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Abstract— To achieve the decarbonisation of the energy sector 
in Europe, the CO2 emission profile of energy consumption must 
be fully understood. A new methodology for accounting for CO2 
emissions is required for representing the dynamics of emissions. 
In this article, a dynamic integration of CO2 emissions due to 
the electricity production and trade was developed. Electricity 
consumption and related CO2 emissions are studied for a typical 
Finnish household. A model detached house is used to simulate 
the effect of home automation on CO2 emissions. Hourly 
electricity production data are used with an hourly electricity 
consumption profile generated using fuzzy logic. CO2 emissions 
were obtained from recorded data as well as estimated based 
on monthly, weekly, and daily generated electricity data. The 
CO2 emissions due to the use of electric appliances are around 
543 kgCO2/y per house when considering only the generated 
electricity, and 335 kgCO2/y when balancing the emissions with 
exported and imported electricity. The results of the simulation 
indicate that home automation can reduce CO2 emissions by 
13%. Part of emission reduction was achieved through peak 
shifting, by moving energy consumption load from daytime to 
night time. The paper highlights the role of home automation in 
reducing CO2 emissions of the residential sector in the context of 
smart grid development.

Keywords-CO2 emissions calculation, home automation, load 
shifting, modelling.

I.	 Introduction

In December 2011, the European Commission set clear 
goals in its Energy Roadmap 2050 COM(2011)885/2, to 
achieve a decarbonised society. Decarbonisation in this 
context means reducing greenhouse gas emissions to 80-95% 
below 1990 levels by 2050. This will provide considerable 
challenges for electricity production, consumption and 
management. Smart grids represent one tool for achieving this 
target. Smart grids aim at increasing the energy efficiency of 
the network, peak load shaving, load shifting, and reduction 
of energy consumption. Smart buildings are expected to be an 
integral part of smart grids, with smart meters as the gateway 
allowing the entrance of smartness into the building. Smart 
meters receive and send information to and from the building 
for use such as in Home Area Networks, and grid handling. 
Ultimately, smart buildings will lead to the decarbonisation 
of the residential sector. A description of CO2 emissions from 

the electricity generation in Finland has been presented in our 
earlier paper [1].

The role of the residential sector in reducing carbon 
emissions is paramount in the development of the future smart 
grid [2][3]. A massive deployment of smart meters is under 
way in Europe, which will facilitate digital measurements, 
and will allow a consequent access to energy consumption 
data to energy companies and authorities. Member States of 
the European Union (EU) have the obligation to implement 
smart meters covering 80 % of consumers by 2020 at the latest 
[4]. In contrast to the European Energy Efficiency Directive 
(2012/27/EU) [4], the Finnish Electricity Market law 588/2013 
and its application Act 2009/66 on the electricity supply in 
the survey and measurement sets the deadline for 2014 [5]. 
Legal obligations to increase energy efficiency also provide 
a motivation to the deployment of renewable energy sources 
(RES) as a vector for energy production, both electrical 
and heating, in a large scale as well as in buildings. Home 
energy management systems can have a significant role in 
contributing to energy efficiency and cutting or shifting peak 
load. This can be achieved through an active collaboration of 
energy consuming systems and the information network on a 
local level [6]. Putting together smart grids, smart buildings, 
RES-based heat and electricity and energy efficiency, involve 
the development of a smart energy networks (SEN) capable 
of managing the energy system through constant monitoring.

The impact of energy efficiency on emissions from the 
residential sector has been a subject of much research (e.g., 
[7]-[10]). It has been shown that electric load shifting from 
the residential sector may reduce air pollution in urban areas 
[11]. To this effect, developing mathematical tools that are 
able to anticipate and cut emissions through the deployment of 
smart systems and home automation is of major importance.

This article aims at exploring the significance of home 
automation and its impact on the CO2 emissions of a dwelling, 
and the possible ways home automation can contribute to 
decarbonisation. In the first Section of the paper, a description 
of CO2 emissions from the production and the use of 
electricity in Finland will be presented. The second Section 
presents the methodology used for translating hourly carbon 
emissions to single households will be described. The third 

A Methodology for Accounting the CO2 Emissions of Electricity Generation in 
Finland

The contribution of home automation to decarbonisation in the residential sector

Jean-Nicolas Louis, Antonio Caló, Eva Pongrácz
Thule Institute, NorTech Oulu

University of Oulu
Oulu, Finland

e-mails: jean-nicolas.louis@oulu.fi, antonio.calo@oulu.fi, 
eva.pongracz@oulu.fi

Kauko Leiviskä
Control Engineering Laboratory

University of Oulu
Oulu, Finland

e-mail: kauko.leiviska@oulu.fi



561

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section shows and details the results from the simulations 
carried out on two chosen types of dwellings, which will be 
described and analysed.

II.	 Related Research

Research on smart houses and their development has been 
going on for quite some time. Smart homes can be broadly 
seen as buildings monitored and controlled for multiple 
purposes [2]. The energy management feature of smart homes 
is one aspect of the development. Algorithms for generating 
electricity consumption load profile have been developed 
on hourly and half-hourly bases [12], but also with a finer 
grid on a minute-basis [13]. These algorithms can be further 
used to emphasise the potential of energy in smart houses and 
their roles in improving energy efficiency, reducing energy 
consumption and CO2 emissions from the energy used. More 
elaborate algorithms have also been developed, where the 
integration of each appliance within the dwelling has been 
modelled with a bottom-up approach [14][15]. Finally, the 
management of appliances within the dwelling may as well 
be implemented in simulation for optimizing their usage and 
enhancing demand-side management [16][17].

Previous studies have attempted to determine the impact 
of energy efficiency measures on CO2 emissions from the 
residential sector [7]-[10]. Detailed algorithms for evaluating 
CO2 emissions associated with electronic appliance usage 
have been proposed [18]. One of the main drawbacks 
of previous methods is that CO2 emissions are based on a 
fixed coefficient, thus limiting the understanding of the CO2 
emission mechanism. The variation of electricity production 
and market dynamics have been ignored, resulting in a biased 
estimation of carbon dioxide emissions. A more dynamic 
model has been elaborated by Stoll et al. for estimating 
CO2 emissions and their impact on demand response [19]. 
Although the research of Stoll et al. has based its dynamism 
on real dataset of energy production on an hourly basis for 
various countries, the CO2 emissions related to the production 
of electricity are based on a fixed emission factor from the 
IEA annual report on CO2 emissions [20]. Therefore, the 
dynamic has increased but variation due to the use of different 
fuel types were not present and, therefore, the estimation is 
severely biased. Fuel usage varies according to market prices, 
resource availability and climatic variations. 

Consequently, studies on segmented electricity production, 
related CO2 emissions, and the impact of home automation 
on the emissions are lacking.

III.	 Electricity consumption and Carbon Emissions in 
the residential sector

In terms of CO2 emission reduction in the residential 
sector, the largest effort should be made in retrofitting 
buildings. The average renewal time of the residential sector 
is estimated to be around 70 years [7][12]. The influence 
of technology on CO2 emissions needs to be highlighted. 

Consequently, technology upgrading can greatly influence 
the total CO2 emissions of the residential sector. Lighting 
consumes over 30 % of the total electricity used in households 
[13][21]. The upgrade of lighting technology is one way 
for impacting energy consumption [14][15], but also for 
reducing carbon emissions [16][17][22]. Furthermore, home 
energy management systems will continue to play a role for 
increasing energy efficiency, reducing energy consumption 
[7][23] and allowing load shifting. 

In Finland, electricity generation and consumption is being 
constantly surveyed, recorded and reported by Statistics 
Finland. In 2012, household appliances consumed 8 072 
GWh of electricity [18][21]. At the same time, 2 579 781 
households were registered in Finland [19][24], resulting in 
an average consumption per house of 3 129 kWh/y. There 
can be considerable deviation from this average value, if the 
households is in an apartment building or a detached house 
[20][25]. Furthermore, total electricity production in Finland 
was around 67.7 TWh in 2012, while the total consumption 
of electricity was around 82.9 TWh, and a total of 8.4 MtCO2 
were emitted. Therefore, it can be estimated that the share 
of electricity using devices in the total CO2 emissions from 
electricity production and consumption are 1001 tCO2/
GWhpro or 817 tCO2/GWhcons.

IV.	 Methodology

Data acquisition consisted of analysing the electricity 
generation of all power plants in Finland, categorized 
according to their primary fuel, and the categories of power 
plants on an hourly basis. Secondly, the CO2 emissions 
associated with the aforementioned categories were calculated 
on an hourly basis. Monthly CO2 emissions are available 
from July 2011 to April 2014 [26]. It is then possible to 
evaluate the CO2 emissions on an hourly basis by correlating 
the primary energy source for electricity generation and 
associated monthly CO2 emissions.

A.	 Energy Data Collection
Data on electricity production and production forecast are 

to be reported to the grid aggregator of the Nordic network. 
Fingrid, the transmission system operator (TSO) of Finland 
releases information about the network operation and sources 
of electricity production on their network. In parallel, TSOs 
of all Nordic countries must report planned and unplanned 
interruption to the grid through the Urgent Market Message 
(UMM) system that allows for a better management of the 
electric grid. Data information on the electricity production 
systems have been recorded every 5 minutes from Fingrid. 
As Fingrid does not provide historical data on electricity 
production, the missing data are completed by two methods. 
Between 2010 to 2014, the use of historical daily information 
on the technology used for producing electricity, combined 
with the UMM system recorded by NordPool for integrating 
system failure into the data vector is used. The second method 
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uses the monthly and weekly information for disaggregating 
the energy production data at the country level on an hourly 
basis.

1)	 Daily Energy
Information on daily power availability is reported by the 

Finnish Energy Industry Association. The information is split 
into five categories: nuclear power, combined heat and power 
(CHP), wind power, hydropower, and separate thermal power. 
As the characteristics of these technologies are different, the 
following assumptions have been made: nuclear power has 
a somewhat steady production of electricity; thermal power, 
which includes CHP electricity production and separate 
thermal power, have a production of electricity proportional 
to the total electricity production; and, hydro is used for 
balancing electricity production. The notations h, w, d, and 
m designate the hourly, weekly, daily, and monthly time step 
respectively, i is the energy technology used for producing 
the electricity, and tot stands for the total amount of a unit 
countrywide.
Ph,tot = Ph,th−CHP + Ph,th−ind + Ph,nu + Ph,wi + Ph,hy (1) 

Where Ph is the power produced on an hourly basis [MW], 
and tot stands for the total electricity produced, nu is nuclear 
power plants, th is thermal power plants, wi is wind power, 
and hy is hydropower.

Thermal power consists of CHP units from district heating 
and industrial sites, and the separate thermal units. Each unit 
runs proportionally to the total electricity produced balanced 
by the share of electricity brought by a unit as a ratio of power 
available. Therefore, the hourly production of electricity from 
thermal power plants Ph,th-i can be written as:

Ph,th−i =
Pd,i

∑

5

i=1
Pd,i

· Ph,tot · ρ (2) 

Where Pd,i is the daily power used as reported by the 
Finnish Energy Industry Association [27] for the a particular 

technology [MW], Ph,tot is the total electricity production 
data provided by the TSO [MW], and ρ is the ratio of the 
weekly energy produced between the district heating and the 
industrial electricity produced [‘]. In case of separate thermal 
power or gas fired turbine, ρ is equal to 1.

The flexibility of power production form nuclear power 
plants is rather low. Consequently, the output power is 
assumed to be constant with low random fluctuations as 
expressed in (3).

Ph,nu = Pin,nu ×

(

1−R ∼ U
([

−2.8 · 10
−4
, 2.8 · 10

−4
]))

− Pf,nu(3) 

Where Ph,nu is the hourly electricity produced by the nuclear 
park [MWh/h], Pin-nu is the global energy produced by the total 
power of the nuclear park [MWh/h], and Pf-nu is the power fault 
that occurs for each nuclear power station expressed in terms 
of energy evaluated from the UMM [MWh/h]. The standard 
variation of steady-state power output on an hourly basis 
from the nuclear power plants has been calculated from the 
measured data and is equal to 0.028 %. Fig. 1 illustrates the 
correlation between the previous equation and the measured 
data form Fingrid. It can be noticed that the inertia when a 
power plant is being disconnected has not been integrated, 
and thus bring a small bias. Notwithstanding, for the purpose 
of calculating the CO2 emissions, this approximation is 
considered acceptable.

Wind power production is based on a generalised model 
[28] that takes into account the nominal wind power of a 
station and the characteristics of the wind turbine, and the 
wind park statues development in Finland as summarised in 
Table I. Consequently, wind power is calculated for a wind 
park A, where A is a 1-by-n matrix that varies depending on 

Figure 1.	Measured and modelled data of electricity production from nuclear 
power plants 

Year WTin 
[‘]

WP 
[kW]

WPmin 
[kW]

WPmax 
[kW]

WPin 
[MW]

2000 63 602 65 1300 37.92

2001 63 614 65 1300 38.7

2002 64 666 200 2000 42.635

2003 74 664.1 200 2000 43.835

2004 92 869 75 2300 79.08

2005 94 898 75 3000 86.215

2006 96 898 75 3000 86.215

2007 107 1028 75 3000 110.015

2008 118 1212 75 3000 143.015

2009 118 1235 75 3000 147.015

2010 130 1475 75 3600 199.115

2011 131 1519 75 3600 198.99

2012 151 1700 75 3600 258

2013 209 1850 75 3600 447

2014 209 1850 75 3600 447

TABLE I.	 Wind energy production systems in Finland, based on [29]
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the daily available power for wind turbines WPd, where n is 
defined using (4).

n =

⌊

WTin ·
WP

WPin

⌋

(4) 

Where WP is the daily wind power available for producing 
energy. Each value of n is calculated as a uniformly distributed 
random number X:

X ∼ U
(

WP, b
)

ǫ [WPmin,WPmax] (5) 

As hydropower is the most flexible type of energy 
production system, it is assumed that it is capable of producing 
the remaining energy needed for fulfilling the total electricity 
production reported by the TSO.

Ph,hy = Ph,tot −

∑

Ph,i (6) 

2)	 Monthly and Weekly energy Data
Monthly and weekly energy data are used in the case 

where energy production before 2010 needs to be modelled. 
Before 2010, daily information on energy production systems 
is not available.

The electricity generated in Finland on an hourly basis 
is reported by the Finnish Transmission Service Operator – 
Fingrid since 2004 [30]. The data is split into two groups: 
electricity generated by power plants and the electrical 
load on the network taking into consideration the import 
and export of electricity. Moreover, the Finnish Industry 
Association (Energiateollisuus) recorded weekly electricity 
generated from 1990 [31], which is broken down by the 
technology used: wind, hydropower, nuclear, CHP industry, 
CHP district heating, conventional and gas turbine power 
plant. Finally, Fingrid informs in real-time the state of the 
network, using the same categories as mentioned above. 
Thus, for building up the hourly electricity generation by 
categories for the years 2010+, the weekly average electricity 
production by category is used, in parallel with the hourly 
electricity generated countrywide. The exported electricity is 
considered in the electricity generated and in corresponding 
CO2 emissions. The imported electricity is considered as a 
share of CO2 emissions from electricity consumption in 
Finland. In order to include the imported electricity into 
overall emissions from electricity consumption in Finland, 
it is necessary to know the energy mix for producing the 
electricity of the country from which Finland is importing. 
The hourly electricity generated from a particular energy 
source in the primary country is evaluated using (7).

Ph,i =

(

Pw,i

Pw,tot

·

Pin,i − Pf

Pin,i

)

· Ph,tot (7) 

Where Ph,i is the electric energy generated by a given 
technology per hour [MWh/h], Pw,i is the electric energy 
generated on a weekly basis by a given technology [MWh/w], 
Pw,tot is the total amount of electricity produced in Finland 
per week [MWh/w], Ph,tot is the total amount of electricity 

produced per hour [MWh/h], Pin,i is the total installed power 
for the technology i, and Pf is the power fault that occur for 
each power station expressed in terms of energy evaluated 
from the UMM [MWh/h].

Nuclear power, wind power, and hydropower is evaluated 
using the same method as the one presented in the daily 
energy section, except that the weekly energy produced is 
used instead of the daily power available, as the value of WP 
in (4).

Once the hourly electricity generated by technology has 
been defined, it is possible to evaluate the hourly emissions 
from all the power plants.

B.	 Emission Data disaggregation
Emissions of CO2 for electricity production consider 

only those directly related to the production of electricity: 
the net and gross emissions. Gross emissions consider only 
the emissions related to the electricity production within 
the country, while the net emissions evaluates the balance 
of emissions due to the import and export of electricity. 
Therefore, emissions related to fuel transportation or waste 
management are neglected. The power plants emitting CO2 
and equivalent greenhouse gases are thermal power plants. 
Thermal power plants can be divided into three distinctive 
categories in Finland. The first category integrates all power 
plants primarily used for producing heat for district heating. 
Electricity is therefore a by-product and varies depending 
on the thermal power need. The second category includes 
industries that produce electricity as a by-product from their 
activity. They may have seasonal variations depending on 
the industrial activities. The third category includes separate 
electricity production and groups all the thermal power plants 
that uses gas turbine, or is used for producing only electricity 
from thermal power plants. Some of the separate power plants 
are used for peak load hours, others for aiming at the stability 
of the grid, or simply to produce electricity. The following 
sections detail the composition of the conventional power 
plants in Finland and they are classified following the main 
fuel type. This description will help at disaggregating data 
from the energy source used for producing electricity from 
the above-mentioned three categories.

Data on energy source usage are available on a monthly 
basis since July 2011. Therefore, two cases are made distinct, 
the period from July 2011 to 2014 will be processed using 
the first methodology, and data from 2004 to July 2011 
will be processed using the second methodology. The first 
methodology consists of calculating the monthly energy 
mix for each technology. This is to integrate the variation 
of raw material usage in the energy industry. The second 
methodology considers the measured energy data, the related 
calculated emissions, and the variation of outside temperature. 
From these two main variables, it is possible to correlate the 
variation of energy production and outside temperature to the 
emissions using a multi-linear regression model.
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1)	  Emissions 2011 - 2014
The first two main categories of technologies that are 

used to produce electricity as a by-product are the electricity 
from the district heating, and industrial CHP units. The third 
category produce electricity during peak load hours or on 
a permanent basis: separate power plants. Each segment 
uses different sources of energy that are summarised in the 
Table II. Also, each segment can be represented in terms of 
number of units or power capacity. This is to differentiate 
and understand the emissions levels from the electricity 
production.

By using the distribution given in Table II and the monthly 
reported amount of raw energy used, the monthly emissions 
for each of conventional thermal power plant, separate 
thermal power plant excluding gas engines, gas power plant, 
CHP from district heating and CHP from industrial electricity 
production are calculated with:

Emm,x =












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
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×







PEmx+y

...

...





 (8) 

Where Emm,x
 is a n-by-1 matrix of the monthly emissions of the 

electricity production from district heating or from industry 
[ktCO2/m], P is the installed power for each raw material 
where x and y stand for the district heating and the industrial 
sector [MW] respectively. Fig. 3 is the resulting monthly CO2 
emissions from iterating within above equation.

As part of its legal obligation, Finland reports CO2 
emissions from power plants, and energy intensive industry 
[33]. The Finnish Industry Association estimates monthly 
specific emissions related to electricity production, based on 
the type of fuel used by the energy industry [31]. By knowing 
the hourly electricity production from each sector, we can 
estimate the CO2 emissions for each hour countrywide using 
(9) to (12).

Ew,i = a ⋅
Pw,i
Pm,i

⋅ δm

7
⎛

⎝⎜
⎞

⎠⎟
  (9) 

Where a is evaluated using (10) if the full week is within the 
same month n, or (11) if the full week is between two months, 
n and n+1.

a =
7Em,n

δm

  
(10) 

a =

(

δw ·

Em,n

δm

)

+

(

Em,n+1

δ
′

m

· (7− δw)

)

(11) 

Finally, the hourly emissions are given by,

Eh,i−gen = Ph,i ·
Ew,i

Pw,i
(12) 

Where Eh,i-i is the emissions from the electricity generated 
hourly by the given technology [ktCO2/h], and Ew,i is the 
weekly emissions by technology segment [ktCO2/w], δw is the 
day number within a week where Monday is 1 and Sunday is 
7, δm and δ’m are the number of days in the studied months, 
Em,n is the monthly CO2 emissions for the month n. Fig. 2 
illustrates the energy generated and its corresponding CO2 
emissions on an hourly basis for the year 2012 in Finland. 
It can be noticed that, although there is a strong correlation 
of CO2 emissions to electricity generation, emissions may 
decrease even though the energy generation increases, due to 
the fact the energy mix is changing Fig. 2.

The emissions due to the electricity imported are added to 
the primary emissions from the electricity generated within 
the country. The CO2 emissions from the electricity generated 
dedicated to the export is then subtracted from the hourly 
emissions Eh,c1. In order to account the net CO2 emissions 
from the electricity load in the country, the emissions from 
each country with which Finland is trading electricity are 
evaluated, meaning Norway, Sweden, Russia and Estonia. 
As the hourly energy mix is not known for each country, a 
general coefficient of CO2 emissions has been considered 
for 14 kgCO2/MWhpro for Norway, 21 kgCO2/MWhpro for 
Sweden, 417 kgCO2/MWhpro  for Russia and 1 059 kgCO2/
MWhpro for Estonia [20].

The share of CO2 emissions coming from each trading 
country is evaluated using (13).

Eh, cn =

n
∑

i=2

Ph,net−ci

Ph,load

· Eci (13) 

Where Eh,ci
 is the hourly emissions for each participating 

country to the electricity trade [kgCO2/h], Ph,load is the hourly 
electric load on the Finnish network [MWh/h], Ph,net-ci

 is 

Figure 2.	Hourly electricity generation, net import and their related CO2 
emissions from 4.02-02.03.2012
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Figure 3.	CO2 emissions in Finland from conventional thermal power plants excluding gas engines, gas power plants, CHP from district heating and CHP from 
industrial electricity production,  based on [32].

TABLE II.	 Industrial park producing electricity from CHP units in Finland from industrial and district heating power plants, based on [32]

Industry CHP

Ass. Cat Declared Main Fuel Nbr 
of PP

Total 
Power

Peat Peat 16 643.2

Biomass Industrial wood residues 19 462.6

Natural 
Gas Natural gas 10 427.3

Others Other by-products and 
wastes used as fuel 1 7

Biomass Forest fuelwood 2 63

Biomass Black liquor and 
concentrated liquors 16 1152.3

Others Other non-specified 
energy sources 1 3.9

Coal Hard coal and anthracite 1 4.2

Biomass By-products from wood 
processing industry 1 64

Oil Heavy distillates 3 13.8

Others Exothermic heat from 
industry 2 39.3

Oil Light distillates 1 1

Others Biogas 3 4.9

District Heating CHP

Ass. Cat Declared Main 
Fuel

Nbr 
of PP

Total 
Power

Natural 
Gas Natural gas 17 1239.4

Peat Peat 19 1102.24

Biomass Forest 
fuelwood 7 57.7

Coal Hard coal and 
anthracite 7 1647.1

Oil Medium heavy 
distillates 2 2.9

Biomass Industrial wood 
residues 3 142.5

Others

Other by-
products and 
wastes used as 
fuel

1 9

Oil Heavy 
distillates 2 177

Others Biogas 1 14.42

  

  

Separate Power Plants

Ass. Cat Declared Main 
Fuel

Nbr of 
PP

Total 
Power

Oil Medium heavy 
distillates 20 1098.9

Peat Peat 1 154

Oil Heavy 
distillates 6 342

Oil Light 
distillates 3 16.9

Coal Hard coal and 
anthracite 5 1751

Coal Blast furnace 
gas 2 95.8

Natural 
gas Natural gas 2 2.7
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the net balance of electricity traded between Finland and 
the country n [MWh/h] in case of export or the difference 
between electricity generated and the electricity exported in 
the case of Finland, and Eci

 is the coefficient of CO2 emissions 
for the corresponding country [kgCO2/MWh]. In case Ph,net-ci

 
is negative, the coefficient of CO2 emissions is equal to Eh,i-gen 
as the emissions from the Finnish production is exported as 
well, otherwise, Eci

 takes the value defined by the IEA.
Finally, the hourly emissions Eh are determined as the sum 

of the hourly emissions for each participating country to the 
electricity trade Eh,ci

 as shown in (14).

Eh =

n
∑

i=1

Eh,ci (14) 

The emission data in Fig. 2 are then translated to a single 
house where the hourly electricity consumption profile has 
been previously generated using (8).

Eh,house =

∑

j

Pj,house

Ph,tot

· Eh · 10
3

(15) 

Where Eh,house is the hourly emissions from the house 
[kgCO2/h], and Pj,house is the total hourly electricity consumed 
by the house excluding the electric heating [kWh/h]. Two 

cases are differentiated: CO2 levels towards the production 
of electricity within the primary country, and the net CO2 
emissions level considering the import and export. In the first 
case, P takes the value of the total electricity produced in the 
primary country Ph,tot. In the second case, P takes the value of 
the total load on the electric grid of the primary country Ph,load. 

The results give an estimate of CO2 emissions related to 
the electricity consumption in a private household on an 
hourly basis. This model is then applied to an average Finnish 
dwelling previously modelled, in order to estimate the daily 
CO2 emissions.

a)	 Gross emissions from DH
In order to extend the research on multiple years, 

measured data of electricity production have been considered 
alongside with the monthly emission data and the resulting 
hourly emission data generated using the method previously 
explained. From the hourly CO2 emissions calculated, 
the correlation between energy production and external 
temperature has been evaluated. It appears that the variation 
of CO2 emissions and air temperature has a good correlation 
with a Pearson coefficient R of -0.627 as Fig. 4 and Fig.
 5 illustrates. Therefore, the multi-linear regression with a 
R-square of 0.993 can be written as follows,
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EmDH
= −2.37 · 10

−4
T + 2.72 · 10

−4
EnDH

+ 2.098 · 10
−3 (16) 

Where EmDH
 is the CO2 emissions from the DH industry 

[kgCO2], and T is the external temperature [°C].
b)	 Gross emissions from Industry

Similarly, the emissions from the electricity produced 
from industrial processes correlate with the variation of 
external temperature, with a Pearson coefficient of -0.527. 
The resulting equation considers the variation of external 
temperature and electricity production level. (17) gives the 
emission from this industrial segment with a R-square of 
0.993.

EmInd
= −6.7 · 10

−5
T + 1.15 · 10

−4
EnInd + 2.09 · 10

−4 (17) 
Where Emind is the CO2 emissions from the industrial processes 
[kgCO2], and T is the external temperature [°C].

c)	 Gross emissions from separate thermal power
The third segment integrates two types of electricity 

production technologies: the gas turbine that has a minor role 
in producing electricity, and condensing power plants using 
oil, coal, and peat as main fuels that represent the main source 
of electricity. 
EmSep

= 6.48 · 10
−4
T + 6.74 · 10

−4
EnSep + 0.490195EnGas + 5.078 · 10

−3

               EmSep
= 6.48 · 10

−4
T + 6.74 · 10

−4
EnSep + 0.490195EnGas + 5.078 · 10

−3
(18) 

Where Emsep is the CO2 emissions from the separate thermal 
power plants [kgCO2], and T is the external temperature [°C].

2)	 Gross and Net emissions from Finnish electricity
The emissions were detailed by technology at the country 

level; therefore, it is possible to speak about gross emissions of 
CO2 from the electricity production. As it has been mentioned 
earlier, imported electricity has also been considered in the 
evaluation of CO2 emissions from households. Emissions 
in a country vary daily, weekly and seasonally. Overall, net 
emissions are always lower than gross emissions due to the 
fact that Finland imports less CO2-intensive electricity than 
it exports. Fig. 6 illustrates the variation of gross and net 
CO2 emissions and the deviation between both emissions. 

The deviation between net and gross emissions varies from 
+0.56 % to -48.13 % with a median value of -24.71 %. This 
means that the balance of imported and exported electricity 
is environmentally beneficial for Finland. The import and 
export mix also varies hour-by-hour. Nevertheless, a trend 
can be observed on a yearly basis; Finland is importing 
mainly (97 %) from Sweden and Russia while exports are 
mainly focused on Estonia and Sweden. Norway, which 
has the lowest CO2 emissions factor, plays a minor role in 
the Finnish electricity mix due to the lack of high voltage 
transmission line north-south, and the sparse population in 
Northern Finland.

Depending on how the emissions are accounted, very 
different results can be obtained from the study of households. 
Therefore, two cases will be studied; one with gross and 
another with net emissions.

V.	 Smart House Emissions

The emissions related to electricity consumption from the 
residential sector can be determined based on the emissions 
from the production and trade of electricity, and were estimated 
hour-by-hour. For this purpose, an electricity consumption 
model was built for simulating various types of detached 
houses with multiple configurations such as the number of 
household members, number and types of appliances with 
their related energy efficiency factor and so on. A detached 
house, home to 4-persons has been simulated, with various 
types of technologies installed in it [34]. Inhabitants are rated 
depending on their willingness to respond positively to an 
action. Green users are considered to have a positive response 
up to 70% of the time, orange users 50% and brown users 
30%. This research is focusing on green users while previous 
results of users’ influence on home automation consider all 
three [34].

A.	 Electrical and electronic devices in the house
The house electricity demand profile is drawn on an 
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Figure 6.	 CO2 emission variations between gross and net emissions includ-
ing exported and imported electricity.
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hourly basis using different components for evaluating the 
electricity consumption from appliances, without primary 
and secondary electric heating systems. Two dwellings were 
studied: one with home automation and one without home 
automation, and the difference in their CO2 balance was 
evaluated.

The modelled house contains twenty-one appliances, all 
of them labelled A or B [14]. The house, being in Finland, 
has an electric sauna stove of 6 kW. The overall electricity 
consumption of appliances in this modelled house is 4 501 
kWh/y, which correlates with the findings of the European 
ODYSSEE MURE project and that of the Sähkötohtori 
Analysis [25]. The measured data were obtained from 
detached houses in Oulu, Finland, which were equipped with 
a 10 kW sauna stove.

B.	 Impact of the simulated home automation on the emis-
sions

The model showed that the CO2 emissions are highly 
dependent on electricity consumption levels. Depending on 

the energy mix for electricity production at a given time, CO2 
emission levels may even be lower at peak hours and thus 
not proportional to consumption levels. Two models have 
been developed. In the first case, the CO2 emissions from the 
house are accounted relatively to the electricity production 
only. In the second case, the CO2 emissions are balanced with 
the electricity exported and imported. Fig. 7 represents the 
energy consumption for the two cases: with home automation 
(Fig. 7 (a)), and without home automation (Fig. 7 (b)). The 
electricity consumption shown was extracted for a randomly 
selected week in May 2012, starting on Monday, the 23rd of 
May.

1)	 Case 1: Emissions related to electricity production
The houses in the two cases are similar in their 

characteristics such as number and types of appliances, 
number of inhabitants, dimensions, users’ habits. The CO2 
emission levels vary from 0.06 to 0.20 kgCO2/kWh. The 
levels depend on the energy mix of Finland’s electricity 
generation. Consequently, the hourly-based emissions peak 
at 1.93 kgCO2/h for the house without home automation and 
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1.81 kgCO2/h for the one with home automation. In the first 
case, the related energy demand was 10.03 kWh/h and in the 
second 9.42 kWh/h. The maximum electricity consumptions 
are 12.33 kWh/h, and 10.16 kWh/h. The emission peaks are 
somewhat related to the level of electricity consumption but 
also to the energy mix for electricity generation. The use of 
home automation may reduce the instantaneous peak of CO2 
emissions. The daily electricity profile of the houses and CO2 
balance between the two cases are represented in Fig. 7 (c). 
The difference in the profile of the two modelled houses result 
in a 592 kWh/y reduction of total electricity consumption. In 
terms of CO2 emissions, the house that is not equipped with 
a home automation emits 543 kgCO2/y, while the house with 
home automation emits 473 kgCO2/y. The amount of CO2 
saved represents 12.78 % of original emissions.

Home automation shifted some of the electricity 
consumption from the evening peak to the night. It resulted 
in a decrease of CO2 emissions in the evening down to 37 
% from the original levels, and an increase of 51 % of CO2 
emissions overnight (Fig. 7 (d)). Considering, however, that 
the emissions overnight are about 0.1 kgCO2/h on average, 
this can be regarded as a relatively small, cumulative amount.

The emissions increased overnight by 3 to 5 kgCO2, and 
reduced by 17 kgCO2 on average over the whole year during 
the evening. While the home automation was not optimised 
for reducing CO2 emissions but rather for cutting peak load 
consumption, it resulted in the decrease of CO2 emissions 
as well. Notwithstanding, it is to be seen that the emissions 
related to electricity generation countrywide vary throughout 
the day. Fig. 8 represents the summed CO2 emissions 
per hour on the left axis and the hourly average profile of 
CO2 emissions on the right axis for the year 2012 from the 
electricity produced in Finland. The CO2 emissions during 
the peak hours are 0.95 ktCO2/h on average, and add up to a 
total of 346 ktCO2 between 6 and 7 pm. The lowest point on 
the daily plot of CO2 emissions occurs around 2 and 3 am, 
with an average emission of 0.8 ktCO2/h and a corresponding 
emission for this hour throughout the year is 294 ktCO2.

2)	 Case 2: Emissions related to net load
The CO2 emissions in this second case were found much 

lower than in Case 1. Firstly, the total CO2 emissions factor 
Eh,i-gen has slightly decreased. This can be interpreted as an 
improvement in the net CO2 emissions from electricity at the 
country level. This is explained by the fact that Finland is 
importing its electricity mostly from Sweden, and Sweden has 
an average emission factor around 7 times smaller than that 
of Finland. On the other hand, Finland is exporting electricity 
with a relatively high emission factor. As well, the emissions 
from Finnish electricity have been calculated for every hour 
and, therefore, there are peaks of CO2 emissions. Conversely, 
the electricity from the neighbour countries are applied a 
constant factor, thus this bring a bias result. Nonetheless, the 
exchange of electricity is beneficial for Finland in terms of 
CO2 emissions. In this case, the house had a 335 kgCO2/y 
emission without home automation, and 293 kgCO2/y with 
home automation. This means a difference of about 38 % 
between Case 1 and Case 2. This also indicates that CO2 
emissions can be interpreted very differently, depending on 
whether the emissions associated with exported electricity 
are subtracted from the total CO2 emissions of the country or 
included in it. Similarly to Case 1, the peaks of CO2 emissions 
are reduced, and are about 24 % lower than in Case 1. In Case 
2, the CO2 peak for the house without home automation is 
1.46 kgCO2/h, and 1.37 with home automation.

At the system level, the total and average hourly CO2 
emissions have decreased as well. In case the exported and 
imported electricity are accounted in net emissions, the low 
peak occurs between 4-5 am with an average emissions of 
0.64 ktCO2 and the high peak period occurs between 10-11 
am with an average emissions of 0.75 ktCO2 and cumulates to 
275 ktCO2 in same hour. Regarding the shift of CO2 emissions 
due to the home automation device and the feedback strategies 
used for informing the private consumers, it has decreased by 
6 kgCO2 in the evening and has risen by 2.7 kgCO2 in the 
night time. The quantities of CO2 shifted, as presented in Fig. 
6 (d), and are different from Case 1 and Case 2, as the CO2 
emission profiles for both cases are different (see Fig. 8).

VI.	 Discussion

The methodology developed in this article allows the 
integration of physical electricity production variation 
and resource usage. The emission factor is re-calculated 
every month for each technology, thus better reflecting the 
seasonal variations compared to a fixed emission factor. The 
gross emission factor can be calculated from 2004, but net 
emissions from electricity production are only available since 
2012. This method has the advantage to use publicly available 
information with an hourly window grid. Nevertheless, 
the method presented is restricted to data availability from 
country-to-country. It is thus challenging to evaluate the 
replicability level of the method.

When studying the impact of home automation, both cases Figure 8.	 Total and average daily profile of the carbon dioxide emission in 
2012, Finland
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showed that load shifting can contribute to 12.7 % decrease 
in CO2 emissions. However, there is a difference depending 
on whether the balance of import and export is considered. 
As well, consumer awareness and their willingness to comply 
is also a factor in the potential for reducing CO2 emissions. 
Table III summarises the results from the CO2 emissions and 
the electricity consumption from both houses. It is necessary 
to point out the importance of methods evaluating emissions 
on the results. It is paramount that the countries involved use 
the same methodology for their CO2 evaluation. In this study, 
Finland is mostly importing electricity from Sweden and 
Russia and exporting to Norway and Estonia. For Sweden, 
this means importing “polluted” electricity and exporting 
cleaner electricity to Finland. Consequently, for Finland, the 
shifting of CO2 emissions is greater when compared to the 
emissions of gross electricity production. It also needs to be 
pointed out that the house simulator can be used for either 
optimising electricity consumption or CO2 emissions or both. 
In our case, the multi-objective algorithm was developed for 
optimising electricity consumption, but it also resulted in 
emission reductions. To optimise for CO2 reduction, would 
be an additional challenge. In addition, an added level of 
complexity is whether export/import net emissions are 
considered or not.

VII.	 Conclusion and Future Work

The article detailed the CO2 emissions of electricity 
generation in Finland. Firstly, CO2 emissions from 
electricity production and trade have been evaluated using a 
methodology developed within this research. Then, monthly, 
weekly, and daily data of electricity generation were used to 
calculate corresponding CO2 emissions into hourly data. This 
was used to evaluate the CO2 emission profile of households. 
The model was based on hourly electricity load profiles 
previously built. The methodology developed reflects the 

seasonal variations as well as the monthly fluctuation in 
resources usage from the power plants. It, in turn, increases 
the reliability for evaluating the CO2 emissions due to the 
electricity consumption.

Secondly, the CO2 emissions associated with imported 
and exported electricity generation were accounted as well. 
Both cases show the same peak distribution in their daily 
profile. Notwithstanding, emissions will depend on the 
fuel used at a particular hour. Therefore, the relationship 
between electricity production, import and export is not 
straightforward. The cumulated CO2 emissions overnight 
from the electricity produced in Finland stand at around 290 
ktCO2/h, while the peak reaches 345 ktCO2/h. Considering 
the import and export of electricity, and their related CO2 
emissions, the peak dropped to 230 ktCO2/h overnight, and 
the high peak is at 275 ktCO2/h.

Although the home automation was not optimised for 
emission reduction, the CO2 emissions are somewhat 
proportional to electricity consumption levels. The study 
showed that home automation might reduce the carbon 
dioxide emission by 12.7 % while influencing the private 
consumers’ everyday routine. The CO2 emissions have been 
reduced most substantially during the evening peak, by 18 
kgCO2/h.y-1 in the first case and by 6 kgCO2/h.y-1 in the 
second case, while the emissions at night time have increased 
from 3 to 5 kgCO2/h.y-1 on average. Although the CO2 
emissions related to electricity consumption from appliances 
are strongly correlated, the energy mix for producing this 
electricity needs to be considered and thus optimised for 
reducing the carbon footprint of households. 

Consequently, smart buildings within a smart grid may 
not only participate in load shifting and increase energy 
efficiency or decrease electricity consumption, but they 
can also significantly contribute to the reduction of CO2 
emissions. It will, in turn, impact the total CO2 emissions of 
the country and will assist in achieving the decarbonisation 
goal of the EU. 

The limitation of this research is that there was no 
information available on the variation of the energy mix from 
exporting countries and, therefore, import electricity had to 
be considered with a yearly constant CO2 emission factor. 
Secondly, in the case of Finland, a more detailed estimation 
would require knowing the energy mix hour-by-hour, rather 
than estimating it from the monthly average. However, 
currently, this information is not available in Finland.

Further research will investigate the impact of private 
consumers in correlation with home automation for reducing 
the CO2 emissions of households. In addition, a full 
assessment considering district-heating systems ought to be 
done, in order to achieve full integration of smart buildings in 
a SEN. Finally, the multi-objective algorithms will have to be 
further developed and improved on.

CO2 emissions relative to

Electricity 
produced (Gross 

Emissions)

Net electricity 
consumed (Net 

Emissions)
Unit

Min. Eh,i-gen 0.06 0.04
kgCO2/kWh

Max. Eh,i-gen 0.20 0.19

Max Eh,house SA 1.81 1.37
kgCO2/hMax Eh,house SNA 1.93 1.46

Max Pi,house SA 12.33 12.33
kWh/h

Max Pi,house SNA 10.16 10.16

Total Eh,house SA 543 335
kgCO2/aTotal Eh,house SNA 473 293

Max Average Eh,i-gen 0.95 0.75

ktCO2

Min Average Eh,i-gen 0.8 0.64

Max Sum Eh,i-gen 346 275

Min Sum Eh,i-gen 294 234

TABLE III.	 CO2 Emissions Summary for the two studied cases
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