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Abstract—Over one decade of research in engineering of self-
organization (SO) has established SO as a decentralized way to
develop self-adaptive systems. However, such SO systems may
show unwanted behavior under certain conditions, e.g., a decrease
of performance and/or starvation, even when apparently well-
engineering. A promising concept to overcome such dynamical
in-efficiencies in SO systems is to realize the dynamic exchange
or reconfiguration of the coordination processes responsible for
the self-organizing behavior in terms of a structural adaptation. In
this paper, we propose an architecture and engineering approach
to support the self-adaptive, structural exchange (or recon-
figuration) of self-organizing coordination processes based on
distributed Multi-Agent technology. Here, a sensor in each agent
detects any decrease of specified SO performance indicators,
which initiates a distributed adaptation process that allows the
exchange (or reconfiguration) of the self-organizing coordination
processes, enabling the system to adapt to changing conditions
automatically. The proposed engineering approach is explained
exemplary and evaluated using a case study in which a set
of autonomous robots is needed to be coordinated in order to
achieve their collaborative goal of mining commodities. Based
on two different coordination strategies, it will be shown how
the autonomous entities benefit from self-organizing coordination
processes that support the emergent formation of local mining
groups among the robots, and how the concept of structural
adaptation helps to overcome a failure that negatively influences
these coordination processes by a dynamic exchange of the
coordination processes.
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I. INTRODUCTION

A preliminary version of this article appeared as a confer-
ence paper [1]. This article extends the previous conference
paper by giving a more detailed description of the both, the
engineering approach as well as the evaluation of the proposed
structural adaptations for self-organizing Multi-Agent Systems
(MAS).

For self-organizing MAS the capability to adapt to a variety
of (mostly external) influences, i.e., their adaptivity, is a key
feature. In this context, adaptivity describes the ability of
a system to change its structure respective behavior in re-
sponse to external influences or altering demands. In addition,
adaptive, self-organizing systems still strive towards reaching
(initially defined) global goals. Looking in more detail at such
adaptive systems, they reveal many different facets. According

to [2] it can be distinguished between design-time and run-
time adaptivity, where the latter one is far more challenging.
Figure 1 depicts even more dimensions of adaptive systems.
It differentiates between approaches that only change system
parameters in order to exhibit adaptive behavior and concepts
that can even alter the whole structure respective replace
certain components of the system. Furthermore, it distinguishes
between approaches where the self-organizing behavior is
achieved through centralized or decentralized control concepts.
Thereby, it is differentiated between solutions where the adap-
tivity is managed manually or automatically by the system
itself. The red dot shown in the figure ranks the proposed
solution according to the different dimensions. Our approach is
based on a decentralized architecture and emphasizes structure-
based changes (while also supporting parameter-based ones).
Possible adaptations are modeled manually at design-time and
executes automatically at run-time. Therefore, the solution is
ranked between manually and automatically adaptations.

Figure 1. Dimensions of adaptive systems following [3].

Developing and operating systems that belong to this class
of adaptive systems, i.e., self-organizing systems, is a challeng-
ing task. Firstly, it requires a systematic development approach
that copes at all stages with three inherent characteristics
of these systems: non-linear dynamics, stochastic behavior
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and emergent phenomena. Secondly, it requires a modular
system architecture which enables the adaptation of the struc-
ture at runtime using customizable and reusable coordination
processes. These coordination processes can be understood
as standalone design elements that equip a self-organizing
system with a specific dynamic behavior. By exchanging these
coordination processes at runtime, a distributed application can
adapt not only its behavior but also its inherent structure. Thus,
enabling the system to overcome problems like performance
decrease or starvation, by adjusting the structure of its self-
organizing processes automatically. The approach presented
in this paper extends already established approaches for en-
gineering self-organizing systems by introducing a system
architecture that systematically enables structural adaptations
for distributed systems with decentralized control mechanisms.
It is conceptual comparable to the local reactive planning
approach from the BDI (belief, desire, intention) agent soft-
ware model [4], where an agent selects a plan based on
local information and alternatives. In contrast, the proposed
approach deals with systems that strive towards a distributed
consensus on an application-global level to select and execute
predefined structural adaptation plans. Thereby, each of the
participating agents only relies on its local information in a
decentralized way.

The remainder of this paper is structured as follows: Sec-
tion II describes related work, followed by Section III where
the properties and engineering challenges of self-organizing
MAS are described. Section IV describes the core concepts of
structural adaptations, the proposed architecture and descrip-
tion language as well as the adaptation algorithm. Section V
introduces the MarsWorld scenario and describes two different
coordination process manifestations as well as whose structural
adaptation. The evaluation results of both the differences
between the two coordination process manifestations and the
impact of the structural adaptation are described in Section VI.
Finally, Section VII concludes the paper.

II. RELATED WORK

Current trends in computer science like mobile and ubiq-
uitous computing in combination with an increasing diversi-
fication of hard- and software platforms challenge traditional
engineering and operating approaches for distributed systems
substantially. Years ago, such systems were mainly closed ones
with a-priori known tasks, challenges, and users. Nowadays,
with an increasing pervasiveness and distribution, they have
turned into an integral part of the business world as well as
the private life of many people. This evolution implicates new
challenges for the engineering and operation of distributed
systems. For instance, high and unpredictable dynamics, an
increasing complexity, and the satisfaction of non-functional
requirements like, e.g., robustness, availability, and scalability.
Altogether, this requires a new generation of distributed sys-
tems that is capable of adapting its behavior autonomously.

This challenge is addressed by research areas like Auto-
nomic [5] or Organic Computing [6] that aim at providing
new approaches to solve it in a systematic fashion. They
achieve it with different types of feedback loops, relying
on (usually) centralized control elements. The authors of [7]
identify feedback loops as the key design element within a
distributed system in order to exhibit adaptivity. Here, feedback
loops consist of three main components: sensor, actuator and

a computing entity. Sensors are in charge of observing the
behavior and the (current) status of the system respective the
environment it is situated in. Actuators can change the con-
figuration of the system, which can either lead to parametric
or structural changes. The computing entity that serves as a
connector between the system input (sensor) and the output
(actuator) can be very different with regards to its internal
architecture and abilities [8]. For instance, the widespread
autonomic control loop [5], which is based on a monitoring,
analyzing, planning, executing and knowledge loop (MAPE-
K), contains a centralized computing entity, which can be asso-
ciated with an autonomic manager to software and hardware
components in order to equip them with adaptive behavior.
Contrasting to feedback loops, the authors of [9] introduce a
policy-based approach where the non-functional concerns of an
application are described as policies and the application adapts
itself to changing conditions controlled by a centralized policy
engine. Like the approach described in this paper, the work
presented in [9] also focuses on a clean separation between
the business-logic and the self-adapting fulfillment of non-
functional requirements.

According to [10], this class of approaches, which intro-
duce centralized control concepts, can be called self-adaptive
systems. In contrast to this, there are approaches that aim
at providing automatically adaptive systems which rely on
decentralized architectures and utilize distributed feedback
loops and coordination mechanisms. They are called self-
organizing systems [10] and seem, due to their decentralized
system architecture, to be better suited to deal with the afore-
mentioned non-functional requirements. Also, the concept of
self-organization has been observed in many other domains
like, e.g., biology, physics, or sociology and has, furthermore,
proven its applicability for distributed systems already before
(as mentioned in e.g., [11] [12]).

In addition to the difference between centralized and de-
centralized feedback loops, another criterion targets the general
applicability of existing approaches that aim at providing
methods for structural adaptivity for distributed systems. Ac-
cording to [10], adaptivity defines a general system view that
can be further decomposed into so called self-* properties
of distributed systems. Therefore, there are many approaches
which target the provision of a subset of these properties
[13] [14] [15]. Whereas these approaches reach good results
with respect to specific aspects of adaptive behavior, they lack
general methods and concepts that provide structural adaptivity
in general. However, this limits the general applicability of
these approaches and forces system developers to deal with
(completely) different approaches if there is the requirement
for more than just one type of adaptivity. Consequently, if a
system requires different self-* properties it has to incorporate
different concepts and techniques which increases the com-
plexity of related implementations considerably.

This could be improved by using approaches that are
based on structural adaptivity. However, applying them to
the concept of self-organization in decentralized systems is
an ambitious task. Especially, the purposeful engineering of
self-organizing systems is challenged by their inherent non-
linear dynamics and the bottom-up development process. There
is a lack of approaches (and corresponding implementations)
that deal with the whole development process systematically.
Approaches like [16] [17] focus mainly on early development
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activities (e.g., requirement analysis or modeling), whereas
approaches like [18] [19] provide basic implementation frame-
works. Approaches like [20] [21] do provide a comprehen-
sive development process but focus on self-adaptive systems
based on centralized control concepts. An approach towards
meta-adaptation support based on reusable and composable
adaptation components is presented in [22]. The introduced
Transformer framework constructs system global adaptation by
contextually fusing adaptation plans from multiple adaptation
components. Similar to the work presented in this paper, it
focuses on decentralized structural adaptation for multiple
purposes. While the work presented here focuses on a general
engineering approach, the work presented in [22] focuses
more on the conflict resolution between different adaptation
behaviors. The authors of [23] introduce a decentralized plan-
ning approach for self-adaptation in multi-cloud environments.
Thereby, they focus on the runtime management of Internet
of Things oriented application deployed in multi-clouds. De-
centralized self-adaptation is seen as a promising solution in
order to maintain the applications for quality assurance. The
presented approach tackles the uncertainty effect of adaptations
on a specific layer, which may cause negative impacts on other
layers. Therefore, they introduce a planning model and method
to enable the decentralized decision making. The planning is
formulated as a Reinforcement Learning problem [24] and
solved using the Q-learning algorithm [25]. Contrasting, to
the approach presented here where a general approach for
the engineering of self-adaptation is envisioned, the approach
presented by [23] focuses on solving the problem of self-
adaptation in the specific context of multi-cloud environments.

In conclusion, it can be stated that there is a lack of
approaches that combine the above mentioned aspects in
order to support structural adaptivity as a basis for systematic
development of generic self-organizing systems. Therefore,
the following two sections introduce an approach based on
the systematical engineering of self-organizing MAS, which
supports the whole development process. It uses decentralized
feedback structures and aims at supporting structural adaptivity
in general.

III. SELF-ORGANIZING MAS
The presented approach on structural adaptation of co-

ordinations processes is based on previous work on self-
organizing dynamics in MAS. Such a self-organizing dynamic
is shown in the left side of Figure 2. The MAS exhibits a
self-organizing dynamic that causes the system to adapt to
external and internal influences. The self-organizing dynamic
realizes the intended adaptivity of the software system and
is mapped by decentralized coordination processes. The pro-
cesses describe a self-organizing behavior that continuously
structures, adapts and regulates aspects of the application.
They instruct sets of decentralized coordination media and
coordination enactments. Coordination enactments and media
distinguish between techniques for the adaptation of system
elements (local entity adaptation) and realizations of agent in-
teractions (information propagation). Together, they control the
microscopic activities of the agents, which on a macroscopic
level lead to the manifestation of the intended self-organizing
dynamic. The integration of the coordination enactments and
media is prescribed by the coordination process definitions,
which structure and instruct their operations. Thus, the self-
organizing dynamic of the MAS is described by coordination

processes, which model the intended adaptivity of the system.
On a technical level these processes instruct coordination
enactments and media which realize the intended adaptivity.

Conceptually speaking, structural adaptations for self-
organizing systems mean an adaptation of the coordina-
tion processes, as they describe the system’s intended self-
organizing dynamic. The right side of Figure 2 illustrates
this concept. The MAS exhibits structural adaptations which
influence and observe the self-organizing dynamic. Similar
to the self-organizing dynamic, the structural adaptations are
described by processes. They define adaptation conditions,
which specify states of the system where the self-organizing
dynamic should be altered. This alteration is realized by
prescribed adaptation activities, which are triggered due to
specified self-organization performance indicators. Ineffective
coordination processes are deactivated if the system’s behavior
becomes deficient and, therefore other coordination processes
are activated in exchange. This results in a structural adaptation
of the coordination process composition. This means on a
lower level, that if the system’s behavior is not deficient
but measured inefficient, the active coordination processes
are reconfigured by parametric adaptations. The structural
adaptation processes instruct adaptation enactments to monitor
the agents with regard to the self-organization performance
indicators. In both cases (structural or parametric adaptation),
it is necessary that the system’s entities find a consensus
whether or not the adaptations should be performed. Therefore,
a distributed voting method is utilized in order to find an
agreement about the execution of the adaptation. In case of
a positive one it is performed by manipulating the relevant
coordination processes.

A. Coordination Enactment Architecture

The work on structural adaptations is based on a previ-
ously published tailored programming model for the software-
technical utilization of coordination processes as reusable
design elements [26]. The programming model provides a
systematic modeling and configuration language called MAS-
Dynamics and a reference architecture to enable the enactment
of pre-described coordination models called DeCoMAS [27]
(Decentralized Coordination for Multi-Agent Systems). The
architecture is based on the clean separation of activities
that are relevant for the coordination of agents and the sys-
tem’s functionality. Therefore, coordination processes can be
treated as first class design elements that define application-
independent coordination interdependencies. Figure 3 illus-
trates the layered structure of the coordination enactment
architecture. The functionality of the MAS is mapped by the
application layer. The coordination logic is realized as an
underlying layer. This layer provides a set of coordination
media, which provide the required coordination mechanisms.
They build the infrastructure that allows the agents to exchange
application independent coordination information and control
the information dissemination. Thus, the coordination media
are the technical realization of the previous described coordina-
tion processes. The agents communicate with the coordination
media using their coordination enactments (cf. Figure 3(B)).
The enactments influence and observe the agent activities (1)
and exchange information that is relevant for the coordination
via the coordination media (2). The local configuration of
these activities, e.g., when to publish information and how
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Figure 2. Structural adaptation processes exchange or reconfigure the coordination processes responsible for the self-organizing dynamics by monitoring
self-organizational performance indicators.
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Figure 3. Coordination enactment architecture [29].

to process perceptions, is defined in a declarative, external
coordination model (3) written in the MASDynamics language.
Coordination is declaratively described to support the reuse of
coordination pattern in different applications. This architecture
focuses on the transparent separation of application and coor-
dination logic, meaning that agent models are not modified
by the coordination logic. This allows the supplement of
coordination to existing applications. A recent example on how
this architecture can be implemented to realize decentralized
coordination in self-organizing systems based on Peer-to-Peer
technology is described in [28].

B. Engineering Self-Organizing MAS
The engineering of structural adaptations of coordination

processes is part of an existing engineering approach for self-
organizing MAS developed in the SodekoVS project [30].
Part of the project was the development of the Coordination
Enactment Architecture. The project aimed at providing self-
organizing processes as reusable elements that developers can
systematically integrate into their applications. The utilization
of self-organization in software engineering is addressed by
providing a reference architecture to offer a conceptual frame-
work for the configuration and integration of self-organizing
processes. The integration is guided by adjusting methodical
development procedures. Following this, coordination media
are made available as middleware services. A minimal intrusive
programming model allows developers to configure and inte-
grate representations of nature-inspired coordination strategies
into their applications. Figure 4 denotes the conceptual view on
integrating self-organization. Incremental development activi-

ties are supplemented with activities that address the manifes-
tation of self-organizing phenomena (I-V). While developers
design the functionality of their applications, they revise the
decentralized coordination of component activities in inter-
leaved development activities. Supplements to the requirements
activities (I) facilitate the description of the intended applica-
tion dynamics. During analysis activities (II) it is examined
which instances or combinations of coordination metaphors
can lead to the required adaptivity. Design activities (III) detail
the models of selected coordination strategies and configure the
coordination media that are used for their realization. These
activities prepare the implementation and integration (IV) of
medium instances to be configured and accessed by a generic
usage interface. Testing (V) activities are supplemented with a
simulation-based validation that agent coaction meets the given
requirements, i.e., manifests the intended adaptiveness. The
whole development process, as described in [30], is designed
as a iterative process. Based on the results of the simulation-
based validation, the self-organized coordination processes are
redesigned until they achieve the intended adaptivity. Either
based on the validation results or as an result of the initial
analysis it may be observed that certain coordination processes
or certain process configuration are suitable for some condi-
tions but become deficient or insufficient for others. In this
case it is practical to utilize structural adaptations for the re-
composition of coordination processes or, on a lower level,
parametric adaptations for the reconfiguration of coordination
parameters. The key challenge hereby is to identify these
conditions that require a structural (or parametric) adaptation
and map them to self-organizational performance indicators.
As an addition to the existing engineering approach, this paper
propagates anticipated structural adaptations. Following the
same iterative approach as designing and implementing the
coordination processes, the adaptations should also be designed
and implemented in an iterative way. The conditions that
require adaptations should be identified based on the require-
ments and analysis activities and redefined by the results of a
simulation-based validation.

IV. STRUCTURAL ADAPTATION OF COORDINATION
PROCESSES

This section presents the structural adaptation architecture
and an extension of the MASDynamics language for the declar-
ative description of adaptations. The proposed architecture
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Figure 4. SodekoVS development activities following [30].

facilitates a voting algorithm that is used to find an agreement
on possible adaptations which are then executed.

A. Adaptation Architecture

The previous described Coordination Enactment Architec-
ture is extended by the introduction of so called Adaptation
Enactments in order to enable structural adaptations of coor-
dination processes. Similar to the Coordination Enactments,
that were introduced to equip applications with coordination
capabilities, the Adaptation Enactments equip applications
with the capability to structural adapt coordination processes
at runtime. Figure 5 shows the extension of the Coordination
Enactment Architecture. The Adaptation Enactments are part
of the coordination layer and therefore independent from the
system’s functionality (supporting a clean separation between
application and coordination logic). They observe the agents
similar to the Coordination Enactments. But contrasting to the
Coordination Enactments they do not influence the agents, but
the coordination media, which are the technical realization of
the coordination processes. As described before, the Coordi-
nation Enactments influence and observe the agent activities
and exchange information relevant for coordination via a
coordination medium. As shown in the figure, the Adaptation
Enactments consists of two components. The Monitor observes
specified self-organizing performance indicators, which are
part of the agent, and in case of a decreased performance,
determined by a specified condition, it initiates a voting process
for a predefined structural adaptation. The Service is used
as an interface for the distributed voting process. When the
Adaptation Enactment Monitor of an agent observes a de-
creased performance, it initializes a distributed voting attempt
and acts as leader of this vote. Utilizing the service interface
it suggests an adaptation to the other agents. Based on their
local information (state of the agent), the called Adaptation
Enactment Services decide whether or not to agree on the
proposed adaptation and inform the vote leader about their
decision. The leader analyzes the received votes and decides if
the required majority for the adaptation was reached. If so, the
suggested adaptation is committed by activating or deactivating
the affected coordination media, respectively by changing their
coordination parameters.

B. Adaptation Description

In order to describe structural adaptations, the MASDynam-
ics language was extended to support the declarative descrip-
tion of possible adaptations. These adaptations are described
at design time and executed at runtime. As described before,
structural adaptations of coordination processes can be realized
by exchange or reconfiguration of coordination processes.
Therefore, the already realized description of coordination

Figure 5. Structural Adaptation Architecture.

processes was extended to indicate whether or not a coordina-
tion process is active at start time. This allows developers to
define multiple coordination processes with different behaviors
at design time, from whom only a subset may be active
at start time. Furthermore, the MASDynamics language was
extended with the following elements to describe these possible
adaptations:

The first part concerns the types of agents that are allowed
to participate in the adaptation process. The DeCoMAS frame-
work creates Adaptation Enactments for this types of agents,
so they can be monitored with regards to specified performance
indicators and are able to participate in the decision making
process.

The second part concerns the actual adaptations. Each
adaptation is identified by an unique id and a reset flag. The
reset flags specifies if the performance indicator should be reset
after a failed adaptation attempt. It can be used to prevent
repeated adaptation attempts flooding the system, if only a
subset of agents are subjected to bad performance indicators,
while the majority of the systems still performs well and in that
case would not agree on an adaptation. Further information
in the adaptation description concerns the voting process. It
includes a minimum total number of answers a vote leader
awaits, before it starts to evaluate the results from an adaptation
attempt it started. Also, the quorum that has to be reached,
before a structural adaptation may be accepted is specified. A
timeout after which the vote leader will start to evaluate the
received answers even if it has not received all of the required
answers can also be specified. Furthermore, it is possible to
delay an adaptation attempt if specified. Also, an adaptation
can be blocked for a certain amount of time at start time, to
avoid oscillation problems (startDelay).

Besides the information concerning the adaptation process,
the description also contains information about the affected
coordination processes. This includes the realization id of
the affected coordination process and the information if the
process should be activated or deactivated, respective which
parameter of the coordination process should be altered to
which value. The last information needed for structural adap-
tations are the constraints regarding the agents state. For each
agent type, they specify which element should be used as a
self-organizing performance indicator. They contain a condi-
tion and a threshold. The condition is used by the Adaptation
Enactment Monitor, to point out if the performance indicator
has become deficient for the specified agent and, therefore, if
an adaptation attempt should be started. When the Adaptation
Enactment Service of an agent receives an adaptation request,
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it uses the threshold to determine whether or not it should agree
to the proposed adaptation. Therefore, the threshold allows the
specification of an insufficient performance indicator that is not
as as strict as the actual condition, which would force the agent
to start an adaptation attempt by itself. The threshold maps a
negative trend allowing the agent to anticipate an insufficient
performance. Listing 1 shows the XML Schema Definition
(XSD) for the adaptation part of the MASDynamics language.

Listing 1. XSD for the adaptation part of the MASDynamics language.
1 <xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified" xmlns:xs="http://
www.w3.org/2001/XMLSchema">

2 <xs:element name="adaptation">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="realizations">
6 <xs:complexType>
7 <xs:sequence>
8 <xs:element name="realization" maxOccurs="unbounded

" minOccurs="0">
9 <xs:complexType>

10 <xs:simpleContent>
11 <xs:extension base="xs:string">
12 <xs:attribute type="xs:string" name="id" use="optional

"/>
13 <xs:attribute type="xs:string" name="activate" use="

optional"/>
14 </xs:extension>
15 </xs:simpleContent>
16 </xs:complexType>
17 </xs:element>
18 </xs:sequence>
19 </xs:complexType>
20 </xs:element>
21 <xs:element name="constraints">
22 <xs:complexType>
23 <xs:sequence>
24 <xs:element name="constraint" maxOccurs="

unbounded" minOccurs="0">
25 <xs:complexType>
26 <xs:simpleContent>
27 <xs:extension base="xs:string">
28 <xs:attribute type="xs:string" name="agent_id" use="

optional"/>
29 <xs:attribute type="xs:string" name="element" use="

optional"/>
30 <xs:attribute type="xs:string" name="type" use="

optional"/>
31 <xs:attribute type="xs:byte" name="condition" use="

optional"/>
32 <xs:attribute type="xs:byte" name="threshold" use="

optional"/>
33 </xs:extension>
34 </xs:simpleContent>
35 </xs:complexType>
36 </xs:element>
37 </xs:sequence>
38 </xs:complexType>
39 </xs:element>
40 </xs:sequence>
41 <xs:attribute type="xs:string" name="id"/>
42 <xs:attribute type="xs:byte" name="answers"/>
43 <xs:attribute type="xs:float" name="quorum"/>
44 <xs:attribute type="xs:short" name="startDelay"/>
45 <xs:attribute type="xs:string" name="reset"/>
46 <xs:attribute type="xs:string" name="single"/>
47 </xs:complexType>
48 </xs:element>
49 </xs:schema>

C. Adaptation and Voting Algorithm
The adaptation and voting process is illustrated as an

UML Activity Diagram in Figure 6. The whole process is
started when a self-organization performance indicator changes
its value. Whenever such an event occurs the adaptation
enactment’s monitor checks the adaptation constraints. If a

constraint is fulfilled and no adaptation process with a higher
priority is currently running, the according adaptation process
is started. The priority of an adaptation process is determined
by the hash value of the initiating agent’s identifier. Due to
the low probability of collisions in hash values, they can be
used as unique identifiers in distributed systems where no
global knowledge about all participating entities exists. By
checking for an adaptation processes with a higher priority it
is guaranteed that only one adaptation process is executed si-
multaneously. Therefore, interferences between these processes
are prevented. If an adaptation constraint is fulfilled and no
adaptation process with a higher priority is currently running,
the monitor will call the remote voting services of all other
agents. Then it waits until the required number of answers, as
specified in the adaptation description, is received or until the
timeout, also specified in the description, occurs.

A voting service that receives a voting request will check if
it had already been suggested another adaptation with a higher
priority, again to avoid inferences, in such a case it votes no.
Otherwise, it checks its local value of the specified perfor-
mance indicator against the threshold value. If the threshold is
reached, a negative performance trend is recognized and the
voting service agrees on the suggested adaptation by voting
yes.

The monitor that proposed the adaptation waits until it has
received the required number of answers or the timeout has
occurred. Then it checks if the required majority, as specified
in the adaptation description, was reached. The adaptation
process is aborted in case of a timeout. When the monitor
has received the required number of answers it evaluates them
by counting the yes and no votes and calculating the ratio.
If the ratio reaches or exceeds the required majority, the
monitor commits the suggested adaptation. If not, it aborts
the process. Again if adaptation process was interfered by a
process with a higher priority it is aborted at this point. The
proposed adaptation is committed by activating, respectively
deactivating the distributed coordination by or by changing
their configuration parameters via interfaces offered by the
coordination media for such purposes.

V. CASE STUDY: MARSWORLD

The MarsWorld scenario is based on a hypothetical appli-
cation setting presented in [31]. A set of autonomous robots
is sent to the planet Mars to mine ore. The mining process
consists of three distinct activities:

1) Analysis of potential ore locations to verify the pres-
ence of ore.

2) Mining or production of the analyzed ore deposits.
3) Transportation of the mined ore to a homebase.

The robots in this scenario are controlled by software agents,
which are specialized to perform one of the three distinct
mining operations. The Sentry agents are equipped with so-
phisticated sensors to analyze potential ore locations, Producer
agents have the capability to mine ore deposits at analyzed
locations and the Carry agents can transport the mined ore to
the homebase. Obviously, as none of the three agents types is
able to mine alone, the agents need to work together to achieve
their collaborative goal. Therefore, this scenario is chosen for
the case study, as the agents require some sort of coordination
in order to achieve their collaborative goal. The Sentry agents
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Figure 6. Adaptation and Voting Algorithm.

analyze potential ore deposits and inform the Producer agents
whether or not ore can be mined there. The Producers mine the
ore at the analyzed deposits and inform the Carry agents about
it, so they can carry it to the homebase. Initially all agents
explore the environment randomly. All agents are equipped
with sensors to find potential ore deposits. If Producer or
Carry agents encounter any potential deposits, they inform a
Sentry agent. Sentry agents that have encountered a potential
deposit or were informed about one, move towards the deposit
and analyze it. When they have verified the presence of ore
at the location they request a Producer agent to mine it.
Accordingly, after mining the ore Producers request a Carry
agent to transport it to the homebase.

A. Coordination
As the MarsWorld example exhibits no predefined organi-

zational structure the agents need to be coordinated in order to
achieve their collaborative goal. Three coordination process for
the distribution of the required information can be derived from
the described communication taking place among the agents:

1) Coordination information the Producer and Carry
agents send to the Sentry agent, when they encounter
potential ore deposits while exploring the environ-
ment.

2) Coordination information the Sentry agents send to
Producer agents when they have analyzed a potential
ore deposit and found ore to mine there.

3) Coordination information the Producer agents send
to the Carry agents after they minded ore and it is
now ready for transportation to the home base.

In order evaluate the impact of both, the self-organizing
coordination processes and their structural adaptation two

different manifestations of the three described coordination
processes are envisioned. The first one is based on a simple
random selection approach and, therefore, does not exhibit any
self-organizing behavior. In this case, each of the coordination
processes randomly selects an agent of the required type and
informs it about the sensed, analyzed or produced ore.

The second manifestation is based on a neighborhood
approach. In this case, each coordination process selects the
agent of the required type, which is nearest to the emitting
agent. By selecting the nearest agent it is ensured that the in-
formed agents have to travel the minimal distance to reach the
designated destination. If the environment consists of multiple
ore deposit clusters, characterized by a small distance between
the deposits in the cluster and a large distance to the next
cluster, this coordination approach leads to the self-organized
formation of local mining groups among the agents. Thus,
enabling the agents to organizes themselves in an emergent
way.

Obviously, knowledge about the current positions of each
agent is required by the coordination processes based on this
approach. Therefore, the environment in this case study is
equipped with a positioning service offering this information.
The three coordination process realizations based on the neigh-
borhood approach utilize this service in order to distribute the
coordination messages to the nearest agent of the appropriate
type. This results in the realizations of the following six
coordination processes:

• latest target seen random: This coordination process
informs a Sentry agent whenever a Producer or Carry
agent has encountered a potential ore deposit. It ran-
domly selects one of the Sentry agents and informs
it. The Sentry agent adds the received location to its
queue of locations which it has to analyze.

• latest target analyzed random: This coordination
process randomly selects and informs one of the
Producer agents if a Sentry agent has analyzed a
potential ore deposit and actually found ore to mine
there. The Producer agents adds the location to its
queue of ore deposits to mine and eventually starts to
mine it until the deposit is depleted.

• latest target produced random: This coordination
process randomly selects and informs one of the Carry
agents whenever a Producer agent has completely
mined a ore deposit. The Carry agent adds the lo-
cation to its queue of produced ore that is ready for
transportation

• latest target seen nearest: Whenever a Producer or
Carry agent has encountered a potential ore deposit,
this coordination process selects the Sentry agent
nearest to the location of the Producer or Carry agent
and informs it about the deposit. The Sentry agent
adds the location to its queue and eventually analyzes
it.

• latest target analyzed nearest: After a Sentry has an-
alyzed a potential ore deposit and actually found ore
there, this coordination process selects the Producer
agent nearest to the location and calls it to mine ore
here.

• latest target produced nearest: When a Producer
agent has completely depleted the ore deposit, this
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coordination process selects and informs the Carry
agent nearest to the location, so that it can transport
the mined ore to the homebase.

Listing 2 shows the declarative description of the lat-
est target seen nearest coordination process. It is written in
the previously described MASDynamics configuration lan-
guage. The listing shows that whenever the callSentryEvent is
monitored in either a Producer or Carry agent, coordination
information about this latest seen target is communicated to
a Sentry agent. The according event is triggered inside a
Producer or Carry agent whenever a potential ore deposit is
found. Using the specified coordination mechanism, which is
the technical realization of the previous described coordination
medium concept, the nearest Sentry agent is selected as the
receiver of the coordination information. The coordination
mechanism is implemented as Java class and makes use of
the positioning service offered by the environment in order to
determine the nearest Sentry agent. When the Sentry agent
receives the coordination information with the position of
the potential ore deposit, the specified latestTargetEvent is
triggered by the its coordination enactment. This results in
the location being added to the Sentry’s queue of location to
analyze. The coordination process descriptions for the other
coordination processes are constructed similar.

Listing 2. XML listing showing the declarative description of the
coordination process realization for the latest target seen nearest process

written in the MASDynamics language.
1 <realization id="latest_target_seen_nearest">
2 <from>
3 <agent_element e lement="callSentryEvent"

a g e n t i d="Producer" type="INTERNAL_EVENT">
4 <parameter_mappings>
5 <mapping r e f="latest_target" name="

latest_target"/>
6 </parameter_mappings>
7 </agent_element>
8 <agent_element element="callSentryEvent"

a g e n t i d="Carry" type="INTERNAL_EVENT">
9 <parameter_mappings>

10 <mapping r e f="latest_target" name="
latest_target"/>

11 </parameter_mappings>
12 </agent_element>
13 </from>
14 <mechanism_configuration
15 mechanism id="sodekovs.marsworld.coordination.

NearestMechanism" agent type="JADEX">
16 </mechanism_configuration>
17 <to>
18 <agent_element element="latestTargetEvent"

a g e n t i d="Sentry" type="INTERNAL_EVENT">
19 <parameter_mappings>
20 <mapping r e f="latest_target" name="

latest_target"/>
21 </parameter_mappings>
22 </agent_element>
23 </to>
24 < a c t i v e> t rue</ a c t i v e>
25 </realization>

B. Structural Adaptation
Arguably, the coordination process manifestations that are

based on the neighborhood approach will perform better, as
the formation of local mining groups around the ore clusters
minimizes the distance the agents have to travel, before they
can analyze, produce or transport ore. Therefore, it optimizes
the overall mining efficiency. But these coordination processes
depend on the positioning service offered by the environment.
If this service fails, the coordination processes will not be able

to select the nearest agents, thus, they will not be able to
inform the according agents. In such a case the application
would benefit from the capability to structurally self-adapt
and to switch to the random-selection based coordination
process manifestations. The goal is to deactivate the location
based coordination processes, when the positioning service
offered by the environment fails. As compensation the random
selection based coordination processes will be activated. The
agents have no knowledge about the fact that the positioning
service has failed in this scenario conception. But they can
measure the time that has passed since they have received
the last coordination information. If they have not received
any messages within a given time, they assume that some-
thing went wrong and the positioning service is broken. In
this example, an agent waits 20 seconds until it assumes a
malfunction and initializes a voting process acting as leader.

Of course, it is possible that the agents have not received
any coordination information within this time frame for other
reasons, e.g., when the agents are exploring an area of the
scenario where no other agents are exploring and, therefore,
these agents are to far away from the emitting agents to
be selected by the location based coordination processes.
Therefore, the agents have to find an agreement, whether or
not the coordination processes should be adjusted to overcome
local phenomena.

Therefore, the voting algorithm described in Section IV-C
is used by the agents to find an agreement on the adaptation.
When an agent has not received any coordination information
within the last 20 seconds (condition of the adaptation con-
straint) it starts the voting process and acts as the leader of it.
Agents that have received a voting requests determine if they
have received any coordination information within the last 15
seconds (adaptation threshold) and if so vote yes.

The threshold value expresses tendencies indicating a po-
tential negative trend, so that agents can agree on a proposed
adaptation before exhibiting a deficient behavior by them-
selves. In this case, they exhibit a potential negative trend
and interpret it as an upcoming deficiency if an other agent
proposes an adaptation and therefore, already has exhibited the
deficiency. Of course, more complex conditions, as the time
windows used in this example, are possible to model both the
constraint (deficient behavior) and threshold (negative trend)
values.

The agent, which started the voting process, waits until
it has received all the voting results (this is a simplification
because in this small scenario we neglect any message lost)
and evaluates them. If the required majority of 75% has been
reached, the structural adaptation is performed. At start time,
the adaptation capability is blocked for 30 seconds, because
it may take a while before the first potential ore deposits
are sensed and, therefore, the system might adapt prematurely
because of oscillation problems.

Listing 3 shows the declarative description of the structural
adaptation for this example. It shows that the agent initiating
the voting process awaits answers from 16 others (including
itself) and that a quorum of 75% yes-Votes is required so
that the adaptation is performed. The startDelay indicates that
the adaptation enactment is blocked for the first 30 seconds.
The reset flag appoints that the constraint value should not
be reseted after a failed voting attempt and the single flag
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asserts that the adaptation should only be performed once.
Under the realizations tag it is described which coordination
processes should be activated and deactivated if the adaptation
is performed. The constraints describe which values in the
participating agents should be monitored, in this case an BDI1-
agent belief called no msg received that stores the information
how much time has passed since the agent has received the last
coordination information. As described before, the condition
and threshold values are simple integer values in this example.

Listing 3. XML listing showing the declarative description of the structural
adaptation for the MarsWorld example.

1 <adaptations>
2 <adaptation id="change-to-random" answers="16"

quorum="0.75" s t a r t D e l a y="30000" r e s e t="
false" s i n g l e="true">

3 <realizations>
4 <realization id="latest_target_seen_nearest"

a c t i v a t e="false"/>
5 <realization id="latest_target_analyzed_nearest

" a c t i v a t e="false"/>
6 <realization id="latest_target_produced_nearest

" a c t i v a t e="false"/>
7 <realization id="latest_target_seen_random"

a c t i v a t e="true"/>
8 <realization id="latest_target_analyzed_random"

a c t i v a t e="true"/>
9 <realization id="latest_target_produced_random"

a c t i v a t e="true"/>
10 </realizations>
11 <constraints>
12 <constraint a g e n t i d="Producer" element="

no_msg_received" type="BDI_BELIEF"
c o n d i t i o n="20" t h r e s h o l d="15"/>

13 <constraint a g e n t i d="Carry" element="
no_msg_received" type="BDI_BELIEF"
c o n d i t i o n="20" t h r e s h o l d="15"/>

14 <constraint a g e n t i d="Sentry" e lement="
no_msg_received" type="BDI_BELIEF"
c o n d i t i o n="20" t h r e s h o l d="15"/>

15 </constraints>
16 </adaptation>
17 </adaptations>

C. Scenario Description
The following scenario was designed to measure and eval-

uate both, the differences between the self-organizing and the
random-selection based coordination processes and the impact
of the structural adaptation. Figure 7 shows the examined
scenario. It is characterized by a 2 x 2 dimension and contains
20 ore deposits with a total ore amount of 1000 ore units. As
shown in the figure, the ore deposits are grouped together to
local clusters. Each cluster contains 250 units of ore. The ore
deposits in the left, top corner of the scenario are identified as
cluster 1, the ore deposits in the right, top corner as cluster 2,
the ore deposits in the left, bottom core as cluster 3 and the ore
deposits in the right, bottom corner as cluster 4. The scenario
was designed this way to highlight the self-organizing potential
of the neighborhood-based coordination approach, allowing the
agents to form local mining groups in a self-organized way.
The homebase is located in the middle of the environment.

At the start of the application, all agents start from the
homebase and begin to explore the environment randomly.
When the Sentry agent encounters any ore deposit it starts to
analyze it, while the Producer and Carry agents inform Sentry

1The belief-desire-intention agent model is developed for programming
intelligent agents. Superficially characterized by the implementation of an
agent’s beliefs, desires and intentions, it uses these concepts to solve a
particular problem in agent programming.

Figure 7. Screenshot of the MarsWorld scenario with highlighted ore
clusters.

agents, based on the used coordination process, about sensed
deposit. The scenario is finished when the complete amount of
ore was mined and transported to the homebase. It is executed
with the following amount and configuration of agents:

• Sentry: Amount 4, Vision 0.15, Speed 0.1
• Producer: Amount 4, Vision 0.1, Speed 0.1
• Carry: Amount 8, Vision 0.05, Speed 0.2, Capacity2

20

Figure 8 shows a running MarsWorld application based on
this scenario. As shown in the figure, the agents were able
to mine 150 units of ore after 59 seconds have passed. The
shown scenario was executed with the neighborhood-based
coordination process manifestations and at this point it seems
that the agents have formed three local mining groups (black
markers) while mining the ore clusters two, three and four.

VI. EVALUATION

The realization of the MarsWorld scenario is based on the
Jadex MAS platform [32]. The Sentry, Producer and Carry
agents were realized as BDI-agents. At start time, all agents
explore the environment randomly. Based on the coordination
information they receive through to the coordination processes
goals to analyze (Sentry), produce (Producer) or transport
(Carry) ore are dispatched in the according agents.

In order to measure and evaluate the impact of both, the
self-organizing coordination processes and the structural adap-
tation of these processes, the MarsWorld scenario was executed
50 times for each of the two different coordination process
manifestations (neighborhood-based and random-selection) as

2The capacity denotes the maximum number of ore units a Carry agent can
transport.
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Figure 8. Screenshot of the running MarsWorld application with highlighted
self-organizationally formed local groups.

well as for the structural adaptation. To automatically start the
50 simulation runs for each of the three described character-
istics, a simulation management framework for agent based
distributed systems [33] was used. Additionally, an evaluation
framework for the automatically observation and evaluation of
predefined system observables [34] was used.

The six different coordination processes were described
declaratively using the MASDynamics language. As a tech-
nical realization two different coordination mechanisms were
implemented. The first one randomly selects one agent of
the appropriate type. This coordination mechanism was used
by the three random-selection based coordination process
manifestations. The other coordination mechanism used the
positioning service offered by the environment to select and
inform the nearest agent of the appropriate type. This coordi-
nation mechanism was used by the three neighborhood based
coordination process manifestations.

A. Coordination
In order to evaluate the impact of the self-organization, the

number of analyzed, produced and collected ore was observed
in each of the 50 simulation runs for the neighborhood and
random-selection based coordination process manifestations.
Figure 9 shows the results of the analysis. The time passed is
denoted on the x-axis in 1/10 seconds steps. The y-axis shows
the percentage amount of ore that is analyzed, produced or
collected. As described in Section V-C, the scenarios had a
total amount of 1000 units of ore. Only the first 3 minutes
of all simulation runs were observed, because this was the
fastest time in which the scenario was completely depleted
in all of the simulation runs and, therefore, the only period
under observation that contains results for all simulation runs.
The results of the neighborhood-based coordination process

Figure 9. Evaluation of the coordination processes.

manifestations are identified by the SO-prefix in Figure 9 and
the ones based on the random-selection coordination process
manifestations by the NonSO-prefix.

The efficiency of the self-organization is shown in Figure
10. Again the x-axis denotes the passed time in 1/10 second
steps and the y-axis shows the percentage efficiency of the self-
organizing coordination processes over the non self-organizing
ones. It shows how the self-organized coordination processes
which enable the agents to form local mining groups by calling
the nearest available agent of the required type increase the
overall efficiency. On a more detailed view, the figure shows
that the impact of the self-organization on the amount of ana-
lyzed ore is significantly less then the impact on the amount of
produced and collected ore. This is because the Sentry agents
are able to find potential ore deposits to analyze by themselves
while they are exploring the environment randomly. There-
fore, they do not necessarily rely on receiving coordination
information about potential ore deposits. These information
just helps the agents to find deposits faster. The Producer and
Carry agents, on the other hand are only able to produce or
carry ore when they have received a coordination information
about an analyzed or mined deposit. Thus, their ability to
produce or carry ore strongly depends on the coordination.
Contrary, the Sentry agents are able to analyze ore without any
coordination. Furthermore, the figure shows how the efficiency
of the three self-organized coordination processes differs over
time depending on the amount of ore that has already been
analyzed, produced or carried.

B. Structural Adaptation

To measure the impact of the structural self-adaptation
50 simulation run were executed with the self-organizing
coordination processes active at start time. After 60 seconds
a failure in the positioning service of the environment was
simulated. Thus, the self-organizing coordination processes
relying on this service were no longer able to select the nearest
appropriate agent and therefore, were not able to distribute
coordination information anymore. As described before, the
Adaptation Enactment was blocked for the first 30 seconds
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Figure 10. Efficiency of the self-organized coordination processes.

to overcome problems due to agents still exploring the envi-
ronment without having sensed any potential ore deposits and
therefore, not sending any coordination information. Figure 11
shows the evaluation results of the structural adaptation. Again
the x-axis denotes the time in 1/10 second steps. The y-axis
shows the total number of voting attempts, the percentage of
simulated failures in the positioning service and the percentage
of performed adaptations.

The figure shows how the simulated failure in the position-
ing service occurs after 60 seconds have passed (deviations
are coursed by inaccuracies of the MAS platform’s clock
service). First voting attempts can be observed after 50 seconds
have passed, as this is the shortest possible time after which
agents could notice not having received any coordination
information within the last 20 seconds. As the figure shows,
the percentage of voting attempts grows until in mean all
systems have performed the structural adaptation. In this case
the adaptation was configured to be an unique adaptation.
So, after it was performed, no further voting attempts were
started. The results also show that in approximately 15% of
the simulation runs, the system adapted its structure before the
actual failure occurred. As described before, the adaptation
requires a majority of 75% percent of the agents agreeing
on it. As the scenario consists out of 16 agents, 12 agents
are required to vote for the adaptation. For the voting attempt
to be started, at least one agent must not have received any
coordination information within the last 20 seconds. In order to
reach the required majority, this requires at least 11 agents not
having received any coordination information within the last
15 seconds (the specified threshold value). Due to the random
exploration of the environment this phenomena might occur
before the simulated failure, if the agents have only sensed a
few ore deposits. Combined with the formation of local self-
organized mining groups, this can lead to a majority of agents
that are not involved in any mining activities and, therefore,
are not receiving any coordination information. These agents
will interpret the absent of such messages as a potential
failure in the coordination processes and thus, vote for the
structural adaptation. A higher blocking time for the adaptation
enactment at start time or higher constraint and threshold

Figure 11. Evaluation of the structural adaptation.

values would lead to fewer premature adaptations. But on the
other hand, that would also lead to a higher response time
before the system adapts itself after a failure. As described
in Section III-B, suitable adaptation parameters have to be
identified as part of an iterative, simulation driven engineering
approach.

Furthermore, the figure also shows the relative number
of coordination messages from the defective scenarios, in
relation to the number of coordination messages from the self-
organized scenarios where no failure occurs and therefore, no
adaptation was needed. The curved line shows that there is no
deviation between the two scenarios until the failure occurs.
When the failure occurs the number of messages slides down
in relation to the failure-free scenario. After the structural
adaptation took place, the number of messages rises up until
the level of the failure-free scenario is reached again. This
shows how the structural adaptation is able to repair a deficient
behavior caused by an external failure.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an architecture and engineering
approach for structural adaptations in self-organizing MAS
to realize the dynamic exchange or reconfiguration of self-
organizing coordination processes. It aims at supporting struc-
tural adaptations in general, rather than focusing on single
self-* properties. The approach consists of a generic system
architecture that governs the development of self-organizing
MAS and a description language that supports the declarative
description of coordination processes and pre-described struc-
tural adaptations, which can be processed by the corresponding
framework automatically. It is supported by an engineering
process consisting of incremental development activities that
are supplemented with activities that address the manifesta-
tion of self-organizing behavior. The approach supports the
modularization of coordination, which enables reusability and
interoperability of coordination processes. It propagates a clear
separation between application functionality and coordination,
allowing developers to implement coordination without the
need to change the application’s business logic. Furthermore,
with the introduction of structural adaptations of coordination
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processes it supports the self-adaptive structural exchange
or reconfiguration of self-organizing processes. By detecting
any decrease of specified SO performance indicators, the
adaptation enactment extension initiates a distributed voting
process, that allows for the exchange or reconfiguration of
the self-organizing processes to adapt to changing conditions
automatically. It is conceptual comparable to the reactive
planning approach (local) from the BDI agent model, where an
agent selects a plan based on local information and alternatives.
In case of the proposed approach, the system as a whole strives
towards a distributed consensus on application-global level
to select and execute predefined structural adaptation plans.
Thereby, each of the participating agents only relies on its
local information.

The presented framework was used in the MarsWorld
scenario to realize a collaborative application in which three
different types of agents needed to be coordinated, in order to
mine ore on Mars. This scenario was used to evaluate both
the impact of self-organizing coordination processes and their
structural adaptation. In order to show the impact of self-
organizing behavior three different coordination processes in
two different manifestations were implemented. A random-
selection based manifestation and a proximity-based one. The
later one allows the agents to form local mining groups in
a self-organized way by exchanging coordination information
with the nearest possible agent. For each of the two coordina-
tion process manifestations 50 simulation runs were performed
and the number of analyzed, produced and collected ore was
measured. Based on these results, it was shown that the appli-
cation benefited from self-organizational behavior, as the self-
organizing proximity-based coordination processes were more
efficient in terms of processed ore over time than their non self-
organizing counterparts. The impact of structural adaptations
was shown by simulating a failure in the positioning service
offered by the environment and used by the proximity-based
coordination processes. The agents’ Adaptation Enactments
detected and interpreted the absence of coordination mes-
sages caused by the failure of the positioning service as
a deficient behavior and agreed on a structural adaptation
using a distributed voting approach. The deficient proximity-
based coordination processes were deactivated and replaced by
their random-selection based counterparts. Thus, we showed
how the system was to able to recognize the failure of the
positioning service, by observing the absence of incoming
coordination information and adapting it’s structure to repair
itself. Furthermore, it was explained under which conditions
the system adapted itself rightfully and which conditions may
lead to premature adaptations due to misinterpretations of the
absence of coordination information.

Future work aims at the reimplementation of both the
decentralized coordination framework for MAS (DeCoMAS)
as well as the structural adaptation extension. It is envisioned
to realize a more general coordination framework that does
not only supports MAS but component-based applications in
general. Therefore, the focus will shift from the coordination
of agents to the coordination of universal software compo-
nents. This should support a broader range of applications
and both unify and simplify the engineering and development
process of self-organizing application relying on decentralized
coordination processes. This new Decentralized Coordination
Framework (DeCoF) will be used to realize the self-organizing

redistribution of bikes in a bike-sharing system as described in
[35]. Based on the structural adaptations it shall be shown how
the adaptation of different coordination processes optimizes
the self-organizing redistribution of the bikes depending on
the time of day and rush-hour situations.
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