
51

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Human Cooperation Improvement Using Autonomous Skill Agents

Olivier Chator
Conseil Général de la Gironde
IMS Laboratory, CNRS, IPB

Université de Bordeaux, France
o.chator@cg33.fr

Pierre-Alexandre Favier and Jean-Marc Salotti
Ecole Nationale Supérieure de Cognitique

IMS Laboratory, CNRS, IPB
Université de Bordeaux, France

pierre-alexandre.favier@ensc.fr, jean-
marc.salotti@ensc.fr

Abstract— A local authority, the “Conseil Général de la
Gironde” in France, manages various projects in different
fields, like sustainable development, and coordinates public
and private partners’ actions. The observation shows that each
of them has only a partial vision of others’ skills and know-
hows. Generally speaking, everywhere where human
collaboration is needed, sharing skills is one of the problems
identified. This work addresses these difficulties using a
learning and collaborative multi-agent system to enhance skill
sharing and management. One of the main innovations here is
that skills are represented as autonomous agents, and not just
as capabilities, as is usually the case.

Keywords-Multi-agent systems; sustainable development;
skills; governance

I. INTRODUCTION

A local authority, the “Conseil Général de la Gironde”
(CG33) is responsible for public actions for 1.5 million
inhabitants. Numerous domains are concerned: school
transportation, management of middle schools, tourism
development, solidarity, integration and support for elderly
people. One of the CG33 missions is to define policies and
practices for the Sustainable Development (SD) of the
department (a territorial division lower than regions). For
example, the objective could be to transform a neighborhood
into an eco-district [1, 2]. Experience shows that this type of
project is very complex and requires the collaboration of
many public and private actors under the supervision and
management of a “project supervisor” (PS), for instance an
architectural firm. Each actor has only a partial knowledge of
the capabilities of the other and some information is
sometimes lacking, but the PS has to take decisions anyway.
In addition, the objective is often to minimize the costs and
to obtain energy or ecological labels, which typically are
antagonist objectives. For the PS, it is often difficult to
understand the impact of each parameter. The preferred
option is usually the one that is better understood, which
comes at the expense of other options because there was
insufficient knowledge on their impact, cost, and
implementation. In order to help the actors, and especially
the PS, to find the best partners, the CG33 decided to build a
database of skills and actors [1]. For example, it should be
possible for a PS who wants to renovate some buildings to
identify skills and actors in various domains such as thermal
insulation, thermal simulation, air tightness, and installation

of different types of photovoltaic panels on the roof. In turn,
the partner who has expertise in thermal insulation may
require the help of another partner who is specialized in the
use of specific insulation materials. Thus, the challenge is
here to allow each stakeholder of an SD project to share and
learn more about the expertise and know-how of the others.
In general, whatever is the field of activities (e.g., building
the best sport team as possible), everywhere where human
collaboration is needed, the problem is the same. Therefore,
to facilitate the increase of skills for each actor over time and
to stimulate their cooperation, building an efficient system of
skill sharing is the key.

A traditional approach could be to build a simple
database with a direct link between actors and skills.
However, considering the central role of skills and the needs
for constant evolution and modifications of the data, a
research project has been carried out in our laboratory to find
and implement a better solution. It is suggested here that a
multi-agent system (MAS) is more appropriate. In our
proposal, the innovative key concept is to consider each skill
as a “full agent”, and not only as an agent’s ability as is
usually the case [3, 4, 5]. Having their own learning model
and their own life cycle, our skill agents are autonomous,
cognitive, and they interact with human actors to stimulate
and improve cooperation. Finally, this work offers a proposal
to improve the management of skills, to make them more
efficient, during projects, and over time. If a user wants to
address a new goal, how should he define the project and
what are the skills needed to implement it? How can he get
benefits from past projects?

The model is described in Section II. Some results are
shown in Section III and Section IV concludes this
document.

II. MODEL

A. The Issue

Let us introduce the issue with an example of an SD
project that aims to “transform a neighborhood into an eco-
district”. Let us assume that a PS has to build a HQE
building. HQE stands for “Haute Qualité Environnementale”
and is a standard for green building in France [6]. For this
kind of project, the PS needs:

• A definition of the goal to achieve (the objective)
• Skills such as “integrating insulation materials” in

order to meet the HQE objectives.

52

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Actors such as private building companies to
implement the skills.

Using our “SD skill sharing” system, the PS should be
able to identify a list of possible partners. Intuitively, we
might think that this list could be simply sorted according to
the most experienced partners for the given task. However,
other criteria than just experience should be taken into
account: price, quality, duration, localization, expertise with
specific materials, etc. The system may suggest a partner
according to this list of criteria. In addition, it also has to
select different companies over time. The problem is to
determine a good strategy in order to achieve that goal
throughout a project.

Going further, it is also interesting to get the benefits of
past experiences on similar projects over time, to build new
ones. Let us illustrate with the objective: “I want to put
photovoltaic panels on the roof of my house”. I have to find
the skills required for this new project. Taking my needs and
experience of past projects into account, there are two
possibilities:

• I find a past project that reflects exactly what I want
to do. Thus, what I need is to find a way to retrieve
all the skills of this project, and proceed to my new
project creation using this list.

• I find a past project, but it is not exactly what I want
to do. Thus, what I need is to find a way to retrieve
some of the skills of this project, and proceed to my
new project creation using this restricted list.

The two points above are efficient if the user finds
projects that already contain all or some of the skills he
needs to build the new one. However, this is not always the
case. Skills may be scattered throughout various projects.
Thus, the point is to find a way to answer a limited
expression of needs at specification level. For example, if we
consider that in the system we already have the past two
projects: “wind turbine implementation” and “hydraulic
micro power implementation”. They both belong to the same
“domain”: “new means of energy production”. If the user
wants to build a new project, in the same domain (e.g., the
implementation of solar panels), an interesting idea is to look
for skills used in all the past projects of this domain. Thus,
the system will suggest integrating the skills that were
fluently used across all projects in the domain.

It is possible to generalize from this example. Each
professional sector of activity has procedures and processes,
each of them used to reach specific goals or objectives. Each
objective may be implemented through some projects and
skills. Generally speaking, it may be difficult to make
processes evolve according to environmental constraints.
When successful, the knowledge and know-how that have
been used should be capitalized on for possible use in further
projects. Finally, the main problem is to find a way to
improve the management of skills to make projects more
efficient over time. To do this, it is possible to build new
projects, working on past projects or objective domains.
Thus, the goal of this work is to improve new project
definitions dynamically and to identify all the skills needed
to make them a success.

B. Defining a Skill

A skill is the ability to exploit some knowledge and
know-how in order to solve a class of problems. It is
different from a competency, which is generally accepted as
a set of behaviors or actions needed to be performed
successfully within a particular context [4]. In this study, for
the sake of simplicity, it is assumed that a skill is a sum of
elementary competencies (ECs).

The main specifications of our application are to store
information about the skills of possible participants in SD
projects and to suggest interesting partners for a given skill.
An important issue is to make the link between observations
(e.g., “partner A has been assigned the role of task 1 and 2 in
project X and has succeeded in implementing solutions”) and
skills, which do not correspond to the names of the task. Let
us present an example:

Integrating glass wool for the insulation of northern walls
in a specific building in a given project is related to the skill
“integrating insulation materials”. However, integrating
isolated wood panels under roofs might be very different
from integrating glass wool in walls and the best expert for
the first task might not be the best one for the second. The
skills might be differentiated by small details, but, for the
proposed application, it would be irrelevant. It is expected
that the users of the application will ask general questions
such as “who has skills in insulation materials?”. The key
problem is to find the appropriate level of detail for each
skill and to make the difference between an elementary
competency that belongs to a skill and the skill itself. Then,
assuming that a skill is defined at the right level and includes
a list of possible elementary competencies, the question is to
determine how each of them participates in the definition of
the skill. For instance, for the skill “integrating insulation
materials”, how important it is to have the know-how for
isolated wood panels? In other words, there should be an
associated weight for each elementary competency and there
should be a mechanism for learning them integrated in the
skill agent

According to the needs of the project, a skill can be
created at any moment, its definition (the list of elementary
competencies) may evolve, it can eventually be split into
different skills and it might even be removed. Such
constraints cannot easily be handled in a standard database in
which the actors and their skills would be stored. Because of
the central role of the skills, it is suggested in this paper that
the skills be considered as agents of a multi-agent system.
However, in most applications, agents are associated with
models of actors in the real world, the skills defining the
behavioral rules [2, 7, 8]. The problem is that the skills have
their own dynamics and are rather independent from the
actors. The skills should be agents with their own lives. In
addition, if the skills and the actors are distinguished, it is
difficult to define actors as other agents of the system. In
cognitive science, the embodiment of mind is often
considered a requirement to obtain an effective agent [9, 10,
11, 12]. Skills alone have no perception, no motivation and
no means to perform an action and change their
environment. Nevertheless, it is possible to define these

53

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

elements artificially. Intuitively, a skill can be motivated by
the improvement of its own definition, e.g., a weighted list of
elementary competencies and the clarification of its
relationships with the other skills. The user of the system has
another motivation: he wants to find a partner for his project.
The system should provide some criteria and suggest an
actor for the required skill. The user makes his choice, then
the work is carried out (embodiment of the skill) and an
evaluation of the realization is performed. The key idea is to
consider that a criterion is no more than an abstraction of a
hidden list of elementary competencies. For example, the
duration of a work is not a competency. However, implicitly,
it is closely related to the ability to work fast, which is an
elementary competency of the skill. Therefore, the skill can
exploit the definition of the criteria, which evolve according
to the evolution of the projects, to characterize its definition.
Another issue concerns the links between the skills. Different
skills may have several elementary competencies in
common. If no actor is found for a given skill, an interesting
idea is to make suggestions with actors associated with the
skills that are closely related.

In addition, a database is still required for the storage of
past observations (e.g., Actor A has been involved in project
X for the embodiment of skill S with an evaluation of a list
of criteria C1...Cn).

C. Definitions and key concepts

1) Main concepts
We can use another concrete example to illustrate those

concepts: “To make energy savings, I want to put better
insulation into the walls of my flat”. From this example, we
may define four concepts in our proposal.

a) Environment
An environment is viewed as a professional sector of

activity. In our example, “sustainable building sector” is the
environment in which the user request occurs. This is the
highest level of abstraction and it is related to the
professional sector of activity.

b) Objective domain
An objective domain is a group of objectives,

concerned by the same theme of activity. In our example,
“ thermal insulation improvement” is the objective domain
in which the user request occurs. Another domain could be
“air tightness improvement”. The idea is to position
objectives within one or several objective domains.

c) Objective
An objective is a simple textual description of a goal to

be reached (NB: the term "goal" would have been more
appropriate, but "objective" was chosen from the start for
convenient reasons and links with the French language). In
our example, the objective is to “put better insulation into
the walls”. This objective is part of the “thermal insulation
improvement domain”. Considering this simple question
from the user, no constraint about the materials or skills used
to reach the goal is expressed. Another objective could be

“ improve air tightness in my flat”. In our implementation, an
Objective agent is available. To transpose an objective into
“real life”, it is mandatory to define a project first.

d) Projects
A project is defined by an objective, a start date, an end

date, resources (like human actors) and processes to
schedule the list of skills to be used. In our example, a
project defined by the “integration of glass wool into walls”
is proposed. It will start next week, will stop in 15 days, and
requires several skills. Finally, the project is implemented
and evaluated at the end using ECs of each skill.

2) Types of Objectives
For a user, the problem is to reach a goal. It is usually

defined by a simple assertion like “I want to do something”.
In order to reach the goal, the user will define a new project
in our system. He does not often have knowledge of all the
skills that have to be used in the project. As it is difficult to
give a unique answer, depending on the user request at time
T, two approaches are proposed for building new projects.
The first one is based on completed projects and their
objectives. The second consists of building the new project
using only concerns about the objective's domain, and
possibly the environment. This case occurs when the user
wants to do actions in a particular domain of activity, but
does not know exactly what to do.

D. Skill Agents: theoretical proposal

1) Introduction
Generally, an agent has behaviors. Each of them could
be presented as shown in Figure 1.

Figure 1. Agent's behavioural characteristics

It is assumed here that a skill is unique and can be
implemented as an agent in a multi-agent system. It has
resources (a list of physical actors) and its own life cycle. It
can be created, can evolve and can eventually be removed
when not used anymore or when replaced by another skill
agent. Skills agents fit into a multi-agent system, where the
environment is defined by the interactions with the users.
They are cognitive, non-conversational and non-dialogic [3,
5]. They never directly communicate with human users.
They react and evolve according to information

54

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modifications and requests from the user via a WebRequester
agent. An important feature is their ability to learn how to
define themselves and how they are linked to the other skills.

2) Definition
Skill agents are defined by three main features:

perception, internal attributes and actions:
• Perception: Skill agents are listening to information

broadcast by the system after interaction with the
users. It can be, for instance, an update after external
observations (e.g., a new project is started or the
result of work for a given project is inserted in the
database) or a request is sent by another agent within
the MAS.

• Internal attributes : A skill agent is determined by
the list of elementary competencies that defines the
skill, a creation date (appearance in the MAS), a
domain(s) of activity and a specific “age” (see
below). It also has a list of behavioral rules,
expressed in XML format with a specific grammar
(see below).

• Actions: If there is an update of an external
observation that is linked to the skill, the agent
updates its database and its weights according to a
learning rule. It provides an answer to the
WebRequester agent (which, in turn, informs the
user) according to a strategy defined by behavioral
rules. Each skill agent has the ability to establish
links with other skill agents in the MAS. This last
action is based on its environment analysis,
automatic (or not, if specifically requested by the
user), and defined in its behavioral pattern. More
importantly, skill agents are proactive. When a user
wants to create a new project (typically a new
objective action), an Objective Agent receives those
requests. Then, it sends a broadcast to inform all
skill agents. Each of them determines if it is a
candidate for participation (or not) in the new
project. The decision is defined through the
computation of what we call a “proximity
coefficient” (see below). At the end of treatments,
the Objective Agent returns a list of candidates to the
user for (in)validation according to the project needs.

3) Life cycle

Skill agents have their own life cycle, divided into 3
“ages”, according to their specific levels of autonomy.

1. Childhood: The skill agent runs in a
“learning” mode. During this age, the aim is to
make the agent “grow”. When it is created, the
first step is to assign to it a list of criteria
(elementary competencies) for future
evaluations. The second step is to associate a
list of actors. At initialization time, there is no
evaluation in the database because the agent
has not been used yet. Thus, if a user looks for
an actor (like a rugby player) for this skill, the

agent is not able to make relevant suggestions
(childhood). It simply returns a list of potential
actors ranked according to the number of times
they have been involved in realizations (the
most experienced at the end). Once the result
of the work is available, the user evaluates the
criteria associated with the skill and the data
are stored in the database. At this age, the skill
agent does not really communicate with other
agents and uses only basic behavioral rules. It
grows until it reaches a threshold of
evaluations (e.g., after 3 concretizations across
various projects) in the database. When this
threshold is reached, its age automatically
grows to the next one.

2. Teenage: When a user looks for an actor with
this skill, the agent computes a list of
candidates, exploiting the previous results
(past experiences) and the current user criteria
weights values. If the user does not specify
any weight for criteria, default values are used
(e.g., weight=1). A list of potential actors is
then obtained after a dynamic computation of
criteria weights (see subsection D.2). At this
age, the autonomy of the agent is rather
limited. It communicates and tries to build
relationships with other agents (see subsection
D.3). Whatever the action performed, a human
validation is requested and stored in the skill
agent memories table in the database. The skill
agent grows until it has a threshold of
evaluations (e.g., after 10 concretizations
across various projects) in the database. When
this threshold is reached, its age automatically
grows to the next one.

3. Mature: The skill agent is able to make direct
and relevant suggestions to the user as soon as
a project is created. A list of skills is proposed
with the possible actors for each of them.
Obviously, the user can still make
modifications but he can save a lot of time if
the choices correspond to his needs. At this
age, the agent has a good knowledge of its
relationships with the other agents. Using the
system parameters, it is possible to cancel the
validation of the system choices by humans.
For example, in our SD skill sharing system,
we could imagine characterizing a new project
(e.g., building a new middle school) without
knowing what the skills needed are, nor the
actors who are able to implement them. In this
situation, at the mature age, the system will
automatically choose the skills (using the links
between them) and will affect their
concretization to actors. Thus, the skill agent is

55

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fully autonomous, makes its own decisions,
and does not need human validation.

Remark: the thresholds for age transitions have been set
empirically. The objective is to grow as rapidly as possible.
It is a trade-off between giving a help to the user as soon as
possible, and reaching a high level of expertise.

E. Learning mechanisms

1) Introduction
In the literature, we can find various types of learning

mechanisms for agents: the Markov Decision Process [13]
with reinforcement learning [14], the theory of games
(matrix games [15] and stochastic games [16]), the Bayesian
networks [17], the Case-Based Learning (CBL) methods
[18], and so on. Our skill agents evolve according to human
actions on the system (requests, selections, validations, and
evaluations). In our context, the CBL methods seems more
adapted because they are based on valuated and memorized
iterations of concrete experiments, they integrate validations
of human on the system decisions, and allow (for a given
environment) specific and gradual adjustments over time.
However, existing CBL algorithms [19, 20, 21, 22, 23, 24,
25] are not entirely appropriate to our problem because the
objective is not to find a similar case in the knowledge
database. Selected actors will have the skill anyway. It is
rather to make a choice among several possible actors
according to a global skill sharing policy.

Therefore, synthetically, learning mechanisms for a
given skill agent, are based on two main points: actors’
selection mechanism and the building of links with other
skill agents.

2) Actor selection
When the user needs to find an actor for a given skill

(generally inside a project), he asks the system for
suggestions. We have already seen that a skill is defined by
a weighted list of criteria or elementary competencies.

The first step is to give this list with undetermined (or
default) weights to the user. For instance, in an SD activity
domain, if the user wants to retrieve an actor for the
"thermal insulation" skill, the system asks the user to define
the weight associated with each criterion: "wall insulation",
"roof insulation", "wood based materials", "diagnostic",
"price", "duration", etc. This information is used to update
the definition of the skill.

Assuming the user gives specific values to the weights
of each criterion, the second step consists in computing the
new weights. This is done using those new values plus the
old validated computed weights values. “Validated” means
approved by the human user in past experiments. Let k be a
criterion and Wk(t) the weight associated to it for request
number t. For t=1, the average weight is set to Wk(1) which
is the weight given by the user. For t > 1 the new average
weight is computed using equation (1).

1

)()1()(
)1(

+
+×

= +
+

t

WWt
W tktk

tk (1)

The third step is to build the list of actors, evaluating
them. The proposal is to use the new computed weights of
each criterion, and the evaluation results of previous
realizations (experiments) of the skill. Let f be the number
of times where an actor a has concretized the skill in past
projects. Firstly, we compute a partial value using the old
“after work” evaluations (equation (2)):

f

E

E

f

j
jak

tak

∑
== 1

),(

),((2)

Secondly, the “actor evaluation” is done with equation (3):

),(

1

)()(tak

t

k

tk EWaEval ×=∑
=

 (3)

Please note: if the user has given specific values for the

criteria weights, we will have)1(+tkW instead of)(tkW .

In order to give a chance to each actor, we propose to
alternate between the performance policy (linked to
evaluations) and the skill sharing policy (a random selection
process), with a probability of 0.5. Thus, an actor with
systematic lower evaluations is not penalized. Additionally,
in any case, the user can still select an actor who is not at the
top of the list. Considering the skill agent life cycle (as seen
in Section III), a human validation of the system choice is
needed when the skill agent is in childhood or teenage age.
When it is mature, the validation is considered as implicit.

The validation process consists in updating the skill
agent memories, typically a record in a table, where the

current computed weight)1(+tkW of each criterion was

stored. When the choice is approved, by the user or
automatically at mature age, those weights become

validated)(tkW . Being now part of what we called “old

validated computed weights values”, they will be used for

the next)1(+tkW computation. Such a method ensures a

learning activity, reflects “real life” situations, and is really
close to what is done in Case-Based learning systems.

3) Agent links
For some projects, a user who is not experienced may

not necessarily know all the skills that are required for the
realization of a project. Concrete example: “I am working in
a local authority, in a little town, and would like to organize
a public event to stimulate sustainable behaviors around
waste sorting in my citizens”. In “real life”, this is a case of
use of our SD skill sharing system in Gironde. To solve my
problem, I can ask the system to help me and suggest a list

56

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of skills in order to succeed. The problem is the same if I am
the coach of a rugby team: “I would like to organize some
specific training for my players at such a position. What do I
have to do, who can help me?”

In a MAS or agent’s point of view, in order to provide
an efficient answer, it is possible to exploit the links that can
be found among the skill agents that are at least in the
teenage age. For a given skill agent S, the proposal is to
build links with other skill agents by computing for each of
them a “proximity coefficient” (in percentage) to S. This
coefficient is built using what we call “similarities” to S that
are sought in the MAS environment. Similarities are found
by searching for elements that S and the other skills have in
common, using dynamic requests generation in the database.

Let us make an assumption: a similarity between two
skills is defined by the number of common descriptors
among the skill internal attributes, the skill domain, the
elementary competencies, the past projects, the evaluation
of the skill in previous projects, the project domains, and
finally the types of project domains. This information can
automatically be obtained using the database table tree.
Currently, the database structure analysis shows that, in this
tree, the lower the depth of a table is, the more significant
the similarity also is (see Figure 2). To find similarities, the
S skill agent analyses the database table tree (the MAS
environment), dynamically and recursively.

Figure 2. Similarities table depths

Let us assume that the maximum depth of the table tree is D,
which means that each skill can be reached from
another skill after D links. D=4 in the example of Figure
2, at the beginning of the tree exploration, the current table
depth is d=1. The analysis starts with the global skill agents
table.

Step 1: for each field of a current table, an SQL request is
dynamically generated to find out the other skills sharing the
same field value.

Step 2: if a skill Si is found, the first time, its current
proximity coefficient is PSi = 0.

Step 3: considering n as the number of common field values
into the current table, PSi is updated using equation (4).

))((dDnPP SiSi −×+= (4)

Step 4: Foreign keys and joined tables of the current table
are used to define the next nodes of the tree. d is
incremented: d=d+1.

Step 5: if d is not greater than D, go to step 3

Step 6: finally, all PSi are normalized using equation (5):

 100
max

×=
Si

Si
Si P

P
P (5)

The higher the proximity coefficient, the more skills are
considered as potentially linked. A threshold is applied on
Ps (e.g., 65% by default), and a list of potential linked
agents is returned to the user for validation. An important
point to know: validating the links implies the validation of
a dedicated memory and an automated evolution of S agent
behavioral rules. Thus, there is here again a real learning
mechanism because of those evolutions arising from human
validation. Reminder: when a skill agent is in the mature
age, no human validation is needed and the agent is
completely autonomous, generating links and updating its
own behavioral rules.

F. Improving skill management using objectives

1) Introduction
“I want to improve the energy balance of my house by

installing photovoltaic panels on the roof”. “I want to win the
rugby match next Sunday”. Generalizing, the question is
always to find the best answer to questions like “I want to do
something to achieve something”. Then the project comes
into place. Goals and objectives are statements that describe
what the project will accomplish. Each project is defined
(structured) by a set of resources and processes according to
a specific schedule. The processes are based on a set of
required skills. Importantly, the definition of the project may
evolve according to environmental conditions or past
experiences, meaning that the list of skills required to reach
the goal may not always be the same. Let us consider the
goal of “building a house”. Even if the process is almost the
same, different construction materials (like cinderblock or
brick) may be used. This implies different skills for each
building project. Considering past experience in the domain,
a dynamic dimension is observed for each project over time.

Then, the point is how to improve the management of
skills to make them more efficient, throughout projects and
over time. If a user wants to address a new goal, how should
he define the project and what are the skills needed to
implement it? How can one get benefits from past projects?

57

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to solve the problem, work on the goals and skills of
past projects is suggested.

2) Building new projects from past projects
Two cases are available to build the new project, by

duplicating or customizing existing ones. From our previous
example, we will suppose that the user finds the project
“ integration of glass wool in walls”. He may then:

• Think that it is exactly his objective. Thus, he will
duplicate this project and all its skills, without
creating a new one, changing only contextual
information like the start date for example.

• Think that it is not exactly his objective, but is very
close. He decides to create a new project and
customizes the list of skills associated with the
existing project. A new objective is thus created with
a new list of skills built from a subset of the previous
one.

Finally, in both cases, a new project instance is generated
from the objective. In our implementation, those operations
are done throughout our unique Objective agent into the
MAS. As those actions are based on historical data, no
communication with skill agents themselves is needed. Let
us assume that a new project has to be built according to the
user needs. There is sometimes a limited expression of needs
at the specification level and the objective might be met for
the first time. The user would probably not know how to
address the problem and how to exploit past projects. There
is nevertheless a solution to help the user. The idea is to
determine all the skills involved in past projects in the same
objective domain, or eventually in the same environment. In
our system, a skill “wants to be involved” in the new project
according to a degree of involvement in past projects (see
below). In contrast to what we have seen before, this method
is not limited to an exchange with the Objective agent. In
cognitive science, effective agents are obtained by the
embodiment of mind [11, 12]. If a skill alone has no
perception, no motivation and no means to perform an action
and change its environment, it is always possible to define it
artificially. Several types of motivations have been integrated
in skill agents: contribution to new projects, determining the
list of elementary competencies that define themselves, and
determining their relationships with the other skills. Let us
develop an example showing the motivation of being
involved in new projects. A user defines a project in the
“ thermal insulation improvement” objective domain. No
more detail is forwarded to the system. “Thermal insulation
improvement” is an objective domain and is part of the
environment “sustainable building sector”. The answer from
our system is defined by the following process:

• The Objective agent receives the user request.
• The Objective agent sends (broadcasts) the

request to all skill agents within the MAS.
• Each skill agent computes a “relevance

coefficient” according to the request content,
and returns an answer to the Objective agent
(see next paragraph).

• The Objective agent consolidates all answers
from skill agents, and returns the list of
candidates to the user

Each skill agent is autonomous and decides if it wants to
contribute to the new project (or not). The key point is the
computation of the relevance coefficient. Currently, this is
the percentage of projects in which the skill has been
involved in the past among all the projects of the objective
domain. If it exceeds a threshold, the skill agent wants to be
involved in the new project.

III. IMPLEMENTATION AND RESULTS

A. Implementation

1) The MAS Architecture
The model has been implemented using the JADE MAS

and standard multi-agent tools [8, 9, 26, 27]; see Figure 3.

Figure 3. The MAS.

The JADE MAS has been integrated in standalone software,
running into a Java Virtual Machine, and is called
“SMAServer”. The main components of the global
architecture are:

• User workstation: exchange using a web browser
• WebRequester Servlet: This component is used for

the management of the exchanges between human
users and the MAS itself. It is a JADE MAS specific
architecture component.

• Gateway: It is also a standard component of a JADE
MAS, allowing dialogues among agents operating
within the SMA and external programs
(WebRequester Servlet) [8].

• WebRequester Agent: This agent is in charge of all
the interactions with the human user. It forwards
requests to skill agents and sends back their answers.
It guarantees (FIPA compliance) that no direct
exchange is possible between human users and skill
agents.

• Objective Agent: According to Ferber’s
classification, the objective agent is reactive [3].
When a new project (the instance of an objective) is
inserted within the system, information messages are

58

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

broadcast to all skill agents through the technical
Broadcast agent one.

• Broadcast Agent: This is a technical (generic)
agent. It receives an incoming message from a caller
agent (e.g., Objective Agent), sends this message to
all agents (e.g., skill agents) within the MAS and
returns the answers to the caller.

• Skill Agents: actions have already been presented in
subsection D.2. In our concrete implementation, they
have sensors and effectors (as defined in standard
agents theory [3]), each of them being a Java
component (a class of object).

2) The user side Skill Sharing System HMI
The HMI from the user side has been implemented using

the GRAILS [26] framework. There are 5 windows:
1. All skills that could be requested within the tool
2. All skills requests in progress
3. The connected user personal requests in progress
4. The skills shared (offered) by the connected user
5. The projects to which the connected user is

involved. Here, the works in progress, within
projects, for the connected user, are available.

TABLE I. LIST OF THE BEHAVIORAL RULES

XML Tag Attribute Manda
tory

Comment

rules description X Main tag
description Text describing the rule group

ruleGroup
weight
description X Text describing the rule

weight
Weight of the rule in the rule
group rule

mandatory
Value is 1 if rule is mandatory, 0
otherwise

description Text describing the condition

sensor X
Sensor Java class name used to
verify rule condition

params
Parameters in format
name=value, separated by |
character. Passed to the sensor

result
Result variable name beginning
with $

operator X
Logical operator used within
condition expression

table
Table name from which we try
to verify condition

field
Table field name or variable
name from which we try to
verify condition

when

value
Value of field attribute,
expressed as a regular
expression

otherwise
Used if <when> has not been
verified

effector X
Effector Java class name to start
if rule condition is verified

description Text describing the action

params
Parameters in format
name=value, separated by |
character. Passed to the effector.

do

result
Result variable name, beginning
with $

3) Behavioral rules
The behavioral rules have been implemented in XML

format with a specific grammar (hierarchy, attributes, and
tags); see Table I. According to the agent links learning
mechanisms, those rules may evolve over time if link
creations are validated by the user. For illustration purposes,
we propose below the rule ensuring that an agent will grow
from childhood to teenage when 3 evaluations (e.g., after 3
concretizations across various projects) are available in the
database:

<rule description="Growing from Youth to Teenage"
 mandatory="1" weight="1">
 <when description="Growing Conditions"
 sensor="GrowingSensor"
 params="unitaryEvaluationNumber=2"
 result="$evaluationsNumber1"
 operator="EQ" value="3">

 <do description="Grow to teenage"
 effector="Grow"
 params="from=youth|to=teenage" />

 </when>
</rule>

4) Skill agent memories
Each skill agent owns a dedicated memory table in which

it stores the incoming parameters and the related computed
decisions (see Table II).

TABLE II. MEMORY TABLE OF A SKILL

Field Type Comment
code Long integer Memory unique key code
ev_date Date Event date (record creation date)

evt_id Long integer
Foreign key to event type table,
describing the type of memorized
event

agentid Long integer The current skill agent unique id

parametersin String
Request parameters list in string
format

decisionstring String
Computed decision in string
format

Humanvalidate Boolean
Decision validated (or not) by
human action

Comment String Free field

An example of memory record content is presented below.
This result is obtained following the request for a list of
linked skills to the skill with id 3192 (see Table III).

If the proposal is validated, the field Humanvalidate will
then be set to “true” and a behavioral rule will be
automatically generated.

5) The actor selection simulation tool

In Gironde, 61 of the local authorities are part of an “SD
Network”, where they share experiences and skills. They
had started using and testing the system by the middle of the
year 2013. The experiment concerned the management of
SD projects. A preliminary study has been carried out,
showing that most projects fall into 9 domains of activity.

59

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. MEMORY RECORD EXAMPLE

Field Type Comment
code Long integer 1
ev_date Date 2013-09-10 14:38:55.345+02
evt_id Long integer 4
agentid Long integer 3192

parametersin String

controller=RDEngine;stepNumbe
r=1;signalCode=201;action=call
RdEngineForAgentLinks;fromW
ebInterface=true;minPercentValu
e=1;agentId=1508

decisionstring String

SELECT agent.* FROM agent,
agent_agt_domain, agt_domain
WHERE
text(agt_domain.code)=text(agent
_agt_domain.agt_domain_id)
AND
text(agent_agt_domain.agent_do
maines_lies_id)=text(agent.code)
AND
text(agt_domain.descriptiondoma
ineagt)=text('3-Diagnostic') AND
agent.code<>1508

Humanvalidate Boolean False
Comment String Find agent links

These domains are: political wishes, sensitization,

diagnostic, prospective, developing the strategy, elaborating
the action plan, implementation of the action plan,
evaluation, and continuous improvement. Skills are related to
one or more domains. For instance:

• The skill “animation capability” is attached to the
“political wishes” and “diagnostic” domains.

• The skill “identification and mobilization of
expertise” is attached to the “prospective” domain.

• The skill “development of the sustainability report”
is attached to the “continuous improvement”
domain.

For skill actors selection, in order to obtain immediate

results, a simulator was built to verify the theoretical
proposal. It is based on elementary competencies weight
computation. The simulation phase lies in a call to a unique
skill agent, with the aim of observing its behavioral
evolution over time. Each simulation applies random values
to weights to each elementary competency (4 in total) of this
skill. During the simulation phase, 100, 200 and 300
requests and validations were done.

B. Results

1) A real life experiment at CG33
 It is observed that the skills evolve in a “real life” SD

Skill Sharing System, at CG33, and they provide answers.
The following results are presented in this context. The
positive point is that the skills provide valuable information
to the actors who have poor understanding of the elementary
competencies. The drawback, however, is that the
initialization of the system is labor intensive. The first
definition of the skills requires strong expertise in the
domain. The updates can be done at any time, but it takes a

long time to collaborate with experts in order to capitalize
their knowledge and insert relevant skills and elementary
competencies into the system. Therefore, it is difficult at the
moment to conclude about the efficiency of our model
because we are still in the early stages of the tests. We hope
to present interesting results in the near future.

In order to demonstrate the versatility of our proposal,
other tests have been performed using another functional
domain: the selection of the best players for rugby. In this
application, each player's position is considered a different
skill. Elementary competencies are for instance the ability to
tackle and stop an opponent or to be accurate in kicking the
ball. The evaluation of a player for the embodiment of a
given skill is based on his performance for each criterion and
on the number of selections. When the system is asked to
suggest a player for a given skill, equation (3) is used. Then
the propositions elaborated by each skill agent are validated
(or not) by the user, the players are evaluated and the
database is updated. The results are positive for the
identification of players over the different iterations.

2) Actors selection simulator
Interesting results were found using the simulation tool

to verify our hypothesis. The dynamic computation, with
memorization, for weights of criteria is valid and convergent
over time. An example of a convergence graph (here for 2
criteria over 4), across simulations, is shown in Figure 4. In
this example, the weight of the first criterion is converging
to 0.8, and the weight of the second one is converging to
0.6.

Figure 4. Convergence of criteria values

It has also been found that, for a given skill agent, the
learning mechanism is efficient and can be considered as
becoming “stable” when the system has stored around 120
requests and validations coming in from users. Another
interesting point is the comparison of the values of criteria
weight across simulations (see Figure 5).

60

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Compared criteria weights values

It does not seem meaningless to admit, from a theoretical
point of view, that an elementary competency E1 is ”more
important” than another E2 for the global skill definition if
the weight of E1 is higher than the weight of E2. If the graph
above shows this fact, outside of a simulation process, in
“real life” conditions, this observation will allow us to
identify the most important elementary skills for a given skill
definition. Another conclusion is that our proposal is
versatile, applicable to any professional activity domain, and
not only to SD projects. The example of the selection of
players for rugby positions, a very different domain, is also
possible as mentioned before in this article.

3) New project creations

a) Case 1: new projects from past objectives
The user request, through the WebRequesterAgent, is

transmitted to the Objective agent that processes it (see
Figure 6).

Figure 6. Case 1 - Exchanges between agents into the JADE MAS

Figure 6 is a screen copy of the JADE MAS Sniffer tool
that monitors message exchanges between agents. The left
part shows the MAS Agent tree where an agent is part of a
container, a container part of a platform (ThisPlatform) and
a platform part of all agent platforms (AgentPlatForms).
The right part shows three “boxes”:

• Other: reflects other agents within the MAS, or in
this case, the JADE gateway that manages exchanges
with the external users

• WebRequesterAgent: manages the interactions with
the human user, forwarding requests to other agents,
and sending back their answers.

• ObjectiveAgent: see next paragraph for details.

The arrows (1 to 4) show the message exchanges, with

their type (REQUEST or INFORM for the answer), and
their directions (from sender to receiver).

The Objective agent ensures the treatments, based on
historical data, in retrieving project instances and related
skills. At the end, it processes the answer in the form of an
XML flow (see Table IV).

TABLE IV. XML FIELDS INTO THE ANSWER FLOW

XML Tag Comment
answers Main tag encapsulating the answers
answer Main tag for each answer, 1 for each project

newObjective
Boolean value indicating that the project is new. Value
always false here because the project is over and taken
into the historical

objective Main tag for the past project
code The past project code within the projects database table

description
The past project textual description within the projects
database table

startDate The past project start date
endDate The past project end date
skills Main tag encapsulating the skills list
skill Main tag, 1 per skill
code The current skill code within the skills database table

description
The current skill textual description within the database
table

At the front-office user level, a list of projects and skills

is proposed. The new user project is then generated
according to one of the two methods identified: duplicate or
customize.

a) Case 2: new projects from objective domain
The user request is sent to the Objective agent that does a

broadcast to all skill agents and consolidates their answers.
At the end, the answer is also returned to the user as an XML
flow, as already shown in case 1. The “BroadcastAgent” is a
technical one and reusable by all other agents if they need to
do such “broadcasting” actions in the future. See Figure 7 for
a screen copy of the JADE MAS Sniffer tool. Only the right
part of the window is shown for better visibility. The three
first “boxes” are identical to those described for Figure 6.
Please note that BroadcastAgent receives a message from an
original sender, broadcasts it to all agents, and consolidates
all answers into a single one. The global answer, an XML
flow, is then sent back to the original sender. All other boxes
on the right are all skill agents within the MAS. The screen
copy proposed Figure 7 only shows two skill agents.

61

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Case 2 - Exchanges between agents into the JADE MAS

For illustration, let us reuse the example where the
objective domain is “new means of energy production”. A
project for a “wind turbine implementation” has five phases:

1. Project management / implementation
2. Definition of power requirements
3. Selection of the best wind turbine technology among

models and worldwide suppliers
4. Logistic definition (transportation organization)
5. Wind turbine installation

A second project, entitled “hydraulic micro power

implementation”, shares 3 (over 5) common phases with the
first project, and has three specific ones:

1. Project management / implementation
2. Definition of power requirements
3. Selection of the best hydraulic micro power

technology among models and worldwide suppliers
4. Logistic definition (transportation organization)
5. Hydraulic micro power installation
6. Technology transfer of appropriate designs to

developing country manufacturers
7. Project formulation and appraisal for national and

international aid agencies
8. Training on small-hydro technology and economics

A third one is entitled: “installation of a biodiesel

generation system to power up a highway construction site”.
Let us assume the project also shares the 3 common phases,
and has two specific ones:

1. Identify the best site
2. Environmental benefits evaluations

3. Project management / implementation
4. Definition of power requirements
5. Selection of the best technology of biodiesel

generation system among models and worldwide
suppliers

6. Logistic definition (transportation organization)
7. Biodiesel generation system installation

Considering these phases as skills (of course at a high

level of abstraction), let us introduce into the system a new
user request where the new project is “solar panels
implementation”. This project also belongs to the objective
domain “new means of energy production”. The requested
minimum value for the relevance coefficient is 75%. Thus,
according to our algorithm:

• The ObjectiveAgent sends (broadcasts) the user
request to all the skill agents within the MAS (here 3
common + 5 specifics according to the second and
third project phases)

• Each skill agent computes its dedicated relevance
coefficient. If this computed value is greater than the
requested one, that means the skill agent “wants” to
participate in the new objective, and the boolean
value “true” is returned to the ObjectiveAgent

• The ObjectiveAgent consolidates the results where
the answer is “true”. Finally, it returns to the user the
list of the skills as an XML flow:

a - Project management / implementation
b - Definition of power requirements
c - Logistic definition (transportation organization)

62

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Through the front-office interface, the user then
validates (partially or totally) the skills list to build
its new project. This validation is stored in the
memory.

C. Discussion

1) Skill Agents
In most SMA applications, the skills are not agents. They

are typically described by behavioral rules that determine the
actions of the agents [28]. The difficulty is often in making
the link between tacit and explicit knowledge and learning
from the real world [27, 28]. For instance, in other
applications such as the management of skills in the context
of e-learning, one of the main problems is to determine and
make explicit the tacit knowledge that has not been
understood and to adapt the courses [29]. The advantage of
our approach is that it is skill centered. The skills are
learning agents and their motivation is to determine the list
of elementary competencies that define themselves and their
relationships with the other skills. These elementary
competencies usually correspond to tacit knowledge and
know-hows that cannot be easily defined. One of the key
ideas of our model is to consider that the weighted list of
criteria defined by the users to determine the best actor for a
given skill are abstractions of a hidden list of elementary
competencies. The system learns from the requests of the
users.

2) Skills management improvement using objectives
The proposed information system also offers an answer to

the problems of each SD Network Member at CG33: they
need to identify the required skills to make their project
successful. Whatever the activity sector, project
management is usually done through software applications,
where tasks are defined and described in a static way. The
definition of a new project requires the identification of
human actor(s) for each of them. The first problem occurs
when there is an evolution of the processes. A traditional
approach is to update statically the list of tasks for the
project. Settings renewals have to be done by administrators
or advanced users in the project management tool itself.
This update is often a generator of costs, because in some
cases an external help (e.g., by the software editor) may be
required. In this approach there is a lack of efficiency,
inducing at least a waste of time, and sometimes some
additional financial charges that could be substantial.
Another problem is the management of projects dynamics
according to the user needs at a given date. As a project
reflects the user needs at this date, there can be as many
projects as user needs expressions within the system. The
global skill sharing system presented in this paper is a
collaborative tool and not a static one. The new projects are
built “on the fly”, from the real user needs. Thus, the new
skills list is built from those available in past projects and
reflects the user needs at the time of the request. As the
number of projects grows in our collaborative system, the

global list of skills and the objective domains evolve and
may converge. At a global level, our system learns from the
requests of the users and reflects the evolution of activity
over time. The observation of those evolutions will drive the
management of the company to put the focus on certain
skills or to drop them. Our proposal therefore provides an
interesting answer to the problem of skills management,
using objectives, at the project and organization levels.

IV. CONCLUSION AND FUTURE WORK

A multi-agent system has been proposed for skills
sharing between actors in collaborative projects in the
domain of sustainable development. The key point of this
work is the definition of skills as agents with their own rules
for learning and evolving in an environment where actors are
considered as resources for the embodiment [12] of the
agents. If it is always necessary to use skills within projects,
the choice of the human actor to implement them is not
"suggestive and human centered" anymore. Over time, more
and more objectives will be concretized through projects,
and more and more information will be available to help the
user. This work suggests interesting perspectives. From a
professional point of view, concerning the problem of skills
management, the analysis of skills applications through
projects provides a wealth of information. After a period of
running a project, managers and human resources
management services will be able to identify the key skills,
the cross-domain skills and the evolution of the “sensibility”
of each skill in the professional sector processes, and all of
this over time. This work may introduce real benefits into
human resources management to anticipate future evolutions
of needs in terms of collaborators’ profiles. Whatever the
professional activity domain, the skill sharing system ensures
reciprocity, human cooperation and versatility. Going
further, considering that some skills may be viewed as
"cross-domain" and/or "cross-companies", what about
impacts on the future organization of work ?

Several issues have been identified for future works. The

current tests have to be deeply validated in “real life”
environment. The system has to be tested with a
comprehensive list of skills (currently 110 at CG33) and
elementary competencies provided by experts of the domain.
A large number of evaluations are also required to test the
evolution of the agents at different ages. Talking about skill
management improvement, the dynamism over time is
introduced by the computation of a pertinence coefficient
value. At this time, this value is currently stored in the
memory of each skill agent but not used in future iterations.
More work has to be done to study the computation
optimization of this value, and its integration in the learning
mechanisms.

When talking about skill management improvement
using objectives, the adaptation over time is made possible
by the computation of a relevance coefficient value. This
value is stored in the memory of each skill agent. One of the
future direction for works is implementing complementary

63

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

learning mechanisms to optimize the computation of this
value over time.

REFERENCES
[1] O. Chator, J.M. Salotti, and P.A. Favier, “Multi-agent system for

skills sharing in sustainable development projects,” Proceedings of
COGNITIVE 2013, the 5th International Conference on Advanced
Cognitive Technologies and Applications, pp. 21-26, IARIA
Conference, Valencia, Spain, 2013

[2] M. Bardou, “De la stratégie à l’évaluation : des clés pour réussir un
Agenda 21 local,” (“From the strategy to the assessment: the keys to
succeed in the elaboration of a local Agenda 21”) , Collection
“Références” du Service de l’Économie, de l’Évaluation et de
l’Intégration du Commissariat Général au Développement Durable,
Paris, France, 2011

[3] J. Ferber, “Multi-Agent systems. An introduction to distributed
artificial intelligence“, Addison Wesley, London, UK, 1999

[4] N.R. Jennings, M. Wooldridge, and K. Sycara, “A roadmap of agent
research and development,” Journal of Autonomous Agents and
Multi-Agent Systems, vol. 1, 1, pp. 7-38, Boston, USA, 1998

[5] G. Weiss, ”Multiagent systems, a modern approach to distributed
artificial intelligence,” MIT Press, USA, 2013

[6] ADEME, “Bâtiment et démarche HQE,” ("HQE building and
methodology"), Collection Connaître pour agir, Paris, France, 2006

[7] S. Belkada, A. I. Cristea, T. Okamoto, ”Measuring knowledge
transfer skills by using constrained-student modeler autonomous
agent,” Proceedings of the IEEE International Conference on
Advanced Learning Technologies, IEEE Computer Society, 2001

[8] FIPA, “Foundation for intelligent physical agents - Abstract
architecture specification (standard version),” publication of FIPA’s
Technical Committee, Geneva, Switzerland, 2002

[9] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE – A FIPA-
compliant agent framework,” 4th International Conference on
Practical Application of Intelligent Agents and Multi-Agent
Technology, PAAM-99, pp. 97-108, London, UK, 1999

[10] R. Pfeifer and J.C. Bongard, ”How the body shapes the way we think:
a new view of intelligence,” The MIT Press, USA, 2007

[11] L. Shapiro, “Embodied cognition,” in Oxford Handbook of
Philosophy and Cognitive Science, E. Margolis, R. Samuels, and S.
Stich (eds.), Oxford University Press, UK, 2010

[12] F. Varela, E. Thompson, and E. Rosch, “The embodied mind:
cognitive science and human experience,” MIT Press, USA, 1991

[13] M. Mulder, T. Weigel, and K. Collins, “The concept of competence
in the development of vocational education and training in selected
EU member states: a critical analysis,” Journal of Vocational
Education and Training , vol. 59, 1, pp. 67-88, 2007

[14] M. L. Putterman, “Markov decision proceses. Discrete stochastic
dynamic programming,” Wieley-Interscience, New York, USA, 1994

[15] M. Mitchell, “Machine learning,” chap. 13 “Reinforcement learning,”
pp. 367-390, Ed. McGraw-Hill Higher Education, USA, 1997

[16] O. Von Neumann and O. Morgenstern, “Theory of games and
economic behaviour,” Princeton University Press, USA, 1944

[17] L. Shapley, “Stochastic games,” Proceedings of National Academy of
Science, 39, pp. 1095–1100, USA, 1953

[18] C. Boutilier, T. Dean, and S. Hanks, “Decision theoretic planning:
structural assumptions and computational leverage,” Journal of
Artificial Intelligence Research, USA, 1999

[19] E. Plaza and S. Ontañon, “Cooperative multi-agent learning in
Adaptive Agents and Multi-Agent Systems,” Lecture Notes in
Computer Science, vol. 2636, pp. 1-17, Spain, 2003

[20] D. McSherry, “Completeness criteria for retrieval in recommender
systems,” Advances in Case-Based Reasoning, 8th European
Conference (ECCBR’06), pp. 9-29, Turkey, 2006

[21] H. Mühlenbein, “How Genetic Algorithms Really Work: 1. Mutation
And Hill Climbing,” Manner, R. and Manderick, B. (eds),

Proceedings of the Second Conference on Parallel Problem Solving
from Nature, Elsevier Science, vol. 2, pp. 15-25, Belgium, 1992

[22] S.C. Shiu, K. Shiu, D.S. Yeung, C.H. Sun, and X. Z. Wang,
“Transferring case knowledge to adaptation knowledge : An approach
for case-base maintenance,” Computational Intelligence", vol. 17,
issue 2, P 295-314., 2001

[23] J.R. Quinlan, “C4.5 : Programs for Machine Learning,” Proceedings
of European Conference on Machine Learning, pp. 3-20, Austria,
1993

[24] P. Domingos, “Unifying instance-based and rule-based induction,”
Machine Learning, vol. 24, issue 2, pp. 141-168, 1996

[25] M.J. Zaki, C.J. Hsiao, “CHARM : An efficient algorithm for closed
itemset mining,” Proceedings of the Second SIAM International
Conference on Data Mining, pp. 12-28, USA, 2000

[26] G. Rocher, “The definitive guide to Grails,“ Apress, New York, USA,
2006

[27] S. Goderis, “On the separation of user interface concerns: a
programmer's perspective on the modularisation of user interface
code,” Ph.D. thesis, VrijeUniversiteit Brussels, Belgium, 2007

[28] H. Friedrich, O. Rogalla and R. Dillmann, ”Integrating skills into
multi-agent systems,” Journal of Intelligent Manufacturing, vol. 9, 2,
pp. 119-127, Karlsruhe, Germany, 1998

[29] A. Garro, L. Palopoli, ”An XML multi-agent system for e-Learning
and skill management,”, proceeding of: Agent Technologies,
Infrastructures, Tools, and Applications for E-Services, NODe 2002
Agent-Related Workshops, Erfurt, Germany, 2002

