
450

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Extended Trace-based Task Tree Generation

Patrick Harms, Steffen Herbold, and Jens Grabowski
Institute of Computer Science

University of Göttingen
Göttingen, Germany

E-mail: {harms,herbold,grabowski}@cs.uni-goettingen.de

Abstract—Task trees are a well-known way for the manual
modeling of user interactions. They provide an ideal basis for
software analysis including usability evaluations if they are
generated based on usage traces. In this paper, we present an
approach for the automated generation of task trees based on
traces of user interactions. For this, we utilize usage monitors
to record all events caused by users. These events are written
into log files from which we generate task trees. The generation
mechanism covers the detection of iterations, of common usage
sequences, and the merging of similar variants of semantically
equal sequence. We validate our method in two case studies and
show that it is able to generate task trees representing actual user
behavior.

Keywords-task tree generation, usage-based, traces, task tree
merging.

I. INTRODUCTION

Task trees are an established method to model user interac-
tions with websites. They can be created manually at design
time or automatically, e.g., based on recorded user actions [1]
or based on existing Hyper-Text Markup Language (HTML)
source code [2]. When created manually at design time [3], the
structure of task trees reflects the user interactions as intended
by the interaction designer [4]. Task trees can also be used
for comparing expected and effective user behavior as a basis
for a semi-automatic usability evaluation [5]. When they are
not generated based on recorded user actions, task trees do not
describe effective user behavior but either expected or possible
user behavior.

In this paper, we present an approach for automatically
generating task trees based on recordings of user interactions.
This approach does not require a manual marking of task exe-
cutions in the recorded data before the task generation making
it easily applicable to larger data sets and differentiating it
from other approaches. The generated task trees represent the
effective behavior of users. They can, therefore, be used for
a detailed analysis of the usage of a software what is the
major goal we intend to achieve based on our approach. For
example, in other work we utilize the generated task trees
for an automatic usability evaluation of a website [6]. The
results of a usage analysis are used for optimizing software
with respect to the user’s needs. Throughout the remainder
of this paper, we use the analysis of websites as a running
example. However, our approach is designed for event-driven
software in general including desktop applications.

The approach in this paper is an extension of our work
described in [1]. The extension covers mainly the detection and
merging of similar generated sequences. We provide details
about the challenges introduced by the merging process and
extended the case studies section to also evaluate the merging
results. Furthermore, we added sections describing in more
details why and how the recorded user actions need to be post-
processed and how we detect and handle common elements on
different pages of a website, e.g., menu structures, to improve
the detection of tasks. Finally, we extended the related work
section to compare our approach and the resulting task trees
in more details with other approaches.

The remainder of this paper is structured as follows. First,
we introduce our approach and the respective terminology in
Section II. Then, we describe an implementation in Section III.
In Section IV, we present two case studies in which we tested
the feasibility of our approach and discuss the case study
results in Section V. Finally, we refer to related work in
Section VI and conclude with an outlook on future work in
Section VII.

II. TRACE-BASED TASK TREE GENERATION

The goal of our approach is to generate task trees based
on recorded user actions. In this section, we introduce the
details of the approach that consists of four major steps: user
interaction tracing, data preparation, detection of sequences
and iterations, and merging of similar sequences. These major
steps are shown in Figure 1. We commence with the definition
of terms that we use in this paper. In the subsequent sections,
we describe the details for the four major steps.

A. Terminology
Users utilize a website by performing elementary actions.

An action is, e.g., clicking with the mouse on a button, typing
some text into a text field, or scrolling a page. Actions cause
events to occur on a website, also known as Document Object
Model (DOM) events. An event is characterized by a type
that denotes the kind of event and, hence, the type of action
that causes the event. Furthermore, an event refers to a target
indicating the element of a website on which the corresponding
action was executed and where the event was observed. For
example, clicking with a mouse on a link (action) causes an
event of type onclick with the link as its target. Typing
a text into a text field causes an event of type onchange

451

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User Interaction Tracing

Data Preparation

Detection of
Sequences and Iterations

Merging of
Similar Sequences

Figure 1. Overall process for generating task trees

with the text field as its target. Events are representations of
actions. For each action there is a mapping to an event caused
by performing the action.

To execute a specific task on a website, users have to
perform several actions. For example, for logging in on a
website, users must type in a user name and a password into
two separate text fields and click on a confirmation button.

Tasks and actions can be combined to form higher level
tasks. For example, the task of submitting an entry on a forum
website comprises a subtask for logging in on the website
as well as several actions for writing the forum entry and
submitting it. Therefore, tasks and actions form a tree structure
called a task tree. The leaf nodes of a task tree are the actions
users must perform to fulfill the overall task. The overall task
itself is the root node of the task tree. The intermediate nodes
in the task tree define a structure of subtasks for the overall
task.

A task defines a temporal relationship for its children,
which specifies the order in which the children (subtasks and
actions) must be executed to fulfill the task. Different task
modeling approaches use different temporal relationships [7].
In our work, we consider the temporal relationships sequence,
iteration, selection, and optional. If a task is a sequence, its
children are executed in a specified order. If a task is an
iteration, it has only one direct child, which can be executed
one or more times. If a task is a selection, only one of its
children can be performed. If a task is an optional, it has only
one child whose execution can be skipped. A leaf node in
a task tree has no children and does, therefore, not define a
temporal relationship.

An example for a task tree is shown in Figure 2. It represents
the actions to be taken to perform a login on a website. The
actions are the leaf nodes. The temporal relationships of their
parent nodes define the order in which the actions have to be
performed. The task starts with an iteration of a selection. The
possible variants are entering a user name or a password in the
respective fields. Users may enter and change their user name

Enter user name into Textfield “username“

Sequence 1

Enter password into Textfield “password“

Click on Textfield “username“

Click on Button “login“

Click on Textfield “password“

Selection 1

Iteration 1

Sequence 2

Sequence 3

Optional 1

Scroll on Page

Iteration 2

Figure 2. Example for a task tree

and password several times. Optionally, users scroll before
completing the overall task by clicking the login button.

The execution of a task is called a task instance. A task
instance is a tree structure similar to that of the corresponding
task. It reflects in detail how a task and its subtasks were
executed. Each node in a task instance refers to the task of
which it is an instance. The concrete structure of a task instance
depends on the temporal relationships of the corresponding
task. For example, an iteration has only one child, but an
instance of an iteration (i.e., an iteration instance) has as many
children as the single child of the iteration was executed.
In contrast, a selection has several children but a selection
instance has only one child that is an instance of the executed
child, i.e., the chosen variant, of the selection.

An example of a task instance for the task tree in Figure 2 is
shown in Figure 3. For executing the task Sequence 1, first the
Iteration 1 is executed two times indicated by its two children.
Both children are instances of the child of Iteration 1, i.e.,
Selection 1. In the first instance of Selection 1, the user selected
Sequence 2 to be executed, in the second instance, Sequence
3 was performed. To finalize the instance of Sequence 1, the
user did not scroll before clicking the login button, which is
indicated by an instance of Optional 1 having no child instance.

A simplified representation of a task instance is a flattened
task instance. A flattened task instance is an ordered list of the
actions that were executed. This is identical to listing the leaf
nodes of a task instance.

B. User Interaction Tracing
The first step in our approach is tracing user actions on a

website. This is done by recording the events caused by the
actions of users. We achieve this by integrating a monitoring
module into the website. This module is invisible to the users
and has minimal effect on the implementation, performance,
and stability of the website [8]. The module can also be
configured to ensure privacy by dropping user data from the
recorded events. The resulting sequence of events is encrypted,
sent to a server, and stored in a log file. A recorded sequence
of events is called a trace.

452

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enter user name into Textfield “username“

Instance of Sequence 1

Enter password into Textfield “password“

Click on Textfield “username“

Click on Button “login“

Click on Textfield “password“

Instance of Selection 1

Instance of Iteration 1

Instance of Sequence 2

Instance of Sequence 3

Instance of Optional 1

Instance of Selection 1

Figure 3. Example for an instance of the task tree in Figure 2

1. Left mouse button click on Textfield with id username

2. Text input „usr“ on Textfield with id username

3. Left mouse button click on Textfield with id username

4. Text input „user“ on Textfield with id username

5. Left mouse button click on Textfield with id password

6. Text input „“ on Textfield with id password

7. Left mouse button click on Button with name „login“

Figure 4. Example for a trace

A simplified example of a trace is shown in Figure 4. It lists
the events recorded for a login of a single user on a website.
The login comprises the entering of the user name and the
password in the respective text fields, as well as a confirmation
by clicking on the login button. As the user initially entered a
wrong user name, it is reentered a second time. The user does
not scroll before confirming the login.

C. Data Preparation
The second step in our approach is the preparation of the

data gathered from tracing the user interactions. This includes
correcting the recorded events and checking the structure of
the website for common page elements to identify identical
user actions on different pages of a website. We describe this
data preparation in the following subsections.

1) Trace Post-Processing: Traces can have structural ab-
normalities that are unnatural for a user action. These ab-
normalities can be caused by the high level of detail on
which the events are recorded, by the event types, or by the
technology used for event recording. A typical example is
that a technology provides events indicating a keyboard focus
change separately to key strokes. Hence, the target of a key
stroke event is influenced by the last preceding keyboard focus
change event. In addition, traces may contain several events
that together represent a single user action. For example, two
subsequent clicks on the same website element in a short time
period represent a double click.

Due to these abnormalities, we perform a post-processing
of the traces before the generation of task trees. The post-

processing can be automated, as the structural abnormalities
in the traces always follow a specific pattern. For example,
for each key stroke event, we check the last preceding key-
board focus change event and adapt the target accordingly.
Afterwards, we drop all focus change events from the traces.
Overall, we perform the following post-processing:
• Detection of double clicks: Two subsequent click events

with the left mouse button on the same website element
within a time frame of 500 milliseconds are transformed
into a double click event.

• Correction of the target of key stroke events: The target
of key stroke events is set to the target of the last
preceding keyboard focus change event.

• Correction of tab key navigation: When navigating from
one text field to another, two events are generated: a key
stroke event for hitting the tab key and a value change
for the first text field. These events are always recorded
in reverse order (first tab key stroke, then value change)
although logically the value change happened before the
tab key stroke. In these cases, the order of both events
is switched.

2) Common Page Elements: Nowadays, websites are com-
posed of several pages all having a similar layout. For example,
all pages of a website contain the same navigation menu made
up of the same links. This means, that specific elements (links,
images, buttons, etc.) reappear on all pages of a website.
Although invisible for the user, these elements are in fact
distinct instances of the same element. We call these common
page elements as they are common to several pages of a
website. On contrary, there are elements on different pages
that reside at the same or similar location but are semantically
distinct. Examples are form elements of different forms on
different pages positioned similarly for design consistency.

When tracing user actions, we respect common page el-
ements. We consider actions on common page elements as
identical if they were performed on the same common page
element. Otherwise, we consider them as distinct. This is
important for the subsequent task tree generation. Without this
consideration, generated tasks would be considered distinct
although semantically they are not.

Elements on different pages are considered common, if they
have the same id. The ids are defined by assigning them
to nodes in the HTML Document Object Model (DOM).
Usually, this is automatically ensured when using modern
content management systems.

If a website does not make use of identical ids for common
page elements, we add and harmonize the ids subsequently
and automatically. For this we first create a mapping between
HTML DOM nodes and the ids they should have. To identify
an HTML DOM node, we use the page it belongs to and the
complete path of nodes through the DOM of the page pointing
to the node. A path through the DOM must be unambiguous.
Hence, on every part of such a path, we consider the HTML
tag of the node, its id if there is one, and its index with respect
to the children of the parent node. An example for such a path
is the following:

page1/html[0]/body[0]/table(id=tab 1)/tr[2]/td[3]/img[0]

453

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Iteration Detection
on Event Task Instance List

Sequence Detection
on Event Task Instance List

Event Task Instance
List Creation

[further tasks
detected]

[yes]

[no]

Figure 5. Basic process for detecting sequences and iteration

This path identifies an image embedded in a table on page
“page1”. The image is located in the table with id “tab 1” in
the third row (“tr[2]”) and the fourth column (“td[3]”). The
image is the first child of the respective table cell.

For each common page element, we create a mapping
between the path to the corresponding HTML DOM node
and the id it should carry. Afterwards, we update the events
in a trace. For each event, we check if the referenced target
matches an entry of the mappings. If there is an entry, we
update the information about the referenced target to include
the id defined in the mapping. To be able to perform a lookup
in the mapping, the target references in the events contain all
required information including the page the target resides on
and its position in the DOM. Eventually, all events having
targets with the same id are considered to be recorded on the
same common page element.

D. Detection of Sequences and Iterations

The third step of our approach is the detection of sequences
and iterations. This step consists of three substeps: event
task instance list creation, iteration detection, and sequence
detection. The substeps may be executed several times to fully
detect all sequences and iterations. The basic execution of these
substeps is shown in Figure 5. In the following subsections, we
describe these individual substeps and their repeated execution.
For this, we first introduce the levels of design, which are
important for structuring task trees. We then describe the
creation of the initial task trees consisting only of sequences
and iterations. Finally, we introduce some characteristics of
these initial task trees.

1) Levels of Design: When designing Graphical User Inter-
face (GUI)s, four levels of design are considered: conceptual
design, semantic design, syntactical design, and lexical design.
They are shown in Figure 6. The conceptual design describes
the types of entities that are editable with a software [9],
as well as their relationships [10]. For example, in a system
for managing addresses, addresses and persons are the entity

Conceptual Design

Semantic Design

Syntactical Design

Lexical Design

Types of entities and their relationships

Functions to modify entities
Steps to take for executing functions on
entities
Physical execution of steps to execute
functions on entities

Figure 6. Levels of design

types. These entity types are related, because a person may be
assigned zero or more addresses.

The semantic design specifies functions to edit the entities
defined in the conceptual design [9]. For the address man-
agement example, this includes adding, editing, and deleting
addresses and persons. The syntactical design specifies the
steps to execute a function defined in the semantic design [9].
For example, adding a new address is comprised of steps like
adding a street name, a city, and a zip code. At the most
detailed level, the lexical design specifies means of physically
performing steps defined in the syntactical design [9]. In the
example, defining a street of an address includes clicking on
the respective text field and typing the street name.

In our approach, we map the semantic, syntactical, and
lexical levels of design onto task trees. For each function
specified in the semantic design, there exists at least one task
for executing that function. Hence, there is at least one task
tree for each function in the semantic design. The syntactic
design is a decomposition of functions into individual steps
for function execution. This decomposition corresponds to the
definition of subtasks and their temporal relationships within
task trees. The actions on the lexical level of design are
represented through the leaf nodes of task trees. As we record
the events mapped to the respective actions, we refer to the leaf
nodes as event tasks. Event tasks are considered tasks with the
constraint of not having children and not defining a temporal
relationship.

2) Event Task Instance List Creation: Using the basic map-
ping of task trees to the levels of design, we create task trees
starting from the leaf nodes, i.e., from the event tasks. For each
event in a trace, we generate an instance of an event task. All
event task instances are stored in an ordered list. The order in
the list is given by the order in which the respective events
were recorded. An example is shown in Figure 7a where each
grey rectangle denotes an event task instance and the arrows
denote their order. The letters of the event task instances denote
the respective event task. If this letter is the same for several
event task instances, it indicates that the same event task, i.e.,
the same action, was executed at distinct times.

3) Iteration Detection: The ordered list of event task in-
stances may contain subsequent instances of the same event
task. For example, the user might have clicked several times
on the same button. Such tasks are represented in task trees as
iterations. Therefore, we scan the list of event task instances
for iterations of identical tasks. If we observe an iteration, we
generate a new task node of type iteration. The single child of
this task node becomes the iterated event task.

Afterwards, we scan the ordered list of event task instances
for instances of the iterated event task. We replace all instances

454

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a b b b c a

a) Ordered list of event task instances:

a

b

Iteration 1 c a

b) Ordered list of task instances with detected iterations:

Iteration
detection

bb d

b

Iteration 1 d

a

Sequence 1 c d

c) Ordered list of task instances with detected sequences:

a

Sequence 1

Sequence
detection

Iteration 1 Iteration 1

a = Instance of Event Task “a“

= group of instances considered in next step

Iteration 1 = Instance of “Iteration 1“

b b b

bb b bb

Task Tree
Derivation

d) Derived task tree:

a

Sequence 1

Iteration 1

b

a = Event Task “a“

Iteration 1 = “Iteration 1“

Legend:

Figure 7. Example for the detection of iterations and sequences

of the iterated event task with instances of the new iteration. If
the event task occurs only once, it is replaced by an iteration
instance getting the replaced event task instance as its single
child. If the event task occurs more than once subsequently,
the subsequent instances are also replaced by a single iteration
instance. This instance gets all replaced event task instances
as its children. An example for such a replacement is shown
in Figure 7a and 7b where Figure 7a depicts the event task
instance list before the replacement and Figure 7b shows the
event task instance list after the replacement. There, Event
Task b is iterated several times (denoted by the dotted boxes
in Figure 7a. We replace these instances in the ordered list with
iteration instances having the replaced event task instances as
their children.

4) Sequence Detection: After the iteration detection, we
scan the list of task instances for multiple occurrences of the
same subsequences. For the subsequence occurring most often
and which is, therefore, most likely an occurrence of a logical
subtask, we generate a new task node of type sequence. Its
children are the tasks belonging to the identified subsequence.
Each occurrence of the identified subsequence in the task
instance list is replaced with an instance of the new sequence.
Each instance gets as children the task instances to be replaced
by the sequence instance. An example is shown in Figure 7
where Figure 7b depicts the task instance list before the
replacement and Figure 7c shows the task instance list after
the replacement. There, the subsequence of Event Task a and
Iteration 1 occurs most often (two times) and is, therefore,
replaced through instances of a sequence representing this
subsequence.

The subsequences replaced through the sequence detection
can have any length. At the minimum, they have a length
of two. Our algorithm searches for the longest subsequences
occurring most often and replaces it accordingly. If several
subsequences have the same maximum occurrence count, we
replace only the longest one. If several subsequences have
the same maximum count and the same maximum length, we
replace only the subsequence occurring first in the ordered list.

5) Alternating Repetition of Detections: The iteration and
sequence detection on the ordered list of task instances are
repeated alternately until no more replacements are possible.
This is also visualized in Figure 5. Each time an iteration
detection is done, all iterations are detected and replaced.
This also includes iterations of detected sequences. For each
sequence detection the longest sequence occurring most often
is replaced. A detected sequence may include already detected
sequences and iterations. For example, in Figure 7c the de-
tected sequence contains a previously detected iteration.

In each alternating repetition of the iteration and sequence
detection, the ordered list of task instances becomes shorter.
This is because several task instances in the list are replaced
by single sequence or iteration instances. But the replaced task
instances as well as their order are preserved by making them
children of their respective replacement. Hence, no details of
the recorded events are lost.

If no more iterations or sequences are detected, the algo-
rithm stops as shown in Figure 5. The resulting task instance
list contains instances of detected task trees as well as event
task instances that were neither iterated nor part of a sequence
occurring more than once. Based on the instances of the
detected task trees, we can derive the raw task tree. For
the example in Figure 7a-c, the detected task tree is shown
in Figure 7d. The detected task trees represent the lexical,
syntactical and semantic level of design. The more recorded
events are processed, the more complex and deeper task trees
are created.

Within a recording of only one user session, specific sub-
sequences occur only once. An example is the login process,
which is usually done only at the beginning of a recorded
user session. With our approach, such regularly occurring
subsequences would not be detected if only one session
was considered. Therefore, we consider several sessions of

455

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different users at once for counting the number of occurrences
of subsequences. Due to this, we also detect subsequences
occurring seldom in individual sessions but often with respect
to all recorded users of the website.

6) Characteristics of Detected Tasks: The task trees cre-
ated so far consist only of sequences and iterations. Each
detected task is characterized by several aspects with respect
to the recorded events. First, each task t is associated a set
of recorded events r(t) based on which its structure was
generated. For example, in Figure 7, the task Iteration 1 is
generated based on all instances of Event Task b and, hence,
based on the corresponding events. Second, there is a function
depth(t) that returns the depth of a task t. The depth is the
number of levels a task has where the task itself is the first
level, its children are the second, its grandchildren are the
third, etc. The last level contains only event tasks and hence no
further children exist. For example, the depth of task Sequence
1 in Figure 7c is 3. Finally, it is possible to determine all
instances i(t) of a task t as they were generated during the
task detection process.

E. Merging of Similar Sequences
The tasks detected through the alternating iteration and

sequence detection follow strict structures and contain only
iterations and sequences. Due to this strictness, two distinct
tasks can be similar to each other and may describe the same
overall task being executed in two slightly different variants. A
typical example is the login process where some users use the
tab key and some users use a mouse click to navigate from the
user name field to the password field. A simplified example of
two similar tasks is shown in Figure 9a. Both tasks start with
Event Task a, have intermediate executions of Event Tasks c
and e, and end with Event Task h.

To reduce the number of similar tasks, we perform the
forth and final major step of our approach for generating task
trees based on recorded user actions that is the merging of
similar sequences (see Figure 1). This step also consists of
several substeps: detection of similar sequences, determination
of sequences to merge, adaptation of flattened task instances,
iteration detection, and sequence detection. These substeps
may be repeated several times depending, e.g., on how many
similar sequences are detected. The order of execution of these
substeps is shown in Figure 8. For each of these substeps and
their repetition, we provide respective details in the following
sections.

1) Detection of Similar Sequences: The first substep to
merge similar sequences is to detect them (see substep one in
Figure 8). For this, we compare all sequences with each other
and calculate a similarity metric for each pair. For this, we first
generate for each sequence t an ordered list l(t) of event tasks
covered by the sequence. This list contains the event tasks in
the order they would be executed, if the sequence was executed
with a minimum of event tasks, i.e., with all iterations being
executed only once. This list is similar to the smallest flattened
instance of the sequence with the distinction that it contains
event tasks and not their respective instances. We create l(t)
by performing a depth first traversal of the structure of t and

Detection of
Similar Sequences

Determination of
Sequences to Merge

Adaptation of
Flattened Task Instances

Iteration Detection
on Flattened Instances

Sequence Detection
on Flattened Instances

[no] [yes]

[further tasks
detected]

[similar tasks
detected]

[no]

[yes]

Figure 8. Basic process for merging similar sequences

storing all leave nodes in a list in the order they were visited.
The two lists of event tasks belonging to the sequences in
Figure 9a are shown in Figure 9b.

In the next step, we compare these lists of event tasks with
each other using Myers diff algorithm [11], which we adapted
to compare lists of event tasks instead of strings. This diff can
be seen as a function D(l(t1), l(t2)) that calculates a list of n
deltas d1 . . . dn between the two lists of event tasks determined
for t1 and t2. The types of deltas that are detected are:
• insert: one or more subsequent event tasks occur only

in the second list at a specified position;
• delete: one or more subsequent event tasks occur only

in the first list at a specific position; and
• change: one or more subsequent event tasks in the first

list are replaced by one or more subsequent event tasks
in the other list.

For each delta d, the number of event tasks making up the
delta is defined as e(d). The three deltas determined for the
sequences in Figure 9a are shown in Figure 9b. Based on
the deltas, we calculate the similarity metric s(t1, t2) of two
sequences t1 and t2. This metric is calculated as the number
of event tasks belonging to the determined deltas divided by
the number of all event tasks of both sequences:

s(t1, t2) =

∑n
i=1 e(di)

|l(t1)|+ |l(t2)|
(1)

In this calculation, we have to do a special consideration for
scrolls. If an event task is a scroll, it must always be considered

456

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Sequence 2

Sequence 1

a) Example of two similar sequences:

a

c

d

e

f

h

a

b

c

e

g

h

insert({b})

delete({d})

change({f}, {g})

h

a

Iteration 1

Sequence 3

c

d

Sequence 4

e

f

Sequence 6

Sequence 5

h

a

Iteration 2

c

Sequence 7

e

g

b

b) Deltas of the two similar sequences:

c) Adaptation of a flattened instance of sequence t
1

a c

d

e

f

hOptional 1 Optional 2 c

d

Optional 1 Optional 2 Selection 1

a c d e f hc d

Adaptations
based on deltas

d) Adaptation of a flattened instance of sequence t
2

a c e

g

hOptional 1 Optional 2 Selection 1

a b c e g hc c

Adaptations
based on deltas

b

Optional 1

Optional 2

Selection 1

c c

= delta with details

e) Task structure after re-application of the alternating iteration and sequence detection

c

Iteration 2

d

Optional 2Optional 1

b

Sequence 8

Iteration 3

Sequence 9

a e Selection 1

f g

h

t
1
: t

2
: l(t

1
): l(t

2
):

a = Instance of Event Task “a“

Iteration 1 = Instance of “Iteration 1“

a = Event Task “a“

Iteration 1 = “Iteration 1“

Figure 9. Example of two distinct but similar tasks generated by the alternating iteration and sequence detection and the process for merging them

457

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distinct during the calculation of s(t1, t2) independent of
belonging to a delta or not. The reason for this is that scrolls
do not have a semantic meaning in fulfilling a task. But
two similar tasks should only be considered similar if their
semantic meaning is similar. This should not be influenced
by a vast occurrence of semantically unimportant event tasks
like scrolling. Hence, we adapt the calculation of s(t1, t2)
accordingly. Let o(d) be the number of scroll event tasks
belonging to delta d and let o(t1, t2)) be the number of
scroll event tasks belonging to l(t1) and l(t2). Through the
following calculation of s(t1, t2), we ensure that scrolls are
not considered:

s(t1, t2) =
o(t1, t2) +

∑n
i=1 (e(di)− o(di))

|l(t1)|+ |l(t2)|
(2)

Through this calculation, s(t1, t2) is smaller the more sim-
ilar the sequences t1 and t2 are. If l(t1) is identical to l(t2)
and if both lists do not contain any scrolls, s(t1, t2) evaluates
to 0 indicating the highest possible similarity between two
sequences. However, as s(t1, t2) does not consider subtask
structures, the sequences may still be different with respect
to execution order.

2) Determination of Sequences to Merge: After we calcu-
lated s(t1, t2) for each pair of sequences p, we determine those
pairs that have to be merged. This is the second substep for
merging similar sequences as shown in Figure 8. Merging is
only useful for sequences having a minimum level of similarity,
i.e., s(t1, t2) should be below or equal to a specific border that
we call smax. For merging, we determine only those pairs

1) for which s(t1, t2) ≤ smax

2) whose deltas are neither at the beginning nor at the
end of l(t1) and l(t2) to ensure that deltas are always
considered in their entirety

3) for which s(ti, tj) is minimal and that are, hence, the
pairs of the most similar sequences

4) for which none of the sequences is a direct or indirect
parent of any sequence of another pair

For the remaining set P of pairs, we determine the set of
sequences T = t1 . . . t2 that are referred to by more than one
pair in P . If there are no such sequences (T = ∅), we merge all
pairs in P . If there are such sequences, we perform a further
filtering based on them and consider only pairs of which at
least one task is in T further. This is required to ensure that
in such cases the sequences in T are merged always in the
same order. For each sequence t ∈ T , we merge only the pair
referring to t where the following characteristics of the pair
are maximized or minimized in the given order in comparison
to all other pairs referring to t:
• r(t1) + r(t2) is maximized, i.e., both sequences of the

pair were generated on a maximum of recorded events;
• |i(t1)|+ |i(t2)| is maximized, i.e., both sequences of the

pair were most often executed;
• depth(t1)+ depth(t2) is minimized, i.e., both sequences

of the pair have the smallest depth;
• the sum of the instances of both sequences as well

as all their subtasks is maximized (subtasks are also
executed in other task contexts and, hence, their number

of instances is typically higher than the number of
instances of a parent task);

If there are several pairs referring to a t ∈ T for which
these characteristics are maximized or minimized, we throw
an exception and break up.

3) Adaptation of Flattened Task Instances: The result of
the determination of similar sequences is a list of independent
pairs of similar sequences. In the third substep of merging
similar sequences (see Figure 8), we perform a merge for
each of these pairs. The merging of a pair is done based
on the flattened instances of both sequences t1 and t2 and
on the deltas D(l(t1), l(t2)) determined for the pair. For this,
the flattened instances of both sequences are created. Then,
they are adapted based on the deltas to include instances of
optionals and selections to reflect the deltas. Basically, we
• create instances of optionals to reflect insert and delete

deltas as well as
• create instances of selections to reflect change deltas
Insert and delete deltas are handled in a similar fashion as

they reflect the same situation: one or more event tasks are
included in l(t) of one sequence but missing in l(t) of the other
sequence. Let t1 be a sequence where l(t1) includes the event
tasks denoted by an insert or delete delta d and let t2 be the
sequence whose l(t2) does not include these event tasks. For
the delta d, we generate an optional to reflect the delta. If the
delta denotes exactly one event task, this event task becomes
the single child of the optional. If the delta denotes more than
one event tasks, we first generate a new intermediate sequence
having the event tasks of d as children and set this sequence
as the single child of the optional.

Afterwards, we adapt the flattened instances of both similar
sequences. The flattened instances of sequence t1 are adapted
by replacing the instances of the event tasks denoted by d with
instances of the new optional. If only one event task instance
is replaced, this becomes the single child of the replacing
optional instance. If more than one event task instances are
replaced at once, we ensure that the replacing optional instance
matches the task structure of the corresponding optional in-
cluding intermediate sequences if any. The flattened instances
of t2 are adapted by integrating instances of the new optional
at the position where the event tasks denoted by d are missing.
These optional instances do not have children what reflects that
the child task of the optional was not performed.

An example for handling an insert and a delete delta, both
referring only to one event task, is shown in Figures 9b-d. In
Figure 9b, we show the determined deltas and also name the
two optionals that will be created to reflect them (Optional 1
for the insert and Optional 2 for the delete delta). Figures 9c
and d show, how two exemplifying flattened instances of the
similar sequences are adapted by integrating empty optional
instances or replacing event task instances. For example, in
Figure 9c, the instance of sequence t1 does not contain an
instance of Event Task b (indicated also by the insert delta).
Hence, we integrate an empty instance of Optional 1 at the
respective position between the instances of Event Task a and
c. In addition, we replace the occurrence of Event Task b in
the instance of t2 (Figure 9d) with an instance of Optional 1
having the instance of b as its child.

458

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To handle a change delta, we generate a selection. This
selection gets two children, both representing the appropriate
variants defined by the delta. If a variant consists of more than
one event task, we again work with intermediate sequences
to be able to reflect several subsequent event tasks at once.
Afterwards, we adapt all flattened instances of both sequences.
We replace each occurrence of the event tasks denoted by
the delta with instances of the new selection. The children of
the selection instances are set to reflect the executed variant.
We again ensure that intermediate sequences, if any, are also
correctly reflected in the selection instances. Figures 9b-9d
show an example of this approach. Figure 9b shows a change
delta for which we generate Selection 1. Afterwards, we adapt
the flattened example instances of t1 and t2 as shown in the
Figures 9c and 9d. The event task instances f in the instance of
t1 and g in the instance of t2 are both replaced by instances
of Selection 1. In both cases, the selection instance has the
replaced event task instance, i.e., the selected variant, as its
single child.

4) Iteration and Sequence Detection: After all flattened in-
stances of a sequence pair to be merged are adapted according
to the above rules, we reapply our sequence and iteration
detection on all adapted flattened instances of both sequences
(see substeps four and five in Figure 8). Both substeps are
repeated until no more iterations or sequences are detected in
the flattened instances. Afterwards, we get a new task structure
as replacement for both sequences that now includes selections
or optionals to reflect the different task variants. The result
of the reapplication of our approach on the adapted flattened
instances of Figures 9c and 9d is shown in Figure 9e.

The reapplication of the sequence and iteration detection is
always done on at least two flattened task instances (one for
each sequence of the merged pair). Furthermore, the flattened
instances are adapted in a way so that their structure is the
same. Hence, in the last cycle of the sequence and iteration de-
tection, we automatically detect a sequence covering the whole
new structure. This new sequence becomes the replacement for
both merged sequences.

5) Handling of Interleaving Iterations: Although two se-
quences are similar, they may differ in the possible iterations
of event tasks. A typical example is shown in Figure 10. This
figure displays two variants of task trees of a login process as
they are generated by the alternating iteration and sequence
detection of our approach. For navigating from the user name
to the password field, the first variant includes the usage of a
mouse click on the password field whereas the second variant
uses the pressing of the tabulator key. The merging process
described in the preceding paragraphs would consider both
sequences as similar as they differ only at two of ten event
tasks and would merge them. But here, merging must be
prevented. The reason is, that the behavior of a click on the
password field and the usage of the tabulator key is different
with respect to the focus state of the GUI. A repeated click on
the password field leaves the focus on the password field. But a
repeated usage of the tabulator key will move the focus always
to the next element of a form. Hence, depending on the event
tasks in both variants of the example the allowed iterations in
the variants differ. We call this situation interleaving iterations.

Interleaving iterations cannot be merged by our approach.
To handle such similar sequences anyway, we determine inter-
leaving iterations before merging. In the example in Figure 10,
these are the iterations marked with the grey arrows. If we find
interleaving iterations, we change our merging process. First,
we calculate a variant of l(t) that we call l′(t). This variant
results from a depth first traversal of task t where event tasks
are added to l′(t) and interleaving iterations are not traversed
but also directly added to l′(t). As a result, l′(t) contains
either interleaving iterations or event tasks that are not part
of an interleaving iteration. We then apply the diff algorithm
D(l′(t1), l

′(t2)) to get an adapted set of deltas. Second, when
adapting the flattened instances of two similar sequences, we
do not consider fully flattened instances but prevent flattening
instances of the interleaving iterations. Furthermore, we con-
sider only the adapted set of deltas when creating optionals and
selections. The remaining steps stay the same. Through this,
we adapt our overall process to preserve interleaving iterations
and, hence, to be correct with respect to allowed or possible
repetitions of actions.

6) Reapplication of Similar Sequence Merging: As shown
in Figure 8, the detection and merging of similar sequences
is repeated until no more similar sequences are found whose
similarity level is low enough. This also includes merging
of sequences being themselves results of merging or that
have results of merging as their subtasks. Due to this, two
compared and potentially merged tasks may include selections
and optionals that need special considerations when comparing
and merging tasks.

When creating l(t) of a task including an optional, the
optional is traversed normally. Hence, s(t1, t2) of two tasks
that may contain optionals in addition to sequences and iter-
ations is calculated the same way. We make some additional
considerations when performing a merging of two task t1 and
t2. It may be the case, that elements of l(t1) being equal
in l(t2) may be optional in t1 but not in t2 because of a
parent optional. An example is shown in Figure 11a. There
Event Task c is optional in task t1 but mandatory in t2. But
this does not show up as a delta between l(t1) and l(t2) as
seen in Figure 11b. To anyway preserve such optionals, we
first identify those elements of l(t1) that have an optional
as parent. Instances of these optionals are not flattened when
creating the flattened instances of t1. Afterwards, we ensure
that all elements of l(t2) have an optional as parent if the
corresponding elements of l(t1) also have an optional as its
parent. If required, an optional is introduced. When creating
the flattened instances of t2, instances of these optionals also
remain unflattened. As a result, all flattened instances of both
tasks t1 and t2 will contain event task instances and optional
instances. This ensures that the optionals contained in t1 are
preserved. Figures 11c and 11d show how the instances of the
sequences t1 and t2 are flattened by preserving (Figure 11c)
and respectively introducing (Figure 11d) an optional for Event
Task c.

Selections require a more complex handling. If a task
contains a selection, this selection can not be traversed when
creating l(t). Hence, l(t) of a task containing a selection
includes event tasks and selections. An example for this is also

459

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enter user name into Textfield “username“

Sequence

Enter password into Textfield “password“

Click on Textfield “username“

Click on Button “login“

Click on Textfield “password“

Iteration

Sequence

Sequence

Iteration

Sequence

Iteration
Enter user name into Textfield “username“

Click on Textfield “username“

Sequence

Iteration

Sequence

Press TAB key on Textfield “username“

Enter password into Textfield “password“

Iteration

Sequence

Click on Button “login“

Iteration

Sequence

Figure 10. Example of two similar tasks with interleaving iterations

Sequence 2

Sequence 1

a) Example of two similar sequences:

a

b

d

Selection 1

g

a

b

d

h

g

change({Selection 1}, {h})

g

a

Optional 1

b

Sequence 2

Sequence 3

a

g

b

b) Deltas of the two similar sequences:

c) Example of a flattened instance of sequence t
1

(no adaptation required)

a b

d g

d) Adaptation of a flattened instance of sequence t
2

c gd h

Adaptations
based on deltas

= delta with details

e) Task structure after re-application of
the alternating iteration and sequence
detection

Optional 1

c

Sequence 5

a Selection 1

f h

g

t
1
: t

2
: l(t

1
): l(t

2
):

a = Instance of Event Task “a“

Iteration 1 = Instance of “Iteration 1“

a = Event Task “a“

Iteration 1 = “Iteration 1“

c

Selection 1

e

f

Sequence 4

c

dd

h

c c

Optional 1

c

Selection 1

e

d gOptional 1

c

Selection 1

h

b d

e

Sequence 2

a b

Sequence 2

a b

Sequence 2

Figure 11. Example of merging two similar tasks containing optionals and selections

460

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shown in Figure 11. There, Sequence t1 contains a selection
that is not flattened and hence shows up in l(t1).

Although a selection is not flattened when creating l(t), it
may represent several event tasks at once. Thus, we adapt the
calculation of s(t1, t2) to still correctly represent the ratio of
different event tasks for the comparison of t1 and t2 even if
one of them contains a selection. For this, we calculate the
average number of event tasks e(p) covered by each selection
p ∈ l(t1)∪ l(t2). This is done by creating l(c) for each child c
of a selection and then calculating the average length of these
lists. Furthermore, if a delta d includes one or more selections,
then e′(d) is the sum of the average event tasks covered by the
selections and the remaining number of event tasks belonging
to the delta:

e′(d) =
∑
p∈d

e(p) + e(d) (3)

Finally, the calculation of s(t1, t2) is adapted to respect
the average number of event tasks covered by selections as
follows:

s(t1, t2) =
o(t1, t2) +

∑n
i=1 (e

′(di)− o(di))

|l(t1)|+ |l(t2)|+
∑

p∈l(t1)∪l(t2)
(e(p)− 1)

(4)

For merging two sequences, where one contains one or
more selections, we do not flatten selection instances. This
is to preserve the selection instance and its selected variant.
Furthermore, if a selection spans a change delta completely, we
adapt it to include the new variant in its children. An example
for this is shown in Figure 11a. There, t1 includes a selection.
When flattening an instance of t1 (Figure 11c) the instance
of the selection is preserved and not flattened. When adapting
the flattened instance of the similar task t2, the selection is
extended with a further variant (Event Task h) as the delta
between t1 and t2 is fully spanned by the selection. Hence,
the flattened instance of t2 is also adapted by replacing the
instance of Event Task h with an instance of the selection
having h as the selected variant.

A further consideration in our merging process is the preser-
vation of subtasks being either fully covered by a delta or
representing common parts of two similar tasks. An example
is shown in Figure 11a. Both sequences start with the sub
task Sequence 2. When merging t1 and t2, this subtask and
all its instances can and should be preserved. For this, when
flattening the instances of two similar tasks, we do not flatten
instances of subtasks being either common for both tasks or
being fully covered by a delta. In the example in Figure 11c
and d, the instances of Sequence 2 stay unflattened.

For each detected optional and selection as well as for
intermediate sequences, we ensure that the same task is created
only once. For example, if during several merges an optional
of a specific event task must be created, the optional is created
only during the first merge and then reused in the other merges.
This also requires to detect if a generated task matches the
requirements of a new task to be created.

F. Usability Evaluation
We utilize the generated task trees for automated usability

evaluations. For this, we consider violations of generally ac-
cepted usability heuristics (e.g., as provided in [12]) and define
patterns for their reflection in task trees. We then filter our
task trees for these patterns and reason on potential usability
defects. This is possible, as the generated task trees represent
effective user behavior. For example, we analyze typical action
combinations or navigation patterns users perform on a website
and detect if their efficiency could be improved. The details
of this approach can be found in [6].

III. PROOF-OF-CONCEPT IMPLEMENTATION

To show that our method is feasible, we implemented it
based on the tool suite for Automatic Quality Engineering of
Event-driven Software (AutoQUEST) [13]. The AutoQUEST
platform provides diverse methods for assessing the quality
of software. AutoQUEST’s internal algorithms operate on
abstract events, which makes AutoQUEST independent of
the platform of an assessed software. AutoQUEST’s modu-
lar architecture allows the extension with modules to sup-
port algorithms for quality assurance, as well as feeding
AutoQUEST with events of a yet unsupported software plat-
form. In the following, we describe how we utilized and
extended AutoQUEST to implement our method.

A. User Interaction Tracing
AutoQUEST provides basic functionality for tracing user

actions on different platforms including websites. For this,
it uses techniques from GUI testing, e.g., for capture/replay
testing [14]. For monitoring a website only a JavaScript needs
to be added to each of the pages of the website. In modern
content management systems, this can be configured centrally
and easily. The JavaScript is served by a monitoring server
shipped with AutoQUEST. It automatically records events
caused by user actions. After a specific amount of events is
recorded, or if the user switches the page, the script sends the
events to the AutoQUEST server that stores them into log files.
Using a dedicated parser, these log files can then be fed into
AutoQUEST for further processing.

An excerpt of a trace of AutoQUESTs website monitor
showing a mouse click and a scroll event on a web page is
shown in Figure 12. Both events denote their respective type,
a timestamp, and meta information like the coordinates in the
click event. Furthermore, both events refer to a target, i.e., the
element of the webpage, on which the event was observed.
The identifiers of the targets can be resolved through other
information stored in the log file, as well.

B. Task Tree Generation
For our proof of concept implementation, we extended

AutoQUEST with capabilities to generate task trees based
on traces. The implementation follows the overall process
described in Section II. The implementations of the data
preparation and the iteration detection are straightforward and,
therefore, not described in more detail.

461

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<event type="onclick">
 <param name="X" value="87"/>
 <param name="Y" value="213"/>
 <param name="target" value="id1"/>
 <param name="timestamp" value="1375177632056"/>
</event>
<event type="onscroll">
 <param name="scrollX" value="-1"/>
 <param name="scrollY" value="-1"/>
 <param name="target" value="id2"/>
 <param name="timestamp" value="1375177632900"/>
</event>

Figure 12. Example for a trace recorded with AutoQUEST’s HTML monitor

1) Sequence Detection Implementation: For identifying and
counting subsequences occurring several times, we reused and
extended a data structure provided with AutoQUEST called
trie [8]. A trie in AutoQUEST is a tree structure used for
representing occurrences of subsequences in a sequence. In
our case, we use the trie for representing subsequences of tasks
in the ordered list of tasks considered for the next sequence
detection. An example for a trie is shown in Figure 13.

Each node in a trie represents a task subsequence. The
length of the represented subsequence is equal to the distance
of the node to the root node of the trie. The root node of
the trie represents the empty subsequence. The children of
the root node (in Figure 13 all nodes on Level 1) represent
the subsequences of length 1 occurring in the trace, i.e.,
all different tasks. The grand children of the root node (in
Figure 13 all nodes on Level 2) represent the subsequences
of length two as their distance to the root node is two, etc.
The subsequence represented by a node can be determined by
following the path through the trie starting from the root node
and ending at the respective node. The length of the longest
subsequence represented through a node in the trie is defined
as the depth of the trie. The depth of the trie in Figure 13 is
three.

Each node in a trie is assigned a counter. This counter
defines the number of occurrences of the subsequence rep-
resented by the node. The counter of the root node is ignored.
The example trie in Figure 13 represents the event tasks for
the trace of Figure 4. The trie shows that the event task of
clicking on the user name text field occurs twice and that both
times it is succeeded by entering some text, i.e., a user name,
into the text field. The event of clicking the login button is not
succeeded by any other event task.

We calculate a trie each time a sequence detection on the
ordered list of tasks is done. Based on the trie, we are able
to identify the longest subsequence of tasks with a minimal
length of two occurring most often. The number of occurrences
is determined through the counts assigned to each node in
the trie. The length of the subsequence is determined by
the distance of the trie node representing the most occurring
subsequence to the root node of the trie.

If the length of the identified subsequence is identical to
the depth of the trie, we cannot decide if there is a longer
subsequence with the same count. We, therefore, increase the
depth of the trie until the depth is larger than the length of
the longest subsequence occurring most often. In Figure 13,

the longest subsequence occurring most often is clicking on
the user name text field and entering a user name. This
subsequence occurs twice and there is no other subsequence of
the same or a longer length occurring more often. Therefore,
all occurrences of this subsequence in the ordered list of tasks
is replaced through a task node of type sequence.

2) Comparison of Tasks: An important challenge in our
implementation was the comparison of tasks. Tasks need to
be compared very often either for compiling the trie or for
detecting iterations. For an effective task generation, some
tasks must be considered equal although they are different.
An example is a task and an iteration of this task. Both must
be considered identical if the iteration is executed only once.
Another example is shown in Figure 13. The represented trie
contains nodes for the event tasks representing the entering
of text into the user name text field. Although different text
is entered in the respective events, the respective event tasks
need to be considered identical for a correct trie calculation.
Therefore, we implemented a mechanism to be able to perform
complex task comparisons. In addition to other comparisons,
it is able to compare a task A with an iteration of a task B
and considers them as equal if task A is equal to task B.

3) Merging of Similar Sequences: Due to the large num-
ber of sequence comparisons required for detecting similar
sequences, we implemented the comparisons to be executed in
parallel. For this, we schedule several threads each performing
a bucket of all required comparisons. The number of threads
executed in parallel can be configured and should match the
number of available cores on a machine. Each thread searches
for those sequence pairs in its buckets that have the lowest
similarity level and returns them. Afterwards, the results of all
threads are joined and again the most similar sequences are
filtered out.

Furthermore, we implemented some checks to ensure that
the merging was correct. For example, we ensure that the
original flattened instances of two merged tasks are identical to
the flattened instances of their replacement task. Additionally,
we performed random manual checks of what is merged and
if the merge results are correct.

IV. CASE STUDIES

For the validation of our approach, we performed two case
studies. With these case studies, we intended to show that
our approach is feasible and able to generate task trees based
on recorded user actions. For this, we first recorded user
actions on two websites. Then we used our approach, i.e., its
implementation, to generate task trees. Finally, we evaluated
the correctness of the detected task trees through manual
inspection and comparison with the structure and available
user actions of the website and its pages. However, due to
the partially large number of generated tasks, this inspection
was only done for a subset of tasks.

For the first case study, we traced the interaction of users
of our research website [15]. This website provides three
major information categories to its users: information about
our research group members, information about our research
and corresponding projects, as well as information about the

462

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Left mouse
button click

Textfield with
id username

(2)

Trie root

Text input

Textfield with
id username

(2)

Left mouse
button click

Textfield with
id username

(1)

Left mouse
button click

Textfield with
id password

(1)

Text input

Textfield with
id username

(2)

Left mouse
button click

Textfield with
id username

(1)

Left mouse
button click

Textfield with
id password

(1)

Text input

Textfield with
id username

(1)

Text input

Textfield with
id password

(1)

Left mouse
button click

Textfield with
id password

(1)

Text input

Textfield with
id password

(1)

Left mouse
button click

Button with
name „login“

(1)

Text input

Textfield with
id password

(1)

Left mouse
button click

Button with
name „login“

(1)

Left mouse
button click

Button with
name „login“

(1)L
e

v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

Figure 13. Trie generated based on the trace in Figure 4

Figure 14. Screenshot of the Research Website of the first case study

courses we offer to students at our institute. A screenshot of
the page listing the offered courses is shown in Figure 14.

We integrated the HTML monitor of AutoQUEST in our
content management system. We then recorded interactions of

463

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. RECORDED AND CONSIDERED EVENTS IN THE TWO MAJOR
CASE STUDIES

Case Study 1 Case Study 2
Website of Research Group Application Portal

Start of Recording 30 June 2013 25 October 2013
End of Recording 4 March 2014 7 March 2014

Recorded Users 1,356 555
Recorded User Sessions 8,113 4,129

Considered User Sessions 6,587 3,635

Recorded Events 63,127 350,368
Relevant Events 38,070 306,568

Double Clicks 741 6,437
Focus Changes 9,950 89,825

Considered Events 27,379 210,306
Different Events 1,202 1,897

Generated Tasks 1,847 10,634
Without Merging

Sequences 1,431 9,530
Iterations 416 1,104

Generated Tasks 1,842 10,663
With Merging

Sequences 1,419 9,361
Iterations 416 1,133

Selections 3 81
Optionals 4 88

1,356 users over a period of 8 months. Afterwards, we fed
the gathered traces containing more than 63,000 events into
AutoQUEST and generated over 1,800 task trees based on
this. Further details of the case study are listed in the middle
column of Table I.

This case study showed that the task tree generation was
feasible in general. The generated task trees represented user
behavior occurring several times. As an example, several users
opened the initial web page and navigated to our teaching
page (shown in Figure 14). From there, they navigated to the
information about a specific course by clicking on one of the
respective links.

In the first case study, we set smax to 0.33, i.e., we
considered two sequences as similar if less than or equal to
one third of the event task lists of both sequences are different
(including scrolls). We chose this border to reflect that we
expect at least twice as many commonalities than differences
between sequences to consider them as similar. Using this
parameter, the merging of tasks in the first case study found
12 similar tasks and merged them resulting in three selections
and four optionals. One optional was detected and reused in 6
merges, one selection in two merges. The merged tasks were
executed quite seldom and covered at most 262 events per
similar task pair. The optional that was integrated most often
represents an optionality of scrolling.

The first case study revealed that our mechanism must
be careful with respect to privacy protection. Our research
website includes a log-in mechanism for being able to change
its content. The first version of the tracing mechanism also
traced user names and passwords of all users that logged in on
the website. As this was a severe security issue, we adapted
the tracing mechanism to ignore password fields in general.

Furthermore, a website can be instrumented in a way, so that
contents of selected text fields, e.g., fields for entering a user
name, are not traced anymore.

In our second case study, we traced the users of an applica-
tion portal of our university over a period of 4 months. This
case study traced over 550 users producing more than 350,000
events resulting in 10,663 generated task trees. The details for
this case study are listed in the right column of Table I. As in
the first case study, we set smax to 0.33.

When feeding the data of the second case study into
AutoQUEST, we initially observed performance problems of
our approach. Especially, the large number of distinct events
caused the creation of a large trie for sequence detection. We,
therefore, implemented several optimizations. For example,
click events on the same button but with different coordinates
are now treated as the same event task. However, click events
on other website elements are still considered different, if their
coordinates differ. Furthermore, we made intensive use of the
mapping of common page elements and thereby reduced the
number of different event tasks. This was done as on some
pages of the portal, tables were used to represent content of
similar meaning (e.g., a list of the application data entered by
a user). For each row in such a table, there were buttons to edit
the content. Although each of these buttons refer to different
content to be edited, the basic semantic of these buttons is
considered the same: edit the content belonging to the row.
Hence, we considered these buttons as common page elements.

The second case study showed that our approach is able
to correctly identify effective user behavior. The application
portal also provides a login mechanism. Our task tree gener-
ation created several different task trees for the login process
of users. One of them showed the behavior of those users
using the mouse to set the focus on the password field after
having entered the user name. Another task tree showed
the usage of the tabulator key instead. The merging process
correctly identified these two tasks as similar and merged
them considering the interleaving iterations. A visualization
of the merge result as displayed by AutoQUEST is shown
in Figure 15. The example shows, that many iterations are
generated in the task tree. This is due to the fact, that some
users corrected the entered data several times. Furthermore, if
the users entered wrong credentials, the website returned to
the same page and the users started the login process again.
The selection resulting from the merge is very large due to the
handling of interleaving iterations.

In the second case study, the merging process identified
more similar task than in the first case study and performed 224
mergings. This resulted in 81 selections and 88 optionals. The
selection that covered most recorded events was a selection
between entering a date into five different text fields and
was mainly integrated into tasks representing the usage of a
date chooser. The optional that covered most recorded events
was also here an optional of scrolling. Due to the merging,
the overall number of tasks increased, as new selections and
optionals were introduced but fewer other tasks (sequences)
where discarded. Furthermore, more iterations were generated.
This is because two similar tasks may have been executed
subsequently. Through the merging, they were afterwards

464

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Task tree generated in the context of the second case study

considered the same task. Hence, their subsequent execution
was correctly identified as an iteration of the merged task.

V. DISCUSSION

The generated task trees represent the effective user behav-
ior. This is important to analyze the usage of a monitored
website, e.g., with respect to usability. Our approach is also
able to identify distinct ways of executing semantically equal
tasks and merge them into a single task.

At each repetition, the detection of sequences chooses the
longest subsequence occurring most often and replaces it as
described. This heuristic prefers shorter sequences as the count
of a subsequence decreases with an increasing length. The
resulting task trees are, therefore, deeply structured. Hence,
it would be better to apply a more sophisticated heuristic such
as selecting a subsequence occurring more seldom but being
much longer.

Currently, we identify tasks that are executed only seldom.
For example, we generate sequences for event combinations
that happened only twice during user tracing. In the future, we
plan to perform a filtering so that tasks must have a minimum
amount of covered recorded events to be considered as tasks.
This can be seen as a measure for the evidence of a task to
be really a common task for all users.

For user interactions or tasks there may be pre or post con-
ditions. For example, an iteration can be repeated a minimum

or maximum amount of times. Our approach is not able to
detect these conditions. Therefore, the task tree structures that
we generate do not include notations for conditions.

The merging process allows to have in the end less tasks
describing the semantically same task with slightly different
execution variants. However, the merged tasks and their parent
tasks may not be fully correct anymore with respect to the
possible action sequences they represent. For example, in the
second case study, the process merged several similar tasks of
using a date chooser. All these tasks were identical except for
the event task that finally entered the selected date into the
respective text field. The merging process created a selection
of these event tasks and merged several date chooser usages
into a merged task. The last element of this merged task was a
selection of entering a date into several available date fields on
different pages of the website. Unfortunately, the merged task
was a child of other parent tasks, e.g., of a parent task that
was executed only on a specific page of the website. Hence,
because the merged task also represented usages of the date
chooser on other pages of the website, not all of its execution
variants were valid in the context of this parent task. But for
analyzing the usage of the date chooser, this merging was very
helpful.

As a result, also invalid parent tasks were created through
merging. This also applies for all parent hierarchies of a
merged task. To check, if a parent task becomes invalid trough
merging, a manual inspection was required. In the first case
study, we did not observe this issue. In the second case study,
we identified 8 of the 81 selections to cause invalid parent
tasks. All were related to the date chooser usage. The cause
for this issue is the consideration of common page elements.
All date choosers on all different pages were considered as
common page elements. But although being positioned at the
same location in the DOMs of the different pages, they were
semantically related to a specific page and a specific date field
and, hence, should not be considered common. Therefore, this
issue is not caused by the merging process itself but by the
data preparation.

The merging process is based on the detection of similar
tasks using Myers diff algorithm. In this work, we have not
evaluated if the application of other diff algorithms would
reveal other merging results. Hence, the results of the merging
process may depend on the used diff algorithm. Furthermore,
we set smax in both case studies to a fixed value. We have not
evaluated how a change on smax may affect the merge result.

In some situations, our merging process does not yet fully
correctly merge execution variants. For example, our approach
created several selections, of which at least one child was a task
and another child contained the task too as some embedded
child. The simplest example is a selection of a task and
an optional of the same task. Hence, some generated task
structures are still more complex than they could be and need
to be further refined.

VI. RELATED WORK

In this section, we refer to related work. We start with
similar work on recording user actions. Then, we consider

465

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different approaches for task modeling and compare them
with our work. Finally, we compare our approach with other
attempts to generate task trees.

A. Recording of user actions

Nowadays, the idea of tracing user actions on websites
is often applied in the context of web analytics, e.g., with
Google Analytics [16] and Piwik [17]. Furthermore, there exist
several tools that can be used to trace software based on
other platforms than HTML. In contrast to our approach, the
level of detail of the information recorded by existing tracing
mechanisms varies and is often rather low. For example, Piwik
does not record individual clicks.

To get more detailed recordings, other approaches, e.g, the
one used by WebRemUsine [5], require Java applets or other
mechanisms to store the recorded user interactions on the
client and send them subsequently to the server. UsaProxy [18]
provides an Hyper-Text Transfer Protocol (HTTP) proxy that
is located between a web server and its clients. The proxy
adapts each HTML document requested by a client and in-
serts a reference to a Javascript. This script automatically
records detailed user actions at client side and sends them
via Asynchronous JavaScript and XML (AJAX) [19] to the
proxy that in turn stores them. Our approach for recording
user actions on websites also utilizes an AJAX approach but
without using a proxy. Instead, our Javascript is integrated in
each website using mechanism of the content management
system of a website. This has the advantage, that we can
distinguish between monitored and unmonitored parts of a
website. Furthermore, instead of using a standard way for
instrumenting all pages of a website as done by UsaProxy,
our approach allows to consider website specific technical
challenges when adding the Javascript to the pages.

B. Task Modeling

Task models are used to describe the actions a person
has to perform to reach a specified goal. In the context of
website usage, they allow to define, which and how website
elements are to be used to accomplish one of the tasks the
website was developed for [5]. Task models usually cover task
decomposition, task flow specification, object modeling, and
task world modeling [20]. Our approach is restricted to task
decomposition and task flow specification. Task models can be
either used for aiding design, validating design decisions, or, in
the most formal way, generating user interfaces [20]. Our task
trees aid design and are restricted to summative validation.

Van Welie et al. [20] developed a common ontology for task
models as a basis for a harmonized comparison of different
task modeling approaches. The ontology covers concepts and
their relationships that are typically used in task modeling.
The concept that is covered by our approach is Task with its
more concrete variants basic task and user action (identical
to the term action in our approach). Van Welie et al. define a
basic task as ”... a task for which a system provides a single
function. Usually[,] basic tasks are further decomposed into
user actions and system operations”. The task structures that

we generate in our approach are mainly on the level of basic
tasks. However, the root nodes of our generated task trees are
similar to Van Welies unit tasks that they consider ”... as the
simplest task that a user really wants to perform”. We do not
cover other concepts of Van Welies ontology. The relationships
defined in the ontology that are also covered by our approach
are subtask and triggers. The subtask-relationship defines the
child tasks or actions of a task. The trigger-relationship defines
the order of task execution. The trigger-relationship can have
three different types of which we cover only NEXT and OR.
NEXT indicates, which task is executed next what is covered
by our temporal relationship sequence. OR indicates that there
is a choice between several next tasks. This is covered in
our approach by selection (simple choice), iterations (repeat
or go on with next task/action), and optional (perform or
skip task/action). Due to this possible mapping to Van Welies
ontology, our task trees should be transformable into other task
tree notations that can be mapped to the ontology, as well. But
this is scheduled for future work.

Task trees are one possible variant for modeling tasks. The
concept of task trees is applied, e.g., in Goals, Operators,
Methods, and Selection Rules (GOMS) [21], TaskMODL [22],
and ConcurTaskTrees [23] [7]. If the nodes of task trees define
the temporal relationships for their children, they have the
drawback that intermediate nodes may be required to fully
specify the task flow [20]. An alternative for task modeling
are workflow representations that do not have this drawback
but require a time axis. In our approach, we use the basic
concept of task trees, but apply it in a simplified manner.

C. Task Tree Generation
There have been several attempts to generate task trees auto-

matically. For example, the Convenient, Rapid, Interactive Tool
for Integrating Quick Usability Evaluations (CRITIQUE) [24]
creates GOMS models based on recorded traces. A similar
approach is proposed by John et al. [25]. ReverseAllUIs [2]
generates task trees based on models of the GUI. The resulting
task trees represent all available interactions a user can per-
form. In contrast to our work, these approaches do not generate
task trees that represent the effective behavior of the users, but
only a simplified or complete task tree of a website.

A further attempt to identify reoccurring user behavior is
programming by example. Here, user actions are recorded
to determine reoccurring action sequences. The system then
offers the user an automation of the identified action sequence.
An example of this work can be found in [26]. These ap-
proaches only attempt to locally optimize the usability, whereas
we adopt a global view on the system.

Generating task trees for user actions is similar to the
inference of a grammar for a language. The user actions are
the words of a language that the user ”speaks” to the software.
The task tree is the grammar defining the language structure.
However, current approaches for grammatical inference require
the identification of sentences of the language before the
derivation of the grammar [27]. For example, during one user
session a user may execute several tasks or interrupt a task
execution. This would lead to several sentences following each

466

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

other or incomplete sentences in a user session. Hence, to apply
grammatical inference, it would be required to mark those
actions in a recorded user session that together form a sentence
and to drop incomplete sentences. This would practically not
be feasible in the case of a large set of recorded user sessions.
Our approach is capable of handling large amounts of recorded
actions without requiring a manual marking of correct task
executions.

VII. SUMMARY AND OUTLOOK

In this paper, we described a method for generating task
trees based on tracing user interactions. First, sequences and
iterations of user actions are identified. Then, semantically
similar sequences are merged. We implemented this method
for websites and performed two case studies to validate its
feasibility.

In our future work, we will improve and extend the task tree
generation. We especially focus on filtering tasks based on a
minimum number of covered recorded events. We will ensure
that parent tasks will not become invalid due to the extension
with execution variants by merging child tasks. Furthermore,
we plan to implement a better heuristic for detecting more
intuitive subsequences, a flattening algorithm for reducing the
complexity of the generated task trees, and an export of our
task trees into a format used by other tools, e.g., into the format
utilized by the ConcurTaskTrees Environment [28]. In addition,
we improve the existing AutoQUEST plug-ins and implement
plug-ins for further platforms, e.g., for operating systems with
a focus on touch-based interaction. Finally, we improve the
automated usability evaluation based on the generated task
trees and perform comparisons of the usability evaluation
results depending on if the evaluation is based on merged or
unmerged tasks.

ACKNOWLEDGMENT

This work was partially done in the context of the project
MIDAS (Model and Inference Driven - Automated testing of
Services Architectures), funded by the European Commission,
project number 318786.

REFERENCES

[1] P. Harms, S. Herbold, and J. Grabowski, “Trace-based task tree gen-
eration,” in Proceedings of the ACHI 2014, The Seventh International
Conference on Advances in Computer-Human Interactions. Think-
Mind, 2014, pp. 337–342.

[2] R. Bandelloni, F. Paternò, and C. Santoro, “Engineering interactive
systems,” J. Gulliksen, M. B. Harning, P. Palanque, G. C. Veer, and
J. Wesson, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch. Reverse
Engineering Cross-Modal User Interfaces for Ubiquitous Environments,
pp. 285–302.

[3] F. Paternò, “Model-based tools for pervasive usability,” Interacting with
Computers, vol. 17, no. 3, 2005, pp. 291–315.

[4] L. Paganelli and F. Paternò, “Tools for remote usability evaluation
of web applications through browser logs and task models,” Behavior
Research Methods, vol. 35, 2003, pp. 369–378.

[5] F. Paternò, “Tools for remote web usability evaluation,” in HCI In-
ternational 2003. Proceedings of the 10th International Conference on
Human-Computer Interaction. Vol.1, vol. 1. Erlbaum, 2003, pp. 828–
832.

[6] P. Harms and J. Grabowski, “Usage-based automatic detection of usabil-
ity smells,” in Proceedings of the HCSE 2014, The Fifth International
Conference on Human-Centered Software Engineering, 2014.

[7] F. Paternò, “ConcurTaskTrees : An engineered approach to model-
based design of interactive systems,” The Handbook of Analysis for
HumanComputer Interaction, 1999, pp. 1–18.

[8] S. Herbold, “Usage-based Testing of Event-driven Software,” Ph.D.
dissertation, University Göttingen, June 2012 (electronically published
on http://webdoc.sub.gwdg.de/diss/2012/herbold/ [retrieved: 1, 2014]),
2012.

[9] R. J. Jacob, “User interface,” in Encyclopedia of Computer Science,
ser. Encyclopedia of Computer Science, A. Ralston, E. Reilly, and
D. Hemmendinger, Eds. Nature Publishing Group London, 2000, pp.
1821–1826.

[10] J. Foley, Computer Graphics: Principles and Practice, ser. Systems
Programming Series. Addison-Wesley, 1996.

[11] E. Myers, “Ano(nd) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1-4, 1986, pp. 251–266. [Online]. Available:
http://dx.doi.org/10.1007/BF01840446

[12] U.S. Department of Health & Human Services. Usability.gov -
improving the user experience - guidelines. [Online]. Available:
http://guidelines.usability.gov/ [retrieved: 11, 2014] (2013)

[13] S. Herbold and P. Harms, “AutoQUEST - Automated Quality Engineer-
ing of Event-driven Software,” March 2013.

[14] J. H. Hicinbothom and W. W. Zachary, “A Tool for Automatically
Generating Transcripts of Human-Computer Interaction,” in Human
Factors and Ergonomics Society 37th Annual Meeting, vol. 2 of Special
Sessions, 1993, p. 1042.

[15] Software Engineering for Distributed Systems Group. Software
Engineering for Distributed Systems. [Online]. Available:
http://www.swe.informatik.uni-goettingen.de/ [retrieved: 7, 2014]
(2014)

[16] Google. Google analytics. [Online]. Available:
http://www.google.com/analytics/ [retrieved: 11, 2014] (2014)

[17] Piwik.org. Piwik - real time analytics reports for your websites.
[Online]. Available: http://de.piwik.org/ [retrieved: 11, 2014] (2014)

[18] R. Atterer, “Usability tool support for model-based web
development,” dissertation, Oktober 2008. [Online]. Available:
http://nbn-resolving.de/urn:nbn:de:bvb:19-92963

[19] J. J. Garrett, “Ajax: A New Approach to
Web Applications,” 2005, adaptive Path LLC,
http://www.adaptivepath.com/publications/essays/archives/000385.php.

[20] M. Van Welie, G. C. Van Der Veer, and A. Eliëns,
“An ontology for task world models,” in Proceed-
ings of DSV-IS98, Abingdon, 1998. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.4415

[21] Q. Limbourg and J. Vanderdonckt, “Comparing task models for user
interface design,” in The Handbook of Task Analysis for Human-
Computer Interaction, D. Diaper and N. Stanton, Eds. Mahwah:
Lawrence Erlbaum Associates, 2004.

[22] H. Trætteberg, Model-based user interface design. Information Systems
Group, Department of Computer and Information Sciences, Faculty
of Information Technology, Mathematics and Electrical Engineering,
Norwegian University of Science and Technology, May 2002.

[23] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A dia-
grammatic notation for specifying task models,” in Proceedings of the
IFIP TC13 International Conference on Human-Computer Interaction,
ser. INTERACT ’97. London, UK, UK: Chapman & Hall, Ltd., 1997,
pp. 362–369.

[24] S. E. Hudson, B. E. John, K. Knudsen, and M. D. Byrne, “A tool for
creating predictive performance models from user interface demonstra-
tions,” in Proceedings of the 12th annual ACM symposium on User
interface software and technology, ser. UIST ’99. New York, NY,
USA: ACM, 1999, pp. 93–102.

467

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[25] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predic-
tive human performance modeling made easy,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, ser. CHI
’04. New York, NY, USA: ACM, 2004, pp. 455–462.

[26] A. Cypher, “Eager: programming repetitive tasks by example,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’91. New York, NY, USA: ACM, 1991, pp. 33–39.

[27] A. D’Ulizia, F. Ferri, and P. Grifoni, “A survey of grammatical inference
methods for natural language learning,” Artif. Intell. Rev., vol. 36, no. 1,
Jun. 2011, pp. 1–27.

[28] Human Interfaces in Information Systems (HIIS) Lab-
oratory. ConcurTaskTrees Environment. [Online]. Available:
http://giove.cnuce.cnr.it/ctte.html [retrieved: 11, 2014] (2014)

