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Abstract— One of the reasons that keep Neural Networks
(NNs), which are advanced computational methods (ACM) of
great potential, from coming into broader practical use, is
the lack of systematic method in finding the optimal match
between NN architecture and target application. If this match is
performed erratically, practical solutions often yield unimpressive
results. It is the a) validation of the problem’s fitness for a NN-
based solution and b) matching of an optimal NN implementation
to the given problem that is crucial. This paper presents a
theoretical foundation for an inference engine decision space and
a taxonomic framework for a knowledge base, which are part of
our proposed knowledge-driven decision support system (DSS).
Furthermore, this paper provides details of our inference engine,
namely a) an algorithm for optimal matching of a NN setup
against the given learning task, b) the application of this same
algorithm for interactive exploration of the decision space and
c) an algorithm for automatic inference of potential NN research
synergies based on existing successful NN solutions. Finally, we
propose a process for establishing and maintaining the growth
of the DSS knowledge database.

Keywords—Neural Networks; DSS; Knowledge Base; Taxonomy;
Inference Engine.

I. INTRODUCTION

This paper presents a theoretical foundation for an inference
engine decision space and a taxonomic framework for a
knowledge base, which are part of our proposed knowledge-
driven DSS. Furthermore, it introduces new additions to the
suite of related algorithms, previously presented in [1].

The compelling notion, that NNs are universal approxima-
tors [2], leads quickly to believe, that any NN will do well on
any presented machine learning task. However, the universal
approximation theorem only guarantees the existence of an
approximation, but not that it can be learned, nor that it would
be efficient. Practice shows that every given problem requires
a carefully crafted NN design and that advanced NN concepts,
tailored to specific types of tasks are necessary to attain best
results. This factor, among others, has led to the existence of
a large number of conceptually varying NN architectures and
learning algorithms [3].

For best results, any researcher or practitioner of today
needs to understand a vast domain of knowledge in order
to find a NN solution most suitable to their task. Due to
domain vastness, researchers often limit themselves to NN
domains they are familiar with, preventing new knowledge

from propagating efficiently among all who would benefit from
it. Specifically, we thus face a twofold handicap for progress
of NN research: a) practitioners use suboptimal NN setups for
real-world applications [3], inhibiting broader NN acceptance
in the industry and b) researchers delve into local extrema of
research (e.g., through jumping on the bandwagon of imminent
peers [4]), pushing frontiers of NN research in suboptimal
directions.

Figure 1 shows a simple flowchart view of the current
typical approach to selection of NNs for chosen learning
task. It illustrates that the lack of systematic approach to NN
selection often yields suboptimal results. This has a negative
effect on a wider acceptance of NNs in the industry. A key
prerequisite in current NN design is expert intuition, which
can be attained either through significant experience with
NN implementation and applications in practice, or through
access to expert intuition in an environment of experienced
NN users. When expert intuition is present in early stages of
design, the subsequent efforts give promising results (Figure
1, left); and the opposite, when not (Figure 1, right). The
NN community needs a streamlined way of enabling existing
and potential NN users to make optimal technological choices
efficiently and systematically. Having today’s foremost NN
research applied in the industry can foster wider acceptance
of NNs into practice and improve NN research.

In 2006, Taylor and Smith [5] created an important
taxonomy-based evaluation of NNs, which aids in validating
whether a given problem is solvable with a NN at all. The
next concern, which they point out and we hereby address, is
to choose the right NN architecture and its concrete imple-
mentation for the problem. Our goal is to provide a DSS for
industry practitioners and researchers to systematically find the
right NN for their application or research interest. This paper
proposes a solution that enables (1) a systematical overview
of the complete NN knowledge domain to (2) compare NN
instances through their capabilities in a (3) quickly interpreta-
tive way using a framework that is (4) adaptable in terms of
NN properties, even classification dimensions.

This paper is structured as follows. Section II briefly out-
lines the state of the art, Section III explains our approach to
DSS design. Sections IV and V present the DSS’ inference
engine decision space and the taxonomy for DSS’ knowledge
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Figure 1. Typical design flow of selection and implementation of NNs for a
given learning task.

base, respectively. Sections VI and VII present the DSS
and its main use cases, respectively. Section VIII proposes
strategies for maintenance of the knowledge database, and
finally, Section IX concludes this paper and outlines the future
work.

II. STATE OF THE ART

The state of the art in NN design methodology can be
split into two groups. The first group focuses on choosing
the optimal NN macrostructure (e.g., Support Vector Machine
versus Recurrent Neural Network), while the second group
focuses on guidelines and (semi)automated methods, that help
find the optimal microstructure (e.g., number of hidden layers
and neurons) of a selected macrostructure.

The first group of approaches consists of guidelines and
overview literature [6][7][8]. The problem (and virtue) with
this set of methodologies is that they require understanding
of a vast set of NN concepts, before the designer is able
to make an optimal choice. Dreyfus [6] states, for example:
”No recipes will be provided here. It is our firm belief that
no significant application can be developed without a basic
understanding of the principles and methodology of model
design and training.” Of course, we agree with this position.
However, it can be observed in practice, that there is a lack
of systematic approach in choosing the macrostructure. As
a consequence, Feedforward NN (FFNN) [2], learned with
Backpropagation (BP) [9], is still chosen in the majority of
applications, which we consider a negative trend [10].

The second group of approaches is necessary for the fine
microstructural tuning of a chosen macrostructure (also usually
demonstrated on FFNN with BP). These approaches are either
given as a set of rules and recipes, or as an automated

optimization tool. The most systematic approaches rely on
the Design of Experiments (DoE) method, involving Taguchi
principles [11][12][13]. Such methods systemize and automate
the selection of, e.g., number of hidden layers or neurons,
through experimenting with different setups. Similar methods
are constructive and pruning algorithms, that add or remove
neurons from an initial architecture [14][15]. Also, related are
evolutionary strategies, which employ genetic operators for
similar purposes [16][17][18].

We turn to the state of the art in search of a formal taxonomy
of the whole NN knowledge domain. For a taxonomy to serve
as the foundation of our DSS, it must facilitate a qualitative
measure between its elements. However, it turns out, that
directly comparing NN instances in detail is prohibitively
problematic due to bias or lack of method in the description
process [19]. The Andrews-Diederich-Tickle (ADT) taxonomy
[20] enables two NNs to be compared pairwise through ADT 5

criteria (defined by Andrews et al. [20] and refined by Tickle
et al. [21]), but this taxonomy lacks orthogonality since some
of its taxonomical categories (dimensions) are interdependent.
Other taxonomies classify NNs purely through topology [22]
or realization method [9]. And more recently, researchers
create taxonomies that assist in choosing the best solution for
the task [4][23] within a limited application area and solve
locally what our work attempts to solve globally.

III. DESIGN OF THE DECISION SUPPORT SYSTEM

Our DSS-based approach proposed fits between the two
groups of NN design methodology, presented in Section II, and
improves the results of both group’s goals. It exhibits the main
qualities of the second group (ability to automate the decision
process) and applies them to the problematic of the first group
(i.e., choosing the macrostructure), which is a crucial step in
NN design, because the effect of any design actions depends
greatly on early decisions. The aim of our proposed DSS is to
improve the performance of NN-based based applications on
a large scale, through enabling designers to perform optimal
early design decisions. Figure 2 illustrates how our proposed
DSS improves the NN design process by enabling users to
systematically find optimal NN instances for their application.

The concept of a DSS is extremely broad and scientists
have been researching DSSs for more than 40 years. Used
in a broad range of applications, a DSS supports operations
decision making, financial management, strategic decision-
making in business organizations, military, logistics, etc., at
different levels of an organization. In this work, we apply DSS
principles to an engineering decision process.

A historical overview of DSSs is given in [24], along with a
classification of DSSs into five distinct categories, summarized
as follows:
• A model-driven DSS emphasizes access to and manipu-

lation of financial, optimization and/or simulation models;
• A data-driven DSS emphasizes access to and manip-

ulation of data, provides query tools, includes ad-hoc
interpretation and visualization tools, data warehousing,
etc.;
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Figure 2. Our proposed DSS improves the NN design process by enabling
users to systematically find optimal NN instances for their application.

• A communication-driven DSS uses network and com-
munications technologies to facilitate decision-relevant
collaboration and communication between decision mak-
ers and consider communication technologies as the main
architectural components;

• A document-driven DSS uses computer storage and pro-
cessing technologies to provide document retrieval and
analysis, with a search engine being the core architectural
component and decision-making tool;

• A knowledge-driven DSS can suggest or recommend
optimal actions to users, based on specialized problem-
solving expertise, incorporated into the DSS.

After review of DSS theory in existing literature, we decide
to design our proposed DSS as a Knowledge-Driven DSS,
which comprises the following components:
1. Knowledge base
2. User interface
3. Inference engine model
4. Communications component

Corresponding to the above, also shown in Figure 3, our
proposed system comprises the following: NN Knowledge
base (Section V), 3D visualization of data and qualitative
relations (Section VI-A), inference engine and qualitative rela-
tions in data (Section VI-B), interaction with 3D environment
and entry of objective parameters (Section VII), respectively.
Section VII demonstrates the use of inference engine in two
major use cases and presents visually the inference results.

IV. INFERENCE ENGINE DECISION SPACE

The main and fundamental result of our work is the concep-
tualization and theoretical foundation for the inference engine

Figure 3. Components of a knowledge-driven DSS.

decision space (this section) and knowledge base framework
(Section V), that enables a global overview of the complete
NN domain. The decision space, presented hereby, serves also
as a coherent terminology and context for our knowledge base
framework. Mathematical structure of interrelations must be
well defined, to facilitate an effective inference engine, used
in solving multiple-objective optimization problems [25]. The
decision space is defined via the following descriptors of the
NN knowledge domain:

• Set of NN instances I: contains the subset of elements of
the NN knowledge domain, which are neural networks.
From the whole neural network knowledge domain (NNs,
research initiatives, research groups, research goals, ap-
plication areas, etc.), we gather concrete NN implemen-
tations and form the set of NN instances.

• NN classifier ζ : I → P: provides a classification of
each member of I into a particular set of groups P .

• Property P: the co-domain of a classifier ζ, with the latter
considered as a function.

• Property value pi ∈ P: a specific group of some classifier.
It is given a name, which is then identified as this property
value.

• NN framework F : ordered list of classifiers relevant for
a given user’s interest.

• NN universe U : defined by a framework F , it is an
|F|-dimensional space, which is Cartesian product of the
properties defined by the classifiers in F .

• NN instance Ii ∈ I: Ii = (p1, . . . , pf ); an f -tuple of
property values, each coming from its corresponding NN
property.

• NN category Cp ⊆ P: subset of a specific property,
containing a set of values (classifier groups) of this
property. Possibly a singleton.

• NN landscape L = C1×C2×C3× . . .×Cf with at least
one Ci being equal to the whole property Pi. Subspace
of a NN universe.

• NN type T = C1×C2×C3× . . .×Cf : Cartesian product
of categories. If all categories in the cartesian product are
singletons, the NN type is also a NN instance.

• NN comparator δ: innate comparative quality, defining a
corresponding partial order, denoted as >δ , on the set of
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NN instances I, by which some pairs of NN instances can
be compared. In our proposed DSS, NN comparators are
chosen by defining the NN selection criteria (see Section
V). NN comparators are represented as colored arrows
between NN types, with the color specifying different NN
instance selection criteria and the thickness of the arrow
proportional to number of evidence papers supporting the
comparison.

• NN selection criteria ∇: a set of possibly competing NN
comparators used for comparison of NN instances.

• Pareto front R of given NN selection criteria ∇: a set of
(discrete) NN instances j ∈ R such that whenever some
NN instance i ∈ I is better than j with respect to some
NN comparator δ ∈ ∇, i.e., j >δ i, then there is some
other comparator δ′ ∈ ∇, such that i >δ′ j, i.e., i is better
than j w.r.t. δ′. In other words, a NN instance belongs
to the Pareto front of ∇, if it cannot be improved over
without harming at least one of the NN selection criteria
in ∇.

What signifies our approach is the decision to abandon
the aim for back-to-back comparison of specific NN imple-
mentations via rigid criteria (which would limit us to NN
research subdomains) and employ a flexible DSS, enabling
self-organization of data and allowing the evolution of the
framework, together with the evolution of knowledge base
contents.

V. TAXONOMY FOR KNOWLEDGE BASE

In contrast to related taxonomic efforts, presented in Section
II, our taxonomy must provide a significant level of abstrac-
tion, allowing both a complete field overview and sufficient
depth to aid qualitative comparison, while providing the flex-
ibility for future adaptations of the proposed classification.
Our generically specified ranking between feasible solutions
permits us to deliver rule-of-thumb guidance that provides an
excellent starting point for further in-depth analysis based on,
e.g., ADT 5 criteria.

With the inference engine decision space theoretically de-
fined in Section IV, we proceed to determine the principal
dimensions for classification of NN instances. As no single
source provides a definitive field overview, we as first step
systematically create a taxonomic blueprint for our knowledge
base. We define the NN classifiers ζ as operators for sorting
of NN instances into main taxonomic branches:
ζ1 Implementation Platform
ζ2 NN Architecture
ζ3 Learning Paradigm
ζ4 Learning Algorithm
ζ5 Learning Task

Using our defined NN classifiers, we proceed to build the
taxonomy. For its core, we extract the classification used in
the book Neural Networks: A Comprehensive Foundation [5],
which offers a wide overview of main concepts in NN domain.
To build upon this core, we add the overviews of evolutionary
methods [26], Spiking Neural Networks [27] and a recent 20-
years overview of hardware-friendly neural networks [28]. A

principal quality of our system lies in our choice of high
abstraction when defining the taxonomy; e.g., while there exist
numerous flavors of the BP algorithm, our taxonomy does not
differentiate between them. Only by obscuring a such detail,
we can achieve a domain-wide overview. Still, as the field of
NNs is very diverse, an ultimate taxonomy requires broader
community collaboration and finally, consensus; both of which
exceed the scope of this work.

Through processing the selected literature using our defined
NN classifiers, we find that our chosen NN classifiers map
NN instances into NN properties (i.e., sets of NN categories
C, possibly singletons) P1,P2,P3,P4 and P5, respectively:
P1 (ζ1: Implementation Platform) takes values from:
• General Purpose (C11 ): Software Simulation on general

purpose computer of Von Neumann Architecture (CPU),
Digital Signal Processor (DSP) Graphical Processing Unit
(GPU), Supercomputer (SCP)

• Dedicated Hardware (C12 ): Field Programmable Gate Ar-
ray, Neural Hardware / Neural Processing Unit (NPU),
Analog Implementation (ANLG), Application Specific
Integrated Circuit (ASIC)

P2 (ζ2: NN Architecture) takes values from:
• Feedforward Neural Network (FFNN)
• Second Generation NNs (C22 ): Recurrent Neural Network

(RNN),Long Short-Term Memory (LSTM)
• Spiking Neural Network (SNN)
• Cellular Neural Network (CNN)
• Self-organizing Map (SOM)
• Reservoir Networks (RSV) (C26 ): Echo-state Network

(ESN), Liquid-state Machine (LSM)
• Convolutional NN (CONN)
• Deep Belief Network (DBN)
• Hybrid (HYB)
P3 (ζ3: Learning Paradigm) takes values from:
• Supervised Learning (SUP)
• Reinforcement Learning (REINF)
• Unsupervised Learning (UNSUP)
• Genetic Learning (GENL)
P4 (ζ4: Learning Algorithm) takes values from:
• Error Correction (C41 , ECR): Backpropagation (BP), Ex-

tended Kalman Filter (EKF), Direct Stochastic Error
Descent (DSED),

• Hebbian Learning (HBL)
• Competitive Learning (CPL)
• Evolutionary (C44 , EVOL): Evolution of Architecture

(EVLARCH), Evolution of Weights (EVLWT), Evolution
of Learning Algorithm (EVLALG)

• Hybrid (HYB)
P5 (ζ5: Learning Task) takes values from:
• Pattern Association (C51 ): Autoassociation (PASCAUT),

Heteroassociation (PASCHET)
• Pattern Recognition (C52 , PREC): Natural Language Pro-

cessing (NLP), Principal Component Analysis (PCA),
Speech (SPC), Dimensionality Reduction (DRED),
Spatio-temporal (SPT)
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• Control (C53 , CTL): Indirect (CTLIND), Direct (CTLDIR)
• Function Approximation (C55 , FAPPROX): System Iden-

tification (SYSID), Inverse System (INVSYS)
• Classification (CSF)
• Regression (RGR)
Property P2 thus comprises 11 NN property values, gathered

in 9 categories, of which C22 and C26 each contain two property
values; C22 contains p22 and p23 and C26 contains p27 and p28.
Property value indices run free from category indices.

A. Qualitative comparison through NN selection criteria ∇
With the taxonomic backbone defined, we can proceed

with classification of NN instances from processed literature
through property values P , using our set of NN classifiers ζ.
This comparative dimension, well-defined but very permitting,
is a core facility of our knowledge base and the heart of our
DSS’ inference engine. Therefore, we also extract from liter-
ature sources the qualitative comparison information between
NN instances w.r.t. the following set of chosen NN selection
criteria ∇:
δ1 Low cost of ownership (feasibility, practicality, low hard-

ware cost, low development complexity, presence of user
community)

δ2 Capability (effectiveness, convergence speed, generaliza-
tion performance, benchmark success, high learning rate,
low error)

δ3 Real-time requirement (speed of execution, on-line vs.
off-line learning, pre-learned vs. adaptive learning)

δ4 Design maturity (proven solution vs. emerging technol-
ogy)

While estimates for all NN criteria can be extracted from lit-
erature or provided by a domain expert, design maturity could
also be automatically calculated as a measure of occurrence
frequency in literature.

B. 5-letter notation and knowledge base formation

In the 5-dimensional NN universe, defined by our NN
framework F , that we define in Section V through selecting
our set of NN classifiers ζ1,...5, each NN instance is described
via five NN properties P1,...5. Therefore, each element in the
database compares two NN instances or NN landscapes in
terms of five parameters. To construct our formal notation, we
build upon the idea of 3-letter notation used in the theory of
scheduling problems [29] and adapt it to a 5-letter notation for
describing NN instances. Our resulting formal representation
of relation(s) between two NN instances is as follows:

(P1,P2,P3,P4,P5) >δi...n (P ′1,P ′2,P ′3,P ′4,P ′5), (1)

where each NN property P1...5 can be a comma-separated list
of elements (NN property values), n is the total number of
selection criteria and where i, i ∈ {1 . . . n} denotes the group
of indices of NN qualifiers, by which the ’greater’ NN instance
is superior to the ’lesser’ NN instance.

In our knowledge database, the following example statement
extracted from a scientific source [28]: ”FPGA is a superior
implementation platform to ASIC in terms of flexibility and

cost for implementations of FFNN or RNN with supervised or
reinforcement learning, using perturbation-based error descent
learning algorithms.” is formally denoted as follows:

(P1[4],P2[3, 4],P3[1, 2],P4[3],P5[x]) >δ1
(P1[6],P2[3, 4],P3[1, 2],P4[3],P5[x]),

(2)

Or:

(FPGA, {FFNN,RNN}, {SUP,REINF},
DSED, x)
>δcost,flexibility

(ASIC, {FFNN,RNN}, {SUP,REINF},
DSED, x)

(3)

This example also illustrates the case where the paper does
not specify all property values (in this example, the learning
task P5[x]), the statement is incomplete and it may mean
either that the relation is indifferent to that property, or that
there is no information present about that property’s role
in the relationship. After reviewing selected literature (e.g.,
[28][30][26][31]–[37]), we get a number of such specific state-
ments that comprise our knowledge base seed information,
which serves as basis for development of our inference engine
and visualization scheme.

VI. RESULT: KNOWLEDGE-DRIVEN DSS WITH INFERENCE
ENGINE AND VISUALIZATION TOOL

The proposed inference engine, together with knowledge
base visualization, are the final results of our efforts presented
in this paper. Both modules operate on the data in the
knowledge database in a read-only fashion. In the following
subsections, we present our scheme for exploratory visualiza-
tion of our multidimensional knowledge database and describe
our interactive inference engine.

A. Visualization scheme

Every point in the NN universe’s graphical representation
corresponds to one NN instance. The most valuable informa-
tion in our knowledge database is the qualitative comparison
between NN instances. This is shown in Figure 4, illustrating
the graphical representation of Statement (3) from Section
V-B. We have found that using three dimensions for the visual-
ization is optimal, because it allows users to navigate the envi-
ronment interactively and to recognize interdependencies, even
after switching between the chosen set of three dimensions.
The 3D visualization can only represent three dimensions at
a time and the user can explore the NN knowledge domain
using any dimension set.

Figure 5 shows the 3D representation our NN universe U ,
containing points from our prototype knowledge base. This
view allows users to examine the NN knowledge domain in
a full 3D environment, visually exploring (through zoom and
rotation of view around any axis) the comparative relations
between NN instances. Axes correspond to NN properties
P; each dot corresponds to a single NN instance Ii; arrows
represent qualitative comparators δ1...4 between two NN in-
stances; arrow thickness and dot size indicate the quantity of
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Figure 4. Example graphical representation of qualitative relation between
two NN instances. The figure represents Statement (3) from Section V-B.

source papers (database entries) for the shown information;
call-out-type labels are references to source literature. Each
of the selection criteria is assigned its own arrow color (red,
magenta, blue and black for δ1, δ2, δ3 and δ4, respectively).
Coloring of NN instances aids in visual comparison (blue is
better, green is worse). Using the inference engine (Section
VI-B), the visualization can be actively augmented according
to the user’s decision input.

B. Inference Engine

Our inference engine approaches the NN instance selection
process as a multiple-objective optimization problem [25]
and applies a Pareto front method [38], using our disrete-
equivalent Pareto front R, as defined in Section IV, to find
the suitable, multiple, non-dominant solutions. After the user
specifies their boundary conditions and sets weights of the NN
selection criteria ∇ through the graphical user interface, the
DSS automatically identifies the discrete-equivalent of Pareto
front R and the user can directly locate and examine the
source literature, relating the NN instances in R. Rating of
alternatives is based on a weighted pairwise comparison matrix
[39], resulting in levels within a discrete-space equivalent of
Pareto front, which guide the user towards NN instances,
specified as superior with respect to their criteria. The user
can iteratively and interactively further fine-tune the selection
of best candidates via weights of their criteria ∇, to determine
the optimal NN instance for their problem, until the final
choice is made. Information, inferred by the inference engine,
is also used as input into the visualization tool, to augment
the database visualization by superimposing relationships,
marking Pareto points and their scores, hiding a subset of NN
instances, etc. (see Figure 6). Both the visualization tool and
the inference engine can be extended with additional inference
and visualization functions. Section VII gives further insight
into the typical application of the inference engine, through
step-by-step explanation.

VII. PRACTICAL EXAMPLES OF DSS USE

The two major user groups that can gain remarkable benefits
from using our proposed DSS, are Industry Practitioner
and Academic Researcher. Both user groups share the main
interest of finding the optimal NN instance for their scenario,
but have a different angle: a) the industry practitioner’s goal
is to find the best fitting, well proven NN implementation
for their application (with set boundary conditions on task
type, implementation platform, etc.), and b) the academic
researcher’s aim is to find an active research area or synergies
between domains, to systematically selects the most meaning-
ful research direction.

A. DSS Use Case I: Industry Practitioner

In this section, we illustrate step-by-step a typical use case
for the industry practitioner. Let our example demand a highly
accurate and real-time capable NN instance for image-based
object recognition using supervised learning. The following
steps illustrate how this ground truth is used with our DSS
as decision input and how the inference engine results are
interpreted and used:

1) Enter task requirements into DSS: the practitioner enters
their set of boundary conditions by selecting the NN instance
properties, that are defined by the application. In our example,
these are the learning task and learning paradigm. The DSS
considers these two properties as pivots, therefore, only the
remaining three properties (dimensions) are shown in the
3D visualization tool (Figure 6a). After the axes are deter-
mined, the user specifies pivot axis values (learning task =
classification, CSF and learning paradigm = supervised, SUP).
The effect of this is shown in Figure 6b, where only those
NN instances are shown, whose pivot property values are as
specified by the user. Thus, this step narrows down the search
down to three dimensions and defines the NN landscape, which
optimal solutions can be chosen from. If more than two pivot
axes are specified by the use case, the NN landscape is 2- or
1-dimensional, further focusing the search.

2) Set weights for selection criteria ∇: once the 3D NN
landscape is defined in the previous step, the user specifies
weights for each of ∇ within the range from -5 to 5. In this
example, the selected weights for δ1...4 are (see Section V-A
for list of criteria):
δ1 Low cost of ownership: 2
δ2 Capability: 5
δ3 Real-time requirement: 5
δ4 Design maturity: 3
3) Examine Pareto front R: based on weighted criteria,

the inference engine extracts NN instances, that belong to the
discrete Pareto front R. These are NN instances, for which
there is no NN instance superior w.r.t. any of the selection
criteria (no arrows leaving the NN instance). These points are
highlighted by the DSS via black squares. For better viewing
of the points in R, the user can interact with the 3D view by
rotation around any axis. This is seen in 6c (left), showing
the R points in an updated view, obtained by rotating 6b
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Figure 5. The 3D representation our NN universe U , containing points from our prototype knowledge base. See Section III for axis label definitions.

(a) (b)

(c)

Figure 6. Rapid assessment of complete knowledge domain. Typical step-by-step application of the inference engine, together with the visualization scheme,
used for finding an optimal NN instance, based on user input parameters.
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around the ’view rotation axis’ in the indicated direction. In the
lower left corner of eachR-marking is the NN instance’s score
(closeup view in Figure 6c, right), calculated by the inference
engine using the weighted pairwise comparison matrix.

4) Analyze top alternative in Pareto front: the user chooses
the highest-ranking NN instances in the Pareto frontier and
analyzes their corresponding source literature, indicated by
call-outs (see Figure 4). Our example gives the highest score
of 12 to NN instance, described in database entries 314 and
502 (Figure 6c). From corresponding source papers [33] and
[34], the practitioner learns, that a) FFNNs can be used as
convolution NNs, b) GPU implementation in [34] has better
flexibility than previously known implementations, c) GPU
implementation of CONN has better real-time capabilities than
CPU implementation, d) Hybrid between pure CONN and
FFNN has better recognition performance than any of these
two used alone, e) hybrid implementation in [34] has won an
impressive series of image classification competitions, etc.

In conclusion, based on the industry practitioner’s input
criteria, the DSS recommends, that a GPU-based hybrid
CONV-FFNN NN should be investigated as best choice for
the given use case. This simple case illustrates how a user
can, using our DSS in a few simple steps, rapidly traverse
an immensely diverse knowledge base, in order to choose an
optimal direction for further investigation, and finally, concrete
implementation.

5) Iterate until optimal choice is found: the user can
tune the criteria to observe how the levels in the Pareto
front change. Through such exploration of the NN landscape,
the practitioner learns whether there exist satisfactory NN
instances for their problem, given their chosen criteria, and if it
exists, they systematically finds the most suitable NN instance
of current state of the art for their application. Furthermore,
through this exploration, the practitioner is exposed to ever
new concepts and types of NNs, and at the same time also
observes their relevance with respect to their own selection
criteria. The database is equipped with direct references to
literature sources, so the practitioner can learn about new NN
concepts that directly pertain to their problem. Thus, even if
there is no NN instance that fits directly with their selection
criteria, the practitioner can systematically find possibilities for
hybridization of seemingly unrelated approaches. This requires
understanding of a broad area of NN technology and our
knowledge database has a crucial role in the process. Finally,
once the optimal NN instance is found or a fruitful new hybrid
approach selected, the practitioner can attempt to implement
the solution or conduct novel research on their own, or use
our knowledge base directly to find the most relevant research
groups to form collaboration. Thus, researchers can, through
exploration, learn about relevant use cases for their NN types,
which steers their research towards compelling yet-unknown
real-world scenarios for NN use.

B. DSS Use Case II: Academic Researcher

Even though the knowledge base is constructed on ex-
isting science and lets us explore within its own, confined

boundaries, it can also lead us to the discovery of new
synergies, expanding the domain knowledge. It is able to do
this because it can be used as a broad overview to understand
the limitations of existing practices and give an indication
where more research is required. This leads us to the second
use case for an Academic Researcher.

For clarity of explanation of the second use case, we take the
same decision input as in the case for Industry Practitioner: a
highly accurate and real-time NN instance for image-based
object recognition using supervised learning. However, we
slightly modify the choice of weights for qualitative com-
parators, because an Academic Researcher is typically less
interested in design maturity. Therefore, the weights used for
the qualitative comparators δ1...4 in the selection criteria ∇ are
as follows:
δ1 Low cost of ownership: 2
δ2 Capability: 5
δ3 Real-time requirement: 5
δ4 Design maturity: 1
The main significance of this use case is the notion of pend-

ing instances I∗. These are inferred by the inference engine
to direct the researcher to viable research directions, based on
the highest scoring properties of existing NN instances.

The academic researcher further examines the pending NN
instances I∗ by reviewing related literature and experimenting.
This is where the exploratory visualization plays a crucial role,
because through guided navigation through the NN knowledge
database, the academic researcher can discover combinations
of NN properties that have not yet been researched, but have
high research potential.

This gives the researcher the opportunity to critically assess
the reasons why certain combinations of NN properties have
not yet been tested. Furthermore, it enables the researcher to
identify voids in current research and prompts them to direct
their research into undiscovered domains.

The algorithm for rating and highlighting previously-not-
researched NN instances with high research potential is:

Step I: Enter task requirements into DSS: The decision
input is the same as for the Industry Practitioner use
case.

Step II: Set weights for selection criteria ∇: The decision
input is the same as for the Industry Practitioner use
case.

Step III: Examine Pareto front R: In this step, points in the
Pareto front are computed by the DSS to be used
as input in the subsequent steps.

Step IV: Infer pending NN instances ∗I with high re-
search potential: Using Algorithm 1, the inference
engine determines the NN instances, that are not yet
present in the knowledge database, but - based on
the scores of NN property values of NN instances
included in the Pareto front - have high research
potential.

Step V: Visualize pending NN instances ∗Ii: Superimpose
pending NN instances into the 3D visualization
(Figure 7a).
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Algorithm 1: Infer and rank pending NN instances based
on Pareto front members

Step 1: Calculate score of individual NN property values
of Pareto front members:
Input: List of rated NN instances IR ∈ R according to

selection criteria ∇ (based on decision input from
Section VII-B)

foreach NN property j that is not a pivot do
foreach NN property value pj do

foreach NN instance IR ∈ R do
add score of IR to score of pj

Step 2: Create NN instances from all possible
combinations of pj with non-zero scores.
Step 3: From set of NN instances created in Step 2,
remove all that already exist in the knowledge database.
The remaining NN instances make up the set of pending
NN instances ∗I.
Step 4: For each NN instance ∗Ii ∈ ∗I, compute its
score through the sum of scores of its property values p
(calculated in Step 1).

Step VI: Per user specification input, limit number of
displayed ∗I: For better visibility, the user specifies
the upper threshold for the number of pending
NN instances to be displayed. In Figure 7b, this
threshold is set to 30%, meaning that only the top
30% of the high-scoring pending NN instances are
shown in the 3D view.

Following the steps I to VI, the researcher is drawn to
areas of research, which do not yet exist in the knowledge
database (see Figure 8). The researcher thus learns from the
visualization, that (see Figure 9):
• in terms of NN Architecture, the top-scoring unresearched

NN instances are SNN, RNN, CNN, DBN and hybrid
architectures (Figure 9c)

• in terms of implementation platform, most pending NN
instances are on GPU, FPGA and ASIC implementation
platforms (Figure 9d)

• in terms of learning algorithm, most pending NN in-
stances use backpropagation (BP), direct stochastic error
descent (DSED) and Evolutionary learning (the variant
based on evolving weights, EVLWT). (Figure 9e).

• overall, top-five best scoring pending NN instances are
(Shown in Figure 8 and, with context, in Figure 9f):

– (GPU, CNN, SUP, BP, CSF); score: 165
– (GPU, SNN, SUP, BP, CSF); score: 164
– (GPU, RNN, SUP, BP, CSF); score: 142
– (FPGA, CNN, SUP, BP, CSF); score: 139
– (FPGA, SNN, SUP, BP, CSF); score: 138

A choice of a different set of input parameters yields
a completely different set of interest points and viability

scores. Using different settings, the academic researcher with-
out a narrowly-defined problem area can explore different
problem areas and select their research direction based on
DSS-determined viability score and their own interests, e.g.,
preferences regarding implementation platform, depending on
previous knowledge.

VIII. PROCESS FOR ESTABLISHING AND MAINTAINING
THE KNOWLEDGE DATABASE

In this section, we propose concrete steps to fully exploit
the potential of our results and develop our initiative further.
The presented foundation, laid out as result of our research, if
adopted and its potential fully exploited, can bring industrial
applications of NNs closer to the forefront of today’s NN
research.

A central NN authority, ideally the International Neural
Network Society (INNS) in coordination with IEEE Com-
putational Intelligence Society (IEEE CIS) could consider
endorsing this effort and form a working group to refine
our taxonomy for use as a definitive basis for the proposed
knowledge base. Once the knowledge base reaches critical
mass, researchers could be motivated to contribute their own
work or populate it with papers from where they notice a
lack of coverage. For initial population of the knowledge
base, a special issue journal could attract survey papers of
NN instances and relations, represented fully in the 5-letter
notation. The editorial board could, per need basis, revise the
taxonomy when novel NN properties or categories emerge.
When authors embrace the 5-letter notation in their papers,
this information could, after the review process, be parsed and
input into the knowledge base automatically.

An online resource could be provided where the knowledge
base, enabling navigation through the visual representation,
would be freely accessible. A moderated collaborative edit-
ing among researchers could also be considered. Thus, also
the expert system users themselves could submit data gath-
ered from studying their chosen domain. An automatically-
generated dynamic survey paper could be always kept up-to-
date and available in printed form for quick overview of recent
developments. For the database to reach critical mass, initial
effort may be supported by a central NN authority. The NN
community could thus set a precedence and the conceptual
solution could be transferred also to other research fields.

IX. CONCLUSION AND FUTURE WORK

In this work, we have identified the need for an abstract-
level overview of the NN knowledge domain and alleviate the
barriers, which an industry practitioner or researcher meet,
when selecting the right NN instance or research direction for
their specific scenario. We devised a theoretical foundation for
a DSS, comprising a knowledge database and inference engine,
that can automate the decision process of choosing the best NN
architecture for the task at hand. We also presented a prototype
implementation and a proof-of-concept through step-by-step
use of our DSS. Next, we demonstrated an extension to
the inference engine, which support automatic inference of
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(a) The DSS inference engine infers pending NN instances ∗I,
using NN property values of Pareto points inferred based on user

input. Pending NN instances are marked as magenta circles,
superimposed onto the 3D database view. Marker size corresponds

to score.

(b) Updated view of Figure 7a, after user specifies that only the top
30% of the high-scoring pending NN instances be shown. Pending

NN instances are marked as magenta circles, added to the 3D
database view. Marker size corresponds to score.

Figure 7. Academic researcher use case: examination of pending NN instances.

Figure 8. Best view of top-five ranking pending NN instances, marked with black squares, ranked in lower left corner.
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(a) NN instances that satisfy the user boundary conditions (Step I). (b) Superimposed pending NN instances (Step V).

(c) Top 30% pending NN instances (Step VI).
(d) Figure 9c after clockwise rotation around Learning Algorithm

axis by cca 45◦.

(e) Figure 9d after clockwise rotation around Learning Algorithm
axis by cca 90◦.

(f) Best view of top-five ranking pending NN instances, marked
with black squares, ranked in lower left corner (same as Figure 8).

Figure 9. Academic researcher use case: the DSS infers and visualizes highest-scoring pending NN instances.
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promising combinations of NN properties, based on current
highest-scoring NN instances within the database. This will en-
able our system to automatically highlight synergies between
existing NN design approaches.

Future work aims towards moderated, collaborative editing
of the knowledge base among researchers. The proposed 5-
letter notation enables automatic parsing of the literature,
keeping the knowledge database up-to-date at all times and
solving this problem once and for all.
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