
363

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the Integration of Lifecycles and Processes for the Management of Structured
and Unstructured Content

A Practical Perspective on Content Management Systems Integration Architecture

Hans-Werner Sehring
Namics

Hamburg, Germany
e-mail: hans-werner.sehring@namics.com

Abstract—In practice, content management systems are in
widespread use for the management of web sites, to implement
intranet solutions, for provisioning content to mobile
applications, and for the publication of a range of documents
created from diverse content. Such content is typically
structured in a media agnostic way in order to support multi-
channel publication. An emerging class of multimedia
databases is digital asset management systems that specialize in
the management of unstructured content. Despite the market
for content management products aiming at integrated
solutions that cover most content management aspects, there is
a trend to augment content management systems with systems
that offer dedicated functionality for specific content
management tasks. In practice, there is particular interest in
systems incorporating both a content management system and
a digital asset management system. Both kinds of systems have
a notion of content lifecycles and processes for their
management. Therefore, particular attention has to be paid to
the alignment of those across system boundaries. There are
various ways of integrating content management systems to
accomplish this. All integration forms exhibit individual
strengths and weaknesses, achieved with differing
implementation effort. The choice of the adequate integration
architecture, therefore, depends on many factors and
considerations that are discussed in this paper.

Keywords-content lifecycle; content management; content
management processes; content management system; content
syndication; digital asset management; multimedia asset
management; multimedia database; software architecture;
solution architecture; systems integration.

I. INTRODUCTION
This article discusses a range of integration forms for

systems specialized in the management of structured and
unstructured content. The requirements and technical
constraints are taken from real-world experience with
practical projects. The presentation of the discussion is an
extended form of that given in the conference paper [1],
augmented with some additional thoughts on loose system
integration by document interchange.

Content Management Systems (CMSs) are in widespread
use today for the maintenance of web sites or documents by
content producers and editors. Typical CMSs aim to manage
both structured content (often in the form of hierarchies or
graphs of content objects) and unstructured content, namely

binary data that is shipped as some media file of a certain
standard format (like, e.g., images and videos in different
formats, text files documenting some process step, or content
marshaled for content transmission).

In practice, CMSs host elaborate processes that deal with
structured content while offering only very basic
functionality for unstructured content. CMS customers have
an increasing demand for additional functionality for the
treatment of binary multimedia content [2].

Consequently, there is a current trend to augment CMS
installations with a multimedia database of the newly
emerged class of Digital Asset Management systems (DAMs).

Both CMSs and DAMs provide a complete feature set for
the management and distribution of content, the major
difference being the kind of content they specialize in. Since
both CMSs and DAMs are designed to manage content and
publish it on the web, their integration therefore is not
obvious. In fact, depending on the particular requirements of
a web site, different integration forms may be suitable, each
providing its own advantages and drawbacks.

In this paper, we discuss integration approaches for
systems consisting of a CMS and a DAM. All approaches
considered are derived from actual scenarios found in
commercial projects. They all assume the CMS to deliver
web pages and the DAM to contribute embedded multimedia
documents [3]. The integration approaches differ in the point
within the content lifecycle at which the DAM contributes.

The remainder of this paper is organized as follows: In
Section II, we discuss the characteristics and functionality of
CMSs and DAMs. In Section III, we review the lifecycle of
content and digital assets, respectively, in typical CMS and
DAM implementations. The core of this paper consists firstly
of the discussion of two sets of approaches to systems
integration that work on content and on document level, with
each approach operating at different times in the content and
asset lifecycle. Secondly, it consists of an evaluation of
implementations of all approaches concerning required
adaptations to the CMS or the DAM. Section IV presents
integration approaches that rely on tight coupling of systems
on content level. According implementation considerations
of these approaches are discussed in Section V. Approaches
using a looser coupling based on document exchange are
presented in Section VI. The necessary system properties are
discussed in Section VII. The paper concludes with a
summary and outlook in Section VIII.

364

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. CONTRIBUTING SYSTEMS AND THEIR FUNCTIONALITY
With CMSs and DAMs there are two classes of systems

that deal with the editing of content and shipping of content.
Both contain editing facilities including workflows and

quality assurance processes. Both offer rendering and
playout functionality, usually targeted at specific usage
scenarios. These scenarios differ between software products
(performance, editing of unique documents vs. management
of uniform mass content, etc.).

As the names indicate, the systems differ in the kind of
entities they deal with. CMSs focus on the management of
structured content and on publication of documents that are
created from compositions of pieces of content. DAMs deal
with unstructured content that is managed, transformed, and
published on a binary level, and that is augmented with
descriptive data (metadata).

Consequently, CMSs and DAMs address similar use
cases, but they put a different focus on the functionalities as
discussed in the subsequent subsections.

A. Content Management Systems
CMSs provide their service as follows (see also [4]).

1) Content creation: CMSs offer tools for manual
creation of content by editors and for the automated import
of content from external sources, be it from files, from
feeds, or by means of content syndication. On creation,
typically some initialization tasks can be performed. E.g.,
some properties of content might be given default values, or
substructures are automatically created and linked.

2) Content editing: Part of a CMS is an editor tool that
is used to manipulate content, to control its lifecycle (see
Section III), and to preview renderings of content. Content
manipulations include adding value to content, the
maintenance of description data, and the addition of layout
hints and other channel-specific settings, e.g., URLs for the
publication of content in the form of world wide web
resources. Editing tools can be form-based with a separate
preview. In this case editors work on “raw” content. They
can preview documents as they are created from content for
selected publication channels. Alternatively, editors can
work in-document, in which case the editor manipulates
documents, and manipulations are mapped to the
corresponding content. Often there are workflows to control
the editing processes. For example, workflows can observe
mandatory content properties and they can steer translation
processes in the case of multilingual content.

3) Quality assurance: Quality assurance for content
consists of approval and publication, although in some CMS
products these two activities are one. Approval marks
content as being suitable for publication. Publication finally
makes it available to the target audience – in the form of
rendered documents. Quality assurance is realized by
assigning editing, approval, and publication tasks to
different roles. This way, the person who created content
cannot publish it directly. Instead, someone else reviews the

content. Making publication a separate step serves two
purposes: Firstly, a series of editing steps will be bundled to
form one new publication. Secondly, publication is the point
in time where the integrity of the overall product, e.g., the
web site, should be checked. From the perspective of an
approver (reviewer), it is acceptable to consider incomplete
document sets. A reviewer, e.g., checks one article, but will
not necessarily approve linked articles. At the time of actual
publication, though, a CMS should check completeness and
consistency of the publication, e.g., ensuring that every link
has exactly one target and that this target is published.
Quality assurance should be embedded in the CMSs
workflows.

4) Rendering: Rendering is the process of creating
documents from content. Structured content typically is
rendered by mapping content structures to document
layouts. Typically, view templates define the overall layout
and the placement of content. Content objects are often
rendered in a type-specific way. E.g., numbers are printed as
strings using the locales number format (e.g., “10.000,00”).
The ability to manipulate binary content is limited compared
to that of a DAM with matching capabilities. CMSs offer
general functionality on media content suited for a particular
publication channel, e.g., for the web. This particular case
includes rendering of images for adaptive design, e.g., to
resize them for specific channels or to apply device-specific
format conversions.

5) Playout: The shipping of rendered documents, called
delivery or playout, is not necessarily a core functionality of
a CMS. But since playout usually is tightly coupled with
rendering, most CMS products include a playout
component. Some CMSs target high performance output,
e.g., supporting horizontal scaling or caching of content and
documents. Sometimes playout components are integrated
with Content Delivery Networks (CDNs). In the course of
this paper we do not consider topics like user-generated
content where content is also created at the playout side.

B. Digital Asset Management Systems
DAMs offer a varying set of functionality for the

management of binary documents and metadata. Binary
multimedia documents can be of various kind, e.g., image,
video, text. Certain accordingly specialized DAMs are
sometimes referred to as Multimedia Asset Management
systems (MAMs). In the course of this paper we consider
general DAM functionality only. A DAM’s functionality
includes the following [5].

1) Asset Creation: Assets are created in a DAM as
content is in a CMS, manually or in automated processes.
Manual creation is typically accomplished by means of an
external authoring tool like an image processing or video
transcoding system. Its output is uploaded to the DAM.

2) Asset Editing: Consequently, editing is typically
restricted to the maintenance of structured information
(descriptive data, e.g., defining time code information in

365

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

moving image, legal information, provenance information,
etc. [6]). Binary manipulations are performed by authoring
tools. Editing may take place in workflows [7].

3) Quality assurance: DAMs have an approval process
like the one of CMSs. Workflows for quality assurance can
typically be customized. Legal rights are important for many
DAM applications. Media can only be used if the according
rights are available. In these cases quality assurance often
includes temporal constraints depending on the licensing of
rights-protected multimedia documents.

4) Rendering: The rendering of digital assets consists of
format conversions, media manipulations, and generating
multimedia documents from multiple assets. Transcoding
particular video formats for different browsers or mobile
platforms is a typical conversion task. Manipulations
include image manipulation, e.g., scaling of images for
adaptive design, inserting logos in photos, watermarking of
documents, etc. An example for document generation is the
assembly of a video from moving image and sound for
multilanguage videos. Whole hypermedia documents can
theoretically be created this way. Another example is the
addition of descriptive data to multimedia assets as meta
data, e.g., Exif data. In business applications, text
documents for, e.g., contracts may be generated in a
personalized way based on customer data and a current
transaction.

5) Playout: DAMs typically can deliver assets, at least
by shipping online to the web or offline by creating files,
e.g., for print. Some DAMs offer more sophisticated playout
functionality, e.g., reliable delivery, at-most-once delivery,
exactly-once-delivery, or digital rights management. DAMs
specialized in video management offer a playout based on
QoS parameters. In particular, they measure network latency
during video transmission to be able to sacrifice image
quality in favor of synchronicity if needed [8].

III. CONTENT AND DIGITAL ASSET LIFECYCLES
Both content objects managed by a CMS and assets

managed by a DAM have a lifecycle. In most of the CMS
and DAM software products, these lifecycles are explicitly
represented by states of the objects. Fig. 1 illustrates the
states and possible state changes as described below.

The content object lifecycle starts with content objects
being created. This can happen manually by direct
instantiation, automatically by having dependent objects

Created	

Edited	 Approved	

Deleted	 Withdrawn	 Published	

Figure 1. Lifecycle states of content objects.

created by software, e.g., parts of compound objects, or by
importing external content, e.g., from files or news feeds.

Subsequent editing adds value to content. Changes affect
the actual content or descriptive information that is also
stored in content objects. In particular, editing may include
linking content objects to each other in order to create
multimedia documents from the resulting object graphs.
Typically it depends on the content’s model whether a
reference is maintained by the link source or by the target,
and thus, which object is marked as edited. This stated is
maintained explicitly in order to mark content as requiring
quality assurance.

Quality assurance for content is reflected in a dedicated
approval step that marks content as being suitable for
publication. Such content is, depending on the CMS product,
either directly available for rendering and shipping or it
constitutes a candidate for a final publication step. In the
course of this paper we consider a dedicated publication step.
The approved state allows implementing a review process as
presented in II.A.3).

Note that due to the approval state, edited content cannot
directly be published.

An approved object that is edited becomes unapproved
(edited state). This requires content changes to be subject to
review. Typically CMSs support versioning of content and
this way allow an approved version to be online and a newer
version to be edited.

In most states, a content object can be deleted. Only for
published content this is not possible because deletion might
break links from other (still published) documents.
Therefore, in some CMSs content needs to be unpublished or
withdrawn before. This gives the system the chance to check
the modified publication for existing links.

Assets, being a different form of content, have a similar
lifecycle. They are initially created inside a DAM, be it by
import from external sources or by original authoring and
storing the results inside the DAM.

Editing assets is no primary use case of a DAM [9], but
the maintenance of descriptive information is a regular task.

DAMs support quality assurance by an approval process
similar to that found in CMSs.

In addition to the publication functionality of a CMS, a
DAM may prepare a multimedia document for playout by
actually storing a rendered variant. E.g., modified images
may actually be stored inside the DAM’s repository.

All lifecycle states of content of CMSs and DAMs may
differ for content variants, e.g., language-dependent content,
or there may be additional states. E.g., when translating a
text, all variants in other languages might change state to a
state requires translation not shown above.

IV. TIME OF ASSET INTEGRATION AT CONTENT LEVEL
Even if the management of structured and that of

unstructured content are separated utilizing a CMS and a
DAM, respectively, content and assets will finally be
combined in published documents.

There are various integration scenarios to relate content
and assets within workflows leading to the generation of
integrated presentations.

366

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CMS

DAM

Created Content
Object

(ex.: text)

Approved Content
Object (ex.: text)

Approved Asset
(ex.: image)

Created Asset
(ex.: image)

CMS

DAM

Created Content
Object

(ex.: text)

Rendered
Document

Approved Content
Object (ex.: text) Lorem ipsum

…

Approved Asset
(ex.: image)

Created Asset
(ex.: image)

 a) Content and assets managed in dedicated systems. b) Content and assets integrated into a document.

CMS

DAM

Created Content
Object

(ex.: text)

Approved Content
Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Approved Asset
(ex.: image)

Created Asset
(ex.: image)

Referenced Asset
(ex.: image)

c) Content referencing assets across system boundaries.

CMS

DAM

Created Content
Object

(ex.: text)

Content Created
from Asset
(ex.: image)

Approved Content
Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Created Asset
(ex.: image)

Referenced
Content/Asset
(ex.: image)

Approved Content/
Asset

(ex.: image)

d) Assets copied from a DAM into a CMS.

Figure 2. Example content and asset lifecycle relationships.

For the integration scenarios we only consider the case of
a CMS being used to prepare content and to define how to
render documents. This is the particular strength of a CMS
that cannot be substituted by a DAM. Therefore, the CMS
will always be in lead when considering the overall
document publication process.

We analyze integration approaches that integrate content
and assets at different points in their lifecycles. For these
approaches the actual integration of assets into content is
discussed on content and document level.

For a specific system, the integration approach should be
chosen out of the given alternatives based on the

367

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

requirements that the overall system needs to fulfill and
based on the implementation effort. Implementation effort
arises since CMSs and DAMs are typically not prepared to
have their content align to external content’s lifecycle.

Each integration form has its specific advantages and
disadvantages and addresses a different set of requirements.

The subsections of this section each discuss advantages
and disadvantages of one approach on the content level.

The subsequent Section V discusses the implementation
effort of each integrated solution working at content level.

Sections VI and VII lead the according discussion for
document level approaches.

As indicated above, the approaches differ in the point in
time at which an asset is integrated into the CMS. The points
in time considered here are:
• Document playout time: the point in time at which a

document is transferred to a publication channel, e.g.,
delivered to a network on request.

• Document rendering time: the point in time at which a
document is created from CMS content and assets.

• Content publication time: the point in time at which
content (that may contain references to assets) is
published. This means, it is marked as being available
to rendering.

• Content approval time: the point in time at which the
quality of content is assured. Here, the approval of
content of a CMS is considered since the CMS drives
the overall document creation workflow. The time of
asset approval is not considered for the processes.

• Content editing time: in particular, the time when assets
are related to content.

• Asset creation time: the time when a new asset shows
up in a DAM. It is important because from that point in
time on the asset might be related to content in order to
be used in a document later on.

Integration approaches with actions triggered at these
lifecycle states are discussed in the following subsections.

To illustrate the approaches we use a schematic view on
systems and processes as presented in Fig. 2.

Fig. 2(a) shows a CMS and a DAM. The darker boxes on
their inside show content objects in certain lifecycle states.
The content in the CMS could be textual content, e.g., an
article consisting of a headline and the text. The asset in the
DAM may be an image.

The light broad arrows in the boxes representing the
systems depict the lifecycle of the objects managed by the
respective system. In the CMS there is a newly created
content object that then becomes approved. A similar flow is
shown for an asset in the DAM.

To the right of Fig. 2(b) a document is shown. The
lifecycle arrows that are leaving the system boxes indicate
that content is rendered into the document according to a
chosen layout before playout. The “Lorem ipsum” box shall
represent a paragraph of text that is created from the textual
content coming from the CMS. The bordered rectangle
represents an image created from an image asset from the
DAM. Note that this example does not conform to the state

diagram in Fig. 1; content as well as assets typically have to
be published before playout. This additional step is omitted
here in order to simplify the figure.

Fig. 2(c) shows the setting of a reference as a special case
of editing: content is given a reference to an asset, depicted
by the solid lines crossing system boundaries. In this case it
is an external reference to an asset existing inside a DAM.
The reference is kept over lifecycle steps (here: approval of
both content and the related asset).

Fig. 2(d) illustrates the case that an asset is copied into
the CMS. The curved arrow indicates that a new content
object is created in the CMS as a copy of an asset residing in
the DAM. Typical CMSs can hold multimedia content, so
this copy can be created directly. The CMS cannot in general
offer the same functionality like the DAM, though.

The operations on content shown in Fig. 2 are the basis
for all integration scenarios discussed in the remainder of
this paper.

A. Integrating Assets at Playout Time
The integration at playout time takes place outside the

cooperating systems and happens in the scope of the
produced documents only. CMS and DAM do not exchange
content. The CMS renders documents that contain references
to the DAM’s playout channel. E.g., on the web, the CMS
generates an HTML page with HTTP references to images
managed by the DAM.

This integration form makes full use of the DAM’s
functionality with respect to rendering and playout.
Documents are created from both content and assets at the
latest point in time possible. This way, it is the loosest
integration form that happens at the point of document
assembly, possibly in a client, e.g., a web browser. The
equivalent in an information system is the presentation layer.

In the case of web content management this scenario
requires the DAM to be exposed to the Internet in order to be
able to deliver the assets for inclusion into documents.

Though this frontend integration makes this approach the
most volatile one, it is often preferred in practice due to its
comparably low implementation costs and due to the fact
that all of the DAM’s functionality is being used.

A CMS’s editor tool allows content objects to be related
to each other. Such relationships are required either to be
able to link documents or to define content structures that
lead to documents composed of various content objects, e.g.,
by means of aggregation.

Fig. 3 uses the example of an image related to text. This
integration scenario – as well as all the other ones discussed
in the course of this paper except for the integration at
creation time – requires an extension of the CMS’s editor
tool using a search function in the accompanying DAM. At
the same time the search functionality of the DAM is
required to be exposed to the CMS. This way, CMS users
can pick assets from the accompanying DAM in order to
relate the entities.

In the example of Fig. 3, a reference to an image was
made while editing textual content. The text containing the
reference to the image was approved. In parallel, the asset
holding the image was approved in the DAM.

368

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document Approved Content

Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Approved Asset
(ex.: image)

Created Asset
(ex.: image)

Referenced Asset
(ex.: image)

Published Content
Object (ex.: text)

Published Asset
(ex.: image)

Figure 3. Example asset integration at playout time.

For integration at playout time, the CMS stores proxy

content (as asset references) only at editing time. Such proxy
content represents an asset from the DAM. It is created when
an asset reference is defined using the editor tool.

The external references from proxy content to the asset it
represents require the DAM to provide stable external assets
IDs or addresses.

The CMS renders proxy content objects as references to
the according assets residing inside the DAM that delivers
them directly into the documents.

There is no general way to prevent possible runtime
errors due to assets that have been deleted or ones that have
otherwise become inaccessible. Since the lifecycles of
content objects and assets are decoupled, assets might, e.g.,
be deleted while still being referenced by content objects and
thus being required in a multimedia document.

The situation can gradually be bettered by deeper
systems integration. The DAM may send notifications on
assets becoming unavailable to the CMS that registers for
such events with the DAM. But it is unclear what actions the
CMS should take. Depending on publication strategies, all
content referencing such an asset may become inaccessible,
as well as (transitively) all content referring to such content.
In other cases, it might be possible to remove such references
but leave the rest of the content intact.

Based on notifications, content may be disapproved and
unpublished. In general, the automatic execution of these
operations without quality assurance can lead to unwanted
effects. Therefore, such propagation of lifecycle events has
to be introduced in an application-specific way.

B. Integrating Assets at Render Time
The integration at playout time takes place in the

documents’ layout only. The next earlier point in time is
rendering where the documents are created from content.

Rendering is the latest point in time at which assets are
copied into the CMS. Right before published content is

rendered as documents, referenced assets are copied into the
CMS. Proxies are replaced by actual asset content.

Fig. 4 illustrates this. Both content objects in the CMS
and assets reach the publish state independently of each
other. When content rendering starts, a content object
holding the asset content is created (shown as “Published
Content/Asset”). The document is rendered from CMS
content only.

Like most of the integration scenarios, as discussed in the
previous subsection, this one requires: (1) an extension of the
CMS’s editor tool with a search in the accompanying DAM,
(2) capabilities to manage asset references in order to relate
assets to content (e.g., using proxy content objects), and
(3) means to deal with the fact that asset and content
lifecycles cannot be synchronized in a generic way.

During rendering, references to assets are resolved in the
CMS. Assets are transferred to the CMS and stored at least
in the public stage. The benefit of this step is increased
independence from the asset lifecycle from this point on:
asset deletion no longer leads to inconsistent publications out
of the CMS. Nevertheless, disapproval of an asset does not
automatically lead to withdrawal of corresponding and
referring content, partially decreasing the effectiveness of the
DAM’s quality assurance.

The problem with unavailable assets exists as in the
preceding case. Yet it does not occur at playout time, but
instead at rendering time. This makes no difference in most
contemporary CMSs. In offline CMSs that render documents
in advance, this can be beneficial, though.

As at playout time, gradual improvement can be reached
by receiving events concerning an asset’s lifecycle after
creation of proxy content in the CMS. A referenced asset
might become unavailable for publication later on due to
disapproval or deletion from the DAM. The according events
should therefore be handled by the CMS. References may
have to be removed as described for playout time, and copied
assets may have to be removed from the CMS.

369

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document Approved Content

Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Approved Asset
(ex.: image)

Created Asset
(ex.: image)

Referenced Asset
(ex.: image)

Published Content
Object (ex.: text)

Published Asset
(ex.: image)

Published Content/
Asset

(ex.: image)

Figure 4. Example asset integration at rendering time.

C. Integration Assets at Publication Time

This integration scenario is much like the preceding ones,
only that it integrates assets even earlier in the asset/content
lifecycle, namely during publishing as the process of making
content available to rendering and playout (Fig. 5).

Typically, content is published in a transitive way. E.g.,
when an article is published, all related images need to be
published in the same step as well, or otherwise the
publication of the article will fail. The quality assurance
process needs to have set the approval state accordingly.

This integration scenario is based on an extension of the
CMS’s publishing process in a way that assets are retrieved
from the DAM and stored as content in the CMS during the
process (based on proxy content objects created at editing
time), at least in the public stage. This scenario is based on
the assumption that it is insufficient to apply quality

assurance to the proxies alone because of asynchronous asset
modifications in the DAM. Instead, the assets’ approval state
is checked as part of the publishing process of the CMS.

In contrast to the preceding scenarios, the CMS is
leveraged from having to consider unavailable assets at
playout time in this scenario. Still, the decoupled lifecycles
of asset and corresponding content need to be dealt with. To
this end, there either needs to be a synchronization of asset
and content state based on notifications as discussed before,
or the CMS neglects the approval state in the DAM and
maintains the state on the basis of content objects only.

In this integration scenario, as opposed to the preceding
ones, the CMS’s publication, rendering, and playout
capabilities are used for digital assets. Section V.B discusses
the resulting implications. The DAM’s playout functionality
(see Section II.B) will not be utilized.

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document Approved Content

Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Published Content
Object (ex.: text)

Published Content/
Asset

(ex.: image)

Created Asset
(ex.: image)

Referenced Asset
(ex.: image)

Approved Asset
(ex.: image)

Figure 5. Example asset integration at publication time.

370

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document Approved Content

Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Approved Content/
Asset

(ex.: image)

Published Content
Object (ex.: text)

Published Content/
Asset

(ex.: image)

Created Asset
(ex.: image)

Referenced Asset
(ex.: image)

Figure 6. Example asset integration at approval time.

D. Integration Assets at Approval Time
Quality assurance of multimedia assets can be transferred

to the CMS by integrating at approval time.
As Fig. 6 indicates, the approval state is not maintained

by the DAM, but only in the CMS. The management of the
approval states manifests itself by copying assets into the
CMS.

To this end, the approval process of the CMS needs to be
extended. Usually this process just consists of recording the
information that the quality of some content was approved. It
has to be extended by the creation of content as copies of
assets and the establishment of event handlers.

Later disapproval of assets needs to be recognized by the
CMS in order to adjust the state of asset copies. This can be
achieved by event propagation as in the other scenarios.

E. Integration Assets at Editing Time
Assets can be added to the CMS at editing time, e.g.,

when a reference to an asset is added to some content. This
requires an extension of the CMS’s editor with (a) search in
the accompanying DAM like in the cases above and (b) on-
the-fly content creation from assets selected from the search
result by an editor.

Fig. 7 shows the rather short lifecycle of an asset in the
DAM for this scenario. Assets are created in the DAM.
When they are first used in content, they are copied into the
CMS.

In contrast to the scenarios from the preceding sections,
Fig. 7 also shows that no external references from content to
assets are required in this scenario. On first use, assets are
copied, not only referenced.

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document Approved Content

Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Created Asset
(ex.: image)

Referenced
Content/Asset
(ex.: image)

Approved Content/
Asset

(ex.: image)

Published Content
Object (ex.: text)

Published Content/
Asset

(ex.: image)

Figure 7. Example asset integration at editing time.

371

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document

Content Created
from Asset
(ex.: image)

Approved Content
Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Created Asset
(ex.: image)

Referenced
Content/Asset
(ex.: image)

Approved Content/
Asset

(ex.: image)

Published Content
Object (ex.: text)

Published Content/
Asset

(ex.: image)

Figure 8. Example asset integration at creation time.

In this scenario the DAM does not manage the assets’
approval state. In general the CMS is responsible for the
whole content in this state since assets already have been
transformed into CMS content.

If assets are integrated in the CMS before approval time
they need to be monitored for subsequent changes, though.
Assets may be edited before approval, and changes have also
to be applied to the copies in the CMS. To this end, there
needs to be synchronization once content has been created
from an asset. This synchronization may be eager (on every
asset change) or lazy (on demand, e.g., at playout time).

With integration at approval time and before, rendering
and playout are performed by the CMS (s.a.).

Integration at editing time also transfers the quality
assurance of assets to the CMS.

F. Integrating Assets at Asset Creation Time
The earliest possible integration of assets is at the time of

their creation: assets are added to the CMS as soon as they
are created in the DAM. Fig. 8 illustrates this.

For this to happen, the DAM needs to notify the CMS
about new assets being created. The CMS then copies such
assets into its own repository.

This scenario only makes sense if the DAM is also used
in processes other than document production through a CMS
– otherwise there would be no need for a DAM at all. When
assets still have an independent lifecycle inside the DAM
then the integration requires continuous synchronization.
This synchronization is performed eagerly in order to
provide assets as content for selection within CMS. There is
no need for an extended editor that allows searching the
DAM since copies of the assets can directly be found in the
content base.

In this scenario, nearly all DAM functionality is
neglected in favor of the corresponding CMS functions. As
in the above scenarios quality assurance is controlled by the
CMS, and rendering and playout are carried out solely by it.

V. REQUIRED SYSTEM ADAPTATIONS FOR ASSET
INTEGRATION AT CONTENT LEVEL

In order to implement the integration of a CMS with a
DAM in one of the forms presented in the preceding section,
some extensions or adaptations to the software products are
required. Table I gives an overview of required adaptations
and attributes them to the integration scenarios.

For the analysis of the implementation measures we do
not need to distinguish between approval and playout time.

Selected product features and implementation aspects are
discussed in the subsections of this section: functionality that
is required in the participating systems in Section V.A and
features of typical products that will not be employed in
Section V.B.

A. Added Functionality
The scenarios that rely on continuous synchronization of

assets and corresponding content objects are typically
implemented through notifications by events, e.g., the event
of an asset having been modified. In these scenarios the
DAM needs to be an event source and the CMS an event
subscriber. The DAM will produce events and transmit them
to subscribers. The CMS registers for such events and
interpret them based on the assets state change.

For CMS products that cannot be extended with custom
code for the event handling, there needs to be an external
software component that listens to such events and then
triggers some actions inside the CMS. In this case the CMS
needs to provide an externally usable API for the required
operations.

In order to relate events to content created from assets,
the DAM has to provide stable IDs or addresses (like, e.g.,
URLs) of assets. This is particularly important due to the fact
that assets are long-lived. If the actual DAM does not
provide such IDs or addresses, artificial IDs need to be
maintained explicitly as part of the metadata.

372

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. CHANGES TO SOFTWARE PRODUCTS DEPENDING ON ASSET INTEGRATION TIME
Aspects Form of Integration

Creation time Editing time Approval/public. time Render time Playout time/never
Changes to CMS • subscribe to and

listen to events
(from DAM) or
expose public API;
create content on
asset creation or
modification

• media selection
dialog changed to
query DAM

• on-the-fly content
creation upon asset
utilization (linking)

• subscribe to and
listen to events
(from DAM) or
expose public API;
modify content on
asset modification

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

• on-the-fly content
creation on public
stage upon asset
(proxy) approval

• check of asset’s
approval state upon
asset proxy approval

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

• on-the-fly content
creation on public
stage upon asset
(proxy) rendering

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

Changes to DAM • event source for
CMS

• stable external IDs
(to relate assets in
events)

• query interface for
CMS

• event source for
CMS

• stable external IDs
(to relate assets in
events)

• stable IDs/addresses
• query interface for

CMS
• interface to query

approval state from
CMS

• stable IDs/addresses
• query interface for

CMS
• event source for

CMS

• stable IDs/addresses
• query interface for

CMS

Unused CMS
functionality • • • quality assurance

(approval)
• quality assurance
• rendering (assets)

• quality assurance
• rendering (assets)
• playout (assets)

Unused DAM
functionality • rendering

• playout
• rendering
• playout

• rendering
• playout

• playout

Most events are related to specific revisions of assets. For
those events, subscribers need IDs that reference asset
revisions, not assets in general. For an example of IDs
fulfilling this requirement see the CMIS object IDs [10].

As described in the preceding section, some integration
scenarios rely on an asset selection dialog integrated into the
CMS’s editing tool. Usually, such a dialog exists, but is used
to select multimedia content from the CMS itself. This
dialog has to be extended in a way that allows picking assets
from the DAM that have not previously been imported into
the CMS. Such a dialog must furthermore be backed by
functionality to create content (if not already existing) from
the chosen asset, either with a copy of the content or with a
link to the asset.

In order for the asset selection to work, the DAM has to
offer search functionality to the CMS (editor). The search
result contains, depending on the scenario, the asset data or
the asset ID or address.

B. Unused Functionality of the Software Products
There exists functionality that is provided both by a CMS

and a DAM. In an integrated system, the corresponding
redundant functions of one the systems may not be used.
From an architectural point of view, this makes no change.
But certain strengths and weaknesses of the products might
not be considered in an optimal way in particular integration
scenarios.

In those integration scenarios where the CMS handles
references to assets in the DAM only, the quality assurance
measures, usually some approval process, of the CMS are
not in effect for assets. Approving a content object just
makes a statement about a version of the corresponding asset
at approval time, but assets may change without the handles
inside the CMS being altered.

The aforementioned event-based synchronization can be
used to monitor the approval state of assets and to adjust the
approval state of the corresponding content objects. But
considering the whole asset lifecycle there are situations that
cannot be handled. The most drastic example is a valid asset
that is (rightfully) referenced by published content. If now
the asset is deleted then the CMS notices the state change.
But it cannot decide whether to keep the image reference
(thus rendering documents with missing images), whether to
remove the images reference from all content objects (thus
automatically altering the content; an operation that is
usually unwanted in CMSs), or whether to disapprove all
content objects containing the image reference (an operation
that has to be applied recursively and can thus have
unexpected effects).

The same questions arise for already rendered
documents. It depends whether they should be kept, since
they were correct at the time of rendering, or whether they
should be dismissed, since they are outdated.

If integration of a CMS and a DAM takes place in a way
that assets are copied to the CMS before playout time, the
rendering and possibly playout functionality of the DAM
will not be utilized. This is a major drawback of those
integration scenarios since these are about the most powerful
contributions of a DAM.

A CMS typically offers very limited rendering
functionality for multimedia content, if any (see
Section II.A). In the subsequent Section VI, we discuss
integration approaches that allow to use more of a DAM’s
rendering functionality.

Playout with QoS parameters is usually not provided by a
CMS, but by some DAMs. Unfortunately, playout by the
DAM cannot be used with integration by the time of
rendering or earlier.

373

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Depending on the point in the asset lifecycle at which
assets are integrated into a CMS, the rendering and possibly
playout functionality of the CMS is not used for content
originating from assets. As pointed out above, the
corresponding functions of a DAM are typically more
powerful that those of the CMS (see Section II.B). But there
are some things to consider in specific scenarios.

The rendering of assets often is influenced by context-
specific parameters of the publication channel at hand. For
adaptive web design, for example, images are scaled to the
actual screen size of the device posing a request, videos are
transcoded to suitable formats, etc. In addition, some CMS
installations allow editors to define the image formats used
in particular situations, e.g., renderings in certain contexts.
This cannot be achieved as easily when the DAM has the
duty of rendering assets.

With respect to playout a CMS does not provide the
media-specific functionality found in a DAM, in particular
there is no quality-controlled adaptive playout. On the other
hand, the CMS uses a playout infrastructure consisting of
sophisticated caching, inclusion of content delivery
networks, etc. This infrastructure has partly to be made
available to them DAM.

VI. ASSET INTEGRATION AT THE BINARY LEVEL
From an editing viewpoint the integration at the time of

asset creation or editing time often is the most beneficial. In
these cases assets are directly available to the content editor
and can be managed alongside with the structured content.
Editors work with the CMS only, and can thus directly
preview content renderings, have only one workflow to
follow, etc.

But, as discussed above, central DAM functionality is
lost concerning rendering and layout. The benefits of the
introduction of a DAM are neglected to some degree. If the
CMS is the only client of the DAM, then they are lost
completely.

To allow more of a DAM’s rendering functionality to
come into play in such an integration scenario, a variation of
the corresponding integration approach can be pursued.

In the preceding section we assumed the systems to pass
“raw” content to the other, limiting the DAM to a
multimedia database. Alternatively the synchronization of
asset content can be considered a logical playout step from
the DAM with the CMS being the receiver of rendered
documents.

Though this variant does not help for playout (QoS
parameters, etc.), it allows the integrated system participating
in the DAM’s functionality to render multimedia content
(see Section II.B).

Fig. 9 shows an example illustration of asset integration
performed this way. Here, an asset is inserted when a
reference to it is made from content.

When an editor choses an asset (using an extended
selection dialog querying the DAM as discussed above), it is
copied to the CMS similar to the case described by
Section IV.E. In the example used here, an approved version
of the asset is considered and thus has to exist.

But instead of requesting the asset’s media content
through some interface, the DAM’s rendering facilities are
used to create a multimedia document (typically in some
binary format) from the asset. The document is then
imported into the CMS as part of a newly created content
object representing the asset.

CMS

DAM

Created Content
Object

(ex.: text)
Rendered Document Approved Content

Object (ex.: text)

Content Object
Referencing Asset

(ex.: text)

Lorem ipsum
…

Approved Asset
(ex.: image)

Created Asset
(ex.: image)

Referenced Asset
(ex.: image)

Referenced
Content/Asset
(ex.: image)

Approved Content/
Asset

(ex.: image)

Published Content
Object (ex.: text)

Published Content/
Asset

(ex.: image)

Figure 9. The DAM delivering rendered documents to the CMS

374

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This way, the DAM’s rendering capabilities can be used
while still creating a copy inside the CMS for the editor.

In the following subsections we discuss aspects of this
variation of the integration.

A. Time of Asset Integration
The integration of assets in to the CMS can happen at

different points in time of the content’s and assets’ lifecycle.
Fig. 9 uses the example of content editing time and approved
assets.

The considerations of a choice of the point in time at
which to integrate are the same as in the case of direct
content access (Section III).

Additionally, the lifecycle state of the asset can vary.
Some DAMs require the asset to be in approved or published
state in order to be rendered and shipped. Even if the
software product does not enforce this behavior, it might be a
design choice to handle assets this way. In this case the
editor might not receive a copy of the asset that was chosen,
but an older revision that went through quality assurance.

B. Rendering of Multimedia Documents
The main benefit achieved by the approach of

exchanging multimedia documents is the employment of the
DAM for the rendering of assets.

Nevertheless, the CMS typically manipulates binary
content once more. It does so because it was built following
the assumption that binary content was created manually and
that it is not optimized for a particular layout.

Such additional media manipulations performed by the
CMS have two advantages: It allows editors to direct
renditions by a CMS. An example is attributes in the
descriptive data that are interpreted during rendering to
parameterize the rendering process. Furthermore, the CMS
can provide adaptive renderings based on a client’s context,
e.g., to adapt images to screen resolution.

Particular attention has to be put on the interplay of the
DAM’s and the CMS’s media manipulation functionality. A
graphic, for example, would be stored in raw format inside
the DAM. It provides a rendered version to the CMS, e.g., in
a predefined format and resolution. During the shipping of
the content from within the CMS this will in turn prepare the
graphics data by scaling it for the usage at hand (full screen
version, smaller embedded version, high resolution print
version). The concatenation of the manipulation functions
may lead to quality losses compared with a one-step
rendering through the DAM’s rendering functions.

In cases where there is no interference between the
DAM’s and the CMS’s rendering of assets, the concatenation
allows combining the quality of renditions provided by a
DAM at rendering time with the adaptations possible in the
CMS at playout time.

If there are losses in quality caused by chained
transformations, additional manipulations by the CMS are
not advisable. In that case, only one of the systems should
perform these.

If the DAM provides rendered media documents then the
according functionality of the CMS is not used. In this
scenario there should at least be renderings for different

defined contexts to not completely loose the ability of
playout time adaptations. The dynamic rendering is replaced
by choosing among variants for which documents are
rendered in advance. To this end, the DAM needs to be
configured to produce the variants required for the
documents that are produced by the CMS.

In the opposite case the DAM provides assets in original
(maximum) quality to the CMS and leaves manipulations to
it. The typically better rendering capabilities of the DAM are
neglected.

The typical tradeoff regarding this design choice is the
often better quality of renderings provided by a DAM and
the advanced functions if offers on binary documents
opposed to the adaptivity possible with the CMS as the
playout system.

C. Asset Description Data
A copy of an asset in the CMS does not only consist of

the media data, but also reflects the description data or
metadata. Such data is managed in the DAM to describe the
media, the entities it represents, regulations of its use, etc.

During rendering, most or all of the description data is
not contained in the rendered multimedia document. It is
only used internally for management purposes. Therefore,
data has to be transmitted to the CMS using a different
channel.

In Fig. 9 the table icon in the lower left represents this
channel. It represents an externalization of metadata, e.g., as
a database or a file.

A DAM does typically not produce such a record or file.
The export of the data has to be added to the DAM product.
A matching importer needs to be set up for the CMS.

The file has to be generated in way that it can be
associated with the media document (e.g., by file name or by
contained data that identifies the document). Particular care
has to be taken when documents are created with high
frequency, so that there is more than one version of the
document and the data.

VII. REQUIRED SYSTEM ADAPTATIONS FOR ASSET
INTEGRATION AT BINARY LEVEL

All the implementation measures listed in Section V are
also required in scenarios in which the DAM delivers
rendered media documents to the CMS. They are related to
the synchronization of the lifecycle states of assets in the
DAM and their surrogates managed in the CMS. These
measures are, therefore, needed in these scenarios as well.

Consequently, all properties from Table I are also valid
here. For the exchange of documents some additional means
are required. These are discussed in this section.

Table II shows the cumulated requirements to the CMS
and DAM configuration.

A. Added Functionality
Central to the approach of exchanging rendered

documents is the DAM acting on request of the CMS. To
this end, the DAM needs to be equipped with a service
accessible by the CMS. The interface of this service allows
to request rendered multimedia documents plus metadata.

375

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. CHANGES TO SOFTWARE PRODUCTS DEPENDING ON ASSET INTEGRATION TIME AT BINARY LEVEL
Aspects Form of Integration

Creation time Editing time Approval/public. time Render time Playout time/never
Changes to CMS • subscribe to and

listen to events
(from DAM) or
expose public API;
create content on
asset creation or
modification

• import documents
produced by the
DAM

• import asset
metadata exported
by the DAM

• media selection
dialog changed to
query DAM

• on-the-fly content
creation upon asset
utilization (linking)

• subscribe to and
listen to events
(from DAM) or
expose public API;
modify content on
asset modification

• import documents
produced by the
DAM

• import asset
metadata exported
by the DAM

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

• on-the-fly content
creation on public
stage upon asset
(proxy) approval

• check of asset’s
approval state upon
asset proxy approval

• import documents
produced by the
DAM

• import asset
metadata exported
by the DAM

• media selection
dialog changed to
query DAM

• surrogate objects
for assets

• on-the-fly content
creation on public
stage upon asset
(proxy) rendering

• import documents
produced by the
DAM

• import asset
metadata exported
by the DAM

• media selection
dialog changed to
query DAM

• surrogate objects for
assets

Changes to DAM • event source for
CMS

• stable external IDs
(to relate assets in
events)

• render documents
on requests posed
by the CMS

• export metadata and
relate it to rendered
document

• query interface for
CMS

• event source for
CMS

• stable external IDs
(to relate assets in
events)

• render documents
on requests posed
by the CMS

• export metadata and
relate it to rendered
document

• stable IDs/addresses
• query interface for

CMS
• interface to query

approval state from
CMS

• render documents
on requests posed
by the CMS

• export metadata and
relate it to rendered
document

• stable
IDs/addresses

• query interface for
CMS

• event source for
CMS

• render documents
on requests posed
by the CMS

• export metadata and
relate it to rendered
document

• stable IDs/addresses
• query interface for

CMS

Unused CMS
functionality • rendering (assets)

depending on
rendering quality

• rendering (assets)
depending on
rendering quality

• quality assurance
• rendering (assets)

depending on
rendering quality

• quality assurance
• rendering (assets)

depending on
rendering quality

• quality assurance
• rendering (assets)

depending on
rendering quality

• playout (assets)
Unused DAM
functionality • playout • playout • playout • playout

If there are render variants, e.g., different image
resolutions, the rendering service should accept parameters
to describe the requested render variant. The interface also
needs to define the format of the result.

In practice, there are possible variations of the way the
DAM transmits the result to the CMS. Fig. 9 indicates that
the document is passed directly to the CMS as the result of
the rendering service the DAM provides, while metadata is
written to a file. Such a file needs to be accessible by both
the DAM and the CMS.

Alternatively, the metadata might be shipped together
with the document using some specific format defining how
to marshal the tuple (document, metadata).

As yet another alternative, the document might be written
to a common storage location as the metadata records are.
Then the CMS reads the document from this common
storage.

Synchronicity is the main consideration to choose among
the alternatives. Exchanging files typically leads to
asynchronous provision of the document. While this frees the
DAM from real-time delivery, asynchronous operation is not

possible in all cases. E.g., at render time the CMS needs to
receive the document and metadata in time.

On the side of the CMS there needs to be an importer that
creates a content object from the DAM’s export. This
importer works on the result of the render request. If it is
executed synchronously, the importer has the obligation to
create CMS content instantly.

In a quite loose coupling the CMS importer observes the
shared memory location to wait for the exported rendered
assets. E.g., it may do so by watching a directory in a shared
file system.

This loose coupling also adds a buffer and a level of fault
tolerance to the systems’ coupling, since the documents and
data records are persisted for the time of the request. When
the document import lags behind the document creation – a
typical case – then the shared storage serves as a kind of
persistent buffer. It also makes the system robust against
temporal failures leading to restarts of the CMS.

When more than one CMS instance waits for files and
processes the imports, the queue of documents serves as a
queue to distribute the load among the instances.

376

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Unused Functionality of the Software Products
The main advantage of integration that is based on

document exchange lies in the additional functionality of the
software products used in comparison to the case of direct
content access. In all cases, the rendering functions of the
DAM are used.

Whether the rendering capabilities of a CMS are
employed for media data depends on the quality losses of
chained document rendering (see above). Often there will be
a tradeoff between rendering quality and extra effort on the
one hand, and the ability to render documents specific to the
context of a request on the other. Therefore, the rendering
functionality for binary content of a CMS may be unused.

The playout functionality of a DAM is used only when
integrating assets at playout time.

VIII. SUMMARY AND OUTLOOK
The paper closes with a summary and an outlook.

A. Summary
This paper presents various forms of integration of a

CMS and a DAM. If the CMS is in lead regarding the overall
content management process – the basic assumption of the
work presented here – then the main difference between the
integration forms is the point in the content and asset
lifecycle at which an asset is introduced in the CMS.

With the CMS in lead there is, however, no way to utilize
the playout capabilities of a DAM except for the integration
at playout time. However, integration this late in the lifecycle
does not allow assuring the overall quality using the means
of the CMS.

Consequently, there is no optimal integration form. The
choice of the right integration point depends on the
application to build.

All integration forms exhibit individual strengths and
weaknesses, achieved with differing implementation effort.

 The choice of a suitable integration form, therefore,
depends on different factors and considerations discussed in
this paper.

B. Outlook
This article describes insights gained from practical

projects. In the future, additional research will round up
these insights in a systematic way.

For integrated solutions – like a CMS combined with a
DAM in this case – we would like to see a repository of
typical requirement/solution patterns. This way, the
experiences made can be preserved and solutions can be
reapplied.

The discussion in this paper shows that many decisions
rely on the particular properties of the software products
used. The solution scenarios should, therefore, be refined to
consider actual software products with their individual
capabilities to be of increased value in practical applications.
This may lead to additional integration scenarios.

Furthermore, some decisions have to be made on the
basis of more specific requirements: the integration approach
in general, but also implementation details like, e.g., the way
how to handle concurrent asset modifications in the DAM

and in the CMS. A comprehensive catalog containing more
refined use cases and blueprints for typical solutions is
required in practice.

The medium on which documents are transmitted is not
considered in this paper. The Internet is the main distribution
channel in many cases. There are dedicated networks, e.g.,
for mobile applications [11]. These may require specific
considerations.

Future work will try to extend the considerations to more
general integration scenarios in the field. A quite prominent
example is product information management fulfilled by,
e.g., a CMS in cooperation with catalog management or a
CMS combined with a shop solution.

ACKNOWLEDGMENT
The author thanks his employer, Namics, for the

opportunity to follow his scientific ambitions by publishing
some of his thoughts. In particular since these relate to and
extend commercial activities.

Fruitful discussions with numerous colleagues (current
and former), business partners, and customers led to the
insights presented in this paper. Thanks go to all of them.

My thanks also go to the anonymous reviewers for the
constructive hints that helped to improve this paper.

REFERENCES
[1] H.-W. Sehring, “An Overview Over Content Management

System Integration Approaches: An Architecture Perspective
on Current Practice,“ in Proceedings of The Eighth
International Conference on Creative Content Technologies
(CONTENT) 2016, March 2016, pp. 30-35.

[2] Ovum, Making the case for digital asset management in retail:
Using technology to manage digital assets effectively.
Whitepaper, August 2015.

[3] A. Saarkar, Digital Asset Management. Whitepaper,
Cognizant Technology Solutions, 2001.

[4] S. King, “Web content management,” in Computer
Technology Review. Los Angeles, vol. 22, issue 11, p. 9,
2002.

[5] D. Austerberry, Digital Asset Management: How to Realise
the Value of Video and Image Libraries. Amsterdam, Boston:
Focal Press, an imprint of Elsevier Ltd., 2004.

[6] Y.-M. Kim et al., “Enterprise Digital Asset Management
System Pilot: Lessons Learned,” in Information Technology
and Libraries, John Webb, Ed. vol. 26, no. 4, 2007.

[7] T. Blanke, “Digital Asset Ecosystems: Rethinking crowds and
cloud,” Chandos Publishing, 2014.

[8] H. Thimm and W. Klas, “Playout Management in Multimedia
Database Systems,” in Multimedia Database Systems, K. C.
Nwosu, B. Thuraisingham, and P. B. Berra, Eds. Springer US,
pp. 318-376, 1996.

[9] C. D. Humphrey, T. T. Tollefson, and J. D. Kriet, “Digital
Asset Management,” in Facial Plastic Surgery Clinics of
North America, vol. 18, no. 2, pp. 335-340, 2010.

[10] Content Management Interoperability Services (CMIS)
Version 1.1. 23 May 2013. OASIS Standard. [online].
Available from: http://docs.oasis-
open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.html

[11] H. Koumaras, D. Negrou, F. Liberal, J. Arauz, and A. Kourtis,
“ADAMANTIUM project: Enhancing IMS with a PQoS-
aware Multimedia Content Management System,” in Journal
of Control Engineering and Applied Informatics (CEAI),
vol. 10, no. 2, pp. 24-32, 2008.

