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Abstract — In this paper we consider knowledge bases that 

organize information using ontologies. Specifically, we investi-

gate reasoning over a semantic web where the underlying 

knowledge base covers linked data about science research that 

are being harvested from the Web and are supplemented and 

edited by community members. In the semantic web over 

which we want to reason, frequent changes occur in the under-

lying knowledge base, and less frequent changes occur in the 

underlying ontology or the rule set that governs the reasoning. 

Interposing a backward chaining reasoner between a 

knowledge base and a query manager yields an architecture 

that can support reasoning in the face of frequent chang-

es.  However, such an interposition of the reasoning introduces 

uncertainty regarding the size and effort measurements typi-

cally exploited during query optimization. We present an algo-

rithm for dynamic query optimization in such an architecture. 

We also introduce new optimization techniques to the back-

ward-chaining algorithm. We show that these techniques to-

gether with the query-optimization reported on earlier, will 

allow us to actually outperform forward-chaining reasoners in 

scenarios where the knowledge base is subject to frequent 

change. Finally, we analyze the impact of these techniques on a 

large knowledge base that requires external storage. 

Keywords-semantic web; ontology; reasoning; query 

optimization; backward chaining. 

I. INTRODUCTION 

Consider a potential chemistry Ph.D. student who is try-
ing to find out what the emerging areas are that have good 
academic job prospects. What are the schools and who are 
the professors doing groundbreaking research in this area? 
What are the good funded research projects in this area? 
Consider a faculty member who might ask, “Is my record 
good enough to be tenured at my school? At another school?” 
It is possible for these people each to mine this information 
from the Web. However, it may take a considerable effort 
and time, and even then the information may not be complete, 
may be partially incorrect, and would reflect an individual 
perspective for qualitative judgments. Thus, the efforts of the 
individuals neither take advantage of nor contribute to others’ 
efforts to reuse the data, the queries, and the methods used to 
find the data. We believe that some of these qualitative de-
scriptors such as “groundbreaking research in data mining” 
may come to be accepted as meaningful if they represent a 
consensus of an appropriate subset of the community at large. 

However, even in the absence of such sharing, we believe 
the expressiveness of user-defined qualitative descriptors is 
highly desirable. 

The system implied by these queries is an example of a 
semantic web service where the underlying knowledge base 
covers linked data about science research that are being har-
vested from the Web and are supplemented and edited by 
community members. The query examples given above also 
imply that the system not only supports querying of facts but 
also rules and reasoning as a mechanism for answering que-
ries.  

A key issue in such a semantic web service is the effi-
ciency of reasoning in the face of large scale and frequent 
change. Here, scaling refers to the need to accommodate the 
substantial corpus of information about researchers, their 
projects and their publications, and change refers to the dy-
namic nature of the knowledge base, which would be updat-
ed continuously [1]. 

In semantic webs, knowledge is formally represented by 
an ontology as a set of concepts within a domain, and the 
relationships between pairs of concepts. The ontology is used 
to model a domain, to instantiate entities, and to support rea-
soning about entities. Common methods for implementing 
reasoning over ontologies are based on First Order Logic, 
which allows one to define rules over the ontology. There are 
two basic inference methods commonly used in first order 
logic: forward chaining and backward chaining [2].  

A question/answer system over a semantic web may ex-
perience changes frequently. These changes may be to the 
ontology, to the rule set or to the instances harvested from 
the web or other data sources. For the examples discussed in 
our opening paragraph, such changes could occur hundreds 
of times a day. Forward chaining is an example of data-
driven reasoning, which starts with the known data in the 
knowledge base and applies modus ponens in the forward 
direction, deriving and adding new consequences until no 
more inferences can be made. Backward chaining is an ex-
ample of goal-driven reasoning, which starts with goals from 
the consequents, matching the goals to the antecedents to 
find the data that satisfies the consequents. As a general rule 
forward chaining is a good method for a static knowledge 
base and backward chaining is good for the more dynamic 
cases. 
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 The authors have been exploring the use of backward 
chaining as a reasoning mechanism supportive of frequent 
changes in large knowledge bases. Queries may be com-
posed of mixtures of clauses answerable directly by access to 
the knowledge base or indirectly via reasoning applied to 
that base. The interposition of the reasoning introduces un-
certainty regarding the size and effort associated with resolv-
ing individual clauses in a query. Such uncertainty poses a 
challenge in query optimization, which typically relies upon 
the accuracy of these estimates. In this paper, we describe an 
approach to dynamic optimization that is effective in the 
presence of such uncertainty [1]. 

In this paper, we will also address the issue of being able 
to scale the knowledge base beyond the level standard back-
ward-chaining reasoners can handle. We shall introduce new 
optimization techniques to a backward-chaining algorithm 
and shall show that these techniques, together with query-
optimization, will allow us to actually outperform forward-
chaining reasoners in scenarios where the knowledge base is 
subject to frequent change. 

Finally, we explore the challenges posed by scaling the 
knowledge base to a point where external storage is required. 
This raises issues about the middleware that handles external 
storage, how to optimize the amount of data and what data 
are to be moved to internal storage.  

In Section II, we provide background material on the se-
mantic web, reasoning, and database querying. Section III 
gives the overall query-optimization algorithm for answering 
a query. In Section IV, we report on experiments comparing 
our new algorithm with a commonly used backward chaining 
algorithm. Section V introduces the optimized backward-
chaining algorithm and Section VI provides details on the 
new techniques we have introduced to optimize performance. 
A preliminary evaluation of these techniques on a smaller 
scale, using in-memory storage, is reported in a separate pa-
per [3]. In Section VII, we describe the issues raised when 
scaling to an externally stored knowledge base, evaluate the 
performance of our query optimization and reasoner optimi-
zations in that context, and perform an overall comparison 
with different data base implementations. 

II. RELATED WORK  

A number of projects (e.g., Libra [4][5], Cimple [6], and 
Arnetminer [7]) have built systems to capture limited aspects 
of community knowledge and to respond to semantic que-
ries.  However, all of them lack the level of community col-
laboration support that is required to build a knowledge base 
system that can evolve over time, both in terms of the 
knowledge it represents as well as the semantics involved in 
responding to qualitative questions involving reasoning.  

Many knowledge bases [8-11] organize information us-
ing ontologies. Ontologies can model real world situations, 
can incorporate semantics, which can be used to detect con-
flicts and resolve inconsistencies, and can be used together 
with a reasoning engine to infer new relations or proof 
statements.  

Two common methods of reasoning over the knowledge 
base using first order logic are forward chaining and back-
ward chaining [2]. Forward chaining is an example of data-

driven reasoning, which starts with the known data and ap-
plies modus ponens in the forward direction, deriving and 
adding new consequences until no more inferences can be 
made. Backward chaining is an example of goal-driven rea-
soning, which starts with goals from the consequents match-
ing the goals to the antecedents to find the data that satisfies 
the consequents. Materialization and query-rewriting are 
inference strategies adopted by almost all of the state of the 
art ontology reasoning systems. Materialization means pre-
computation and storage of inferred truths in a knowledge 
base, which is always executed during loading the data and 
combined with forward-chaining techniques. Query-
rewriting means expanding the queries, which is always exe-
cuted during answering the queries and combine with back-
ward-chaining techniques. 

Materialization and forward chaining are suitable for fre-
quent computation of answers with data that are relatively 
static. OWLIM [12] and Oracle 11g [13], for example im-
plement materialization. Query-rewriting and backward 
chaining are suitable for efficient computation of answers 
with data that are dynamic and infrequent queries. Virtuoso 
[14], for example, implements a mixture of forward-chaining 
and backward-chaining. Jena [15] supports three ways of 
inferencing: forward-chaining, limited backward-chaining 
and a hybrid of these two methods.  

In conventional database management systems, query op-
timization [16] is a function to examine multiple query plans 
and selecting one that optimizes the time to answer a query. 
Query optimization can be static or dynamic. In the Semantic 
Web, query optimization techniques for the common query 
language, SPARQL [17][18], rely on a variety of techniques 
for estimating the cost of query components, including selec-
tivity estimations [19], graph optimization [20], and cost 
models [21]. These techniques assume a fully materialized 
knowledge base.  

Benchmarks evaluate and compare the performances of 
different reasoning systems. The Lehigh University Bench-
mark (LUBM) [22] is a widely used benchmark for evalua-
tion of Semantic Web repositories with different reasoning 
capabilities and storage mechanisms. LUBM includes an 
ontology for university domain, scalable synthetic OWL 
data, and fourteen queries.  

III. DYNAMIC QUERY OPTIMIZATION WITH AN 

INTERPOSED REASONER 

A query is typically posed as the conjunction of a number 
of clauses. The order of application of these clauses is irrele-
vant to the logic of the query but can be critical to perfor-
mance.  

In a traditional data base, each clause may denote a dis-
tinct probe of the data base contents. Easily accessible in-
formation about the anticipated size and other characteristics 
of such probes can be used to facilitate query optimization.  

The interposition of a reasoner between the query handler 
and the underlying knowledge base means that not all claus-
es will be resolved by direct access to the knowledge base. 
Some will be handed off to the reasoner, and the size and 
other characteristics of the responses to such clauses cannot 
be easily predicted in advance, partly because of the expense 
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QueryResponseanswerAQuery(query: Query) 

{ 

   // Set up initial SolutionSpace 

   SolutionSpacesolutionSpace = empty;   

   // Repeatedly reduce SolutionSpace by     

   //applying the most restrictive pattern 

   while (unexplored patterns remain  

     in the query) { 

     computeEstimatesOfReponseSize 

        (unexplored patterns);  

     QueryPattern p = unexplored pattern 

        With smallest estimate;  

     // Restrict SolutionSpace via 

     // exploration of p 

     QueryResponseanswerToP = 

        BackwardChain(p);  

     solutionSpace.restrictTo ( 

        answerToP);  

    } 

    return solutionSpace.finalJoin(); 

} 

Figure 1.  Answering a Query. 

 
 

of applying the reasoner and partly because that expense 
depends upon the bindings derived from clauses already ap-
plied. If the reasoner is associated with an ontology, however, 
it may be possible to relieve this problem by exploiting 
knowledge about the data types introduced in the ontology. 

 In this section, we describe an algorithm for resolving 
such queries using dynamic optimization based, in part, upon 
summary information associated with the ontology. In this 
algorithm, we exploit two key ideas: 1) a greedy ordering of 
the proofs of the individual clauses according to estimated 
sizes anticipated for the proof results, and 2) deferring joins 
of results from individual clauses where such joins are likely 
to result in excessive combinatorial growth of the intermedi-
ate solution. 

We begin with the definitions of the fundamental data 
types that we will be manipulating. Then we discuss the al-
gorithm for answering a query. A running example is pro-
vided to make the process more understandable. 

We model the knowledge base as a collection of triples. 
A triple is a 3-tuple (x,p,y) where x, p, and y are URIs or 
constants and where p is generally interpreted as the identi-
fier of a property or predicate relating x and y. For example, 
a knowledge base might contains triples  

 
(Jones, majorsIn, CS), (Smith, majorsIn, CS),   
(Doe, majorsIn, Math),  (Jones, registeredIn, Calculus1), 
(Doe, registeredIn, Calculus1). 

 
A QueryPattern is a triple in which any of the three com-

ponents can be occupied by references to one of a pool of 
entities considered to be variables. In our examples, we will 
denote variables with a leading ‘?’. For example, a query 
pattern denoting the idea “Which students are registered in 
Calculus1?”  could be shown as  

 
(?Student,registeredIn,Calculus1). 

 
A query is a request for information about the contents of 

the knowledge base. The input to a query is modeled as a 
sequence of QueryPatterns.  For example, a query “What are 
the majors of students registered in Calculus1?” could be 
represented as the sequence of two query patterns 

 
 [(?Student,registeredIn,Calculus1), 
(?Student, majorsIn, ?Major)]. 

 
The output from a query will be a QueryResponse. A 

QueryResponse is a set of functions mapping variables to 
values in which all elements (functions) in the set share a 
common domain (i.e., map the same variables onto values). 
Mappings from the same variables to values can be also re-
ferred to as variable bindings. For example, the QueryRe-
sponse of query pattern (?Student, majorsIn, ?Major) could 
be the set 

 
{{?Student => Jones, ?Major=>CS},  
{?Student => Smith, ?Major=>CS }, 
 {?Student => Doe, ?Major=> Math }}.   

 

The SolutionSpace is an intermediate state of the solution 
during query processing, consisting of a sequence of (prelim-
inary) QueryResponses, each describing a unique domain. 
For example, the SolutionSpace of the query “What are the 
majors of students registered in Calculus1?” that could be 
represented as the sequence of two query patterns as de-
scribed above  could first contain two QueryResponses:  

 
[{{?Student => Jones, ?Major=>CS},  
{?Student => Smith, ?Major=>CS },  
{?Student => Doe, ?Major=> Math }}, 
{{?Student => Jones},{?Student => Doe }}] 
 

Each Query Response is considered to express a constraint 
upon the universe of possible solutions, with the actual solu-
tion being intersection of the constrained spaces.  An equiva-
lent Solution Space is therefore:  

 
[{{?Student => Jones, ?Major=>CS},  
{?Major => Math, ?Student =>Doe}}], 

 
Part of the goal of our algorithm is to eventually reduce 

the Solution Space to a single Query Response like this last 
one. 

Fig. 1 describes the top-level algorithm for answering a 
query. A query is answered by a process of progressively 
restricting the SolutionSpace by adding variable bindings (in 
the form of Query Responses). The initial space with no 
bindings  represents a completely unconstrained Solu-
tionSpace.  The input query consists of a sequence of query 
patterns. 

 
We repeatedly estimate the response size for the remain-

ing query patterns , and choose the most restrictive pattern 
 to be considered next. We solve the chosen pattern by 
backward chaining , and then merge the variable bindings 
obtained from backward chaining into the SolutionSpace  
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TABLE III. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF 

ESTIMATED SIZE 

Clause Being Joined Resulting SolutionSpace 

(initial) [ ] 

3 [[{(?C1=>ci)}i=1..3] 

4 [{(?C1=>ci, ?C2=>ci)}i=1..3, j=1..3] 

1 [{(?S1=>si, ?C1=>ci, ?C2=>c’i)}i=1..270] 

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]  

 

TABLE I. EXAMPLE Query 1 

Clause 

# 

QueryPattern Query Response 

1 ?S1 takesCourse ?C1 {(?S1=>si,?C1=>ci)}i=1..100,000 

2 ?S1 takesCourse ?C2 {(?S1=>sj, ?C2=>cj)}j=1..100,000 

3 ?C1 taughtBy fac1 {(?C1=>cj)}j=1..3 

4 ?C2taughtBy fac1 {(?C2=>cj)}j=1..3 

 

via the restrictTo function, which performs a (possibly de-
ferred) join as described later in this section. 

When all query patterns have been processed, if the Solu-
tionSpace has not been reduced to a single Query Response, 
we perform a final join of these variable bindings into single 
one variable binding that contains all the variables involved 
in all the query patterns . The finalJoin function is de-
scribed in more detail later in this section. 

The estimation of response sizes in  can be carried out 
by a combination of 1) exploiting the fact that each pattern 
represents that application of a predicate with known domain 
and range types. If these positions in the triple are occupied 
by variables, we can check to see if the variable is already 
bound in our SolutionSpace and to how many values it is 
bound. If it is unbound, we can estimate the size of the do-
main (or range) type, 2) accumulating statistics on typical 
response sizes for previously encountered patterns involving 
that predicate. The effective mixture of these sources of in-
formation is a subject for future work. 

For example, suppose there are 10,000 students, 500 
courses, 50 faculty members and 10 departments in the 
knowledge base. For the query pattern (?S takesCourse ?C), 
the domain of takesCourse is Student, while the range of 
takesCourse is Course. An estimate of the numbers of triples 
matching the pattern (?S takesCourse ?C) might be 100,000 
if the average number of courses a student has taken is ten, 
although the number of possibilities is 500,000.  

By using a greedy ordering  of the patterns within a 
query, we hope to reduce the average size of the Solu-
tionSpaces. For example, suppose that we were interested in 
listing all cases where any student took multiple courses 
from a specific faculty member. We can represent this query 
as the sequence of the patterns in Table I. These clauses are 
shown with their estimated result sizes indicated in the sub-
scripts. The sizes used in this example are based on one of 
our LUBM [22] prototypes. 

To illustrate the effect of the greedy ordering, let us as-
sume first that the patterns are processed in the order given. 
A trace of the answerAQuery algorithm, showing one row 
for each iteration of the main loop is shown in Table II. The 
worst case in terms of storage size and in terms of the size of 
the sets being joined is at the join of clause 2, when the join 
of two sets of size 100,000 yields 1,000,000 tuples. 

Now, consider the effect of applying the same patterns in 
ascending order of estimated size, shown in Table III. The 
worst case in terms of storage size and in terms of the size of 
the sets being joined is at the final addition of clause 2, when 
a set of size 100,000 is joined with a set of 270. Compared to 
Table II, the reduction in space requirements and in time 
required to perform the join would be about an order of 
magnitude. 

The output from the backward chaining reasoner will be 
a query response. These must be merged into the currentSo-
lutionSpace as a set of additional restrictions. Fig. 2 shows 
how this is done. 

Each binding already in the SolutionSpace  that shares 
at least one variable with the new binding  is applied to the 
new binding, updating the new binding so that its domain is 
the union of the sets of variables in the old and new bindings 
and the specific functions represent the constrained cross-
product (join) of the two. Any such old bindings so joined to 
the new one can then be discarded. 

The join function at  returns the joined QueryResponse 
as an update of its first parameter. The join operation is car-
ried out as a hash join [23] with an average complexity 
O(n1+n2+m) where the ni are the number of tuples in the two 
input sets and m is the number of tuples in the joined output.  

The third (boolean) parameter of the join call indicates 
whether the join is forced (true) or optional (false), and the 
boolean return value indicates whether an optional join was 
actually carried out. Our intent is to experiment in future 
versions with a dynamic decision to defer optional joins if a 
partial calculation of the join reveals that the output will far 
exceed the size of the inputs, in hopes that a later query 
clause may significantly restrict the tuples that need to par-
ticipate in this join. 

As noted earlier, our interpretation of the SolutionSpace 
is that it denotes a set of potential bindings to variables, rep-
resented as the join of an arbitrary number of QueryRe-
sponses. The actual computation of the join can be deferred, 
either because of a dynamic size-based criterion as just de-
scribed, or because of the requirement at  that joins be car-
ried out immediately only if the input QueryResponses share 
at least one variable. In the absence of any such sharing, a 
join would always result in an output size as long as the 
products of its input sizes. Deferring such joins can help re-
duce the size of the SolutionSpace and, as a consequence, the 

TABLE II. TRACE OF JOIN OF CLAUSES IN THE ORDER GIVEN 

Clause Being 

Joined 

Resulting SolutionSpace 

(initial) [ ] 

1 [{(?S1=>si, ?C1=>ci)}i=1..100,000] 

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..1,000,000] 
(based on an average of 10 courses / student) 

3 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..900] 

(Joining this clause discards courses taught by other 
faculty.) 

4 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]  
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QueryResponseSolutionSpace::finalJoin () 

{ 

   sort the bindings in this solution 

     space into ascending order by  

     number of tuples;   

 

   QueryResponse result = first of the 

     sorted bindings; 

   for each remaining binding b  

     in solutionSpace {       

      join (result, b, true);   

   } 

   return result; 

} 

Figure 3.  Final Join. 

 

TABLE V. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF 

ESTIMATED SIZE 

Clause  

Being 

Joined 

 

Resulting SolutionSpace 

(initial) [] 

4 [{(?F1=>fi)}i=1..50] 

2 [{(?F1=>fi, ?S1=>si)}i=1..50,000] 

3 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..150,000] 

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000] 

 

void SolutionSpace::restrictTo (QueryRe-

sponsenewbinding) 

{ 

   for each element oldBinding 

     in solutionSpace 

   { 

      if (newbinding shares variables 

          with oldbinding){ 

         bool merged = join(newBinding, 

           oldBinding,false); 

         if (merged) { 

            remove oldBinding from 

               solutionSpace; 

         } 

      } 

   } 

   add newBinding to solutionSpace; 

} 

Figure 2.  Restricting a SolutionSpace. 

 cost of subsequent joins. 
When all clauses of the original query have been pro-

cessed (Fig. 1), we may have deferred several joins be-
cause they involved unrelated variables or because they ap-
peared to lead to a combinatorial explosion on their first at-
tempt. The finalJoin function shown in Fig.3 is tasked with 
reducing the internal SolutionSpace to a single QueryRe-
sponse, carrying out any join operations that were deferred 
by the earlier restrictTo calls. In many ways, finalJoin is a 
recap of the answerAQuery and restrictTo functions, with 
two important differences: 

 Although we still employ a greedy ordering to reduce 
the join sizes, there is no need for estimated sizes be-
cause the actual sizes of the input QueryResponses are 
known. 

 There is no longer an option to defer joins between Que-
ryResponses that share no variables. All joins must be 
performed in this final stage and so the “forced” pa-
rameter to the optional join function is set to true. 

For example, suppose that we were processing a different 
example query to determine which mathematics courses are 
taken by computer science majors, represented as the se-
quence of the following QueryPatterns, shown with their 
estimated sizes in Table IV. 

To illustrate the effect of deferring joins on responses 
that do not share variables, even with the greedy ordering 
discussed earlier, suppose, first, that we perform all joins 
immediately. Assuming the greedy ordering that we have 
already advocated, the trace of the answerAQuery algorithm 
is shown in Table V. 

In the prototype from which this example is taken, the 
Math department teaches 150 different courses and there are 
1,000 students in the CS Dept. Consequently, the merge of 
clause 3 (1,500 tuples) with the SolutionSpace then contain-
ing 50,000 tuples yields considerably fewer tuples than the 
product of the two input sizes. The worst step in this trace is 
the final join, between sets of size 100,000 and 150,000. 

But consider that the join of clause 2 in that trace was be-
tween sets that shared no variables. If we defer such joins, 
then the first SolutionSpace would be retained “as is”. The 
resulting trace is shown in Table VI. 

The subsequent addition of clause 3 results in an imme-
diate join with only one of the responses in the solution 
space. The response involving ?S1 remains deferred, as it 
shares no variables with the remaining clauses in the Solu-
tionSpace. The worst join performed would have been be-
tween sets of size 100,000 and 150, a considerable improve-
ment over the non-deferred case. 

IV. EVALUATION OF QUERY OPTIMIZATION 

In this section, we compare our answerAQuery algorithm 
of Fig. 1 against an existing system, Jena, that also answers 
queries via a combination of an in-memory backward chain-
ing reasoner with basic knowledge base retrievals. 

The comparison was carried out using two LUBM 
benchmarks consisting of one knowledge base describing a 
single university and another describing 10 universities. Prior 
to the application of any reasoning, these benchmarks con-
tained 100,839 and 1,272,871 triples, respectively. 

We evaluated these using a set of 14 queries taken from 
LUBM [22]. These queries involve properties associated 
with the LUBM university-world ontology, with none of the 
custom properties/rules whose support is actually our end 

TABLE IV. EXAMPLE QUERY 2 

Clause QueryPattern Query Response 

1 (?S1 takesCourse ?C1) {(?S1=>sj,?C1=>cj)}j=1..100,000 

2 (?S1 memberOf CSDept) {(?S1=>sj)}j=1..1,000 

3 (?C1 taughtby ?F1) {(?C1=>cj, ?F1=>fj)}j=1..1,500 

4 (?F1 worksFor MathDept) {(?F1=>fi)}i=1..50 
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TABLE VII       COMPARISON AGAINST JENA WITH BACKWARD CHAINING 

LUBM: 1 University,  100,839 triples 10 Universities, 1,272,871 triples 

 answerAQuery Jena Backwd answerAQuery Jena Backwd 

 response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

Query1 0.20 4 0.32 4 0.43 4 0.86 4 

Query2 0.50 0 130 0 2.1 28 n/a n/a 

Query3 0.026 6 0.038 6 0.031 6 1.5 6 

Query4 0.52 34 0.021 34 1.1 34 0.41 34 

Query5 0.098 719 0.19 678 0.042 719 1.0 678 

Query6 0.43 7,790 0.49 6,463 1.9 99,566 3.2 82,507 

Query7 0.29 67 45 61 2.2 67 8,100 61 

Query8 0.77 7,790 0.91 6,463 3.7 7,790 52 6,463 

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a 

Query10 0.18 4 0.54 0 1.8 4 1.4 0 

Query11 0.24 224 0.011 0 0.18 224 0.032 0 

Query12 0.23 15 0.0020 0 0.33 15 0.016 0 

Query13 0.025 1 0.37 0 0.21 33 0.89 0 

Query14 0.024 5,916 0.58 5,916 0.18 75,547 2.6 75,547 

 

goal (as discussed in [3]). Answering these queries requires, 
in general, reasoning over rules associated with both RDFS 
and OWL semantics, though some queries can be answered 
purely on the basis of the RDFS rules. 

Table VII compares our algorithm to the Jena system us-
ing a pure backward chaining reasoner. Our comparison fo-
cuses on response time, as our optimization algorithm should 
be neutral with respect to result accuracy, offering no more 
and no less accuracy than is provided by the interposed rea-
soner. 

As a practical matter, however, Jena’s system cannot 
process all of the rules in the OWL semantics rule set, and 
was therefore run with a simpler ruleset describing only the 
RDFS semantics. This discrepancy accounts for the differ-
ences in result size (# of tuples) for several queries. Result 
sizes in the table are expressed as the number of tuples re-
turned by the query and response times are given in seconds. 
An entry of “n/a” means that the query processing had not 
completed (after 1 hour).  

Despite employing the larger and more complicated rule 
set, our algorithm generally ran faster than Jena, sometimes 
by multiple orders of magnitude. The exceptions to this trend 
are limited to queries with very small result set sizes or que-
ries 10-13, which rely upon OWL semantics and so could not 
be answered correctly by Jena. In two queries (2 and 9), Jena 
timed out. 

Jena also has a hybrid mode that combines backward     
chaining with some forward-style materialization. Table VIII 

shows a comparison of our algorithm with a pure backward 
chaining reasoner against the Jena hybrid mode. Again, an 
“n/a” entry indicates that the query processing had not com-
pleted within an hour, except in one case (query 8 in the 10 
Universities benchmark) in which Jena failed due to ex-
hausted memory space. 

The times here tend to be someone closer, but the Jena 
system has even more difficulties returning any answer at all 
when working with the larger benchmark.  Given that the 
difference between this and the prior table is that, in this case, 
some rules have already been materialized by Jena to yield, 
presumably, longer lists of tuples, steps taken to avoid possi-
ble combinatorial explosion in the resulting joins would be 
increasingly critical. 

V. OPTIMIZED BACKWARD CHAINING 

ALGORITHM 

When the knowledge base is dynamic, backward chain-
ing is a suitable choice for ontology reasoning. However, as 
the size of the knowledge base increases, standard backward 
chaining strategies [2][15] do not scale well for ontology 
reasoning. In this section, first, we discuss issues some 
backward chaining methods expose for ontology reasoning. 
Second, we present our backward chaining algorithm that 
introduces new optimization techniques as well as addresses 
the known issues. 

A. Issues 

1. Guaranteed Termination: Backward chaining is usual-
ly implemented by employing a depth-first search strategy. 
Unless methods are used to prevent it, the depth-first search 
could go into an infinite loop. For example, in our rule set, 
we have rules that involve each other when proving their 
heads: 

rule1: (?P owl:inverseOf ?Q) -> (?Q owl:inverseOf ?P)  
rule2;(?P owl:inverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)  

TABLE VI. TRACE OF JOIN OF CLAUSES WITH DEFERRED JOINS 

Clause 

Being 

Joined 

 

Resulting SolutionSpace 

(initial) [] 

4 [{(?F1=>fi)}i=1..50] 

2 [{(?F1=>fi)}i=1..50,{(?S1=>sj)}j=1..1,000]  

3 [{(?F1=>fi, ?C1=>ci)}i=1..150 , {(?S1=>sj)}j=1..1,000] 

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000] 
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TABLE VIII. COMPARISON AGAINST JENA WITH WITH HYBRID REASONER 

LUBM 1 University, 100,839 triples 10 Universities, 1,272,871 triples 

 answerAQuery Jena Hybrid answerAQuery Jena Hybrid 

 response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

response 

time 

result 

size 

Query1 0.20 4 0.37 4 0.43 4 0.93 4 

Query2 0.50 0 1,400 0 2.1 28 n/a n/a 

Query3 0.026 6 0.050 6 0.031 6 1.5 6 

Query4 0.52 34 0.025 34 1.1 34 0.55 34 

Query5 0.098 719 0.029 719 0.042 719 2.7 719 

Query6 0.43 7,790 0.43 6,463 1.9 99,566 3.7 82,507 

Query7 0.29 67 38 61 2.2 67 n/a n/a 

Query8 0.77 7,790 2.3 6,463 3.7 7,790 n/a n/a 

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a 

Query10 0.18 4 0.62 0 1.8 4 1.6 0 

Query11 0.24 224 0.0010 0 0.18 224 0.08 0 

Query12 0.23 15 0.0010 0 0.33 15 0.016 0 

Query13 0.025 1 0.62 0 0.21 33 1.2 0 

Query14 0.024 5,916 0.72 5,916 0.18 75,547 2.5 75,547 

 
In order to prove body clause ?P owl:inverseOf ?Q in 

rule1, we need to prove the body of rule2 first, because the 
head of rule2 matches body clause ?P owl:inverseOf ?Q. In 
order to prove the first body clause ?P owl:inverseOf ?Q in 
rule2, we also need to prove the body clause ?P owl: in-

verseOf ?Q in rule1, because the head of rule1 matches body 
clause ?P owl:inverseOf ?Q. 

Even in cases where depth-first search terminates, the 
performance may suffer due to time spent exploring, in depth, 
branches that ultimately do not lead to a proof. 

We shall use the OLDT [24] method to avoid infinite re-
cursion and will introduce optimizations aimed at further 
performance improvement in Section VI.C. 

2. The owl:sameAs Problem: The built-in OWL property 
owl:sameAs links two equivalent individuals. An 
owl:sameAs triple indicates that two linked individuals have 
the same “identity” [25]. An example of a rule in the OWL-
Horst rule set that  involves the owl:sameAs relations is the  
rule: “(?x owl:sameAs ?y) (?x ?p ?z)  -> (?y ?p ?z)”. 

Consider a triple, which has m owl:sameAs equivalents 
of its subject, n owl:sameAs equivalents of its predicate, and 
k owl:sameAs equivalents of its object, Then m*n*k triples 
would be derivable from that triple. 

Reasoning with the owl:sameAs relation can result in a 
multiplication of the number of instances of variables during 
backward-chaining and expanded patterns in the result. As 
long as that triple is in the result set, all of its equivalents 
would be in the result set as well. This adds cost to the rea-
soning process in both time and space. 

B. The Algorithm 

The purpose of this algorithm is to generate a query re-
sponse for a given query pattern based on a specific rule set. 
We shall use the following terminology. 

A VariableBinding is a substitution of values for a set of 
variables. 

A RuleSet is a set of rules for interpretation by the rea-
soning system. This can include RDFS Rules [26], Horst 

rules [27] and custom rules [28] that are used for ontology 
reasoning. For example,  

[rdfs1:  (?x ?p ?y) -> (?p rdf:type rdf:Property)]. 

The main algorithm calls the function BackwardChaining,  
which finds a set of triples that can be unified with pattern 
with bindings varList, any bindings to variables appearing in 
headClause from the head of applied rule, bodylist that are 
reserved for solving the recursive problem. Given a Goal and 
corresponding matched triples, a QueryResponse is created 
and returned in the end.   

Our optimized BackwardChaining algorithm, described 
in Fig. 4, is based on conventional backward chaining algo-
rithms [2]. The solutionList is a partial list of solutions al-
ready found for a goal.  

For a goal that has already been resolved, we simply get 
the results from solutionList. For a goal that has not been 
resolved yet, we will seek a resolution by applying the rules. 
We initially search in the knowledge base to find triples that 
match the goal (triples in which the subject, predicate and 
object are compatible with the query pattern). Then, we find 
rules with heads that match the input pattern. For each such 
rule we attempt to prove it by proving the body clauses (new 
goals) subject to bindings from already-resolved goals from 
the same body. The process of proving one rule is explained 
below. The method of “OLDT” [24] is adopted to solve the 
non-termination issue we mentioned in Section VI.C. Finally, 
we apply any “same as” relations to candidateTriples to 
solve the owl:sameAs problem. During this process of 
“SameAsTripleSearch”, we add all equivalent triples to the 
existing results to produce complete results.  

Fig. 5 shows how to prove one rule, which is a step in Fig. 
4.  The heart of the algorithm is the loop through the clauses 
of a rule body, attempting to prove each clause. Some form 
of selection function is implied that selects the next unproven 
clause for consideration on each iteration. Traditionally, this 
would be left-to-right as the clauses are written in the rule. 
Instead, we order the body clauses by the number of free 
variables. The rationale for this ordering will be discussed in 
the following Section VI. A. 
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The process of proving one goal (a body clause from a 
rule) is given in Fig. 6. Before we prove the body clauses 
(new goals) in each rule, the value of a calculated dynamic 
threshold decides whether we perform the substitution or not. 
We substitute the free variables in the body clause with bind-
ings from previously resolved goals from the same body. 
The step helps to improve the reasoning efficiency in terms 
of response time and scalability and will be discussed in Sec-
tion VI.B. We call the BackwardChaining function to find a 
set of triples that can be unified with body clause (new goal) 
with substituted variables. Bindings will also be updated 

gradually following the proof of body clauses. 

VI. OPTIMIZATION DETAILS & DISCUSSION 

There are four optimizations that have been introduced in 
our algorithm for backward chaining. These optimizations 
are:  1) the implementation of the selection function, which 
implements the ordering the body clauses in one rule by the 
number of free variables, 2) the upgraded substitute function, 
which implements the substitution of the free variables in the 
body clauses in one rule based on calculating a threshold that 
switches resolution methods, 3) the application of OLDT and 
4) solving of the owl:sameAs problem. Of these, optimiza-
tion 1 is an adaptation of techniques employed in other rea-
soning contexts [29][30] and optimizations 3 and 4 have 
appeared in [24, 31] whereas techniques 2 are new. We will 
describe the implementation details of these optimizations 
below. A preliminary evaluation of these techniques is re-
ported in a separate paper. [3] A more extensive evaluation is 
reported here in Section VII. 

A. Ordered Selection Function 

The body of a rule consists of a conjunction of multiple 
clauses. Traditional SLD (Selective Linear Definite) clause 
resolution systems such as Prolog would normally attempt 
these in left-to-right order, but, logically, we are free to at-
tempt them in any order.  

BackwardChaining(pattern,headClause,bodylist,level,varList) 

{ 

   if (pattern not in solutionList){        

      candidateTriples+= matches to pattern that found in knowledge base;  

  solutionList+= mapping from pattern to candidateTriples; 

  relatedRules = rules with matching heads to pattern that found in ruleList;   

  realizedRules = all the rules in relatedRules with substitute variables from pattern; 

  backupvarList = back up clone of varList; 

  for (each oneRule in realizedRules){  

     if(attemptToProveRule(oneRule, varList, level)){    

        resultList= unify(headClause, varList);    

        candidateTriples+= resultList; 

     } 

     oldCandidateTriples = triples in mappings to headClause from solutionList; 

     if ( oldCandidateTriples not contain candidateTriples){       

        update solutionList with candidateTriples;             

        if(UpdateafterUnificationofHead(headClause, resultList)) 

        { 

            newCandidateTriples = triples in mappings to headClause from solutionList;

          candidateTriples+= newCandidateTriples; 

        } 

     } 

   } 

} 

    else /* if (solutionList.contains(pattern)) */  

{ 

   candidateTriples+= triples in mappings to pattern from solutionList; 

   Add reasoning context, including head and bodyRest to lookupList;  

} 

SameAsTripleSearch(candidateTriples);  

return candidateTriples; 

} 

Figure 4. Process of BackwardChaining. 

attemptToProveRule(oneRule,varList,level) 

{ 

   body = rule body of oneRule; 

   sort body by ascending number of free   

      variables;     

   head = rule head of oneRule; 

   for (each bodyClause in body)  

   {     

      canBeProven =  

        attemptToProveBodyClause ( 

          bodyClause, body, head,  

          varList, level);  

       if (!canBeProven) break; 

   } 

   return canBeProven; 

} 

Figure 5. Process of proving one rule. 
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We expect that given a rule under proof, ordering the 
body clauses into ascending order by the number of free var-
iables will help to decrease the reasoning time. For example, 
let us resolve the goal “?y rdf:type Student”, and consider the 
rule: 

[rdfs3: (?x ?p ?y)  (?p rdfs:range ?c) -> (?y rdf:type ?c)] 

The goal “?y rdf:type Student” matches the head of rule “?y 

rdf:type ?c”, and ?c is unified with Student. 
If we select body clause “?x ?p ?y” to prove first, it will 

yield more than 5 million (using LUBM(40) [22]) instances 
of clauses. The proof of body clause “?x ?p ?y” in backward 
chaining would take up to hours. Result bindings of “?p” will 
be propagated to the next body clause “?p rdfs:range ?c” to 
yield new clauses (p1 rdfs:range Student), (p2 rdfs:range 

Student), …, (p32 rdfs:range Student), and then a separate 
proof would be attempted for each of these specialized forms. 

If we select body clause “?p rdfs:range Student” (?c is 
unified with Student) to prove first, it will yield zero (using 
LUBM(40)) instances of clauses. The proof of body clause 
“?p rdfs:range Student” would take up to seconds. No result 
bindings would be propagated to body clause “?x ?p ?y”. The 
process of proof terminates. 

The body clause “?p rdfs:range ?c” has one free varia-
ble ?p while the body clause “?x ?p ?y” has three free varia-
bles. It is reasonable to prove body clause with fewer free 
variables first, and then propagate the result bindings to ?p to 
next body clause “?x ?p ?y”. Mostly, goals with fewer free 
variables cost less time to be resolved than goals with more 
free variables, since fewer free variables means more bind-
ings and body clauses with fewer free variables will match 
fewer triples. 

B. Switching between Binding Propagation and Free 

Variable Resolution  

Binding propagation and free variable resolution are two 
modes of for dealing with conjunctions of multiple goals. 
We claim that dynamic selection of these two modes during 
the reasoning process will increase the efficiency in terms of 
response time and scalability.  

These modes differ in how they handle shared variables 
in successive clauses encountered while attempting to prove 
the body of a rule. Suppose that we have a rule body contain-
ing clauses (?x p1 ?y) and (?y p2 ?z) [other patterns of com-
mon variables are, of course, also possible] and that we have 
already proven that the first clause can be satisfied using 
value pairs {(x1, y1), (x2,y2),…(xn,yn)}. 

In the binding propagation mode, the bindings from the 
earlier solutions are substituted into the upcoming clause to 
yield multiple instances of that clause as goals for subse-
quent proof. In the example given above, the value pairs 
from the proof of the first clause would be applied to the 
second clause to yield new clauses (y1 p2 ?z), (y2 p2 ?z), …, 

(yn p2 ?z), and then a separate proof would be attempted for 
each of these specialized forms. Any (y,z) pairs obtained 
from these proofs would then be joined to the (x,y) pairs from 
the first clause. 

In the free variable resolution mode, a single proof is at-
tempted of the upcoming clause in its original form, with no 
restriction upon the free variables in that clause. In the ex-
ample above, a single proof would be attempted of (?y p2 ?z), 
yielding a set of pairs {(yn, z1), (yn+1,z2),…(xn+k,zk)}.  The join 
of this with the set {(x1, y1), (x2,y2),…(xn,yn)} would then be 
computed to describe the common solution of both body 
clauses. 

The binding propagation mode is used for most backward 
chaining systems [15].  There is a direct tradeoff of multiple 
proofs of narrower goals in binding propagation against a 
single proof of a more general goal in free variable resolution. 
As the number of tuples that solve the first body clause 
grows, the number of new specialized forms of the subse-
quent clauses will grow, leading to higher time and space 
cost overall. If the number of tuples from the earlier clauses 
is large enough, free variable resolution mode will be more 
efficient. (In the experimental results in Section VII, we will 

attemptToProveBodyClause(goal, body,                                         

head, varList, level)  

{ 

  canBeProven = true; 

  dthreshold = Calculate dynamic    

    threshold; 

  patternList = get unified patterns by 

    replacing variables in bodyClause 

    from varList for current level with 

    calculated dthreshold;   

  for(each unifiedPattern in  

      patternList ) { 

     if(!unifiedPattern.isGround()) {  

         bodyRest = unprocessedPartOf( 

           body, goal);               

        triplesFromResolution+=   

           BackwardChaining(                 

             unifiedPattern, head,    

             bodyRest, level+1,     

             varList);                               

     }  

     else if(unifiedPattern.isGround()) { 

        if (knowledgeBase contains   

              unifiedPattern){ 

           triplesFromResolution+=    

             unifiedPattern;    

        } 

     } 

  } 

  if(triplesFromResolution.size()>0) { 

     update_varList with varList,     

       triplesFromResolution, goal, and    

       level; 

     if (varList==null) { 

        canBeProven = false; 

     } 

  } 

  else{ 

      canBeProven = false; 

  } 

  return canBeProven; 

} 

Figure 6. Process of proving one goal. 
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demonstrate that neither mode is uniformly faster across all 
problems.)  

Following is an example (using LUBM(40)) showing one 
common way of handling shared variables between body 
clauses. 

Suppose we have an earlier body clause 1:  “?y type 

Course”   and a subsequent body clause 2: “?x 

takesCourse ?y”. These two clauses have the common varia-
ble ?y. In our experiments, it took 1.749 seconds to prove 
body clause 1 while it took an average of 0.235 seconds to 
prove body clause 2 for a given value of ?y from the proof of 
body clause 1. However, there were 86,361 students satisfy-
ing variable ?x, which means it would take 0.235 
*86,361=20,295 seconds to finish proof of 86,361 new 
clauses after applying  value pairs from the proof of body 
clause 1. 20,295 seconds is not acceptable as query response 
time. We need to address this problem to improve reasoning 
efficiency in terms of response time and scalability.  

We propose to dynamically switch between modes based 
upon the size of the partial solutions obtained so far. Let n 
denote the number of solutions that satisfy an already proven 
clause. Let t denote threshold used to dynamically select 
between modes. If n≤t, then the binding propagation mode 
will be selected. If n>t, then the free variable resolution mode 
will be selected. The larger the threshold is, the more likely 
binding propagation mode will be selected. 

Suppose that we have a rule body containing clauses (a1 

p1 b1) (a2 p2 b2).  Let (a1 p1 b1) be the first clause, and (a2 

b2 c2) be the second clause. ai, bi and ci (i∈[1,2] ) could be 

free variable or concrete value. Assume that there is at least 
one common variable between two clauses. 

In the binding propagation mode, the value pairs from the 
proof of the first clause would be applied to the second 
clause to yield new clauses (a21 p21 b21), (a22 p22 b22), …, 

(a2n p2n c2n), and then a separate proof would be attempted 
for each of these specialized forms. Any value sets obtained 
from these proofs would then be joined to the value sets from 
the first clause. Let join1 denote the time spent on the joint 
operations. Let proof1i denote the time of proving first clause 
with i free variables and proof2j be the average time of prov-

ing new specialized form with j free variables. (i∈[1,3], j ∈
[0,2]) 

In the free variable resolution mode, a single proof is at-
tempted of the upcoming clause in its original form, with no 
restriction upon the free variables in that clause. A single 
proof would be attempted of (a2 p2 b2), yielding a set of 
value sets. The join of the value sets yielded from the first 
clause and the values sets yielded from the second clause 
would then be computed to describe the common solution of 
both body clauses. Let join2 denote the time spent on the joint 
operations. Let proof3k denote the time of proving second 

clause with k free variables. (k∈[1,3]) 

Determining t is critical to switching between two modes. 
Let us compare the time spent on binding propagation mode 
and free variable resolution mode to determine t. Binding 
propagation is favored when   

proof1i + proof2j * n + join1 < proof1i + proof3k + join2 

Isolating the term involving n, 
proof2j *n  < proof1i + proof3k + join2 - proof1i  - join1  

proof2j *n  <  proof3k + join2  - join1  

join1 is less than or equal to join2, because the value sets 
from the second clause in the  binding propagation mode 
have already been filtered by the value sets from the first 
clause first. The join operations in binding propagation mode 
are therefore a subset of the join operations in free variable 
resolution mode. Let t be the largest integer value such that 

proof2j *t  <  proof3k    

then 
proof2j *t  <=  proof2j *n  <  proof3k + join2  - join1  

We conclude that:  

                   t = floor(proof3
k/ proof2

j )                           (1) 

Formula (1) provides thus a method for calculating the 
threshold t that determines when to employ binding propaga-
tion. In that formula, k denotes the number of free variables 
in the second clause (a2 p2 b2), j denotes the number of free 
variables of the new specialized forms (a21 p21 b21), (a22 p22 

b22), (a2n p2n c2n) of the second clause with (k∈[1,3], j ∈
[0,2]). The specialized form of the second clause has one or 
two less free variables than the original form. Hence, the 
possible combinations of (k,j) are {(3,2), (3,1), (2,1), (2,0), 
(1,0)}. 

To estimate proof3k and proof2j, we record the time spent 
on proving goals with different numbers of free variables. 
We separately keep a record of the number of goals that have 
one free variable, two free variables and three free variables 
after we start calling our optimized backwardChaining algo-
rithm. We also record the time spent on proving these goals. 
After we have recorded a sufficient number of proof times 
(experiments will give us an insight into what constitutes a 
‘sufficient’ number), we compute the average time spent on 
goals with k free variables and j free variables, respectively, 
to obtain an estimate of proof3k and proof2j. 

In order to adopt accurate threshold to help improve the 
efficiency, we apply different thresholds to different situa-
tions with corresponding number of free variable set (k,j).   

We assign the initial value to t from previous experi-
ments in a particular knowledge base/query environment if 
they exist or zero otherwise. 

We update the threshold several times when answering a 
particular query. The threshold will change as different que-
ries are being answered. For each query, we will call the 
optimized backward chaining algorithm recursively several 
times. Each call of backwardChaining is given a specific 
goal as an input. During the running of backwardChaining, 
the average time of proving a goal as a function of the num-
ber of free variables will be updated after a goal has been 
proven. During the running of backwardChaining, every time 
before making selection between two modes the estimate 
threshold is updated before making the decision. 

C. How to Avoid Repetition and Non-Termination  

Given RDFS Rules [26], Horst rules [27] and custom 
rules [28] in the rule set and queries for answering, backward 
chaining for ontology reasoning may hit the same goals for 
several times. Some body clauses such as ?a 

rdfs:subClassOf ?b and ?x rdfs:subPropertyOf ?y appear in 
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multiple rules in Horst rule set that is used in many reasoning 
systems. During the process of answering a given query, 
these rules containing the same body clauses might be neces-
sary to be proved to answer the query. During the process of 
answering a given query, some rules may be repeatedly 
called for more than one time, leading to proving the same 
body clause like ?a rdfs:subClassOf ?b more than one time. 
Within the process of answering one query, such a repetition 
decreases the efficiency in terms of response time. Backward 
chaining with memorization will help to avoid repetition. 

Backward chaining is implemented in logic programming 
[32] by SLD resolution [33]. When we apply conventional 
backward chaining process to ontology reasoning, it has the 
same non-termination problem as SLD resolution does. Dur-
ing the proving process, the rule body needs to be satisfied to 
prove the goal. In some cases, the rule body requires proving 
goals that have the same property as the goal, resulting pos-
sibly in an infinite loop unless steps are taken to ensure ter-
mination. 

For example, [rdfs8:  (?a rdfs:subClassOf ?b), (?b 

rdfs:subClassOf ?c) -> (?a rdfs:subClassOf ?c)] is one rule in 
the RDFS rule set used for ontology reasoning. When we 
apply standard backward chaining to ontology reasoning, 
proving  the  head  (?a rdfs:subClassOf ?c) requires proving 
of the  body (?a rdfs:subClassOf ?b) and (?b 

rdfs:subClassOf ?c). This loop will be infinite without apply-
ing any techniques.  

We use an adaptation of the OLDT algorithm to solve 
this non-termination problem. The OLDT algorithm is an 
extension of the SLD-resolution [33] with a left to right 
computation rule. OLDT maintains a solution table and 
lookup table to solve the recursion problem. 

D. owl:sameAs Optimization 

The “owl:sameAs” relation poses a problem [31] for al-
most all the reasoning systems including forward chaining.  
In our reasoning system, we first pre-compute all possible 
owl:sameAs pairs and save them to a sameAs table. Second, 
we select a representative node to represent an equivalence 
class of owl:sameAs URIs. Third, we replace the equivalence 
class of owl:sameAs URIs with the representative node. At 
last, if users want to return all the identical results, we popu-
late the query response using the sameAs table by replacing 
the representative node with the URIs in the equivalence 
class.  

As we described in Section V, reasoning with the 
owl:sameAs relation can result in a multiplication of the 
number of instances of variables during backward-chaining 
and expanded patterns in the result. As long as that triple is 
in the result set, all of the members in its equivalence class 
would be in the result set as well. This adds cost to the rea-
soning process in both time and space. The optimization that 
applies pre-computation and selects a representative node 
improves the performance in terms of time and space. 

This optimization is a novel adaptation of owl:sameAs 
optimization in forward chaining reasoning system, such as 
OWLIM-SE [34] and Oracle [13], to backward chaining 
reasoning systems. 

VII. BACKWARD CHAINING WITH EXTERNALLY STORED 

KNOWLEDGE BASE 

In Section IV and in our earlier experiments assessing the 
effectiveness of our optimized reasoner [3], all our experi-
ments were performed ‘in-memory’, which limited the study 
to a knowledge base of less than 10 Million triples.  

In this section, we switch to implementations that use ex-
ternal storage for the knowledge base. We consider Jena 
SDB [35], Jena TDB [36] and OWLIM-SE [34]. We extend 
our study based on a knowledge base of more than 100 Mil-
lion triples. 

The employment of external storage introduces new fac-
tors and has implications on how to improve the scalability 
of our backward chaining reasoner. First, any optimization 
technique needs to balance the number of accesses to data 
and the size of the retrieved data against the size of in-
memory cache and its use. Second, the algorithm has to take 
now into account that it will take longer to access a triple (or 
a set of triples) due to having to perform I/O. In-memory 
reasoners typically have a ‘model’ of the knowledge base in 
which they store the facts and an API to access them. When 
an external storage is used they would provide transparent 
connections from the model to the external databases that 
would allow the reasoner to use the same API for accessing 
the model. This leads to a third factor effecting the scalabil-
ity and performance of the reasoner:  the middleware that 
realizes the transparent linking.  

Jena SDB provides persistent triple stores using relational 
databases. An SQL database is required for the storage and 
query of triples for SDB. In this paper, we used MySQL and 
PostgreSQL as the relational database for SDB. Jena TDB is 
claimed as a more scalable and faster triple store than SDB 
[35].A special Jena adapter permits access to OWLIM-SE 
repositories [34]. Reasoners can access all three storage sys-
tems via a common Jena API. 

A.  Preliminary Analysis 

We begin by exploring the relative impact on overall per-
formance of the three major components of the backward 
chaining reasoner, the middleware, and the storage system 
itself. The purpose of this analysis is to determine how much 
time we can save by improving any one of these subsystems 
in isolation.  

 We employed Jena SDB + MySQL  as the external stor-
age for our backward chaining reasoner in the experiment, 
evaluating the query response time of 14 queries from 
LUMB [22] using LUBM(30). 

 A single function in our backward chaining algorithm 
implementation is responsible for all data retrievals from the 
triple store. We refer to this function as “the Data-retrieval 
function” in the remainder of this section. Data-retrieval 
function in this paper. We recorded the clock time Tf and 
CPU time tf spent within the Data-retrieval function and in 
the whole query processing (Ttot and ttot, respectively) in Ta-
ble IX. 

The portion of the CPU and clock times spent I answer-
ing the query but not spent in the Data-retrieval function is 
attributable to the backward chaining reasoner: 
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TABLE IX CLOCK TIME, CPU TIME AND I/O TIME FROM EXPERIMENTS 

WITH JENA SDB USING LUBM (30) 

  Total 
Clock  
time,  

Ttot 

Total  
CPU 

Time, 
ttot 

Clock 
 time in 
 Data-

retrieval 
function, 

Tf 

CPU 
time in 

I/O  
function,tf 

Query1 1405.00 951.00 920.00 546.00 

Query2 9631.00 6084.00 5058.00 2293.00 

Query3 203.00 78.00 109.00 31.00 

Query4 35354.00 8096.00 31140.00 5070.00 

Query5 173.00 78.00 94.00 15.00 

Query6 23744.00 7035.00 19984.00 3712.00 

Query7 24058.00 9984.00 18659.00 6333.00 

Query8 28694.00 11029.00 22680.00 5896.00 

Query9 29598.00 11700.00 23899.00 6988.00 

Query 
10 

18612.00 6630.00 15040.00 3572.00 

Query 
11 

3636.00 561.00 2964.00 124.00 

Query 
12 

7567.00 1903.00 5226.00 405.00 

Query 
13 

187.00 46.00 95.00 0.00 

Query 
14 

1873.00 811.00 1451.00 452.00 

 

Tbw = Ttot – Tf 
Tbw = ttot – tf 

 
The clock time observed during the Data-retrieval function 
includes actual input operations on the underlying triple store, 
together with the CPU-intensive manipulation of the input 
data by the middleware layer. Assuming that the ratio, ρ
=ttot/Ttot, of CPU time to clock time observed over the pro-
cessing of an entire query would remain approximately con-
stant during the middleware CPU, we were able to estimate 
the portion of the Data-retrieval function clock time that was 
attributable to the middleware: 

Tmid = ρ tmid   

 
and can attribute the remaining clock time as the actual time 
spent doing I/O: 
 

TIO = Tf – Tmid 

 
Then we can estimate a minimal clock time to answer the 
query, assuming 100% CPU utilization, as 

Tmin = tbw+ ρ Tmid + TIO 

 
 Table X shows the values of these estimates, together the 
percentage of that value attributable to each of the three 
components. In Table X, the percentage of time spent in I/O 

operations ranges from 22% to 75%, a considerable variation. 
This might be because some retrievals from triple store re-
trieve huge numbers of triples while others are far more fo-
cused and process much less data.  

The percentage of the time devoted to the middleware 
ranges from 0% to 44%, with an average around 20%, indi-
cating that the triple storage layer adds a significant compo-
nent of CPU time. Our backward chaining code running on 
top of that accounts for 13 to 45% of minimal processing 
time, and the average is 25%. 

These percentages are surprisingly balanced, suggesting 
that improvements to any one of the three major components 
of the system can have only modest effect on the total time. 
Dramatic improvements will be possible only by improve-
ment in all three areas. One possible avenue of exploration is 
changes to the reasoner that would not only speed up the 
reasoner but would affect the number and size of requests for 
input from the underlying store. Indirectly, at least, several of 
the optimizations we have proposed in Section VI could have 
such an effect. Caching, an effect not explored in this exper-
iment, could also have a major impact across all three areas. 

B. Evaluation of the Optimization techniques 

In this section, we examine the impact of the two major 
optimizations proposed in Section VI. 

TABLE X   ESTIMATED I/O TIME AND IDEAL PERCENTAGES FROM 

EXPERIMENTS WITH JENA SDB USING LUBM (30) 

  Min possi-
ble clock 
time to 

answer a 
query, 

Tmin 

% of 
  Tmin 
spent  
in I/O 

% of 
 Tmin 

 spent in  
BW 

chaining 

% of 
 Tmin time 
spent in 

middleware 

Query1 1217.15 0.22 0.33 0.45 

Query2 8376.00 0.27 0.45 0.27 

Query3 125.00 0.38 0.38 0.25 

Query4 32175.53 0.75 0.09 0.16 

Query5 153.19 0.49 0.41 0.10 

Query6 22818.84 0.69 0.15 0.16 

Query7 19277.93 0.48 0.19 0.33 

Query8 26801.04 0.59 0.19 0.22 

Query9 27147.26 0.57 0.17 0.26 

Query 
10 

17497.60 0.62 0.17 0.20 

Query 
11 

3334.32 0.83 0.13 0.04 

Query 
12 

6496.09 0.71 0.23 0.06 

Query 
13 

141.00 0.67 0.33 0.00 

Query 
14 

1730.68 0.53 0.21 0.26 
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1) Ordered Selection Function 
We have proposed replacing the traditional left-to-right 

processing of clauses within rule bodies by an ordering by 
ascending number of free variables.  

Table XI compares our backward chaining algorithm 
with our clause selection based on free variable count to the 
traditional left-to-right selection on a relatively small 
knowledge base (100,839 triples) LUBM(1) [22] stored in 
Jena TDB. Traditional left-to-right selection has been used in 
Jena [15] and Prolog [32]. Backward chaining with the or-
dered selection function yields considerably smaller query 
response times for all the queries than left-to-right. The I/O 
time of accessing the external triple storage magnifies the 
problem of left-to-right selection compared to [3] because 
the knowledge base is in external triple storage TDB now. 

The difference becomes even more dramatic for a larger 
knowledge base (1,272,871 triples), LUBM(10) stored in 
Jena TDB, as shown in Table XII.  With left-to-right selec-
tion, we are unable to answer any query within 30 minutes, 
and out-of-memory errors occur for almost half of the que-
ries.  The I/O time of accessing the external triple storage 
magnifies the problem of left-to-right selection compared to 
[3] because the knowledge base is in external triple storage 
TDB now. 

2) Switching between Binding Propagation and Free 

Variable Resolution  
Binding propagation and free variable resolution are two 

modes of for dealing with conjunctions of multiple goals. 
We have proposed dynamic selection of these two modes 
during the reasoning process to increase the efficiency in 
terms of response time and scalability.  

We compare our backward chaining algorithm with three 
different modes of resolving goals on LUBM(10) stored in 
Jena TDB in Table XIII. The first mode uses dynamic selec-
tion between binding propagation mode and free variable 
resolution mode. The second mode uses binding propagation 
mode only. The third mode uses free variable resolution 
mode only.   

Table XIII shows that neither binding propagation mode  
nor free variable resolution mode is uniformly better than the 
other on all cases. From query 1 to query 5 and query 13, 

dynamic mode performs almost same as binding propagation 
mode. From query 6 to query 10, dynamic mode performs 
dramatically better than binding propagation mode with 
much less query response time. For query 11, query 12 and 
query 14, dynamic mode performs better than binding prop-
agation mode with less query response time. 

For query1, query3 and query 14 only, dynamic mode 
performs almost same as free variable resolution mode. For 
the other queries, dynamic mode performs dramatically bet-
ter than free variable resolution mode with much less query 
response time. The query response times of query6 to que-
ry10 are less by orders of magnitude when running our algo-
rithm with the dynamic selection mode in comparison com-
pared to running with binding propagation mode only and 
free variable resolution mode only. In all cases the optimized 
version finishes faster than the better of the other two ver-
sions. Overall, the results in Table XIII confirm the ad-
vantage of dynamically selecting between propagation 
modes. The I/O time of accessing the external triple storage 
magnifies the problem of binding propagation mode only 
and free variable resolution mode only compared to [3] be-

TABLE XII. EVALUATION OF CLAUSE SELECTION OPTIMIZATION ON 

LUBM(10) USING TDB AS EXTERNAL STORAGE 

 
Time (ms), 

Ordered  

Time (ms), 

Left-to right 

Result 

Size (tri-

ples) 

Query1 1045 OutOfMemoryError: 

Java heap space 

4 

Query2 2433 >2.0*106 28 

Query3 31 >2.0*106 6 

Query4 3744 >2.0*106 34 

Query5 15 >2.0*106 719 

Query6 1435 OutOfMemoryError 99,566 

Query7 1903 OutOfMemoryError 67 

Query8 2106 OutOfMemoryError 7,790 

Query9 1918 OutOfMemoryError 2,540 

Query10 1138 OutOfMemoryError 4 

Query11 140 >2.0*106 224 

Query12 358 >2.0*106 15 

Query13 15 >2.0*106 33 

Query14 187 >2.0*106 75,547 

 

TABLE XIII . EVALUATION OF DYNAMIC SELECTION VERSUS 

BINDING PROPAGATION AND FREE VARIABLE MODES ON LUBM(10) 

USING TDB AS EXTERNAL STORAGE 

 
Time (ms), 

Dynamic 

selection  

Time (ms), 

Binding propa-

gation only 

Time (ms), 

Free variable 

resolution only 

Query1 1045 904 904 

Query2 2433 2683 26535 

Query3 31 15 15 

Query4 3744 4149 41605 

Query5 15 15 2244810 

Query6 1435 >6.0*105 20514 

Query7 1903 >6.0*105 20763 

Query8 2106 >6.0*105 42831 

Query9 1918 >6.0*105 21512 

Query10 1138 >6.0*105 19921 

Query11 140 904 19094 

Query12 358 1435 41745 

Query13 15 31 24117 

Query14 187 1154 187 

 

TABLE XI. EVALUATION OF CLAUSE SELECTION OPTIMIZATION ON 

LUBM(1) USING TDB AS EXTERNAL STORAGE 

 
Time (ms), 

Ordered  
Time (ms),  

Left-to right  
Result Size 

(triples) 

Query1 296 >6.0*105 4 

Query2 811 >6.0*105 0 

Query3 46 >6.0*105 6 

Query4 1419 >6.0*105 34 

Query5 31 >6.0*105 719 

Query6 265 >6.0*105 7,790 

Query7 234 >6.0*105 67 

Query8  483 >6.0*105 7,790 

Query9 202 >6.0*105 208 

Query10 156 >6.0*105 4 

Query11 218 >6.0*105 224 

Query12 202 >6.0*105 15 

Query13 15 >6.0*105 1 

Query14 31 >6.0*105 5,916 
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TABLE XIV .COMPARISON AMONG SDB, TDB AND OWLIM-SE AS 

EXTERNAL STORAGE ON I/O TIME PER STORE ACCESS 

 

LUBM(50) 

Number of 

facts 

(triples) 

6,890,640 

 Time 

(ms), 

SDB+ 

Post-

greSQL 

Time 

(ms), 

TDB 

Time (ms), 
OWLIM-

SE 

#of Number 

of access to 

store 

Query1 41.42 2.32 0.70 132 

Query2 50.76 0.48 0.35 353 

Query3 1.63 0.42 0.28 65 

Query4 82.38 0.38 0.14 455 

Query5 1.57 0.36 0.20 81 

Query6 298.74 0.67 5.12 153 

Query7 237.69 0.13 0.52 286 

Query8 72.24 0.07 0.43 917 

Query9 221.45 0.02 0.17 351 

Query10 223.33 0.07 0.14 218 

Query11 2.08 0.05 0.12 616 

Query12 2.07 0.03 0.10 2792 

Query13 1.28 0.21 0.13 86 

Query14 111.76 0.03 0.22 67 

 

cause the knowledge base are in external triple storage TDB 
now. The selection of the threshold in dynamic mode would 
be affected by the employment of external storage and affect 
the number of accesses to store. 

C. Storage System Impact 

To explore the effect of switching the underlying storage 
manager, we compared three external storage employed in 
our optimized backward chaining reasoner on I/O time. For 
all 14 queries from LUBM, the three storage managers SDB, 
TDB and OWLIM-SE, all have same number of accesses 
(calls to the Data-retrieval function) to the underlying store.  

Based on this observation, we show in Table XIV the I/O 
time per access for SDB, TDB and OWLIM-SE using 
LUBM(50). The I/O time per store access of SDB is dramat-
ically longer than both TDB and OWLIM-SE through all 14 
queries in LUBM. From query 1 to 5 and query 13, the I/O 
time per store access of TDB is slightly longer than 
OWLIM-SE. For the other queries, TDB has shorter I/O time 
per store access. In general, TDB and OWLIM-SE have the 
similar performance in terms of I/O time. 

D. Overall Performance 

Finally, we consider the overall performance of our op-
timized backward chaining reasoner when based upon each 
of the three storage managers.  

In order to compare the general performance of three tri-
ple store when employed in our optimized backward chain-
ing reasoner, for all 14 queries from LUBM, we perform a 
comparison among SDB, TDB and OWLIM-SE on query 
response time using LUBM(50) in Table XV . 
       In Table XV, for LUBM (50), from query 1 to query 3 
and query 6, OWLIM-SE has the fastest response time. Jena 

SDB + PostgreSQL performs fastest only for query 4, be-
cause the I/O time of Jena SDB is the longest out of three 
stores. For the rest of the queries, Jena TDB is fastest. 

In Table XVI, we show a similar comparison of TDB and 
OWLIM-SE on query response time using LUBM(100). 
SDB was omitted from this comparison because the loading 
time of SDB is prohibitively long.   

TABLE XV.COMPARISON BETWEEN SDB, TDB AND OWLIM-SE 

AS EXTERNAL STORAGE ON QUERY RESPONSE TIME 

 

LUBM(50) 

Number of 

facts 

(triples) 

6,890,640 

 Clock Time 

 Time (ms), 

SDB+PostgreSQL 

Time (ms), 

TDB 

Time (ms), 

OWLIM-SE 

Query1 6430 13440 3549 

Query2 24960 36102 17046 

Query3 406 58 61 

Query4 46400 71298 45680 

Query5 533 78 156 

Query6 59144 32590 30470 

Query7 83799 34580 45527 

Query8 85563 48307 53013 

Query9 95992 34583 49566 

Query10 63100 20191 27916 

Query11 3466 528 876 

Query12 16253 2403 3199 

Query13 374 39 37 

Query14 8581 4731 5364 

 

TABLE XVI.COMPARISON BETWEEN SDB, TDB AND OWLIM-SE 

AS EXTERNAL STORAGE ON QUERY RESPONSE TIME 

 

LUBM(100) 

Number 

of facts 

(triples) 

13,405,677 

 Time (ms), 

TDB 

Time (ms), 

OWLIM-SE 

Query1 2652 5085 

Query2 13884 29657 

Query3 31 46 

Query4 49109 82664 

Query5 46 78 

Query6 26020 51277 

Query7 39873 76752 

Query8 58609 98343 

Query9 46925 85456 

Query10 26894 52821 

Query11 452 826 

Query12 920 1716 

Query13 15 31 

Query14 7222 11263 
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In Table XVI, for LUBM(50), Jena TDB has better per-
formance through all 14 queries. In general, our optimized 
backward chaining reasoner and external storage Jena TDB 
has the best performance especially when the size of the 
knowledge base increases.  

VIII. CONCLUSION AND FUTURE WORK  

As knowledge bases proliferate on the Web, it becomes 
more plausible to add reasoning services to support more 
general queries than simple retrievals. In this paper, we have 
addressed a key issue of the large amount of information in a 
semantic web of data about science research. Scale in itself is 
not really the issue. Problems arise when we wish to reason 
about the large amount of data and when the information 
changes rapidly. In this paper, we report on our efforts to use 
backward-chaining reasoners to accommodate the changing 
knowledge base. We developed a query-optimization algo-
rithm that will work with a reasoner interposed between the 
knowledge base and the query interpreter. We performed 
experiments, comparing our implementation with traditional 
backward-chaining reasoners and found, on the one hand, 
that our implementation could handle much larger 
knowledge bases and, on the other hand, could work with 
more complete rule sets (including all of the OWL rules). 
When both reasoners produced the same results our imple-
mentation was never worse and in most cases significantly 
faster (in some cases by orders of magnitude). 

The analysis of reasoning over a large knowledge base 
that requires external storage has shown that no one compo-
nent (backward chaining, I/O, middleware) dominates per-
formance and thus improvements to any one of the three 
major components of the system will have only modest ef-
fect on the total time.  

We have also addressed the issue of being able to scale 
the knowledge base to the level forward-chaining reasoners 
can handle. Preliminary results indicate that we can scale up 
to real world situations such as 6 Million triples. Optimizing 
the backward-chaining reasoner, together with the query-
optimization allows us to actually outperform forward-
chaining reasoners in scenarios where the knowledge base is 
subject to frequent change. 

Although 6 million triples remains a modest size for a 
knowledge base, we believe that the key performance limita-
tion is associated with the number of triples that are being 
brought into memory as intermediate results during the rea-
soning for a specific query. In [37] we tie the use of reason-
ing to a concept of “trust” reflecting changes made to the 
knowledge base since its last instantiation. Trust can be ex-
ploited to decide what goals arising during evaluation of a 
query require reasoning and what can be resolved by imme-
diate lookup. The net effect is that considerably larger 
knowledge bases can be handled by limiting the scope of 
backward chaining to portions of the knowledge base un-
trusted due to recent changes. 

Assessing the impact of using external storage on the in-
dividual optimization techniques produced in both of the 
cases we analyzed the same result. Having an external triple 
store magnified the effect of our optimization techniques. 
When we analyzed storage access we found that SDB was 

significantly slower than TDB and OWLIM-SE. The latter 
two had about the same performance. As the size of the 
knowledge base kept increasing the advantage of using Jena 
TDB with our optimized backward-chaining algorithm be-
came more pronounced.  

We will explore in future work ways to minimize in our 
backward chaining algorithms the number and size of re-
quests for input from the underlying store and to employ 
caching techniques. 
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