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Abstract—The REcommending Cases based on cONtext (RE-
CON) system is a prototype adaptive technology designed to sup-
port intelligence analysts in overcoming the problem of cognitive
overload. Its central objective is to assist these analysts during the
collection, processing, and analysis phases of the intelligence cycle
through sense-making of both explicit and implicit contextual
information. RECON combines machine learning, text-analysis,
brain-computer interfaces, and simulation to create an innovative
case-based recommendation capability. In developing RECON,
multiple considerations have been explored based on key human-
computer interaction dilemmas that emerge when designing joint-
cognitive systems endowed with an adaptive capacity. Herein,
eight architectural design considerations are discussed, related
to human-modelling, human-machine interaction, and human-
machine synergy, which have impacted the system development.
The central RECON architecture and its components are also
presented, including a context-sensitive cognitive model based on
COCOM. This work aims to provide these core architectural
components and their design considerations as a contribution to-
ward aiding developers in designing, customizing, and improving
future adaptive context-management systems.

Keywords–adaptive systems; context-awareness; human factors;
human-computer interaction; brain-computer interfaces.

I. INTRODUCTION

The development of adaptive software systems and infras-
tructures that are situationally responsive and human-centred
remains an attractive area of research, as technologies progress
and people continue to work with more data as part of their
routine tasks. The improvement of human-centred technologies
involves a synergy of both human and machine in order to
address the dynamics of unfolding situations; hence, systems
that are both dynamic and responsive are required. These
dynamic systems are inherently open, interacting with the
environment of the organization to carry out its goals, which
are often time-sensitive, as in the case of real-time information
systems, or even critical, as in the case of emergency response.
Moreover, the problem of information overload is becoming
increasingly evident in the world, as people become more
connected with technology, and this trend is only expected
to continue with the proliferation of “big data.”

Having technology that can adapt to the varied needs of
the user—be they task-related or cognitive-related needs—and
having systems that can incorporate humans-in-the-loop to sift

through large volumes of data in order to effectively gather and
assess information offer direction toward a possible solution
to the problem. These point directly to a context-sensitive
approach for achieving human-machine synergy, where the
combined results of the human and software system working
together is greater than the result of any one component
working in isolation. The development of such systems re-
quires design considerations that are both human-computer-
interface (HCI)-focused and context-based, as discussed in the
authors’ previous work from ADAPTIVE 2014 [1], which
highlights core HCI dilemmas for context-aware support in
the intelligence analysis domain.

Adaptation in human-machine systems is challenging, as
it requires significant information monitoring. The human
must monitor incoming information in order to determine
appropriate decisions and response actions, and the techno-
logical system must monitor user-context information in order
to adapt to the user and perform functions in a dynamic
environment. Also, human-machine systems involve the often-
complex interplay of human and technological components as
interconnected actors sharing a common goal. To be agile,
both the human-in-the-loop and the technological system must
be in sync with the speed, scope, and context of real-world
dynamics, as interactions in a complex real-world situation
require corresponding complexity in adaptive systems [2].
However, it is known that these systems, which combine the
human-social and technological dimensions, can often become
out-of-sync in fast-paced situations where human decision-
makers routinely require actions that are outside of the design
scope of the technological systems on that they depend [3].
There is a need, therefore, for technology to support users in
varied situations that are inherently human-centred, and such
a practical adaptive system should enable the user to have
balanced access to the most relevant information available
(especially in information-centered domains), while also pro-
viding this information in a timely manner, in sync with the
user’s total context.

The current paper extends the authors’ previous effort in
[1] with a more comprehensive presentation of the architectural
design considerations for the developed RECON (REcom-
mending Cases based on cONtext) architecture, which will
be presented in detail. Moreover, as these strongly influence
the resulting functionality of the developed software system,
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architectural design considerations should be carefully and
explicitly examined and conscientiously applied. Herein, eight
key considerations encountered during the course of design and
early implementation will be presented and critically discussed.
This work promotes these design considerations, which have
been accounted for in the development of RECON, as an
important step towards the development of future architectures
for adaptive, context-aware management, and the expected
audience for such design considerations are those involved in
the information analysis domain, where cognitive overload is
prevalent. The developed RECON system will be used as a
case study in how to apply these considerations.

The remainder of this paper is organized as follows. Sec-
tion II highlights the intelligence-analysis domain, including
the problem of cognitive overload and context-awareness.
Section III outlines the use case and detailed architecture
for RECON. Section IV introduces relevant design consider-
ations for context-aware systems development, along with a
taxonomy of such considerations, while Section V presents
how the introduced design considerations are applied to the
RECON system implementation. Next, Section VI highlights
related work on architectural design considerations and com-
pares these with those applied in the RECON case. Lastly,
Section VII concludes the paper and offers potential avenues
for future work.

II. PROBLEM DOMAIN

In this section, the problem domain is described in more
detail, along with the challenge of cognitive overload and a
promising path toward a potential solution involving context
awareness.

A. Intelligence Analysis Domain
To motivate the need for context-aware architectures in the

intelligence domain, it is important to highlight the typical
information cycle and its effect on the role of the intelligence
analyst, as a key player, interested in sense-making and ac-
curate projections for multiple situations that are often time-
sensitive and multi-faceted. This intelligence cycle is defined
as “the process of developing raw information into finished
intelligence for policymakers to use in decision-making and
action” [4]. The intelligence cycle encompasses many sense-
making tasks that the intelligence analyst must accomplish
in an iterative fashion. Such tasks include: gathering relevant
information, representing and organizing the information in a
schematic way that will ease the analysis process, developing
an understanding of the situation by subjecting the information
to various hypotheses, and producing intelligence packages and
recommendations for courses of action.

As described by Pirolli and Card [5], the overall process of
sense-making is organized into two major loops of activities:
(1) a foraging loop that involves processes aimed at seek-
ing, searching, filtering, reading and extracting information,
possibly into some schema [6]; and (2) a sense-making loop
that involves iterative development of a mental model (a
conceptualization) from the schema that best fits the evidence
[7]. This process is illustrated in Figure 1.

The intelligence cycle, described in [5], is shown in Fig-
ure 2. This cycle includes activities involving planning and
direction, collection of data, processing of data, analysis and
production of resolutions and projections, and dissemination of

Figure 1. Notional model of sense-making (from [5]).

Figure 2. The intelligence cycle (adapted from [10]).

information to decision-makers. Here, the intelligence analyst
performs the role of seeking out information for a set of
unfolding situations, many of which may be dynamic and fast-
changing, through collation of multiple documents.

While the day-to-day activities of the intelligence analyst
are driven by this intelligence cycle, the analyst’s activities
are subjected to a number of contextual factors (e.g., psycho-
physiological and environmental) that can severely impede
intelligence analysis due to excessive workload, time pressure,
and uncertainty [8]. However, the primary cause of concern is
that of cognitive overload, which impacts the analyst’s ability
to effectively identify situationally-relevant information due
to data overload (i.e., too much data to sift through) and/or
cognitive limitations (i.e., too much complexity in the data for
making immediate sense without assistive analytical tools) [9].
Together, these present a critical challenge to the development
and success of advanced adaptive systems, where humans-in-
the-loop must make sense of an ever-increasing inflow of data
in order to perform their tasks.

B. Context Awareness
To manage the dynamics of real-world information mon-

itoring and sense-making, there are many different contexts
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that can be considered by an adaptive system. However, the
challenge is in finding the “right” context so that the system,
in turn, can act as an aid (rather than a hindrance) to the expert
human user. As in [8], context is considered as anything that
can be used to correctly identify the situation of a user. Context
can be provided directly by the user or generated based on
the user’s actions, such as system tasks recently performed
(based on system logs) and current location data (based on
mobile global-positioning systems) [11]. Context can also refer
to less concretized notions, such as describing users’ psycho-
physiological states, including their current cognitive mood
and stress level. These can be obtained through active and
passive sensing of users via bio-metric sensors, but can also
be deduced from other sources such as camera monitoring of
facial expressions [12].

The successful management of both kinds of context is
important. Systems that are adaptive to the dynamics of a wide
range of contexts can increasingly support properties favouring
the “5 Rights” [13]—i.e., providing the right information to
the right person in the right place, at the right time, and in the
right way (e.g., based on the preferences of the user). Practical
systems that are aware of users with this level of detail are
rare, although context-awareness has been a research staple
for the past decade [14]. However, such systems are becoming
more tenable due to advances in technologies for unobtrusively
monitoring users’ psychological and physiological states, com-
bined with the technological trends towards miniaturization
and improved efficiencies in computational speed and memory
costs. As a result, it is now possible to develop better adap-
tive human-machine systems, synergistically enhancing both
human and machine intelligence.

This section outlined the domain of study, namely, intelli-
gence analysis, and the problem under investigation, namely,
reducing cognitive overload. It also highlighted the relevance
of context-awareness as a promising solution area. These are
examined further in the following section, which presents the
five-layer, context-aware RECON architecture in detail.

III. RECON: RECOMMENDING CASES BASED ON
CONTEXT

The RECON (REcommending Cases based on cONtext)
system is a recent initiative aimed at providing a capability for
intelligence analysts that takes into account their need for rele-
vant information consumption in a time-sensitive environment.
As part of Defence Research and Development Canada’s iVAC
(Intelligent Virtual Analyst Capability) project [15], RECON
uses an adaptive-systems approach for information offloading
and filtering to assist intelligence analysts. To this end, it
focuses on the following three objectives, and in this section
both the general use case and resulting architecture for RECON
are described:

1) To support the analyst through appropriate visual-
ization and selection of information based on user
preferences and real-time brain-state information;

2) To enable the analyst to offload cognitive processing
to the system for machine analysis and case-based
recommendation; and

3) To alert the analyst through natural interfaces to
relevant information based on context.

A. RECON Use Case
In conducting intelligence analysis, analysts must make

sense of a variety of information sources (e.g., text documents,
webpages, and supplementary GIS data sources). They assess
this data according to specific goals and elements-of-interest as
dictated by information stakeholders or other supervisors. They
must also account for the severity of an unfolding situation,
time projections (i.e., time to an event), and constraints in
their deliberation strategies. As a result, analysts inevitably
incur cognitive pressures, such as fatigue, attention loss, and
stress, as they get closer to decision deadlines and perform
longer work sessions. The RECON system aims to allow these
analysts to offload aspects of this data collation and processing
to its automated reasoner, by accepting analyst preferences
and making appropriate document recommendations while
adapting to real-time brain-monitoring data from the analyst.
The general use case for RECON is outlined in Figure 3, along
with a system overview diagram.

In this use case, an analyst (outfitted with a wearable and
wireless brain-computer interface (BCI) monitor) performs
the task of sense-making by reading through a number of
text-based documents to identify patterns and trends that are
applicable to the current situation-of-interest. The analyst logs
into RECON using his or her profile information and defines
the situation-of-interest in the form of objectives, namely a
combination of entity and event relationships, through the use
of the HCI interface. This interface further allows the analyst to
input or update system settings and view documents, document
recommendations, and scene notifications. A scene is an aspect
of a situation that the analyst wishes to offload to the system;
this can be defined using a combination of keywords, based
on active objectives, parameter thresholds, and simulation
configurations set by the analyst (e.g., the analyst may be
interested in being notified when > X documents are found
containing a particular set of keywords). Simultaneously, the
BCI headset performs monitoring and classification of the
analyst’s brain-waves to deduce states that indicate his or
her psycho-physiological responses to the task at hand (e.g.,
whether the analyst is interested in the material within the
document, or perhaps is experiencing the negative effects of
cognitive overload).

During the course of the analyst’s session with RECON,
document recommendations are presented to the analyst as
part of a document-notification interface, wherein an analyst
may inspect each document. The documents listed in this
interface are the result of a recommendation algorithm, which
identifies each document’s relevance to the analyst’s objectives
(defined using keywords and relationships). These documents
are retrieved from available repositories, such as online news
sites, social media, blogs, and document databases, and are
gathered into RECON by a data text analyzer that uses existing
text-analysis tools to add keyword metadata (used by the
recommender) and perform sentiment analysis on the docu-
ments. The context manager, using its internal logic and the
cognitive state of the analyst deduced by the BCI monitor, then
determines when to notify the user about new documents and
scene-threshold alerts. Lastly, a central database stores system-
specific information, such as the objectives and preferences of
analyst user accounts, enabling the system to continue working
toward the defined goals even after the analyst has left for the
day.
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Figure 3. The RECON architecture in more detail: RECON determines context and makes recommendations based on user preferences, brain-state data, and
simulation results in order to help alleviate the problem of information overload. The primary use-case is also shown.

B. RECON Architecture

The detailed RECON architecture, outlined previously in
[8], is shown in Figure 3. It incorporates the following five
layers, which are described below and which correspond
directly to the use case.

1) Brain-Computer Interface (BCI) Layer: The BCI layer
of RECON is concerned with monitoring and classifying the
psycho-physiological state of the user. Its actions include
monitoring electroencephalography (EEG) signals (from the
user’s headset) and classifying the user’s implicit contextual
state based on established models of EEG analysis (e.g.,
measures based on excitement, relaxation, alertness, and stress
levels) [16].

In general, BCIs provide mechanisms to acquire, transform,
and classify bio-signals into learned states that may then
be applied as factors in determining system actions. There
are multiple sources of bio-signals related to brain activity
that could be useful in real-time, such as EEG, functional
Near Infrared Spectroscopy (fNIRS), and functional magnetic-
resonance imaging (fMRI); although, for practical purposes,
wearability and wireless communication become important
criteria for selecting a BCI paradigm. Ideally, the acquisition
technology should be as unobtrusive to the user as possible,
and not restrict mobility, while simultaneously obtaining brain
signals and transmitting these to a processing module. As such,
only fNIRS and EEG approaches are relevant solutions, as
other techniques involve large and expensive units (see [17],
[18] for a discussion on these techniques).

In this work, EEG approaches have been selected as they
have the added benefit of being readily available in the form
of commercial headsets, including two candidate wireless

headsets: the Emotiv EPOC and the Neurosky Mindwave
[19], [20]. Whereas the Neurosky Mindwave provides only
a single sensor, the Emotiv EPOC has been selected as
it provides brain-signal data from multiple sensors, at sites
relevant for estimating the states useful for the analyst scenario.
In particular, these states include arousal and valence, as in
[17], [19], [21]. Arousal represents a measure of activation
versus inactivation (i.e., being ready to act or not), while
valence represents a measure of pleasure versus displeasure
(i.e., attraction or withdrawal). These have been selected as
early measures and can be swapped for new measures, such
as alertness and load, as identified in the literature [19], [22].
The combination of arousal and valence provides a circumplex
of affect, or emotion, as discussed in [23], which in RECON
allows the system to deduce whether analysts are in states such
as alert, happy, content, bored, or angry and thereby determine
an appropriate response action.

The process whereby signals are translated from raw EEG
into state classifications involves the following phases: i)
acquisition of raw EEG; ii) pre-processing and noise reduction
using discrete wavelet transforms; iii) EEG feature extraction,
according to known formulae based on work such as [19], [22];
and iv) classification of features into states, using a classifier
trained on labelled datasets (such as [24]) to output levels of
arousal and valence.

2) Human-Computer Interface (HCI) Layer: The HCI
layer is concerned with monitoring and managing the RECON
interface. Its main actions include identifying the current task
of the analyst (e.g., whether the analyst is logged into the
system, currently setting objectives, or reading a document)
and adapting the graphical user interface (GUI) (e.g., whether
specific portions of the display should be hidden so as to min-
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Figure 4. The main RECON interfaces.

imize analyst distraction). This layer also provides the analyst
with a means to read and rank documents, set objectives and

preferences, and interact with other RECON components, as
outlined in the use case from Figure 3.
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The main RECON interfaces are shown in Figure 4. These
include GUI elements for the following: i) ranked document
lists and notifications dashboard, which allows the analyst
to view the highest-ranking documents (for both individual
and team recommendations) and any system notifications; ii)
objectives settings, which allow the analyst to specify and rank
his/her target objective(s) in terms of entity and event keywords
and relationships; iii) recommender preferences, which allow
the analyst to fine-tune the recommendation parameters, such
as the analyst’s preferred website domains; iv) document
viewing and v) ratings feedback, which allow the analyst
to view all document recommendations for active objectives,
browse document metadata, open documents for viewing, and
provide a relevance rating for each document the analyst opens
for reading; and vi) BCI runtime and vii) states, which allow
the analyst to view the EEG inputs and the corresponding
output states. In addition, support also exists for the following
GUI elements (omitted from the figure for space reasons):
user and team profile, which allows the analyst to set profile
information and manage team members; and BCI setup, which
allows the analyst (or an administrator) to specify the active
BCI classifiers and start or stop real-time EEG monitoring.
Together, these interfaces represent the visual and interactive
components of RECON.

3) Data Layer: The data layer is responsible for collecting
and monitoring incoming data (e.g., documents), analyzing
them, and storing the results in a database for later use.
This layer monitors preset bodies of textual data, in the
form of documents, from websites and other corpuses. When
new documents arrive, they are processed using existing text
analysis engines, such as AlchemyAPI [25] and OpenCalais
[26], in order to provide tagging of documents (e.g., keyword
metadata) and sentiment markers. This approach is modular,
and specific text-analysis engines, with different underlying
ontologies, may be substituted based on the specific domain
needs of the active situation(s)-of-interest.

4) Case-Based Recommender (CBR) Layer: The CBR
layer is concerned with ranking processed data (i.e., tagged
documents) based on specific recommendation criteria so as to
present the analyst with a recommendation of the most relevant
system data available. The actions include storing the analyst-
specific recommendation criteria (e.g., relevant keywords, pre-
ferred website domains, and user rating history) and updating
the recommendation list based on newly processed documents
and user action and feedback (e.g., which documents have been
read and what ratings were provided by the analyst). It also
provides an algorithm for document recommendation based on
keywords and relationships, the facility for defining scenes and
monitoring scene thresholds, and a simulation controller and
input-selection mechanism for managing simulations. These
simulations are used as scene conditions to model aspects of
the situation-of-interest (e.g., system dynamics can be used
to estimate particular threshold variables over time, governed
by causal-loop diagrams that incorporate variables and their
interrelationships, linked to specific objective keywords [27]).

The algorithm developed for the recommender, depicted in
Figure 5, makes use of three separate subroutines to calculate
the latest recommendation score for all documents in the
system pertaining to a specified date range and user. The
getRecommendations function sets the analyst-specified date
range and queries the database checking for i) updated or new

analyst-specified objectives (case a) and ii) new documents
(case b). If any changes have been made to the objectives (i.e.,
case a), such as the addition of a new keyword, the gather-
DocumentProperties function is applied to all documents in
the date range; however, if no objectives have been added
or changed but new documents are found (i.e., case b), the
function is applied only to the new documents. If neither case
occurs, the calculateRecommendationScore function is called
directly. This prevents the system from having to recalculate
fixed document properties each time the recommendation
algorithm is used. The gatherDocumentProperties function
retrieves the relevant documents (based on the applicable case),
and, for each document, gathers the fixed document properties
and compares the document keywords to the keywords and
relationships associated with the current active objective(s) of
the analyst. The calculateRecommendationScore function is
then applied. This function retrieves the document properties
stored by the previous function and applies analyst-specified
modifiers as weights that impact the resulting recommendation
score for each document. Such a multi-step mechanism allows
the latest recommendations to be computed, taking into ac-
count the analyst’s most recent ratings and preference settings,
without needing to recompute fixed document properties each
time a recommendation update is requested.

Specifically, for each document-objective pairing, a doc-
ument score, σdoc, is calculated according to the following
equation:

σdoc = φkey ∗ πkey + φrel ∗ πrel + φsite ∗ πsite (1)

where φkey represents the ratio of keywords in the document
compared to the total number of keywords specified in the
objective; φrel represents the sum of the relevance of matching
keywords as ranked in the objective; if the document comes
from a site domain that is preferred by the user, φsite represents
a positive value based on the relative rank position of the pre-
ferred site domain within a user-specified list (zero otherwise);
and the π∗ values represent the preference weighting of each
factor (a real number between zero and one inclusively) as
specified by the user.

This score is then used in the determination of the doc-
ument’s resulting recommendation score, σrec, calculated ac-
cording to the following equation:

σrec = σdoc + φobj ∗ πobj − φsim ∗ πsim − φacc ∗ πacc (2)

where σdoc represents the fixed document properties according
to the equation above; φobj represents a positive value based
on the relative ranking of the active objective compared to
all active objectives; φsim represents how similar the current
document is compared to all documents viewed already by the
user in reference to this objective; φacc represents whether or
not the document has already been accessed (i.e., viewed) by
the user for this objective: one if true and zero if false; finally,
the π∗ values represent once again the preference weighting
of each factor as specified by the user. By reducing the score
based on document similarity, the aim is to increase document
coverage [28] using the following heuristic: recommend to
the user the highest scoring documents that have the least
similarity compared to documents already viewed.
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Figure 5. The algorithm used to make document recommendations in RECON.

Moreover, the CBR component is supported by the scene
and simulation components, which, together, manage scene
notifications coming from the system to the analyst. The scene
component is concerned with the creation and monitoring of
scenes. The actions of this component include storing scenes
created by the analyst, monitoring incoming processed data
to determine if specific scene conditions have been met, and
issuing a notification if a scene’s condition threshold has been
reached. The simulation component, on the other hand, is
concerned with the creation and execution of simulations,
whose results act as particular scene conditions. The actions of
this component include storing the location of external simu-
lation models or the models of internal simulations supported
directly by the component, as well as the input parameters
that are passed to these simulations. This component supports
a combination of simulation paradigms (e.g., system dynamics,
discrete-event, and multi-agent simulation) to better match the
representational requirements of the current situation (e.g.,
system-level or individual-level concerns) with the most ap-
propriate paradigm [27]. Other actions include executing the
simulations and storing the results in the system database.

5) Context Layer: The context layer is the final layer and
is concerned with assessing the overall current context of the
analyst. The actions of this layer include acquiring all available
implicit and explicit context from the other layers, determining
the current context of the analyst, managing what information
is sent to the analyst (e.g., from the recommender layer), and
initiating available GUI interventions (via the HCI layer) to
reduce experienced information overload on the part of the

analyst. It is from these other layers that the context layer
collates and makes sense of this information.

In addition to detecting the user’s contextual states, it
is important to be able to operationalize this information to
improve adaptive system behaviour. Consequently, the context
layer makes use of a well-known cognitive model for the
intelligence analysis domain as part of its adaptation strategy.
The COntextual COntrol Model (COCOM), described in [29]
and based off the work of Hollnagel [30], is a foundational
model outlining four different control states that can be in
effect for an analyst based on the amount of time remaining to
make a decision. These states—strategic control, tactical con-
trol, opportunistic control, and scrambled control—represent
a continuum from strategic control, where the decision-maker
has sufficient time to plan, to scrambled control, where the
decision-maker is faced with very limited (to potentially no
time) to plan. These control states, when applied to the sense-
making loop in Figure 1, result in a set of parameters that can
be used in determining the analyst’s cognitive mode in light
of an unfolding event.

As shown in Figure 6, the COCOM model has been fitted to
support RECON’s context-management approach. In RECON,
two classes of recommendation exist: (i) documents, which
consist mainly of new input from text sources; and (ii) scenes,
which can include things such as newly simulated situation
projections. Together, these represent the two “cases” that are
recommended by the system according to the current state of
the analyst. While documents tend to provide information on
a particular situation-of-interest that is more specific in nature
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Figure 6. The COCOM model applied to RECON context management
(adapted from [29], [30]).

and may arrive at any time, scenes tend to reflect higher-level,
strategic and tactical outlooks that would generally be created
only when the user has sufficient time. However, alerts related
to these scenes can come at any time (independent of the user’s
context mode), in the same way as document recommendations
do.

An analyst can be in one of four context modes, determined
by the context layer using both explicit and implicit contextual
sources. These context modes, ordered according to decreasing
time-available-to-plan and directly based on a mapping from
COCOM control states, are as follows: the strategic context
mode, where there is a significant amount of time remaining
before a decision is required; the tactical context mode, where
there is sufficient time remaining to consider alternate avenues;
the opportunistic context mode, where time is limited; and the
scrambled context mode, where time is very limited (or has
run out) and a decision must be made as soon as possible.
Moreover, these four modes map to system adaptation of
recommendations and alerts. When the strategic context mode
has been identified, the system performs no special filtering of
document recommendations and scene alerts, allowing the ana-
lyst to view a wide range of information and scene-projections,
some of which may not be “on-task.” Likewise, when the
tactical context mode is deduced by the context layer, the
system makes use of low filtering, whereby more off-task alerts
and scene projections are not directly presented to the analyst.
In the opportunistic context mode, the system uses a medium
level of filtering for recommendations and alerts, allowing
only near-task and on-task information to be shown to the
analyst. Lastly, in the scrambled contextual mode, the system
adapts with high filtering of incoming recommendations and
alerts, presenting only on-task information to the analyst. The
determination of on-task recommendations and alerts is based
to a large extent on an analyst’s preferences, such as the
ranking of current objectives, keywords, and scenes, while the
determination of the current context mode, as discussed earlier,
is based on a combination of analyst-context data from both
explicit and implicit sources.

This section has presented the RECON use case and system
in detail, and it is envisioned that such a unique combination
of layers, enhanced through the use of explicit and implicit

context management, can better support analysts in performing
their tasks by satisfying the different information “rights”
mentioned in Section II, thereby improving the machine’s
ability to effectively assist the analyst and reduce cognitive
overload. RECON furthers the goals of alleviating human-
cognitive overload in two ways. First, it does so by devel-
oping a system capable of sensing and classifying the user’s
contextual state, including brain state using a brain-computer
interface. Secondly, it does so by adapting to the user’s context
and recommending relevant information to the user based
on the system’s level of context-awareness. While the vision
and use case for RECON have been presented and a proof-
of-concept system implemented, they remain to be validated
experimentally. However, the foundation for each component
is empirically supported by recent literature. In particular, for
the brain-computer interface, work such as [19], [31], [32]
demonstrates that real-time brain-state classification is indeed
viable. In terms of human-computer interfaces, work such as
[33], [34] highlights the benefits of integrating HCI and BCI
for adaptive systems. Lastly, in terms of both context and
recommendation, studies such as [35], [36] underscore the ef-
fectiveness of context-based recommendation. These research
foundations enable a merger of technologies as presented in
RECON, and such a merger requires new architectural design
considerations in order to achieve a more cohesive software
system. These considerations are examined in the following
section.

IV. ARCHITECTURAL DESIGN CONSIDERATIONS

This section outlines eight key architectural design con-
siderations, relevant to the design of adaptive systems at
large. These have been grouped into three categories—human
modelling, human-machine interaction, and human-machine
synergy—according to the taxonomy shown in Figure 7. This
taxonomy is described below, followed by a critical discussion
of the eight considerations.

A. Considerations Taxonomy
The human-modelling category of the taxonomy, shown in

Figure 7, relates to design considerations affecting how the
human is modelled within the computer system. As a key
component of human-machine systems, human modelling acts
as the mechanism used by the machine to better understand and
represent the user. Two relevant considerations are considered
in the next subsection: model selection, relating to how user
mental states are determined; and model calibration, relating
to how these specific models are initialized and tuned.

The human-machine interaction category refers to the
design considerations involving human-machine interaction.
These relate to the interface between the human and the
machine, with a particular emphasis on the human-in-the-loop
acting as a critical component of the overall system [37]. Three
considerations are examined in the subsequent subsection:
model transparency, relating to the extent to which the user
understands (and needs to understand) the internal mechanisms
driving the system; user feedback, relating to how the machine
system receives feedback from the user; and contextual inputs,
relating to how the system receives or collects contextual input
from the user (i.e., implicitly or explicitly).

Lastly, the human-machine synergy category deals with
those considerations affecting the effectiveness of the human-
machine team in accomplishing the overall goal of the system.
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Figure 7. Taxonomy of architectural design considerations for context-aware systems.

Three particular considerations are examined in the follow-
ing subsection: decision-making, relating to the support for
organization-wide decision-making within the system; cogni-
tive assistance, relating to the the extent of personalization
supported within the system; and recommendation, relating
to the mechanism(s) used in suggesting different information
items to the user.

B. The Eight Considerations
The eight architectural design considerations are discussed

in detail below and are presented in the order in which they
appear in the taxonomy, left to right.

1) Model Selection: General Linear Model vs. Machine
Learning: The first consideration, relating to modelling the
user’s brain state, is concerned with the selection of an
appropriate method for capturing the underlying pattern of
cerebral activity associated with a given state, namely statis-
tical analyses based on the General Linear Model (GLM) or
Machine Learning (ML) algorithms. The GLM approach has
a proven track record among the neuroscience community and
has robust analysis software available [38]. However, complex
non-linear relations cannot be “discovered” using this method
(i.e., the underfitting problem) due to the linearity constraint,
yet this contraint makes the GLM very robust to noise (e.g.,
measurement error and intrusions from confounding factors),
thus minimising the overfitting problem [39]. Underfitting
occurs when the model lacks sufficient functional flexibility
to capture a phenonemon, while overfitting occurs when the
model’s flexibility allows it to “fit” both the true regularities
in the data as well as false, noisy patterns, leading to an
overestimation of the model’s accuracy [40]. ML algorithms,
on the other hand, including those related to data mining,
provide highly flexible models capable of discovering complex
patterns in datasets. However, this flexibility raises a potential
vulnerability to overfitting, which must be considered.

2) Individual Calibration vs. Collective Calibration: The
second consideration involves model calibration, which can
occur at either the collective level or at the individual level.
The former results in a single model for all potential users,
while the latter results in a distinct, customized model for each

user. Individual modelling has the disadvantage of requiring
additional overhead for calibration, including a separate data
collection for each user in order to extract an individualized
model. Nevertheless, this approach may be essential for at-
taining high levels of model accuracy, particularly in cases
when the average of the collective is the result of idiosyncratic
patterns [41], [42]. Alternatively, individual differences can
be treated as noise, although this could potentially lead to
underfitting of the user state.

3) Model Transparency: White-Box vs. Black-Box: The
third consideration, related primarily to human-machine inter-
action, is how much of a model’s inputs, logic, and resulting
assessment to display to the user. A transparent, “white-box”
model may increase user trust in the system, but there is
also the risk of fostering mistrust in situations where the
user disagrees with the model or does not understand it.
Furthermore, a significantly complex display could adversely
impact the understandability of the model to the user. On the
other hand, a “black-box” approach, in which model details are
completely hidden from the user, may also foster doubt and
mistrust in the system. As such, this consideration relates to
the classic invisibility dilemma: balancing between minimizing
distractions from the primary task of the user and providing
added value through explicit interaction with the model [43].

4) Direct Feedback vs. Indirect Feedback: The fourth con-
sideration involves whether or not to collect feedback directly
from the user in order to improve the underlying models used
in adaptation. Direct feedback incorporates the user in the
learning process by requiring a manual response about the
performance of the system, which in turn guides the fine-
tuning of model parameters. This feedback assumes a level
of expertise on the part of the user. Moreover, the frequency
of direct feedback must be considered, as it may unnecessarily
burden the user if required too often [44]. Conversely, indirect
feedback allows the system to acquire the necessary inputs
for the fine-tuning parameters without involving the user
directly. This has the benefit of allowing the user to remain
on task, while simultaneously allowing the system to improve
its adaptation, as often as needed. There is a tradeoff, however,
in terms of the accuracy of the learning mechanism, as some
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aspects may not lend themselves readily to being deduced
indirectly.

5) Explicit vs. Implicit Contextual Inputs: The fifth con-
sideration involves knowledge about user context, which is
central to system adaptation. This context evolves according to
events and changes occurring during system operation either
by explicit interactions from the user (e.g., a user manually
indicates current context parameters such as time pressure)
or implicit interactions based on the situational context (e.g.,
automatic data monitoring and sensor-based classification).
Explicit context affords the user a sense of control over the
system and provides contextual data that may not be otherwise
available. However, a system that relies too heavily on this
type of context may add to the workload of the user, in
terms of providing a larger amount of information manually
to the system, and may require a more complex graphical-
user interface and additional tasks that may interfere with
the user’s ability to focus on the task-at-hand. Conversely, a
system that emphasizes implicit context frees the user from
tedious data input operations, but requires the system to
automatically monitor data and perform reasoning to infer the
user’s contextual information. This demands a significant a
priori development effort for effective user-state and contextual
classification models.

6) Individual vs. Team Decision-Making: The sixth con-
sideration relates to the manner in which decision-making is
performed, and how this can be assisted through technology.
In some organizations, individual contribution is valued more
than the collective, if not explicitly then implicitly through
their reward structure; however, in dealing with complex
systems, a broad range of expertise should be drawn upon
[45], [46]. Moreover, if people are tired or overloaded, being
able to offload a particular task to a more alert member of
the team can help the organization make more effective use
of its resources [46]. In fact, having the ability to promote a
networked culture is seen as a vital step in addressing complex
issues [45]. This is not so much a technical issue, as it is an
organization-design issue. However, technology can be brought
to bear to facilitate or promote the spread of this culture, and
such considerations form an integral aspect of system design
[47].

7) Personalized vs. Generalized Cognitive Assistance: The
seventh consideration, dealing with the human factor, relates to
the individual needs of a user. Not everyone is the same, and
people have different cognitive abilities and assistance needs.
Sometimes people may remember a lot of information at once
and be able to recall it; other times they may wish to offload
some of this information to a machine. Moreover, each person
may view the situation from a different perspective, or have
different sub-problems to address. As such, a certain level of
user customization may be desirable. However, tradeoffs must
be considered. For example, the cost of such customization
may be seen as being too high at times. This can be from
the point-of-view of the system designer, as it provides more
freedom to the user and less predictability on the part of the
system [47], but also on the part of the user, who may not
see or understand the value in customization. If customization
is desired, a possible solution to the latter problem is to
provide tutorials and walkthroughs to help guide users in better
understanding the benefits of customization.

8) User-Based vs. Item-Based Recommendation: The
eighth consideration involves the mechanism used to rank
recommendation items. Traditionally, there are two main ap-
proaches to recommendation. The first, known as collaborative
filtering, involves creating a user profile and comparing it to
the profiles of other users. The objective is to find a subset
of closest neighbours, whose preferred items can then be
recommended to the user under consideration. This is good
for situations in which having “trusted friends” can be of
benefit to the recommendation (e.g., when wanting to be given
a recommendation for a book or movie); however, it does suffer
from the cold start problem in which establishing an accurate
profile for a new user takes time and many rating samples.
The second approach, known as item-based filtering, uses the
properties of the items themselves. The objective here is to
find similar items to those items the present user ranked most
highly. The benefits of this approach are that newer items have
just as much chance of being selected as older items and it is
good when the set of other system users is small. However,
items must be comparable, so it might not work as effectively
for recommendations involving a wide-range of differing items
(e.g., Amazon). Hybrid methods have also been proposed [28]
in which combinations of different recommendation algorithms
are used in tandem. These have the effect of mitigating the
weaknesses of any one approach, and different techniques may
be more suited to specific domains.

This section introduced eight important architectural design
considerations for supporting context-awareness in human-
machine systems. This together with the previous section,
which detailed the RECON proof-of-concept software system,
are the focus of the following section. Specificially, it examines
how the proposed key architectural considerations have been
applied in RECON.

V. APPLYING THE ARCHITECTURAL DESIGN
CONSIDERATIONS TO RECON

In this section, the application of the eight architectural
design considerations presented in Section IV is described
according to the five layers of RECON presented in Section III:
namely, brain-computer interface (BCI), human-computer in-
terface (HCI), data, case-based recommender (CBR), and
context layers. The strengths and benefits of the RECON
architecture, resulting from the conscientious application of
these considerations, are also discussed, along with possible
improvements.

A. Brain-Computer Interface (BCI) Layer
The following design considerations apply to the BCI layer

and are presented according to the taxonomy in Figure 7:

• Model Selection: A machine learning approach has
been selected to recognize dynamic, non-stationary
EEG signals. In particular, the use of a neural-network
(neuro-fuzzy)-based classifier approach provides a
method for making sense of brain EEG data, which
is well-supported in literature and provides a general-
izable approach to classification, allowing additional
state measures to be incorporated [48], [49].

• Model Calibration: All selected models are initially
calibrated using a collective approach with labelled,
pre-existing datasets for training the classifier. This
means that there is no need for a lengthy training



647

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

session by the analyst prior to using the system.
However, there is potential to adapt the classifier
to individual characteristics based on performance
feedback provided to the system over time.

• Model Transparency: A black-box approach to clas-
sification has been selected for pattern-recognition,
which means that specific details are hidden from the
analyst. However, EEG inputs, feature configurations,
and state measures can be inspected. This hides low-
level model details, which should only be modified
by an expert, while providing an overview of the BCI
process, which may facilitate the user’s trust in the
model’s output.

• User Feedback: An indirect feedback strategy has
been selected for the BCI layer, as direct user feedback
is obtained elsewhere in RECON and can be applied
to the BCI in terms of performance-based adaptation.
The benefit of this approach is that the analyst need not
have BCI-specific expertise to update the BCI model;
instead, this can be abstracted to other parts of the
system.

• Contextual Inputs: Implicit contextual inputs, in the
form of EEG signals, have been selected to deduce
an analyst’s cognitive state. This allows the system
to unobtrusively monitor the user, without requiring
explicit input by the user with regards to their current
mental state. This is important as the user might not be
aware of their own current psycho-physiological state.

B. Human-Computer Interface (HCI) Layer
The following considerations apply to the HCI layer:

• Contextual Inputs: Both explicit and implicit contex-
tual inputs have been used in this layer. In particular,
explicit inputs have been selected to allow users to
set current objectives and preferences, which are used
for recommendation and filtering. This has the benefit
of allowing the system to know exactly what the
analyst is trying to accomplish. Implicit context is
also gathered by the system to determine the current
task of the user (e.g., whether the user is logged into
the system, currently setting objectives, or reading
a document), which can be used to adapt system
notification levels.

• Decision-Making: Functionality for both individual
and team decision-making has been supported within
the HCI layer. This provides the facility for analyst
teams to share objectives and recommendation results
and manage team membership, thereby supporting
shared situational awareness.

• Cognitive Assistance: Functionality for personalized
cognitive assistance has been provided in the form of
adaptable document lists and notification areas within
the HCI layer. This has the benefit of streamlining the
presentation of content based on the analyst’s current
cognitive state and specified preferences (e.g., how the
ranking should occur).

C. Data Layer
The following consideration applies to the data layer:

• Model Transparency: A black-box approach has been
selected for this layer. This is because existing solu-
tions, which are readily (and even freely) available,
themselves are black-box solutions, and the develop-
ment of new approaches to text analysis is outside
the scope of the current project. While the specific
mechanisms driving a text-analysis engine may not
be relevant to an analyst, the ontologies are. As such,
within RECON, the results from different text-analysis
engines can be activated by the user to compare which
is performing best for a particular objective.

D. Case-Based Recommender (CBR) Layer
The following considerations apply to the CBR layer:

• Model Transparency: A black-box approach has been
selected for recommendation. This has the benefit of
hiding the low-level implementation details of the al-
gorithm from the analyst. However, the analyst is still
enabled to provide inputs in the form of objectives and
tuning preferences that influence the recommender.
While the algorithm has been implemented, further
testing is required, which may necessitate modifica-
tions in order to achieve recommendations that are
both relevant and highly diverse when compared to
documents the analyst has already seen (as per [28]).

• User Feedback: Direct user feedback has been selected
for the recommendation layer. The analyst is required
to rate each recommended document he/she reads
in terms of its relevance to the associated active
objective. This has the benefit of allowing the system
to obtain immediate and targeted feedback, without
unduely burdening the user. This feedback is used to
improve future recommendations and can also be used
to provide indirect performance feedback to the BCI
layer (e.g., correlating BCI state measures with the
most-recently rated document to determine a relevance
measure for the analyst).

• Contextual Inputs: Explicit inputs have been selected
for specifying the current situational context of the
analyst. This involves setting and defining the current
active objective(s), which include the specification
of entity and event keywords and relationships be-
tween these keywords, along with the relative ranking,
used for prioritization, of the objectives and objective
components. RECON guides the analyst in defining
his/her objectives, and recommender effectiveness is
determined precisely by how well the recommen-
dations align with these objectives. The benefit of
explicit, guided contextual input is that the system
obtains the problem situation directly from the analyst,
without having to deduce such potentially-complex
and diverse context implicitly. Moreover, this allows
for targeted recommendations that can later be refined
by modifying the user-specified context.

• Decision-Making: Both individual and team decision-
making have been selected for the recommendation
layer. This means that an analyst can view recom-
mendations related to both his/her objectives, as well
as those shared by the analyst’s team members. To-
gether, these have the benefit of supporting increased
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situational awareness across the team or organization,
while still effectively catering to the particular inter-
ests or needs of individual analysts. The currently
implemented approach could be improved by allowing
further refinements in terms of what exactly is shared
to other team members (e.g., only share recommenda-
tions above a certain rating threshold); however, the
team recommendations list can be sorted according to
the recommendation rating, among other properties,
allowing the analyst to quickly filter items in the list.

• Cognitive Assistance: Personalized cognitive assis-
tance has been selected for this layer. This is in
the form of scenes. A scene can be defined by the
analyst in order to represent a particular aspect of
the problem situation he or she wishes to offload to
the system. The benefit of this approach is that the
analyst is free to define (or not) as many scenes as may
prove beneficial. This degree of customization allows
expert users to capitalize on personalized cognitive
assistance, which can include keyword tracking and
multi-paradigm simulations for what-if analysis.

• Recommendation: Item-based recommendation has
been selected for this layer, where the “items” in
this case refer to documents. This approach uses the
features of the document (such as tagged keywords),
rather than properties of other users who may have
read the document, in order to determine the doc-
ument’s relevance to the current analyst. In the tra-
ditional approach to item-based recommendation, the
properties of other items the analyst has viewed and
ranked would be used in the relevance calculation [28].
However, in RECON, because an analyst specifies
precisely what he or she is interested in at the present
time through objectives, this explicit context is used
instead. The benefit is that the analyst’s most-recent
intentions are always incorporated into the RECON
recommendations, rather than using potentially out-
dated intention history, as is the case in the traditional
approach.

E. Context Layer
The following considerations apply to the context layer:

• Model Transparency: A white-box approach has been
selected for the context layer. The COCOM model
has been adapted for context management, and the
application of this well-known method allows analysts
to better understand the system behaviour (e.g., in
terms of its filtering actions). This has the benefit
of promoting confidence in the system’s behaviour,
while also allowing for potential future improvements
involving direct feedback from the user with regards to
the context mode determination of the system (e.g., the
analyst feels he or she is in the tactical context mode,
while the system has determined that the current mode
is scrambled context).

• Contextual Inputs: Both implicit and explicit contex-
tual inputs have been selected for this layer. Implicit
context is obtained from the BCI component as well
as from the HCI activity log, which shows the current
action the analyst is performing in the system. Explicit

context is obtained primarily through the analyst’s
definition of objectives. The benefit of a combined
approach is that context that can be deduced by the
system (e.g., current psycho-physiological state) is
acquired without direct involvement of the analyst,
while context that is more difficult to ascertain au-
tomatically (e.g., changing objectives and priorities)
can be acquired explicitly from the analyst. This
promotes an effective balance between explicit analyst
involvement in the context adaptation process and
system usefulness, allowing the analyst more time to
focus on important tasks such as sense-making.

• Decision-Making: Currently, individual decision-
making has been selected for this layer. This comes
in the form of contextual mode classification at the
analyst level, which determines how recommendations
and alerts are filtered to the individual. A future
improvement would be to support team decision-
making at this layer. This would take the form of
recommendations and alerts being filtered across a
team of analysts, where a particular notification would
be sent to the analyst best-suited to receive it (e.g., an
analyst who is not determined to be overloaded and for
whom the content of the document is meaningful, i.e.,
it matches with at least one of the analyst’s individual
or team objectives). This would have the benefit of
sending the right information to the right person at
the right time, three key criteria of the five “rights”
discussed in Section II.

• Cognitive Assistance: A generalized cognitive assis-
tance approach has been selected for the context
layer. This comes in the form of the COCOM-based
model, which defines four possible contextual modes
an analyst may be in, as well as the actions the system
performs in response to an analyst being in a particular
state. This has the benefit of providing individuals
with adaptive responses, while not requiring direct
feedback from the analyst in order to do so (e.g., an
analyst specifying how much filtering to perform for
a particular contextual mode). However, as a possible
future improvement, personalized fine-tuning could
be incorporated into the system, but would require
additional testing to determine the trade-off of added
personalization.

These architectural design considerations are inter-woven
into the fabric of the resulting system architecture, which
speaks to their interconnectedness. As such, it is impor-
tant to explore these considerations carefully when designing
RECON-like systems, as a change in one location can easily
impact other parts of the system. Figure 8 summarizes the
design considerations discussed in this section, organized
according to the five layers of the RECON architecture and
the considerations presented in Section IV. To underscore the
uniqueness of what is being proposed in this paper, the fol-
lowing section examines related work concerning architectural
design considerations.

VI. RELATED WORK

The preceding sections have identified architectural design
considerations for adaptive context-aware systems and their
application in the recent RECON implementation for the
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Figure 8. Design considerations applied to RECON context management.

intelligence analysis domain. These considerations have been
motivated by known HCI dilemmas and the cognitive overload
problem faced by analysts [1]. The literature on context-aware
systems is vast, as seen in [14], and architectures have been
proposed that are similar to RECON.

For example, in [50], the authors propose a multi-module
approach for a context-aware system middleware having the
following modules: a reasoning engine, learning engine, con-
text predictor, access controller, and context integrator. Like-
wise, in [51], the authors propose an ontology-based decision-
support system for the military domain, comprising multiple
agents responsible for decision support, user information,
available sensors, information services, and context manage-
ment. Even though these are similar in that they combine
multiple tiers for context management, these approaches do
not share the same layers as RECON, nor is their emphasis on
reducing information overload. While much attention in the
literature has focused on such architectures, relatively little
has been devoted to the design considerations guiding the
development of these systems [14], which is a core focus of
this paper. In this section, related work on architectural design
considerations is presented and compared with those relevant
to RECON, as have been presented in Section IV.

In [47], twelve HCI dilemmas are discussed in the context
of supervisory control. A significant number of these are
philosophical in nature, such as who should ultimately be in
control, the human or the machine, and what is the “right”
balance between automation and control. These considerations
do not relate directly to the RECON system. However, others
are more application-oriented, such as the role that trust
plays in the system and how much trust should be placed in
the results coming from automation. Another is how much
free will and creativity to allow on the part of the user
versus having a system that is completely predictable from
the designer’s perspective. These two are directly applicable
to RECON in terms of both model transparency (i.e., trust)
and cognitive assistance (i.e., the extent of user-involvement
in the personalization process).

In [52], four design considerations are proposed that di-
rectly support two distinct, but related aspects: i) intelligi-
bility of system behaviour and ii) accountability of human
users. These considerations include informing the user about
the current capabilities and understanding of the contextual
system, which is in-line with the role of trust in [47] and
the idea of model transparency as proposed in Section IV.
System feedback is also a key feature outlined in [52] and is
meant to inform the user about both the consequences of a
particular action prior to its being enacted (feedforward) and
notification about what the user has done following the action
(confirmation). To this end, the authors propose that identity
and action disclosure be incorporated into a system as part
of an audit trail. This differs from RECON in that system
feedback is defined by the user through scenes, which then
allows the system to provide alerts that are objective-focused.
Lastly, control is also emphasized and it is noted that the user
should have the ultimate control over any actions he or she
may be held accountable for. However, in RECON, because the
user is restricted to a limited set of actions, including setting
objectives and rating documents, this type of control is not a
major consideration.

In [53], the design considerations presented are concerned
with providing maximum flexibility to business processes. Key
issues include how business processes can be conceptualized
and applied to process models in general. This is not a
major concern for RECON, which has been designed and
implemented to support the established intelligence analysis
cycle outlined in Section II. Another consideration presented
in [53] relates to the contextual variables used to capture and
assist with the business processes. The authors speak to the
relevance and the observability of these contextual variables
(e.g., some variables might not be observable and may need
to be inputted by the user). In RECON, this notion is related
to the balance between explicit and implicit contextual inputs
wherein objectives and scenes are set explicitly by the analyst,
while user-state classification results implicitly from the BCI
assessment. The final issue mentioned in [53] is how business
processes can be supported in the face of changes to context.
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This flexibility also relates to the contextual-input consideration
in RECON as recommendations, which support the intelligence
analysis business process, automatically adapt to changes in
context defined by the analyst through explicit objective and
scene definitions.

Other researchers have focused on more singular consid-
erations. For example, in [54], the researcher’s major design
considerations revolve around enterprise collaboration and
how trust can be improved to support decision making across
the entire enterprise. This effort speaks to collaborative man-
agement systems and the relevance of research focusing on
networked businesses (or “holons” [46]). The major artifact
stemming from this work is a table of trust criteria that
can be used when implementing such systems. This relates
closely to RECON’s consideration of individual versus team
decision-making, which is crucial as organizations increasingly
must coordinate efforts in order to manage complex situations.
Finally, in [55], the major focus area is privacy and how it
should be managed. The authors propose providing the user
with full control over which applications should be given
information about the user’s present location. While an explicit
design consideration was not mentioned, the design consider-
ations implicitly revolved around the problem of privacy and
how best to ensure it. In terms of RECON, privacy is not a
key consideration, as sharing information is central to sense-
making among analysts, and those receiving an analyst’s infor-
mation are considered to be trustworthy. It remains to be fully
investigated how much implicit information, like an analyst’s
brain-state classification from EEG signals, is appropriate to be
shared with other members of the organization. Such a policy
would necessarily need to be determined on an organizational
basis.

Each of the foregoing, while being related to context-
aware systems, presents a unique perspective that highlights
distinct architectural design considerations. As seems natural,
these considerations are heavily motivated by the problem
under investigation. For example, in [55] the authors focus
on privacy, so the architectural considerations in the paper
relate to how best to support user-controlled privacy. For
RECON, the uniqueness of the solution, in terms of combining
many different, yet relevant and supporting techniques, brings
with it a unique set of considerations, which are not always
considered in one system. Hence, the architectural design
considerations described in Section IV offer a foundation
from which future research attempting to create an adaptive,
context-aware solution to the problem of cognitive overload in
intelligence analysis can begin.

VII. CONCLUSION AND FUTURE WORK

With its focus on cognitive offloading and high-
relevance system recommendations, RECON targets the adap-
tive context-aware systems domain for intelligence analysts
through a unique five-layer architecture having an explicit
human-factors view of context management. Eight key ar-
chitectural design considerations have been proposed herein
for context-aware support, and their application to the imple-
mented RECON system has been presented. Moreover, previ-
ous architectural discussions have been extended in this paper
with a detailed recommendation algorithm and a cognitive
model for context classification.

It is expected that in situations involving information
overload, uncertainty, and time pressure, the effectiveness of
intelligence analysts can be significantly improved through
context-aware adaptive systems, where these design consid-
erations have been conscientiously applied. However, there
remains room for more comparisons and discussion of these
considerations in light of future system implementations. Also,
more practical testing of the architectural implementation is
required to ascertain its ability to support analysts. As part of
future work, a human-in-the-loop experiment will investigate
the effectiveness of the RECON implementation and approach
in reducing cognitive overload based on the principles of
adaptive-context management.
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