
performance, a factor lower than 1 means a performance
drop. As already seen and discussed with the single example
matrix, the transition to level -O1 shows a huge increase

424

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. RUNTIMES IN MILLISECONDS FOR VARIOUS COMPILER OPTIMIZATION LEVELS FOR THE EXAMPLE MATRIX spe5Ref_a AND
SELECTED FORMATS.

Intel Sandy Bridge (SB) Intel Haswell (HW)
g++ icpc g++ icpc

CSR BRO-ELL SELL-C-σ CSR BRO-ELL SELL-C-σ CSR BRO-ELL SELL-C-σ CSR BRO-ELL SELL-C-σ
-O0 213 737 372 223 769 388 190 603 337 193 624 357
-O1 63 171 121 58 208 118 55 115 107 53 132 105
-O2 57 156 118 53 190 126 61 106 106 53 126 139
-O3 57 156 118 52 191 126 60 105 105 52 126 139
-(O)fast 57 156 118 53 192 125 77 106 129 53 126 138

in performance, as expected. But interestingly, with these
compiler versions there is in average no additional increase
in performance for higher levels of optimization and even
sometimes a small degradation (for example, in the last column
of Table III again with the SELL-C-σ format).

Whether a compiler can detect in the source code oppor-
tunities for optimizations or fail on this can have a significant
influence on the runtime of a program, especially when small
parts of the source code (few lines of code of a SpMV kernel)
contribute to a major part of the program’s runtime. This can
be seen with the results for the CSR format as given in Table
III. In a previous paper [1] large differences in runtime were
reported for the Intel compiler with the CSR SpMV kernel
switching from optimization level -O3 to -fast. In a deeper
analysis of the compiler generated code it was later found that
a rather simple overloaded and inlined array access operator
[] in C++ that was defined to abstract from the concrete
realization of the storage format in the code contributed to a
significant drop of nearly 50 % in performance for all optimiza-
tion levels other than -fast with the Intel compiler compared
to the GNU compiler. The Intel compiler could not handle this
piece of code (which is from a programmer’s point of view
rather simple) with all optimization levels other than -fast

while the GNU compiler could handle this even for lower
optimization levels. After replacing the overloaded operator []
with a pointer copy and a normal C++ [] operator also the Intel
compiler could optimize this, which can be seen in the CSR
results given in Table III. Fig. 7 shows the relevant modified
code. It should be pointed out that this ”optimization” that was
necessary because otherwise a compiler could not optimize
a code, breaks software abstraction that is very import in
software development. With this solution the concrete storage
format of a vector is no longer hidden by a class.

In all following discussions, an optimized code (see, for
example, the discussion with overloaded array access operator)
together with a optimization level -O3 is used as the default
option and the effect of the other optimization techniques are
related to these results.

B. Unrolling Loops

Different to leaving everything to the compiler with a single
compiler option, loop unrolling is used here as the first explicit
optimization. It is used to enlarge basic blocks as most SpMV
kernels are rather small. This enables a compiler at the basic
block level (i.e., without the need to understand complex loop
structures) to optimize register usage, a better utilization of
functional units and a reduction of the loop overhead for small
loop bodies, as is in our case for all matrix formats. As already
discussed, this can be used rather comfortable with directives
specifying before a loop that this loop should be unrolled,

void SparseMatrixCSR::SpMV2(const Vector &v, Vector &u) {

// Faster access to vector data, but loosing abstraction.
// u[i] and v[i] with an overloaded [] operator
// prevented compiler optimizations with certain compilers
// Now copy the values-pointer of the vector class
// to a local pointer variable.
const double *const vValues = v.getValues();
double *const uValues = u.getValues();

// iterate over all rows of the matrix
for(int i=0; i<nRows; i++) {

// handle all non-zero elements in a row
for(index_t j=rowStart[i]; j<rowStart[i+1]; j++) {
uValues[i] += values[j] * vValues[columnIndex[j]];

}
}

}

Figure 7. Loosing software abstraction to handle compiler’s disability to
optimize code (simplified version shown).

Figure 8. Percentage of Instances that showed a runtime improvement with
loop unrooling.

specifying optionally an unroll factor as a parameter. We found
out empirically that an unroll factor of 4 performed best.

Fig. 8 shows the percentage of instances that showed a
runtime improvement, differentiated by matrix format. Figure
9 shows the average speedup that can be achieved using this
technique. As can be seen in the figures, the influence of
unrolling on the performance is minimal, all speedups are near
to 1. This can be seen also looking at individual speedup results
of the formats, which are not shown here. The conclusion is
here that both compilers use already techniques that are able to
enhance basic blocks for the reasons stated above, e.g. doing

425

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Average speedup with loop unrolling.

Figure 10. Percentage of Instances that showed a runtime improvement
using vector directives.

unrolling by their own.

C. Using Vector Directives
Vector directives are used to give a compiler additional in-

formation and hints. The question was here whether compilers
are able to detect themselves opportunities for vectorization
by just analyzing the source code or if additional hints are
necessary.

As already stated in [1], just specifying a single vector
directive is not sufficient to get good performance results.
Sometimes this was even counterproductive as a compiler was
asked to vectorize but without being able to understand how
to do that efficiently. Analyzing all performance information
that we gathered we found that several additional information
was necessary for the compiler beside the vector directive.
Quite important for the Intel compiler was to additionally tell
the compiler through additional directives that vector data is
aligned at certain byte boundaries (and which has to be assured
through appropriate data allocations).

The results were obtained in using OpenMP simd directives
to explicitly request a vectorization. We found no significant
performance difference in using compiler specific vector di-
rectives that some compilers know.

Figure 11. Average speedup with vector directives.

Figure 12. Percentage of Instances that showed a runtime improvement
using intrinsics.

Fig. 10 shows the percentage of problem instances that
got a performance improvement. Fig. 11 shows the average
speedup that was gained in using this directives. Similar to
the results for unrolling, there is no real performance gain in
using this technique. The compilers are already able to utilize
vector units with the modified code, the normal optimization
options and by specifying with an additional compiler option
for what target architecture code should be generated.

D. Using Intrinsics
While the previous two code optimization techniques are

rather high level techniques with few lines of additional code /
directives, applying the intrinsic technique is totally different.
Here a new program kernel has to be programmed on a rather
low abstraction level and explicitly taking a vector length of 4
into account that the hardware units provide. The programming
effort is much higher and a deep knowledge of the target
processor architecture is essential. For the VBL format, we
have not realized a solution with intrinsics and therefore no
numbers are shown for that format.

Fig. 12 shows the percentage of problem instances that
got a performance improvement. Fig. 13 shows the average
speedup that was gained in using this directives, differentiated

426

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Average speedup with intrinsics.

between the formats. Here, the results are rather different
compared to the previous two techniques discussed earlier
that have shown no significant performance differences to the
compiler’s own optimization.

There are three classes of results. In the first class – the
formats COO, SELL-C-σ and ESB – a huge performance gain
exists when using intrinsics. This gain is up to a factor of
nearly 2.5 compared to the pure compiler solution with a high
optimization level. Here, an intrinsic programmer was able to
find a (much) better performing solution than the compiler. The
ESB SpMV intrinsic kernel is rather complex using internally
an unrolling technique and utilizing special instructions from
the advanced AVX2 instruction set. Also the COO intrinsic
kernel is rather complex and uses special AVX2 instructions.
Different to that, the SELL-C-σ intrinsic kernel is relative
simple using intrinsics only in the innermost loop.

The second class is the format CSR showing no large
differences in runtime for the intrinsic solution compared to
the compiler generated code.

And in the third class are the formats BRO-ELL and
VBL where a performance degradation can be seen for all
or nearly all problem instances. Surprisingly (or not?) these
are the intrinsic kernels that have the highest complexity
/ most lines of code (see later Table V for that). Here it
may be that the programmer may just be overcharged by the
complexity. A compiler applies a strong formal background on
code generation and bases its decision on cost estimations. It
seems that for very complex code this has advantages.

The performance behavior discussed is mostly invariant of
the compiler used (with exceptions for the SELL-C-σ and ESB
format).

E. Evaluation Summary
This section summarizes the performance results and re-

lates that to the programming effort that was necessary to
reach that. Table V shows the programming effort stated in
the number of source lines that was necessary to realize the
techniques for the different formats. For the unrolling tech-
nique one or a few lines of rather simple additional code was
sufficient and no further specific knowledge was required from
the programmer. For the vector directive solution, specifying
the vector directive alone was not sufficient to get reasonable

performance. Additionally, certain additional information was
necessary to specify (alignment of vector data). But again, only
a few additional lines of high-level code were sufficient and
this additional code was not very complex. The programming
effort for an intrinsic solution is on the other side very high,
very complex and the solution looks rather different to all
other solutions for that sparse matrix format. For example,
the solution for the VBL format (where many complex code
lines were produced but no performance gain was achieved
with the intrinsics) has many highly adapted small kernels for
a selection of different vertical, horizontal or rectangular block
sizes, each programmed in a very different way.

Table IV summarizes the absolute run times for the various
compiler levels and manual optimizations on the example
matrix, differentiated between three of the six formats used.

The first technique used was compiler flags and the addi-
tional information on the target architecture to enable processor
specific optimizations in the compiler. The additional effort and
needed knowledge for using compiler flags is minimal and
no code change is necessary. The results show that already
with a small optimization level efficient code is generated for
the SpMV operation. Using higher optimization levels did not
show significant improvements and sometimes even a small
performance degradation. Using just a compiler switch is the
preferred method almost always to go for most programmers,
unless a really compute intensive kernel should be optimized.

The explicit unrolling technique did not show any major
change in runtime, neither in a positive nor in a negative di-
rection. Here, the compilers did already a good job in the field
if the programmer just specifies a coarse grain optimization
level. The programming effort and necessary expertise to use
loop unrolling is quite low.

Using the simd compiler directive to ask explicitly for
vectorization is easy to use but requires a deeper knowledge,
e.g., on data dependencies to avoid wrong code generation
as the compiler relies on the given information. As explained
above, such a directive alone was not sufficient and additional
directives on data alignment must be given. Without the
additional alignment information, vectorization was in certain
cases prohibited or done in a wrong way, which could result
even in a severe performance degradation. The performance
results gained with this approach (including directives and
alignment specification) for our SpMV kernels are very similar
to just using a compiler optimization option. Therefore, the
additional programming effort is not really necessary. But
for other program codes this may be advantageous where a
compiler could not handle the code itself without additional
information.

To use intrinsics a deep understanding of a processor
architecture and the available instruction set is necessary.
Additionally, the algorithm may be quite different to the
normal version when expressing it on an intrinsic level. The
program code is totally different to the original code and quite
hard to read and write, at least for a programmer who is not
used to intrinsics. Additionally, for different processor families
and even processors versions different code must be developed,
which makes program maintenance hard and costly. But for
half of the formats very high performance improvements could
be reached with this approach. The SpMV kernels that did not
perform as well as the pure compiler generated code were the

427

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. RUNTIMES IN MILLISECONDS FOR VARIOUS COMPILER OPTIMIZATION LEVELS AND OPTIMIZATION TECHNIQUES FOR THE
EXAMPLE MATRIX spe5Ref_a AND SELECTED FORMATS.

Intel Sandy Bridge (SB) Intel Haswell (HW)
g++ icpc g++ icpc

CSR BRO-ELL SELL-C-σ CSR BRO-ELL SELL-C-σ CSR BRO-ELL SELL-C-σ CSR BRO-ELL SELL-C-σ
-O0 213 737 372 223 769 388 190 603 337 193 624 357
-O1 63 171 121 58 208 118 55 115 107 53 132 105
-O2 57 156 118 53 190 126 61 106 106 53 126 139
-O3 57 156 118 52 191 126 60 105 105 52 126 139
-(O)fast 57 156 118 53 192 125 77 106 129 53 126 138
unrolling 56 152 66 52 187 82 63 101 77 52 118 127
directives 59 156 74 184 188 81 61 106 83 178 126 128
intrinsics 50 190 49 50 171 48 51 134 51 52 129 51

TABLE V. NUMBER OF CODE LINES TO REALIZE THE SPMV
(INCLUDING CODE FOR A DIRECT VECTOR ACCESS AS

EXPLAINED ABOVE).

COO CSR BRO-ELL SELL-C-σ VBL ESB
normal 5 9 45 16 23 37
unrolling 6 12 46 17 25 39
directives 12 16 47 17 31 42
intrinsics 76 68 303 72 738 170

most complex ones where the assumption is that the program
complexity was too high for a human programmer (at least in
a fixed amount of available time).

VI. CONCLUSIONS

SpMV is a time critical operation in many applications.
Optimizing this operation is a challenge. One way to optimize
the execution of a SpMV operation is to use the right storage
format, mostly dependent on the non-zero structure of the
matrix and the target architecture. But additionally to the
format, there are various opportunities to tackle that problem
on a program optimization level, then partially dependent on
the compiler used.

In this paper, several optimization approaches were de-
scribed and compared to each other concerning programming
effort / required expert knowledge and achieved performance.
This was done using implementations of six different storage
formats for sparse matrix and related SpMV implementations.

It was shown that using a simple compiler switch turning
on a certain optimization level in a compiler results in a good
performance for the SpMV operation with minimal/no effort.
Already the first level of optimization was sufficient to reach
that performance. This could only be achieved after some code
changes were done that prevented otherwise optimizations. An
example was the overloaded array access operator where the
performance of the Intel compiler generated code dropped to
one halve, even with a high optimization level. Replacing the
use of that operator with a direct access to an array structure
inside a class increased the performance to a normal level in
compensation to the fact that an important software abstraction
was lost.

The explicit optimization techniques loop unrolling (with
alignment specification) and vector directives have shown no
performance differences to a pure compiler optimization. The
programming effort for these techniques is rather low, the
required expertise is very low for loop unrolling and higher
when using vector directives as for a wrong specification a
compiler may generate code that produces wrong results.

The fourth approach was using intrinsics on an assembler
level. The performance results were ambiguous. Three of the
six SpMV implementations got a huge performance boost of
up to a factor of 2.5 in average compared to the pure compiler
solution with a high optimization level. For one format there
was no significant difference in performace. And for the two
remaining formats there was a performance degradation. The
latter formats have the most complex intrinsic realizations. The
programming effort and required expertise level for intrinsics
is by far the highest. The number of code lines necessary
for an intrinsic realization was often near a factor of 10
compared to a native implementation, sometimes even more.
And an intrinsic implementation needs to be enhanced or even
completely rewritten for a new processor architecture.

In summary, most programmers should rely on the opti-
mizations done by a compiler. Only for rare cases of very
compute intensive program kernels like SpMV there should be
thought about an intrinsic solution. As long as the complexity
of this code does not get too high, a human programmer in a
fixed amount of available development time can speed up such
computations substantially, which can justify the effort.

ACKNOWLEDGEMENTS

Jan Ecker, Javed Razzaq and Simon Scholl at Bonn-Rhein-
Sieg University helped us in many discussions. We would also
like to thank the CMT team at Saudi Aramco EXPEC ARC
for their support and input. Especially we want to thank Ali
H. Dogru for making this research project possible.

REFERENCES

[1] R. Berrendorf, M. Weierstall, and F. Mannuss, “Program optimization
strategies to improve the performance of SpMV-operations,” in Proc. 8th
Intl. Conference on Future Computational Technologies and Applica-
tions (FUTURE COMPUTING 2016), 2016, pp. 34–40.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM,
2003.

[3] A. Buluc, S. Williams, L. Oliker, and J. Demmel, “Reduced-
bandwidth multithreaded algorithms for sparse matrix-vector multipli-
cation,” in Proc. Intl. Parallel and Distributed Processing Symposium
(IPDPS’2011). IEEE, 2011, pp. 721–733.

[4] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Proc. ACM/IEEE Supercomputing 2007 (SC’07).
IEEE, 2007, pp. 1–12.

[5] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiply on modern processors with wide SIMD units,” SIAM
Journal on Scientific Computing, vol. 26, no. 5, 2014, pp. C401–423.

[6] W. Liu and B. Vinter, “CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proc. 29th Intl. Con-
ference on Supercomputing (ICS’15). ACM, 2015, pp. 339–350.

428

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] K. Li, W. Yang, and K. Li, “Performance analysis and optimization for
SpMV on GPU using probalistic modeling,” IEEE Trans. Parallel and
Distributed Systems, vol. 26, no. 1, Jan. 2015, pp. 196–205.

[8] W. Liu and B. Vinter, “Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors,” Parallel Computing,
vol. 49, 2015, pp. 179–193.

[9] J. Wong, E. Kuhl, and E. Darve, “A new sparse matrix vector multipli-
cation GPU algorithm designed for finite element problems,” arXiv.org,
vol. abs/1501.00324, 2015, pp. 1–35.

[10] J. Razzaq, R. Berrendorf, S. Hack, M. Weierstall, and F. Mannuss,
“Fixed and variable sized block techniques for sparse matrix vector
multiplication with general matrix structures,” in Proc. Tenth Intl. Con-
ference on Advanced Engineering Computing and Applications in
Sciences (ADVCOMP 2016), 2016, to appear.

[11] J. Razzaq, R. Berrendorf, J. P. Ecker, S. E. Scholl, and F. Mannuss,
“Performance characterization of current CPUs and accelerators using
micro-benchmarks,” Intl. Journal on Advances in Systems and Mea-
surements, vol. 9, no. 1&2, 2016, pp. 77–90.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 5th ed. Morgan Kaufmann Publishers, Inc., 2012.

[13] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
– The Hardware Software Interface, 5th ed. Morgan Kaufmann, 2014.

[14] Intel C++ Compiler 16.0 User and Reference Guide,
https://software.intel.com/en-us/intel-cplusplus-compiler-16.
0-user-and-reference-guide ed., Intel Corporation, 2016, retrieved:
August 2016.

[15] L. Project, The LLVM Compiler Infrastructure, http://llvm.org/, 2014,
retrieved: August 2016.

[16] R. Allen and K. Kennedy, Optimizing Compilers for Modern Architec-
tures. San Francisco: Morgan Kaufmann, 2002.

[17] K. D. Cooper and L. Torczon, Engineering a Compiler, 2nd ed.
Burlington, MA: Morgan Kaufmann, 2012.

[18] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco: Morgan Kaufmann, 1997.

[19] U. Banerjee, “An introduction to a formal theory of dependence
analysis,” The Journal of Supercomputing, vol. 2, 1988, pp. 133–149.

[20] OpenMP Application Program Interface, 4th ed., OpenMP Architecture
Review Board, http://www.openmp.org/, Jul. 2015, retrieved: August
2016.

[21] Cray Research Inc., CF90 Commands and Directives Reference Manual,
1995, sR-3901 2.0.

[22] R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, and D. Padua, “Re-
structuring Fortran programs for Cedar,” Concurrency - Practice and
Experience, vol. 5, no. 7, Oct. 1993, pp. 553–573.

[23] K. A. Tomko and S. G. Abraham, “Data and program restructuring of ir-
regular applications for cache-coherent multiprocessors,” in Proc. ACM
Int’l Conf. Supercomputing, Jul. 1994, pp. 214–225.

[24] Intel Intrinsics Guide, https://software.intel.com/sites/landingpage/
IntrinsicsGuide/ ed., Intel, 2015, retrieved: August 2016.

[25] GCC, the GNU Compiler Collection, Free Software Foundation,
retrieved: August 2016. [Online]. Available: https://gcc.gnu.org/

[26] PGI Compilers and Tools, https://www.pgroup.com/, retrieved: August
2016.

[27] M. Corden, Requirements for Vectorizable Loops, Intel, https://software.
intel.com/en-us/articles/requirements-for-vectorizable-loops/, 2012, re-
trieved: August 2016.

[28] Intel R© 64 and IA-32 Architectures Optimization Reference Manual,
Intel, http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf, Jun. 2016, re-
trieved: August 2016.

[29] Intel R© 64 and IA-32 Architectures Software Developer’s
Manual. Volume 1: Basic Architecture, Intel, http://www.
intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf, Jun.
2016, retrieved: August 2016.

[30] Software Optimization Guide for AMD Family 15h Processors, AMD,
http://support.amd.com/TechDocs/47414 15h sw opt guide.pdf, 2042,
retrieved: July 2016.

[31] F. Wende, “SIMD enabled functions on Intel Xeon Phi CPU and Intel
Xeon Phi coprocessor,” Konrad-Zuse Zentrum fr Informationstechnik
Berlin, Tech. Rep. ZIB-Report 15-17, Feb. 2015.

[32] G. Chrysos, Intel R© Xeon PhiTM Coprocessor – The
Architecture, https://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-codename-knights-corner, 2012, retrieved:
November 2014.

[33] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Understanding the performance of sparse matrix-vector multiplication
” in Proc. 16th Euromicro Intl. Conference on Parallel, Distributed and
Network-based Processing (PDP’08), 2008, pp. 283–292.

[34] E. Saule, K. Kaya, and U. V. Catalyrek, “Performance evalua-
tion of sparse matrix multiplication kernels on Intel Xeon Phi,” in
Proc. Intl. Conference on Parallel Processing and Applied Mathematics
(PPAM 2013), 2013, pp. 559–570.

[35] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,”
Ph.D. dissertation, University of California, Berkeley, 2003.

[36] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “Perfor-
mance modeling and analysis of cache blocking in sparse matrix vector
multiply,” University of California at Berkeley, EECS Department, Tech.
Rep. UCB/CSD-04-1335, 2004.

[37] CSR5 reference implementation, https://github.com/bhSPARSE/
Benchmark SpMV using CSR5.

[38] A. Buluc, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks,” in Proc. 21th Annual Symp. on
Parallelism in Algorithms and Architectures (SPAA’09), 2009, pp. 233–
244.

[39] CSB reference implementation, http://gauss.cs.ucsb.edu/∼aydin/csb/
html/index.html.

[40] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: yet another SpMV
framework on GPUs,” in Proc. 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’14), 2014, pp.
107–118.

[41] pOSKI: parallel Optimized Sparse Kernel Interface, http://bebop.cs.
berkeley.edu/poski/, retrieved: August 2016.

[42] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N. Koziris,
“An extended compression format for the optimization of sparse matrix-
vector multiplication,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 10, Oct. 2013, pp. 1930–1940.

[43] C. Lehnert, R. Berrendorf, J. P. Ecker, and F. Mannuss, “Performance
prediction and ranking of spmv kernels on gpu architectures,” in
Proc. 22th Intl. European Conference on Parallel and Distributed
Computing (Euro-Par 2016), 2016, p. to appear.

[44] N. Sedaghati, A. Ashari, L.-N. Pouchet, S. Parthasarathy, and P. Sa-
dayappan, “Characterizing dataset dependence for sparse matrix-vector
multiplication on GPUs,” in Proc. 2nd Workshop on Parallel Program-
ming for Analytics Applications (PPAA’15). ACM, 2015, pp. 17–24.

[45] N. Sedaghati, T. Mu, L.-N. Pouchet, , S. Parthasarathy, and P. Sadayap-
pan, “Automatic selection of sparse matrix representation on GPUs,” in
Proc. 25th Intl. Conference on Supercomputing (ICS 2015). ACM,
2015.

[46] AMD64 Architecture Programmers Manual. Advanced Micro Devices,
2013, vol. 3: General-Purpose and System Instructions.

[47] ARM, ARM v8 Architecture Reference Manual, 2010.
[48] M. Flynn, “Some computer organizations and their effectiveness,” IEEE

Trans. Computers, vol. C-21, 1972, pp. 948–960.
[49] Skylake (microarchitecture), Wikipedia, http://en.wikipedia.org/wiki/

Skylake (microarchitecture), retrieved: August 2016.
[50] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High

Performance Programming, Knights Landing Edition. Cambridge:
Morgan Kaufman Publishers, Inc., 2016.

[51] ISA Extensions, Intel, https://software.intel.com/en-us/isa-extensions/
intel-avx, retrieved: May 2016.

[52] J. Ecker, R. Berrendorf, J. Razzaq, S. E. Scholl, and F. Mannuss,
“Comparing different programming approaches for SpMV-operations
on GPUs,” in Proc. 11th International Conference on Parallel Processing
and Applied Mathematics (PPAM 2015), vol. 9573. Springer Interna-
tional Publishing, 2016, pp. 537–547.

429

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[53] W. Tang, W. Tan, R. Ray, Y. Wong, W. Chen, S. Kuo, R. Goh, S. Turner,
and W. Wong, “Accelerating sparse matrix-vector multiplication on
GPUs using bit-representation-optimized schemes,” in Proc. Intl. Con-
ference on High Performance Computing, Networking, Storage and
Analysis (SC’13). ACM, 2013, article no. 26.

[54] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proc. ACM/IEEE Conference on Supercom-
puting (SC’99). IEEE, Nov. 1999.

[55] X. Liu, E. Chow, M. Smelyanskiy, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-code processors,” in
Proc. Intl. Conference on Supercomputing (ICS’13). ACM, 2013, pp.
273–282.

[56] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Nov. 2010, pp.
1:1–1:25.

[57] SPE Comparative Solution Project, Society of Petroleum Engineers,
http://www.spe.org/web/csp/, retrieved: February, 2016.

