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Abstract— A local authority, the “Conseil Général de la 
Gironde” in France, manages various projects in different 
fields, like sustainable development, and coordinates public 
and private partners’ actions. The observation shows that each 
of them has only a partial vision of others’ skills and know-
hows. Generally speaking, everywhere where human 
collaboration is needed, sharing skills is one of the problems 
identified. This work addresses these difficulties using a 
learning and collaborative multi-agent system to enhance skill 
sharing and management. One of the main innovations here is 
that skills are represented as autonomous agents, and not just 
as capabilities, as is usually the case. 
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I.  INTRODUCTION 

A local authority, the “Conseil Général de la Gironde” 
(CG33) is responsible for public actions for 1.5 million 
inhabitants. Numerous domains are concerned: school 
transportation, management of middle schools, tourism 
development, solidarity, integration and support for elderly 
people. One of the CG33 missions is to define policies and 
practices for the Sustainable Development (SD) of the 
department (a territorial division lower than regions). For 
example, the objective could be to transform a neighborhood 
into an eco-district [1, 2]. Experience shows that this type of 
project is very complex and requires the collaboration of 
many public and private actors under the supervision and 
management of a “project supervisor” (PS), for instance an 
architectural firm. Each actor has only a partial knowledge of 
the capabilities of the other and some information is 
sometimes lacking, but the PS has to take decisions anyway. 
In addition, the objective is often to minimize the costs and 
to obtain energy or ecological labels, which typically are 
antagonist objectives. For the PS, it is often difficult to 
understand the impact of each parameter. The preferred 
option is usually the one that is better understood, which 
comes at the expense of other options because there was 
insufficient knowledge on their impact, cost, and 
implementation. In order to help the actors, and especially 
the PS, to find the best partners, the CG33 decided to build a 
database of skills and actors [1]. For example, it should be 
possible for a PS who wants to renovate some buildings to 
identify skills and actors in various domains such as thermal 
insulation, thermal simulation, air tightness, and installation 

of different types of photovoltaic panels on the roof. In turn, 
the partner who has expertise in thermal insulation may 
require the help of another partner who is specialized in the 
use of specific insulation materials. Thus, the challenge is 
here to allow each stakeholder of an SD project to share and 
learn more about the expertise and know-how of the others.  
In general, whatever is the field of activities (e.g., building 
the best sport team as possible), everywhere where human 
collaboration is needed, the problem is the same. Therefore, 
to facilitate the increase of skills for each actor over time and 
to stimulate their cooperation, building an efficient system of 
skill sharing is the key. 

A traditional approach could be to build a simple 
database with a direct link between actors and skills. 
However, considering the central role of skills and the needs 
for constant evolution and modifications of the data, a 
research project has been carried out in our laboratory to find 
and implement a better solution. It is suggested here that a 
multi-agent system (MAS) is more appropriate. In our 
proposal, the innovative key concept is to consider each skill 
as a “full agent”, and not only as an agent’s ability as is 
usually the case [3, 4, 5]. Having their own learning model 
and their own life cycle, our skill agents are autonomous, 
cognitive, and they interact with human actors to stimulate 
and improve cooperation. Finally, this work offers a proposal 
to improve the management of skills, to make them more 
efficient, during projects, and over time. If a user wants to 
address a new goal, how should he define the project and 
what are the skills needed to implement it? How can he get 
benefits from past projects?    

The model is described in Section II. Some results are 
shown in Section III and Section IV concludes this 
document. 

II. MODEL 

A. The Issue 

Let us introduce the issue with an example of an SD 
project that aims to “transform a neighborhood into an eco-
district”. Let us assume that a PS has to build a HQE 
building. HQE stands for “Haute Qualité Environnementale” 
and is a standard for green building in France [6]. For this 
kind of project, the PS needs: 

• A definition of the goal to achieve (the objective) 
• Skills such as “integrating insulation materials” in 

order to meet the HQE objectives. 
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• Actors such as private building companies to 
implement the skills. 

Using our “SD skill sharing” system, the PS should be 
able to identify a list of possible partners. Intuitively, we 
might think that this list could be simply sorted according to 
the most experienced partners for the given task. However, 
other criteria than just experience should be taken into 
account: price, quality, duration, localization, expertise with 
specific materials, etc. The system may suggest a partner 
according to this list of criteria. In addition, it also has to 
select different companies over time. The problem is to 
determine a good strategy in order to achieve that goal 
throughout a project.  

Going further, it is also interesting to get the benefits of 
past experiences on similar projects over time, to build new 
ones. Let us illustrate with the objective: “I want to put 
photovoltaic panels on the roof of my house”. I have to find 
the skills required for this new project. Taking my needs and 
experience of past projects into account, there are two 
possibilities: 

• I find a past project that reflects exactly what I want 
to do. Thus, what I need is to find a way to retrieve 
all the skills of this project, and proceed to my new 
project creation using this list.  

• I find a past project, but it is not exactly what I want 
to do. Thus, what I need is to find a way to retrieve 
some of the skills of this project, and proceed to my 
new project creation using this restricted list. 

The two points above are efficient if the user finds 
projects that already contain all or some of the skills he 
needs to build the new one. However, this is not always the 
case. Skills may be scattered throughout various projects. 
Thus, the point is to find a way to answer a limited 
expression of needs at specification level. For example, if we 
consider that in the system we already have the past two 
projects: “wind turbine implementation” and “hydraulic 
micro power implementation”. They both belong to the same 
“domain”: “new means of energy production”. If the user 
wants to build a new project, in the same domain (e.g., the 
implementation of solar panels), an interesting idea is to look 
for skills used in all the past projects of this domain. Thus, 
the system will suggest integrating the skills that were 
fluently used across all projects in the domain.  

It is possible to generalize from this example. Each 
professional sector of activity has procedures and processes, 
each of them used to reach specific goals or objectives. Each 
objective may be implemented through some projects and 
skills. Generally speaking, it may be difficult to make 
processes evolve according to environmental constraints.  
When successful, the knowledge and know-how that have 
been used should be capitalized on for possible use in further 
projects. Finally, the main problem is to find a way to 
improve the management of skills to make projects more 
efficient over time. To do this, it is possible to build new 
projects, working on past projects or objective domains. 
Thus, the goal of this work is to improve new project 
definitions dynamically and to identify all the skills needed 
to make them a success. 

B. Defining a Skill 

A skill is the ability to exploit some knowledge and 
know-how in order to solve a class of problems. It is 
different from a competency, which is generally accepted as 
a set of behaviors or actions needed to be performed 
successfully within a particular context [4]. In this study, for 
the sake of simplicity, it is assumed that a skill is a sum of 
elementary competencies (ECs). 

The main specifications of our application are to store 
information about the skills of possible participants in SD 
projects and to suggest interesting partners for a given skill. 
An important issue is to make the link between observations 
(e.g., “partner A has been assigned the role of task 1 and 2 in 
project X and has succeeded in implementing solutions”) and 
skills, which do not correspond to the names of the task. Let 
us present an example: 

Integrating glass wool for the insulation of northern walls 
in a specific building in a given project is related to the skill 
“integrating insulation materials”. However, integrating 
isolated wood panels under roofs might be very different 
from integrating glass wool in walls and the best expert for 
the first task might not be the best one for the second. The 
skills might be differentiated by small details, but, for the 
proposed application, it would be irrelevant. It is expected 
that the users of the application will ask general questions 
such as “who has skills in insulation materials?”. The key 
problem is to find the appropriate level of detail for each 
skill and to make the difference between an elementary 
competency that belongs to a skill and the skill itself. Then, 
assuming that a skill is defined at the right level and includes 
a list of possible elementary competencies, the question is to 
determine how each of them participates in the definition of 
the skill. For instance, for the skill “integrating insulation 
materials”, how important it is to have the know-how for 
isolated wood panels? In other words, there should be an 
associated weight for each elementary competency and there 
should be a mechanism for learning them integrated in the 
skill agent  

According to the needs of the project, a skill can be 
created at any moment, its definition (the list of elementary 
competencies) may evolve, it can eventually be split into 
different skills and it might even be removed. Such 
constraints cannot easily be handled in a standard database in 
which the actors and their skills would be stored. Because of 
the central role of the skills, it is suggested in this paper that 
the skills be considered as agents of a multi-agent system. 
However, in most applications, agents are associated with 
models of actors in the real world, the skills defining the 
behavioral rules [2, 7, 8]. The problem is that the skills have 
their own dynamics and are rather independent from the 
actors.  The skills should be agents with their own lives. In 
addition, if the skills and the actors are distinguished, it is 
difficult to define actors as other agents of the system. In 
cognitive science, the embodiment of mind is often 
considered a requirement to obtain an effective agent [9, 10, 
11, 12]. Skills alone have no perception, no motivation and 
no means to perform an action and change their 
environment. Nevertheless, it is possible to define these 
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elements artificially. Intuitively, a skill can be motivated by 
the improvement of its own definition, e.g., a weighted list of 
elementary competencies and the clarification of its 
relationships with the other skills. The user of the system has 
another motivation: he wants to find a partner for his project. 
The system should provide some criteria and suggest an 
actor for the required skill. The user makes his choice, then 
the work is carried out (embodiment of the skill) and an 
evaluation of the realization is performed. The key idea is to 
consider that a criterion is no more than an abstraction of a 
hidden list of elementary competencies. For example, the 
duration of a work is not a competency. However, implicitly, 
it is closely related to the ability to work fast, which is an 
elementary competency of the skill. Therefore, the skill can 
exploit the definition of the criteria, which evolve according 
to the evolution of the projects, to characterize its definition. 
Another issue concerns the links between the skills. Different 
skills may have several elementary competencies in 
common. If no actor is found for a given skill, an interesting 
idea is to make suggestions with actors associated with the 
skills that are closely related. 

In addition, a database is still required for the storage of 
past observations (e.g., Actor A has been involved in project 
X for the embodiment of skill S with an evaluation of a list 
of criteria C1...Cn). 

 

C. Definitions and key concepts 

1) Main concepts 
We can use another concrete example to illustrate those 

concepts: “To make energy savings, I want to put better 
insulation into the walls of my flat”. From this example, we 
may define four concepts in our proposal. 

 
a) Environment 
An environment is viewed as a professional sector of 

activity. In our example, “sustainable building sector” is the 
environment in which the user request occurs. This is the 
highest level of abstraction and it is related to the 
professional sector of activity. 

b) Objective domain 
An objective domain is a group of objectives, 

concerned by the same theme of activity. In our example, 
“ thermal insulation improvement” is the objective domain 
in which the user request occurs. Another domain could be 
“air tightness improvement”. The idea is to position 
objectives within one or several objective domains. 

c) Objective 
An objective is a simple textual description of a goal to 

be reached (NB: the term "goal" would have been more 
appropriate, but "objective" was chosen from the start for 
convenient reasons and links with the French language). In 
our example, the objective is to “put better insulation into 
the walls”. This objective is part of the “thermal insulation 
improvement domain”. Considering this simple question 
from the user, no constraint about the materials or skills used 
to reach the goal is expressed. Another objective could be 

“ improve air tightness in my flat”. In our implementation, an 
Objective agent is available. To transpose an objective into 
“real life”, it is mandatory to define a project first.  

d) Projects 
A project is defined by an objective, a start date, an end 

date, resources (like human actors) and processes to 
schedule the list of skills to be used. In our example, a 
project defined by the “integration of glass wool into walls” 
is proposed. It will start next week, will stop in 15 days, and 
requires several skills. Finally, the project is implemented 
and evaluated at the end using ECs of each skill. 

 
2) Types of Objectives 
For a user, the problem is to reach a goal. It is usually 

defined by a simple assertion like “I want to do something”. 
In order to reach the goal, the user will define a new project 
in our system. He does not often have knowledge of all the 
skills that have to be used in the project. As it is difficult to 
give a unique answer, depending on the user request at time 
T, two approaches are proposed for building new projects. 
The first one is based on completed projects and their 
objectives. The second consists of building the new project 
using only concerns about the objective's domain, and 
possibly the environment. This case occurs when the user 
wants to do actions in a particular domain of activity, but 
does not know exactly what to do. 

 

D. Skill Agents: theoretical proposal 

1) Introduction 
Generally, an agent has behaviors. Each of them could 
be presented as shown in Figure 1. 

 

Figure 1.  Agent's behavioural characteristics 

It is assumed here that a skill is unique and can be 
implemented as an agent in a multi-agent system. It has 
resources (a list of physical actors) and its own life cycle. It 
can be created, can evolve and can eventually be removed 
when not used anymore or when replaced by another skill 
agent. Skills agents fit into a multi-agent system, where the 
environment is defined by the interactions with the users. 
They are cognitive, non-conversational and non-dialogic [3, 
5]. They never directly communicate with human users. 
They react and evolve according to information 
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modifications and requests from the user via a WebRequester 
agent. An important feature is their ability to learn how to 
define themselves and how they are linked to the other skills.  

 
2) Definition 
Skill agents are defined by three main features: 

perception, internal attributes and actions: 
• Perception: Skill agents are listening to information 

broadcast by the system after interaction with the 
users. It can be, for instance, an update after external 
observations (e.g., a new project is started or the 
result of work for a given project is inserted in the 
database) or a request is sent by another agent within 
the MAS. 

• Internal attributes : A skill agent is determined by 
the list of elementary competencies that defines the 
skill, a creation date (appearance in the MAS), a 
domain(s) of activity and a specific “age” (see 
below). It also has a list of behavioral rules, 
expressed in XML format with a specific grammar 
(see below). 

• Actions: If there is an update of an external 
observation that is linked to the skill, the agent 
updates its database and its weights according to a 
learning rule. It provides an answer to the 
WebRequester agent (which, in turn, informs the 
user) according to a strategy defined by behavioral 
rules. Each skill agent has the ability to establish 
links with other skill agents in the MAS. This last 
action is based on its environment analysis, 
automatic (or not, if specifically requested by the 
user), and defined in its behavioral pattern. More 
importantly, skill agents are proactive. When a user 
wants to create a new project (typically a new 
objective action), an Objective Agent receives those 
requests. Then, it sends a broadcast to inform all 
skill agents. Each of them determines if it is a 
candidate for participation (or not) in the new 
project. The decision is defined through the 
computation of what we call a “proximity 
coefficient” (see below). At the end of treatments, 
the Objective Agent returns a list of candidates to the 
user for (in)validation according to the project needs. 

 
3) Life cycle 

Skill agents have their own life cycle, divided into 3 
“ages”, according to their specific levels of autonomy. 

1. Childhood: The skill agent runs in a 
“learning” mode. During this age, the aim is to 
make the agent “grow”. When it is created, the 
first step is to assign to it a list of criteria 
(elementary competencies) for future 
evaluations. The second step is to associate a 
list of actors. At initialization time, there is no 
evaluation in the database because the agent 
has not been used yet. Thus, if a user looks for 
an actor (like a rugby player) for this skill, the 

agent is not able to make relevant suggestions 
(childhood). It simply returns a list of potential 
actors ranked according to the number of times 
they have been involved in realizations (the 
most experienced at the end). Once the result 
of the work is available, the user evaluates the 
criteria associated with the skill and the data 
are stored in the database. At this age, the skill 
agent does not really communicate with other 
agents and uses only basic behavioral rules. It 
grows until it reaches a threshold of 
evaluations (e.g., after 3 concretizations across 
various projects) in the database. When this 
threshold is reached, its age automatically 
grows to the next one.  

2. Teenage: When a user looks for an actor with 
this skill, the agent computes a list of 
candidates, exploiting the previous results 
(past experiences) and the current user criteria 
weights values. If the user does not specify 
any weight for criteria, default values are used 
(e.g., weight=1). A list of potential actors is 
then obtained after a dynamic computation of 
criteria weights (see subsection D.2). At this 
age, the autonomy of the agent is rather 
limited. It communicates and tries to build 
relationships with other agents (see subsection 
D.3). Whatever the action performed, a human 
validation is requested and stored in the skill 
agent memories table in the database. The skill 
agent grows until it has a threshold of 
evaluations (e.g., after 10 concretizations 
across various projects) in the database. When 
this threshold is reached, its age automatically 
grows to the next one. 

3. Mature:  The skill agent is able to make direct 
and relevant suggestions to the user as soon as 
a project is created. A list of skills is proposed 
with the possible actors for each of them. 
Obviously, the user can still make 
modifications but he can save a lot of time if 
the choices correspond to his needs. At this 
age, the agent has a good knowledge of its 
relationships with the other agents. Using the 
system parameters, it is possible to cancel the 
validation of the system choices by humans. 
For example, in our SD skill sharing system, 
we could imagine characterizing a new project 
(e.g., building a new middle school) without 
knowing what the skills needed are, nor the 
actors who are able to implement them. In this 
situation, at the mature age, the system will 
automatically choose the skills (using the links 
between them) and will affect their 
concretization to actors. Thus, the skill agent is 
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fully autonomous, makes its own decisions, 
and does not need human validation. 

Remark: the thresholds for age transitions have been set 
empirically. The objective is to grow as rapidly as possible. 
It is a trade-off between giving a help to the user as soon as 
possible, and reaching a high level of expertise. 

E. Learning mechanisms 

1) Introduction 
In the literature, we can find various types of learning 

mechanisms for agents: the Markov Decision Process [13] 
with reinforcement learning [14], the theory of games 
(matrix games [15] and stochastic games [16]), the Bayesian 
networks [17], the Case-Based Learning (CBL) methods 
[18], and so on. Our skill agents evolve according to human 
actions on the system (requests, selections, validations, and 
evaluations). In our context, the CBL methods seems more 
adapted because they are based on valuated and memorized 
iterations of concrete experiments, they integrate validations 
of human on the system decisions, and allow (for a given 
environment) specific and gradual adjustments over time. 
However, existing CBL algorithms [19, 20, 21, 22, 23, 24, 
25] are not entirely appropriate to our problem because the 
objective is not to find a similar case in the knowledge 
database. Selected actors will have the skill anyway. It is 
rather to make a choice among several possible actors 
according to a global skill sharing policy.  

Therefore, synthetically, learning mechanisms for a 
given skill agent, are based on two main points: actors’ 
selection mechanism and the building of links with other 
skill agents. 

 
2) Actor selection 
When the user needs to find an actor for a given skill 

(generally inside a project), he asks the system for 
suggestions. We have already seen that a skill is defined by 
a weighted list of criteria or elementary competencies.  

The first step is to give this list with undetermined (or 
default) weights to the user. For instance, in an SD activity 
domain, if the user wants to retrieve an actor for the 
"thermal insulation" skill, the system asks the user to define 
the weight associated with each criterion: "wall insulation", 
"roof insulation", "wood based materials", "diagnostic", 
"price", "duration", etc. This information is used to update 
the definition of the skill.  

Assuming the user gives specific values to the weights 
of each criterion, the second step consists in computing the 
new weights. This is done using those new values plus the 
old validated computed weights values. “Validated” means 
approved by the human user in past experiments. Let k be a 
criterion and Wk(t) the weight associated to it for request 
number t. For t=1, the average weight is set to Wk(1) which 
is the weight given by the user. For t > 1 the new average 
weight is computed using equation (1). 
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The third step is to build the list of actors, evaluating 
them. The proposal is to use the new computed weights of 
each criterion, and the evaluation results of previous 
realizations (experiments) of the skill. Let f be the number 
of times where an actor a has concretized the skill in past 
projects. Firstly, we compute a partial value using the old 
“after work” evaluations (equation (2)): 
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Secondly, the “actor evaluation” is done with equation (3): 
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Please note: if the user has given specific values for the 

criteria weights, we will have )1( +tkW  instead of )(tkW .  

In order to give a chance to each actor, we propose to 
alternate between the performance policy (linked to 
evaluations) and the skill sharing policy (a random selection 
process), with a probability of 0.5. Thus, an actor with 
systematic lower evaluations is not penalized. Additionally, 
in any case, the user can still select an actor who is not at the 
top of the list. Considering the skill agent life cycle (as seen 
in Section III), a human validation of the system choice is 
needed when the skill agent is in childhood or teenage age. 
When it is mature, the validation is considered as implicit.  

The validation process consists in updating the skill 
agent memories, typically a record in a table, where the 

current computed weight )1( +tkW  of each criterion was 

stored. When the choice is approved, by the user or 
automatically at mature age, those weights become 

validated )(tkW . Being now part of what we called “old 

validated computed weights values”, they will be used for 

the next )1( +tkW  computation. Such a method ensures a 

learning activity, reflects “real life” situations, and is really 
close to what is done in Case-Based learning systems. 
 

3) Agent links 
For some projects, a user who is not experienced may 

not necessarily know all the skills that are required for the 
realization of a project. Concrete example: “I am working in 
a local authority, in a little town, and would like to organize 
a public event to stimulate sustainable behaviors around 
waste sorting in my citizens”. In “real life”, this is a case of 
use of our SD skill sharing system in Gironde. To solve my 
problem, I can ask the system to help me and suggest a list 
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of skills in order to succeed. The problem is the same if I am 
the coach of a rugby team: “I would like to organize some 
specific training for my players at such a position. What do I 
have to do, who can help me?” 

In a MAS or agent’s point of view, in order to provide 
an efficient answer, it is possible to exploit the links that can 
be found among the skill agents that are at least in the 
teenage age. For a given skill agent S, the proposal is to 
build links with other skill agents by computing for each of 
them a “proximity coefficient” (in percentage) to S. This 
coefficient is built using what we call “similarities” to S that 
are sought in the MAS environment. Similarities are found 
by searching for elements that S and the other skills have in 
common, using dynamic requests generation in the database.   

Let us make an assumption: a similarity between two 
skills is defined by the number of common descriptors 
among the skill internal attributes, the skill domain, the 
elementary competencies, the past projects, the evaluation 
of the skill in previous projects, the project domains, and 
finally the types of project domains. This information can 
automatically be obtained using the database table tree. 
Currently, the database structure analysis shows that, in this 
tree, the lower the depth of a table is, the more significant 
the similarity also is (see Figure 2). To find similarities, the 
S skill agent analyses the database table tree (the MAS 
environment), dynamically and recursively.  

 

 
Figure 2.  Similarities table depths 

Let us assume that the maximum depth of the table tree is D, 
which means that each skill can be reached from 
another skill after D links. D=4 in the example of Figure 
2, at the beginning of the tree exploration, the current table 
depth is d=1. The analysis starts with the global skill agents 
table. 
 
Step 1: for each field of a current table, an SQL request is 
dynamically generated to find out the other skills sharing the 
same field value. 
 
Step 2:  if a skill Si is found, the first time, its current 
proximity coefficient is PSi = 0.  
 

Step 3: considering n as the number of common field values 
into the current table, PSi is updated using equation (4). 

 ))(( dDnPP SiSi −×+=  (4) 

Step 4:  Foreign keys and joined tables of the current table 
are used to define the next nodes of the tree. d is 
incremented: d=d+1. 
 
Step 5: if d is not greater than D, go to step 3  
 
Step 6: finally, all PSi are normalized using equation (5): 
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max

×=
Si

Si
Si P

P
P  (5) 

The higher the proximity coefficient, the more skills are 
considered as potentially linked. A threshold is applied on 
Ps (e.g., 65% by default), and a list of potential linked 
agents is returned to the user for validation. An important 
point to know: validating the links implies the validation of 
a dedicated memory and an automated evolution of S agent 
behavioral rules. Thus, there is here again a real learning 
mechanism because of those evolutions arising from human 
validation. Reminder: when a skill agent is in the mature 
age, no human validation is needed and the agent is 
completely autonomous, generating links and updating its 
own behavioral rules. 

 

F. Improving skill management using objectives 

1) Introduction 
“I want to improve the energy balance of my house by 

installing photovoltaic panels on the roof”. “I want to win the 
rugby match next Sunday”. Generalizing, the question is 
always to find the best answer to questions like “I want to do 
something to achieve something”. Then the project comes 
into place. Goals and objectives are statements that describe 
what the project will accomplish. Each project is defined 
(structured) by a set of resources and processes according to 
a specific schedule. The processes are based on a set of 
required skills. Importantly, the definition of the project may 
evolve according to environmental conditions or past 
experiences, meaning that the list of skills required to reach 
the goal may not always be the same.  Let us consider the 
goal of “building a house”. Even if the process is almost the 
same, different construction materials (like cinderblock or 
brick) may be used. This implies different skills for each 
building project. Considering past experience in the domain, 
a dynamic dimension is observed for each project over time.  

Then, the point is how to improve the management of 
skills to make them more efficient, throughout projects and 
over time. If a user wants to address a new goal, how should 
he define the project and what are the skills needed to 
implement it? How can one get benefits from past projects? 
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In order to solve the problem, work on the goals and skills of 
past projects is suggested. 

 
2) Building new projects from past projects 
Two cases are available to build the new project, by 

duplicating or customizing existing ones. From our previous 
example, we will suppose that the user finds the project 
“ integration of glass wool in walls”. He may then: 

• Think that it is exactly his objective. Thus, he will 
duplicate this project and all its skills, without 
creating a new one, changing only contextual 
information like the start date for example.  

• Think that it is not exactly his objective, but is very 
close. He decides to create a new project and 
customizes the list of skills associated with the 
existing project. A new objective is thus created with 
a new list of skills built from a subset of the previous 
one.  

Finally, in both cases, a new project instance is generated 
from the objective. In our implementation, those operations 
are done throughout our unique Objective agent into the 
MAS. As those actions are based on historical data, no 
communication with skill agents themselves is needed. Let 
us assume that a new project has to be built according to the 
user needs. There is sometimes a limited expression of needs 
at the specification level and the objective might be met for 
the first time. The user would probably not know how to 
address the problem and how to exploit past projects.  There 
is nevertheless a solution to help the user. The idea is to 
determine all the skills involved in past projects in the same 
objective domain, or eventually in the same environment. In 
our system, a skill “wants to be involved” in the new project 
according to a degree of involvement in past projects (see 
below). In contrast to what we have seen before, this method 
is not limited to an exchange with the Objective agent. In 
cognitive science, effective agents are obtained by the 
embodiment of mind [11, 12]. If a skill alone has no 
perception, no motivation and no means to perform an action 
and change its environment, it is always possible to define it 
artificially. Several types of motivations have been integrated 
in skill agents: contribution to new projects, determining the 
list of elementary competencies that define themselves, and 
determining their relationships with the other skills. Let us 
develop an example showing the motivation of being 
involved in new projects. A user defines a project in the 
“ thermal insulation improvement” objective domain. No 
more detail is forwarded to the system. “Thermal insulation 
improvement” is an objective domain and is part of the 
environment “sustainable building sector”. The answer from 
our system is defined by the following process: 

• The Objective agent receives the user request.  
• The Objective agent sends (broadcasts) the 

request to all skill agents within the MAS. 
• Each skill agent computes a “relevance 

coefficient” according to the request content, 
and returns an answer to the Objective agent 
(see next paragraph).  

• The Objective agent consolidates all answers 
from skill agents, and returns the list of 
candidates to the user  

Each skill agent is autonomous and decides if it wants to 
contribute to the new project (or not). The key point is the 
computation of the relevance coefficient. Currently, this is 
the percentage of projects in which the skill has been 
involved in the past among all the projects of the objective 
domain. If it exceeds a threshold, the skill agent wants to be 
involved in the new project. 
 

III.  IMPLEMENTATION AND RESULTS 

A. Implementation 

1) The MAS Architecture 
The model has been implemented using the JADE MAS 

and standard multi-agent tools [8, 9, 26, 27]; see Figure 3. 
 

 
Figure 3.  The MAS. 

The JADE MAS has been integrated in standalone software, 
running into a Java Virtual Machine, and is called 
“SMAServer”. The main components of the global 
architecture are: 

• User workstation: exchange using a web browser 
• WebRequester Servlet: This component is used for 

the management of the exchanges between human 
users and the MAS itself. It is a JADE MAS specific 
architecture component. 

• Gateway: It is also a standard component of a JADE 
MAS, allowing dialogues among agents operating 
within the SMA and external programs 
(WebRequester Servlet) [8]. 

• WebRequester Agent: This agent is in charge of all 
the interactions with the human user. It forwards 
requests to skill agents and sends back their answers. 
It guarantees (FIPA compliance) that no direct 
exchange is possible between human users and skill 
agents. 

• Objective Agent: According to Ferber’s 
classification, the objective agent is reactive [3]. 
When a new project (the instance of an objective) is 
inserted within the system, information messages are 
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broadcast to all skill agents through the technical 
Broadcast agent one. 

• Broadcast Agent: This is a technical (generic) 
agent. It receives an incoming message from a caller 
agent (e.g., Objective Agent), sends this message to 
all agents (e.g., skill agents) within the MAS and 
returns the answers to the caller. 

• Skill Agents: actions have already been presented in 
subsection D.2. In our concrete implementation, they 
have sensors and effectors (as defined in standard 
agents theory [3]), each of them being a Java 
component (a class of object). 

 
2) The user side Skill Sharing System HMI 
The HMI from the user side has been implemented using 

the GRAILS [26] framework. There are 5 windows: 
1. All skills that could be requested within the tool 
2. All skills requests in progress 
3. The connected user personal requests in progress 
4. The skills shared (offered) by the connected user 
5. The projects to which the connected user is 

involved. Here, the works in progress, within 
projects, for the connected user, are available. 

 
TABLE I.  LIST OF THE BEHAVIORAL RULES 

XML Tag Attribute Manda
tory 

Comment 

rules description X Main tag 
description  Text describing the rule group 

ruleGroup 
weight   
description X Text describing the rule 

weight  
Weight of the rule in the rule 
group rule 

mandatory  
Value is 1 if rule is mandatory, 0 
otherwise 

description  Text describing the condition 

sensor X 
Sensor Java class name used to 
verify rule condition 

params  
Parameters in format 
name=value, separated by | 
character. Passed to the sensor 

result  
Result variable name beginning 
with $ 

operator X 
Logical operator used within 
condition expression 

table  
Table name from which we try 
to verify condition 

field  
Table field name or variable 
name from which we try to 
verify condition 

when 

value  
Value of field attribute, 
expressed as a regular 
expression 

otherwise   
Used if <when> has not been 
verified 

effector X 
Effector Java class name to start 
if rule condition is verified 

description  Text describing the action 

params  
Parameters in format 
name=value, separated by | 
character. Passed to the effector. 

do 

result  
Result variable name, beginning 
with $ 

3) Behavioral rules 
The behavioral rules have been implemented in XML 

format with a specific grammar (hierarchy, attributes, and 
tags); see Table I. According to the agent links learning 
mechanisms, those rules may evolve over time if link 
creations are validated by the user. For illustration purposes, 
we propose below the rule ensuring that an agent will grow 
from childhood to teenage when 3 evaluations (e.g., after 3 
concretizations across various projects) are available in the 
database: 
 
<rule description="Growing from Youth to Teenage"  
   mandatory="1" weight="1"> 
   <when description="Growing Conditions"  
      sensor="GrowingSensor"  
      params="unitaryEvaluationNumber=2"  
      result="$evaluationsNumber1" 
      operator="EQ" value="3"> 

   <do description="Grow to teenage"  
      effector="Grow"  
      params="from=youth|to=teenage" /> 

   </when> 
</rule>  

 
4) Skill agent memories 
Each skill agent owns a dedicated memory table in which 

it stores the incoming parameters and the related computed 
decisions (see Table II). 

 
TABLE II.  MEMORY TABLE OF A SKILL 

Field Type Comment 
code Long integer Memory unique key code 
ev_date Date Event date (record creation date) 

evt_id Long integer 
Foreign key to event type table, 
describing the type of memorized 
event 

agentid Long integer The current skill agent unique id 

parametersin String 
Request parameters list in string 
format 

decisionstring String 
Computed decision in string 
format  

Humanvalidate Boolean 
Decision validated (or not) by 
human action 

Comment String Free field 

 
An example of memory record content is presented below. 
This result is obtained following the request for a list of 
linked skills to the skill with id 3192 (see Table III). 

If the proposal is validated, the field Humanvalidate will 
then be set to “true” and a behavioral rule will be 
automatically generated. 

 
5) The actor selection simulation tool 

In Gironde, 61 of the local authorities are part of an “SD 
Network”, where they share experiences and skills. They 
had started using and testing the system by the middle of the 
year 2013. The experiment concerned the management of 
SD projects. A preliminary study has been carried out, 
showing that most projects fall into 9 domains of activity. 
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TABLE III. MEMORY RECORD EXAMPLE 

Field Type Comment 
code Long integer 1 
ev_date Date 2013-09-10 14:38:55.345+02 
evt_id Long integer 4 
agentid Long integer 3192 

parametersin String 

controller=RDEngine;stepNumbe
r=1;signalCode=201;action=call
RdEngineForAgentLinks;fromW
ebInterface=true;minPercentValu
e=1;agentId=1508 

decisionstring String 

SELECT agent.* FROM agent, 
agent_agt_domain, agt_domain 
WHERE 
text(agt_domain.code)=text(agent
_agt_domain.agt_domain_id) 
AND 
text(agent_agt_domain.agent_do
maines_lies_id)=text(agent.code) 
AND 
text(agt_domain.descriptiondoma
ineagt)=text('3-Diagnostic') AND 
agent.code<>1508 

Humanvalidate Boolean False 
Comment String Find agent links 

 
These domains are: political wishes, sensitization, 

diagnostic, prospective, developing the strategy, elaborating 
the action plan, implementation of the action plan, 
evaluation, and continuous improvement. Skills are related to 
one or more domains. For instance: 

• The skill “animation capability” is attached to the 
“political wishes” and “diagnostic” domains. 

• The skill “identification and mobilization of 
expertise” is attached to the “prospective” domain. 

• The skill “development of the sustainability report” 
is attached to the “continuous improvement” 
domain. 

 
For skill actors selection, in order to obtain immediate 

results, a simulator was built to verify the theoretical 
proposal. It is based on elementary competencies weight 
computation. The simulation phase lies in a call to a unique 
skill agent, with the aim of observing its behavioral 
evolution over time. Each simulation applies random values 
to weights to each elementary competency (4 in total) of this 
skill. During the simulation phase, 100, 200 and 300 
requests and validations were done. 

 

B. Results 

1) A real life experiment at CG33 
 It is observed that the skills evolve in a “real life” SD 

Skill Sharing System, at CG33, and they provide answers. 
The following results are presented in this context. The 
positive point is that the skills provide valuable information 
to the actors who have poor understanding of the elementary 
competencies. The drawback, however, is that the 
initialization of the system is labor intensive. The first 
definition of the skills requires strong expertise in the 
domain. The updates can be done at any time, but it takes a 

long time to collaborate with experts in order to capitalize 
their knowledge and insert relevant skills and elementary 
competencies into the system. Therefore, it is difficult at the 
moment to conclude about the efficiency of our model 
because we are still in the early stages of the tests. We hope 
to present interesting results in the near future. 

In order to demonstrate the versatility of our proposal, 
other tests have been performed using another functional 
domain: the selection of the best players for rugby. In this 
application, each player's position is considered a different 
skill. Elementary competencies are for instance the ability to 
tackle and stop an opponent or to be accurate in kicking the 
ball. The evaluation of a player for the embodiment of a 
given skill is based on his performance for each criterion and 
on the number of selections. When the system is asked to 
suggest a player for a given skill, equation (3) is used. Then 
the propositions elaborated by each skill agent are validated 
(or not) by the user, the players are evaluated and the 
database is updated. The results are positive for the 
identification of players over the different iterations. 

 
2) Actors  selection simulator 
Interesting results were found using the simulation tool 

to verify our hypothesis. The dynamic computation, with 
memorization, for weights of criteria is valid and convergent 
over time. An example of a convergence graph (here for 2 
criteria over 4), across simulations, is shown in Figure 4. In 
this example, the weight of the first criterion is converging 
to 0.8, and the weight of the second one is converging to 
0.6. 

 

 
Figure 4.  Convergence of criteria values 

It has also been found that, for a given skill agent, the 
learning mechanism is efficient and can be considered as 
becoming “stable” when the system has stored around 120 
requests and validations coming in from users. Another 
interesting point is the comparison of the values of criteria 
weight across simulations (see Figure 5). 
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Figure 5.  Compared criteria weights values 

It does not seem meaningless to admit, from a theoretical 
point of view, that an elementary competency E1 is ”more 
important” than another E2 for the global skill definition if 
the weight of E1 is higher than the weight of E2. If the graph 
above shows this fact, outside of a simulation process, in 
“real life” conditions, this observation will allow us to 
identify the most important elementary skills for a given skill 
definition. Another conclusion is that our proposal is 
versatile, applicable to any professional activity domain, and 
not only to SD projects. The example of the selection of 
players for rugby positions, a very different domain, is also 
possible as mentioned before in this article. 

 
3) New project creations 

a)  Case 1: new projects from past objectives 
The user request, through the WebRequesterAgent, is 

transmitted to the Objective agent that processes it (see 
Figure 6). 
 

 
Figure 6.  Case 1 - Exchanges between agents into the JADE MAS 

Figure 6 is a screen copy of the JADE MAS Sniffer tool 
that monitors message exchanges between agents. The left 
part shows the MAS Agent tree where an agent is part of a 
container, a container part of a platform (ThisPlatform) and 
a platform part of all agent platforms (AgentPlatForms). 
The right part shows three “boxes”: 

• Other: reflects other agents within the MAS, or in 
this case, the JADE gateway that manages exchanges 
with the external users 

• WebRequesterAgent: manages the interactions with 
the human user, forwarding requests to other agents, 
and sending back their answers. 

• ObjectiveAgent: see next paragraph for details. 
 
The arrows (1 to 4) show the message exchanges, with 

their type (REQUEST or INFORM for the answer), and 
their directions (from sender to receiver).  

The Objective agent ensures the treatments, based on 
historical data, in retrieving project instances and related 
skills. At the end, it processes the answer in the form of an 
XML flow (see Table IV).  

 
TABLE IV. XML FIELDS INTO THE ANSWER FLOW 

XML Tag Comment 
answers Main tag encapsulating the answers 
answer Main tag for each answer, 1 for each project 

newObjective 
Boolean value indicating that the project is new. Value 
always false here because the project is over and taken 
into the historical 

objective Main tag for the past project 
code The past project code within the projects database table 

description 
The past project textual description within the projects 
database table  

startDate The past project start date 
endDate The past project end date 
skills Main tag encapsulating the skills list 
skill Main tag, 1 per skill 
code The current skill code within the skills database table 

description 
The current skill textual description within the database 
table  

 
At the front-office user level, a list of projects and skills 

is proposed. The new user project is then generated 
according to one of the two methods identified: duplicate or 
customize. 

 
a) Case 2: new projects from objective domain 
The user request is sent to the Objective agent that does a 

broadcast to all skill agents and consolidates their answers. 
At the end, the answer is also returned to the user as an XML 
flow, as already shown in case 1. The “BroadcastAgent” is a 
technical one and reusable by all other agents if they need to 
do such “broadcasting” actions in the future. See Figure 7 for 
a screen copy of the JADE MAS Sniffer tool. Only the right 
part of the window is shown for better visibility. The three 
first “boxes” are identical to those described for Figure 6. 
Please note that BroadcastAgent receives a message from an 
original sender, broadcasts it to all agents, and consolidates 
all answers into a single one. The global answer, an XML 
flow, is then sent back to the original sender. All other boxes 
on the right are all skill agents within the MAS. The screen 
copy proposed Figure 7 only shows two skill agents. 
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Figure 7.  Case 2 - Exchanges between agents into the JADE MAS 

For illustration, let us reuse the example where the 
objective domain is “new means of energy production”.  A 
project for a “wind turbine implementation” has five phases: 

1. Project management / implementation 
2. Definition of power requirements 
3. Selection of the best wind turbine technology among 

models and worldwide suppliers 
4. Logistic definition (transportation organization) 
5. Wind turbine installation 
 
A second project, entitled “hydraulic micro power 

implementation”, shares 3 (over 5) common phases with the 
first project, and has three specific ones: 

1. Project management / implementation 
2. Definition of power requirements 
3. Selection of the best hydraulic micro power 

technology among models and worldwide suppliers 
4. Logistic definition (transportation organization) 
5. Hydraulic micro power installation 
6. Technology transfer of appropriate designs to 

developing country manufacturers 
7. Project formulation and appraisal for national and 

international aid agencies 
8. Training on small-hydro technology and economics 
 
A third one is entitled: “installation of a biodiesel 

generation system to power up a highway construction site”. 
Let us assume the project also shares the 3 common phases, 
and has two specific ones: 

1. Identify the best site  
2. Environmental benefits evaluations 

3. Project management / implementation 
4. Definition of power requirements 
5. Selection of the best technology of biodiesel 

generation system among models and worldwide 
suppliers 

6. Logistic definition (transportation organization) 
7. Biodiesel generation system installation 
 
Considering these phases as skills (of course at a high 

level of abstraction), let us introduce into the system a new 
user request where the new project is “solar panels 
implementation”. This project also belongs to the objective 
domain “new means of energy production”. The requested 
minimum value for the relevance coefficient is 75%. Thus, 
according to our algorithm: 

• The ObjectiveAgent sends (broadcasts) the user 
request to all the skill agents within the MAS (here 3 
common + 5 specifics according to the second and 
third project phases) 

• Each skill agent computes its dedicated relevance 
coefficient. If this computed value is greater than the 
requested one, that means the skill agent “wants” to 
participate in the new objective, and the boolean 
value “true” is returned to the ObjectiveAgent  

• The ObjectiveAgent consolidates the results where 
the answer is “true”. Finally, it returns to the user the 
list of the skills as an XML flow: 

a - Project management / implementation 
b - Definition of power requirements 
c - Logistic definition (transportation organization) 
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• Through the front-office interface, the user then 
validates (partially or totally) the skills list to build 
its new project. This validation is stored in the 
memory.    
 

C. Discussion 

1) Skill Agents 
In most SMA applications, the skills are not agents. They 

are typically described by behavioral rules that determine the 
actions of the agents [28]. The difficulty is often in making 
the link between tacit and explicit knowledge and learning 
from the real world [27, 28]. For instance, in other 
applications such as the management of skills in the context 
of e-learning, one of the main problems is to determine and 
make explicit the tacit knowledge that has not been 
understood and to adapt the courses [29]. The advantage of 
our approach is that it is skill centered. The skills are 
learning agents and their motivation is to determine the list 
of elementary competencies that define themselves and their 
relationships with the other skills. These elementary 
competencies usually correspond to tacit knowledge and 
know-hows that cannot be easily defined. One of the key 
ideas of our model is to consider that the weighted list of 
criteria defined by the users to determine the best actor for a 
given skill are abstractions of a hidden list of elementary 
competencies. The system learns from the requests of the 
users. 

 
2) Skills management improvement using objectives 
The proposed information system also offers an answer to 

the problems of each SD Network Member at CG33: they 
need to identify the required skills to make their project 
successful. Whatever the activity sector, project 
management is usually done through software applications, 
where tasks are defined and described in a static way. The 
definition of a new project requires the identification of 
human actor(s) for each of them. The first problem occurs 
when there is an evolution of the processes. A traditional 
approach is to update statically the list of tasks for the 
project. Settings renewals have to be done by administrators 
or advanced users in the project management tool itself. 
This update is often a generator of costs, because in some 
cases an external help (e.g., by the software editor) may be 
required. In this approach there is a lack of efficiency, 
inducing at least a waste of time, and sometimes some 
additional financial charges that could be substantial. 
Another problem is the management of projects dynamics 
according to the user needs at a given date. As a project 
reflects the user needs at this date, there can be as many 
projects as user needs expressions within the system. The 
global skill sharing system presented in this paper is a 
collaborative tool and not a static one. The new projects are 
built “on the fly”, from the real user needs. Thus, the new 
skills list is built from those available in past projects and 
reflects the user needs at the time of the request. As the 
number of projects grows in our collaborative system, the 

global list of skills and the objective domains evolve and 
may converge. At a global level, our system learns from the 
requests of the users and reflects the evolution of activity 
over time. The observation of those evolutions will drive the 
management of the company to put the focus on certain 
skills or to drop them. Our proposal therefore provides an 
interesting answer to the problem of skills management, 
using objectives, at the project and organization levels. 

 

IV.  CONCLUSION AND FUTURE WORK 

A multi-agent system has been proposed for skills 
sharing between actors in collaborative projects in the 
domain of sustainable development. The key point of this 
work is the definition of skills as agents with their own rules 
for learning and evolving in an environment where actors are 
considered as resources for the embodiment [12] of the 
agents. If it is always necessary to use skills within projects, 
the choice of the human actor to implement them is not 
"suggestive and human centered" anymore. Over time, more 
and more objectives will be concretized through projects, 
and more and more information will be available to help the 
user. This work suggests interesting perspectives. From a 
professional point of view, concerning the problem of skills 
management, the analysis of skills applications through 
projects provides a wealth of information.  After a period of 
running a project, managers and human resources 
management services will be able to identify the key skills, 
the cross-domain skills and the evolution of the “sensibility” 
of each skill in the professional sector processes, and all of 
this over time. This work may introduce real benefits into 
human resources management to anticipate future evolutions 
of needs in terms of collaborators’ profiles. Whatever the 
professional activity domain, the skill sharing system ensures 
reciprocity, human cooperation and versatility. Going 
further, considering that some skills may be viewed as 
"cross-domain" and/or "cross-companies", what about 
impacts on the future organization of work ? 

 
Several issues have been identified for future works. The 

current tests have to be deeply validated in “real life” 
environment. The system has to be tested with a 
comprehensive list of skills (currently 110 at CG33) and 
elementary competencies provided by experts of the domain. 
A large number of evaluations are also required to test the 
evolution of the agents at different ages. Talking about skill 
management improvement, the dynamism over time is 
introduced by the computation of a pertinence coefficient 
value. At this time, this value is currently stored in the 
memory of each skill agent but not used in future iterations. 
More work has to be done to study the computation 
optimization of this value, and its integration in the learning 
mechanisms. 

When talking about skill management improvement 
using objectives, the adaptation over time is made possible 
by the computation of a relevance coefficient value. This 
value is stored in the memory of each skill agent. One of the 
future direction for works is implementing complementary 
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learning mechanisms to optimize the computation of this 
value over time. 
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