
23

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Scalable Backward Chaining-based Reasoner for a Semantic Web

Hui Shi

Department of Management and Information Sciences

University of Southern Indiana

Evansville, USA

hshi@cs.odu.edu

Kurt Maly, Steven Zeil

Department of Computer Science

Old Dominion University

Norfolk, USA

{maly, zeil}@cs.odu.edu

Abstract — In this paper we consider knowledge bases that

organize information using ontologies. Specifically, we investi-

gate reasoning over a semantic web where the underlying

knowledge base covers linked data about science research that

are being harvested from the Web and are supplemented and

edited by community members. In the semantic web over

which we want to reason, frequent changes occur in the under-

lying knowledge base, and less frequent changes occur in the

underlying ontology or the rule set that governs the reasoning.

Interposing a backward chaining reasoner between a

knowledge base and a query manager yields an architecture

that can support reasoning in the face of frequent chang-

es. However, such an interposition of the reasoning introduces

uncertainty regarding the size and effort measurements typi-

cally exploited during query optimization. We present an algo-

rithm for dynamic query optimization in such an architecture.

We also introduce new optimization techniques to the back-

ward-chaining algorithm. We show that these techniques to-

gether with the query-optimization reported on earlier, will

allow us to actually outperform forward-chaining reasoners in

scenarios where the knowledge base is subject to frequent

change. Finally, we analyze the impact of these techniques on a

large knowledge base that requires external storage.

Keywords-semantic web; ontology; reasoning; query

optimization; backward chaining.

I. INTRODUCTION

Consider a potential chemistry Ph.D. student who is try-
ing to find out what the emerging areas are that have good
academic job prospects. What are the schools and who are
the professors doing groundbreaking research in this area?
What are the good funded research projects in this area?
Consider a faculty member who might ask, “Is my record
good enough to be tenured at my school? At another school?”
It is possible for these people each to mine this information
from the Web. However, it may take a considerable effort
and time, and even then the information may not be complete,
may be partially incorrect, and would reflect an individual
perspective for qualitative judgments. Thus, the efforts of the
individuals neither take advantage of nor contribute to others’
efforts to reuse the data, the queries, and the methods used to
find the data. We believe that some of these qualitative de-
scriptors such as “groundbreaking research in data mining”
may come to be accepted as meaningful if they represent a
consensus of an appropriate subset of the community at large.

However, even in the absence of such sharing, we believe
the expressiveness of user-defined qualitative descriptors is
highly desirable.

The system implied by these queries is an example of a
semantic web service where the underlying knowledge base
covers linked data about science research that are being har-
vested from the Web and are supplemented and edited by
community members. The query examples given above also
imply that the system not only supports querying of facts but
also rules and reasoning as a mechanism for answering que-
ries.

A key issue in such a semantic web service is the effi-
ciency of reasoning in the face of large scale and frequent
change. Here, scaling refers to the need to accommodate the
substantial corpus of information about researchers, their
projects and their publications, and change refers to the dy-
namic nature of the knowledge base, which would be updat-
ed continuously [1].

In semantic webs, knowledge is formally represented by
an ontology as a set of concepts within a domain, and the
relationships between pairs of concepts. The ontology is used
to model a domain, to instantiate entities, and to support rea-
soning about entities. Common methods for implementing
reasoning over ontologies are based on First Order Logic,
which allows one to define rules over the ontology. There are
two basic inference methods commonly used in first order
logic: forward chaining and backward chaining [2].

A question/answer system over a semantic web may ex-
perience changes frequently. These changes may be to the
ontology, to the rule set or to the instances harvested from
the web or other data sources. For the examples discussed in
our opening paragraph, such changes could occur hundreds
of times a day. Forward chaining is an example of data-
driven reasoning, which starts with the known data in the
knowledge base and applies modus ponens in the forward
direction, deriving and adding new consequences until no
more inferences can be made. Backward chaining is an ex-
ample of goal-driven reasoning, which starts with goals from
the consequents, matching the goals to the antecedents to
find the data that satisfies the consequents. As a general rule
forward chaining is a good method for a static knowledge
base and backward chaining is good for the more dynamic
cases.

24

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The authors have been exploring the use of backward
chaining as a reasoning mechanism supportive of frequent
changes in large knowledge bases. Queries may be com-
posed of mixtures of clauses answerable directly by access to
the knowledge base or indirectly via reasoning applied to
that base. The interposition of the reasoning introduces un-
certainty regarding the size and effort associated with resolv-
ing individual clauses in a query. Such uncertainty poses a
challenge in query optimization, which typically relies upon
the accuracy of these estimates. In this paper, we describe an
approach to dynamic optimization that is effective in the
presence of such uncertainty [1].

In this paper, we will also address the issue of being able
to scale the knowledge base beyond the level standard back-
ward-chaining reasoners can handle. We shall introduce new
optimization techniques to a backward-chaining algorithm
and shall show that these techniques, together with query-
optimization, will allow us to actually outperform forward-
chaining reasoners in scenarios where the knowledge base is
subject to frequent change.

Finally, we explore the challenges posed by scaling the
knowledge base to a point where external storage is required.
This raises issues about the middleware that handles external
storage, how to optimize the amount of data and what data
are to be moved to internal storage.

In Section II, we provide background material on the se-
mantic web, reasoning, and database querying. Section III
gives the overall query-optimization algorithm for answering
a query. In Section IV, we report on experiments comparing
our new algorithm with a commonly used backward chaining
algorithm. Section V introduces the optimized backward-
chaining algorithm and Section VI provides details on the
new techniques we have introduced to optimize performance.
A preliminary evaluation of these techniques on a smaller
scale, using in-memory storage, is reported in a separate pa-
per [3]. In Section VII, we describe the issues raised when
scaling to an externally stored knowledge base, evaluate the
performance of our query optimization and reasoner optimi-
zations in that context, and perform an overall comparison
with different data base implementations.

II. RELATED WORK

A number of projects (e.g., Libra [4][5], Cimple [6], and
Arnetminer [7]) have built systems to capture limited aspects
of community knowledge and to respond to semantic que-
ries. However, all of them lack the level of community col-
laboration support that is required to build a knowledge base
system that can evolve over time, both in terms of the
knowledge it represents as well as the semantics involved in
responding to qualitative questions involving reasoning.

Many knowledge bases [8-11] organize information us-
ing ontologies. Ontologies can model real world situations,
can incorporate semantics, which can be used to detect con-
flicts and resolve inconsistencies, and can be used together
with a reasoning engine to infer new relations or proof
statements.

Two common methods of reasoning over the knowledge
base using first order logic are forward chaining and back-
ward chaining [2]. Forward chaining is an example of data-

driven reasoning, which starts with the known data and ap-
plies modus ponens in the forward direction, deriving and
adding new consequences until no more inferences can be
made. Backward chaining is an example of goal-driven rea-
soning, which starts with goals from the consequents match-
ing the goals to the antecedents to find the data that satisfies
the consequents. Materialization and query-rewriting are
inference strategies adopted by almost all of the state of the
art ontology reasoning systems. Materialization means pre-
computation and storage of inferred truths in a knowledge
base, which is always executed during loading the data and
combined with forward-chaining techniques. Query-
rewriting means expanding the queries, which is always exe-
cuted during answering the queries and combine with back-
ward-chaining techniques.

Materialization and forward chaining are suitable for fre-
quent computation of answers with data that are relatively
static. OWLIM [12] and Oracle 11g [13], for example im-
plement materialization. Query-rewriting and backward
chaining are suitable for efficient computation of answers
with data that are dynamic and infrequent queries. Virtuoso
[14], for example, implements a mixture of forward-chaining
and backward-chaining. Jena [15] supports three ways of
inferencing: forward-chaining, limited backward-chaining
and a hybrid of these two methods.

In conventional database management systems, query op-
timization [16] is a function to examine multiple query plans
and selecting one that optimizes the time to answer a query.
Query optimization can be static or dynamic. In the Semantic
Web, query optimization techniques for the common query
language, SPARQL [17][18], rely on a variety of techniques
for estimating the cost of query components, including selec-
tivity estimations [19], graph optimization [20], and cost
models [21]. These techniques assume a fully materialized
knowledge base.

Benchmarks evaluate and compare the performances of
different reasoning systems. The Lehigh University Bench-
mark (LUBM) [22] is a widely used benchmark for evalua-
tion of Semantic Web repositories with different reasoning
capabilities and storage mechanisms. LUBM includes an
ontology for university domain, scalable synthetic OWL
data, and fourteen queries.

III. DYNAMIC QUERY OPTIMIZATION WITH AN

INTERPOSED REASONER

A query is typically posed as the conjunction of a number
of clauses. The order of application of these clauses is irrele-
vant to the logic of the query but can be critical to perfor-
mance.

In a traditional data base, each clause may denote a dis-
tinct probe of the data base contents. Easily accessible in-
formation about the anticipated size and other characteristics
of such probes can be used to facilitate query optimization.

The interposition of a reasoner between the query handler
and the underlying knowledge base means that not all claus-
es will be resolved by direct access to the knowledge base.
Some will be handed off to the reasoner, and the size and
other characteristics of the responses to such clauses cannot
be easily predicted in advance, partly because of the expense

25

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

QueryResponseanswerAQuery(query: Query)

{

 // Set up initial SolutionSpace

 SolutionSpacesolutionSpace = empty; 

 // Repeatedly reduce SolutionSpace by

 //applying the most restrictive pattern

 while (unexplored patterns remain

 in the query) {

 computeEstimatesOfReponseSize

 (unexplored patterns); 

 QueryPattern p = unexplored pattern

 With smallest estimate; 

 // Restrict SolutionSpace via

 // exploration of p

 QueryResponseanswerToP =

 BackwardChain(p); 

 solutionSpace.restrictTo (

 answerToP); 

 }

 return solutionSpace.finalJoin();

}

Figure 1. Answering a Query.

of applying the reasoner and partly because that expense
depends upon the bindings derived from clauses already ap-
plied. If the reasoner is associated with an ontology, however,
it may be possible to relieve this problem by exploiting
knowledge about the data types introduced in the ontology.

 In this section, we describe an algorithm for resolving
such queries using dynamic optimization based, in part, upon
summary information associated with the ontology. In this
algorithm, we exploit two key ideas: 1) a greedy ordering of
the proofs of the individual clauses according to estimated
sizes anticipated for the proof results, and 2) deferring joins
of results from individual clauses where such joins are likely
to result in excessive combinatorial growth of the intermedi-
ate solution.

We begin with the definitions of the fundamental data
types that we will be manipulating. Then we discuss the al-
gorithm for answering a query. A running example is pro-
vided to make the process more understandable.

We model the knowledge base as a collection of triples.
A triple is a 3-tuple (x,p,y) where x, p, and y are URIs or
constants and where p is generally interpreted as the identi-
fier of a property or predicate relating x and y. For example,
a knowledge base might contains triples

(Jones, majorsIn, CS), (Smith, majorsIn, CS),
(Doe, majorsIn, Math), (Jones, registeredIn, Calculus1),
(Doe, registeredIn, Calculus1).

A QueryPattern is a triple in which any of the three com-

ponents can be occupied by references to one of a pool of
entities considered to be variables. In our examples, we will
denote variables with a leading ‘?’. For example, a query
pattern denoting the idea “Which students are registered in
Calculus1?” could be shown as

(?Student,registeredIn,Calculus1).

A query is a request for information about the contents of

the knowledge base. The input to a query is modeled as a
sequence of QueryPatterns. For example, a query “What are
the majors of students registered in Calculus1?” could be
represented as the sequence of two query patterns

 [(?Student,registeredIn,Calculus1),
(?Student, majorsIn, ?Major)].

The output from a query will be a QueryResponse. A

QueryResponse is a set of functions mapping variables to
values in which all elements (functions) in the set share a
common domain (i.e., map the same variables onto values).
Mappings from the same variables to values can be also re-
ferred to as variable bindings. For example, the QueryRe-
sponse of query pattern (?Student, majorsIn, ?Major) could
be the set

{{?Student => Jones, ?Major=>CS},
{?Student => Smith, ?Major=>CS },
 {?Student => Doe, ?Major=> Math }}.

The SolutionSpace is an intermediate state of the solution
during query processing, consisting of a sequence of (prelim-
inary) QueryResponses, each describing a unique domain.
For example, the SolutionSpace of the query “What are the
majors of students registered in Calculus1?” that could be
represented as the sequence of two query patterns as de-
scribed above could first contain two QueryResponses:

[{{?Student => Jones, ?Major=>CS},
{?Student => Smith, ?Major=>CS },
{?Student => Doe, ?Major=> Math }},
{{?Student => Jones},{?Student => Doe }}]

Each Query Response is considered to express a constraint
upon the universe of possible solutions, with the actual solu-
tion being intersection of the constrained spaces. An equiva-
lent Solution Space is therefore:

[{{?Student => Jones, ?Major=>CS},
{?Major => Math, ?Student =>Doe}}],

Part of the goal of our algorithm is to eventually reduce

the Solution Space to a single Query Response like this last
one.

Fig. 1 describes the top-level algorithm for answering a
query. A query is answered by a process of progressively
restricting the SolutionSpace by adding variable bindings (in
the form of Query Responses). The initial space with no
bindings  represents a completely unconstrained Solu-
tionSpace. The input query consists of a sequence of query
patterns.

We repeatedly estimate the response size for the remain-

ing query patterns , and choose the most restrictive pattern
 to be considered next. We solve the chosen pattern by
backward chaining , and then merge the variable bindings
obtained from backward chaining into the SolutionSpace 

26

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF

ESTIMATED SIZE

Clause Being Joined Resulting SolutionSpace

(initial) []

3 [[{(?C1=>ci)}i=1..3]

4 [{(?C1=>ci, ?C2=>ci)}i=1..3, j=1..3]

1 [{(?S1=>si, ?C1=>ci, ?C2=>c’i)}i=1..270]

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]

TABLE I. EXAMPLE Query 1

Clause

QueryPattern Query Response

1 ?S1 takesCourse ?C1 {(?S1=>si,?C1=>ci)}i=1..100,000

2 ?S1 takesCourse ?C2 {(?S1=>sj, ?C2=>cj)}j=1..100,000

3 ?C1 taughtBy fac1 {(?C1=>cj)}j=1..3

4 ?C2taughtBy fac1 {(?C2=>cj)}j=1..3

via the restrictTo function, which performs a (possibly de-
ferred) join as described later in this section.

When all query patterns have been processed, if the Solu-
tionSpace has not been reduced to a single Query Response,
we perform a final join of these variable bindings into single
one variable binding that contains all the variables involved
in all the query patterns . The finalJoin function is de-
scribed in more detail later in this section.

The estimation of response sizes in  can be carried out
by a combination of 1) exploiting the fact that each pattern
represents that application of a predicate with known domain
and range types. If these positions in the triple are occupied
by variables, we can check to see if the variable is already
bound in our SolutionSpace and to how many values it is
bound. If it is unbound, we can estimate the size of the do-
main (or range) type, 2) accumulating statistics on typical
response sizes for previously encountered patterns involving
that predicate. The effective mixture of these sources of in-
formation is a subject for future work.

For example, suppose there are 10,000 students, 500
courses, 50 faculty members and 10 departments in the
knowledge base. For the query pattern (?S takesCourse ?C),
the domain of takesCourse is Student, while the range of
takesCourse is Course. An estimate of the numbers of triples
matching the pattern (?S takesCourse ?C) might be 100,000
if the average number of courses a student has taken is ten,
although the number of possibilities is 500,000.

By using a greedy ordering  of the patterns within a
query, we hope to reduce the average size of the Solu-
tionSpaces. For example, suppose that we were interested in
listing all cases where any student took multiple courses
from a specific faculty member. We can represent this query
as the sequence of the patterns in Table I. These clauses are
shown with their estimated result sizes indicated in the sub-
scripts. The sizes used in this example are based on one of
our LUBM [22] prototypes.

To illustrate the effect of the greedy ordering, let us as-
sume first that the patterns are processed in the order given.
A trace of the answerAQuery algorithm, showing one row
for each iteration of the main loop is shown in Table II. The
worst case in terms of storage size and in terms of the size of
the sets being joined is at the join of clause 2, when the join
of two sets of size 100,000 yields 1,000,000 tuples.

Now, consider the effect of applying the same patterns in
ascending order of estimated size, shown in Table III. The
worst case in terms of storage size and in terms of the size of
the sets being joined is at the final addition of clause 2, when
a set of size 100,000 is joined with a set of 270. Compared to
Table II, the reduction in space requirements and in time
required to perform the join would be about an order of
magnitude.

The output from the backward chaining reasoner will be
a query response. These must be merged into the currentSo-
lutionSpace as a set of additional restrictions. Fig. 2 shows
how this is done.

Each binding already in the SolutionSpace  that shares
at least one variable with the new binding  is applied to the
new binding, updating the new binding so that its domain is
the union of the sets of variables in the old and new bindings
and the specific functions represent the constrained cross-
product (join) of the two. Any such old bindings so joined to
the new one can then be discarded.

The join function at  returns the joined QueryResponse
as an update of its first parameter. The join operation is car-
ried out as a hash join [23] with an average complexity
O(n1+n2+m) where the ni are the number of tuples in the two
input sets and m is the number of tuples in the joined output.

The third (boolean) parameter of the join call indicates
whether the join is forced (true) or optional (false), and the
boolean return value indicates whether an optional join was
actually carried out. Our intent is to experiment in future
versions with a dynamic decision to defer optional joins if a
partial calculation of the join reveals that the output will far
exceed the size of the inputs, in hopes that a later query
clause may significantly restrict the tuples that need to par-
ticipate in this join.

As noted earlier, our interpretation of the SolutionSpace
is that it denotes a set of potential bindings to variables, rep-
resented as the join of an arbitrary number of QueryRe-
sponses. The actual computation of the join can be deferred,
either because of a dynamic size-based criterion as just de-
scribed, or because of the requirement at  that joins be car-
ried out immediately only if the input QueryResponses share
at least one variable. In the absence of any such sharing, a
join would always result in an output size as long as the
products of its input sizes. Deferring such joins can help re-
duce the size of the SolutionSpace and, as a consequence, the

TABLE II. TRACE OF JOIN OF CLAUSES IN THE ORDER GIVEN

Clause Being

Joined

Resulting SolutionSpace

(initial) []

1 [{(?S1=>si, ?C1=>ci)}i=1..100,000]

2 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..1,000,000]
(based on an average of 10 courses / student)

3 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..900]

(Joining this clause discards courses taught by other
faculty.)

4 [{(?S1=>si, ?C1=>ci, ?C2=>ci)}i=1..60]

27

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

QueryResponseSolutionSpace::finalJoin ()

{

 sort the bindings in this solution

 space into ascending order by

 number of tuples; 

 QueryResponse result = first of the

 sorted bindings;

 for each remaining binding b

 in solutionSpace {

 join (result, b, true); 

 }

 return result;

}

Figure 3. Final Join.

TABLE V. TRACE OF JOIN OF CLAUSES IN ASCENDING ORDER OF

ESTIMATED SIZE

Clause

Being

Joined

Resulting SolutionSpace

(initial) []

4 [{(?F1=>fi)}i=1..50]

2 [{(?F1=>fi, ?S1=>si)}i=1..50,000]

3 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..150,000]

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000]

void SolutionSpace::restrictTo (QueryRe-

sponsenewbinding)

{

 for each element oldBinding

 in solutionSpace

 {

 if (newbinding shares variables

 with oldbinding){

 bool merged = join(newBinding,

 oldBinding,false);

 if (merged) {

 remove oldBinding from

 solutionSpace;

 }

 }

 }

 add newBinding to solutionSpace;

}

Figure 2. Restricting a SolutionSpace.

 cost of subsequent joins.
When all clauses of the original query have been pro-

cessed (Fig. 1), we may have deferred several joins be-
cause they involved unrelated variables or because they ap-
peared to lead to a combinatorial explosion on their first at-
tempt. The finalJoin function shown in Fig.3 is tasked with
reducing the internal SolutionSpace to a single QueryRe-
sponse, carrying out any join operations that were deferred
by the earlier restrictTo calls. In many ways, finalJoin is a
recap of the answerAQuery and restrictTo functions, with
two important differences:

 Although we still employ a greedy ordering to reduce
the join sizes, there is no need for estimated sizes be-
cause the actual sizes of the input QueryResponses are
known.

 There is no longer an option to defer joins between Que-
ryResponses that share no variables. All joins must be
performed in this final stage and so the “forced” pa-
rameter to the optional join function is set to true.

For example, suppose that we were processing a different
example query to determine which mathematics courses are
taken by computer science majors, represented as the se-
quence of the following QueryPatterns, shown with their
estimated sizes in Table IV.

To illustrate the effect of deferring joins on responses
that do not share variables, even with the greedy ordering
discussed earlier, suppose, first, that we perform all joins
immediately. Assuming the greedy ordering that we have
already advocated, the trace of the answerAQuery algorithm
is shown in Table V.

In the prototype from which this example is taken, the
Math department teaches 150 different courses and there are
1,000 students in the CS Dept. Consequently, the merge of
clause 3 (1,500 tuples) with the SolutionSpace then contain-
ing 50,000 tuples yields considerably fewer tuples than the
product of the two input sizes. The worst step in this trace is
the final join, between sets of size 100,000 and 150,000.

But consider that the join of clause 2 in that trace was be-
tween sets that shared no variables. If we defer such joins,
then the first SolutionSpace would be retained “as is”. The
resulting trace is shown in Table VI.

The subsequent addition of clause 3 results in an imme-
diate join with only one of the responses in the solution
space. The response involving ?S1 remains deferred, as it
shares no variables with the remaining clauses in the Solu-
tionSpace. The worst join performed would have been be-
tween sets of size 100,000 and 150, a considerable improve-
ment over the non-deferred case.

IV. EVALUATION OF QUERY OPTIMIZATION

In this section, we compare our answerAQuery algorithm
of Fig. 1 against an existing system, Jena, that also answers
queries via a combination of an in-memory backward chain-
ing reasoner with basic knowledge base retrievals.

The comparison was carried out using two LUBM
benchmarks consisting of one knowledge base describing a
single university and another describing 10 universities. Prior
to the application of any reasoning, these benchmarks con-
tained 100,839 and 1,272,871 triples, respectively.

We evaluated these using a set of 14 queries taken from
LUBM [22]. These queries involve properties associated
with the LUBM university-world ontology, with none of the
custom properties/rules whose support is actually our end

TABLE IV. EXAMPLE QUERY 2

Clause QueryPattern Query Response

1 (?S1 takesCourse ?C1) {(?S1=>sj,?C1=>cj)}j=1..100,000

2 (?S1 memberOf CSDept) {(?S1=>sj)}j=1..1,000

3 (?C1 taughtby ?F1) {(?C1=>cj, ?F1=>fj)}j=1..1,500

4 (?F1 worksFor MathDept) {(?F1=>fi)}i=1..50

28

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII COMPARISON AGAINST JENA WITH BACKWARD CHAINING

LUBM: 1 University, 100,839 triples 10 Universities, 1,272,871 triples

 answerAQuery Jena Backwd answerAQuery Jena Backwd

 response

time

result

size

response

time

result

size

response

time

result

size

response

time

result

size

Query1 0.20 4 0.32 4 0.43 4 0.86 4

Query2 0.50 0 130 0 2.1 28 n/a n/a

Query3 0.026 6 0.038 6 0.031 6 1.5 6

Query4 0.52 34 0.021 34 1.1 34 0.41 34

Query5 0.098 719 0.19 678 0.042 719 1.0 678

Query6 0.43 7,790 0.49 6,463 1.9 99,566 3.2 82,507

Query7 0.29 67 45 61 2.2 67 8,100 61

Query8 0.77 7,790 0.91 6,463 3.7 7,790 52 6,463

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a

Query10 0.18 4 0.54 0 1.8 4 1.4 0

Query11 0.24 224 0.011 0 0.18 224 0.032 0

Query12 0.23 15 0.0020 0 0.33 15 0.016 0

Query13 0.025 1 0.37 0 0.21 33 0.89 0

Query14 0.024 5,916 0.58 5,916 0.18 75,547 2.6 75,547

goal (as discussed in [3]). Answering these queries requires,
in general, reasoning over rules associated with both RDFS
and OWL semantics, though some queries can be answered
purely on the basis of the RDFS rules.

Table VII compares our algorithm to the Jena system us-
ing a pure backward chaining reasoner. Our comparison fo-
cuses on response time, as our optimization algorithm should
be neutral with respect to result accuracy, offering no more
and no less accuracy than is provided by the interposed rea-
soner.

As a practical matter, however, Jena’s system cannot
process all of the rules in the OWL semantics rule set, and
was therefore run with a simpler ruleset describing only the
RDFS semantics. This discrepancy accounts for the differ-
ences in result size (# of tuples) for several queries. Result
sizes in the table are expressed as the number of tuples re-
turned by the query and response times are given in seconds.
An entry of “n/a” means that the query processing had not
completed (after 1 hour).

Despite employing the larger and more complicated rule
set, our algorithm generally ran faster than Jena, sometimes
by multiple orders of magnitude. The exceptions to this trend
are limited to queries with very small result set sizes or que-
ries 10-13, which rely upon OWL semantics and so could not
be answered correctly by Jena. In two queries (2 and 9), Jena
timed out.

Jena also has a hybrid mode that combines backward
chaining with some forward-style materialization. Table VIII

shows a comparison of our algorithm with a pure backward
chaining reasoner against the Jena hybrid mode. Again, an
“n/a” entry indicates that the query processing had not com-
pleted within an hour, except in one case (query 8 in the 10
Universities benchmark) in which Jena failed due to ex-
hausted memory space.

The times here tend to be someone closer, but the Jena
system has even more difficulties returning any answer at all
when working with the larger benchmark. Given that the
difference between this and the prior table is that, in this case,
some rules have already been materialized by Jena to yield,
presumably, longer lists of tuples, steps taken to avoid possi-
ble combinatorial explosion in the resulting joins would be
increasingly critical.

V. OPTIMIZED BACKWARD CHAINING

ALGORITHM

When the knowledge base is dynamic, backward chain-
ing is a suitable choice for ontology reasoning. However, as
the size of the knowledge base increases, standard backward
chaining strategies [2][15] do not scale well for ontology
reasoning. In this section, first, we discuss issues some
backward chaining methods expose for ontology reasoning.
Second, we present our backward chaining algorithm that
introduces new optimization techniques as well as addresses
the known issues.

A. Issues

1. Guaranteed Termination: Backward chaining is usual-
ly implemented by employing a depth-first search strategy.
Unless methods are used to prevent it, the depth-first search
could go into an infinite loop. For example, in our rule set,
we have rules that involve each other when proving their
heads:

rule1: (?P owl:inverseOf ?Q) -> (?Q owl:inverseOf ?P)
rule2;(?P owl:inverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)

TABLE VI. TRACE OF JOIN OF CLAUSES WITH DEFERRED JOINS

Clause

Being

Joined

Resulting SolutionSpace

(initial) []

4 [{(?F1=>fi)}i=1..50]

2 [{(?F1=>fi)}i=1..50,{(?S1=>sj)}j=1..1,000]

3 [{(?F1=>fi, ?C1=>ci)}i=1..150 , {(?S1=>sj)}j=1..1,000]

1 [{(?F1=>fi, ?S1=>si, ?C1=>ci)}i=1..1,000]

29

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII. COMPARISON AGAINST JENA WITH WITH HYBRID REASONER

LUBM 1 University, 100,839 triples 10 Universities, 1,272,871 triples

 answerAQuery Jena Hybrid answerAQuery Jena Hybrid

 response

time

result

size

response

time

result

size

response

time

result

size

response

time

result

size

Query1 0.20 4 0.37 4 0.43 4 0.93 4

Query2 0.50 0 1,400 0 2.1 28 n/a n/a

Query3 0.026 6 0.050 6 0.031 6 1.5 6

Query4 0.52 34 0.025 34 1.1 34 0.55 34

Query5 0.098 719 0.029 719 0.042 719 2.7 719

Query6 0.43 7,790 0.43 6,463 1.9 99,566 3.7 82,507

Query7 0.29 67 38 61 2.2 67 n/a n/a

Query8 0.77 7,790 2.3 6,463 3.7 7,790 n/a n/a

Query9 0.36 208 n/a n/a 2.5 2,540 n/a n/a

Query10 0.18 4 0.62 0 1.8 4 1.6 0

Query11 0.24 224 0.0010 0 0.18 224 0.08 0

Query12 0.23 15 0.0010 0 0.33 15 0.016 0

Query13 0.025 1 0.62 0 0.21 33 1.2 0

Query14 0.024 5,916 0.72 5,916 0.18 75,547 2.5 75,547

In order to prove body clause ?P owl:inverseOf ?Q in

rule1, we need to prove the body of rule2 first, because the
head of rule2 matches body clause ?P owl:inverseOf ?Q. In
order to prove the first body clause ?P owl:inverseOf ?Q in
rule2, we also need to prove the body clause ?P owl: in-

verseOf ?Q in rule1, because the head of rule1 matches body
clause ?P owl:inverseOf ?Q.

Even in cases where depth-first search terminates, the
performance may suffer due to time spent exploring, in depth,
branches that ultimately do not lead to a proof.

We shall use the OLDT [24] method to avoid infinite re-
cursion and will introduce optimizations aimed at further
performance improvement in Section VI.C.

2. The owl:sameAs Problem: The built-in OWL property
owl:sameAs links two equivalent individuals. An
owl:sameAs triple indicates that two linked individuals have
the same “identity” [25]. An example of a rule in the OWL-
Horst rule set that involves the owl:sameAs relations is the
rule: “(?x owl:sameAs ?y) (?x ?p ?z) -> (?y ?p ?z)”.

Consider a triple, which has m owl:sameAs equivalents
of its subject, n owl:sameAs equivalents of its predicate, and
k owl:sameAs equivalents of its object, Then m*n*k triples
would be derivable from that triple.

Reasoning with the owl:sameAs relation can result in a
multiplication of the number of instances of variables during
backward-chaining and expanded patterns in the result. As
long as that triple is in the result set, all of its equivalents
would be in the result set as well. This adds cost to the rea-
soning process in both time and space.

B. The Algorithm

The purpose of this algorithm is to generate a query re-
sponse for a given query pattern based on a specific rule set.
We shall use the following terminology.

A VariableBinding is a substitution of values for a set of
variables.

A RuleSet is a set of rules for interpretation by the rea-
soning system. This can include RDFS Rules [26], Horst

rules [27] and custom rules [28] that are used for ontology
reasoning. For example,

[rdfs1: (?x ?p ?y) -> (?p rdf:type rdf:Property)].

The main algorithm calls the function BackwardChaining,
which finds a set of triples that can be unified with pattern
with bindings varList, any bindings to variables appearing in
headClause from the head of applied rule, bodylist that are
reserved for solving the recursive problem. Given a Goal and
corresponding matched triples, a QueryResponse is created
and returned in the end.

Our optimized BackwardChaining algorithm, described
in Fig. 4, is based on conventional backward chaining algo-
rithms [2]. The solutionList is a partial list of solutions al-
ready found for a goal.

For a goal that has already been resolved, we simply get
the results from solutionList. For a goal that has not been
resolved yet, we will seek a resolution by applying the rules.
We initially search in the knowledge base to find triples that
match the goal (triples in which the subject, predicate and
object are compatible with the query pattern). Then, we find
rules with heads that match the input pattern. For each such
rule we attempt to prove it by proving the body clauses (new
goals) subject to bindings from already-resolved goals from
the same body. The process of proving one rule is explained
below. The method of “OLDT” [24] is adopted to solve the
non-termination issue we mentioned in Section VI.C. Finally,
we apply any “same as” relations to candidateTriples to
solve the owl:sameAs problem. During this process of
“SameAsTripleSearch”, we add all equivalent triples to the
existing results to produce complete results.

Fig. 5 shows how to prove one rule, which is a step in Fig.
4. The heart of the algorithm is the loop through the clauses
of a rule body, attempting to prove each clause. Some form
of selection function is implied that selects the next unproven
clause for consideration on each iteration. Traditionally, this
would be left-to-right as the clauses are written in the rule.
Instead, we order the body clauses by the number of free
variables. The rationale for this ordering will be discussed in
the following Section VI. A.

30

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The process of proving one goal (a body clause from a
rule) is given in Fig. 6. Before we prove the body clauses
(new goals) in each rule, the value of a calculated dynamic
threshold decides whether we perform the substitution or not.
We substitute the free variables in the body clause with bind-
ings from previously resolved goals from the same body.
The step helps to improve the reasoning efficiency in terms
of response time and scalability and will be discussed in Sec-
tion VI.B. We call the BackwardChaining function to find a
set of triples that can be unified with body clause (new goal)
with substituted variables. Bindings will also be updated

gradually following the proof of body clauses.

VI. OPTIMIZATION DETAILS & DISCUSSION

There are four optimizations that have been introduced in
our algorithm for backward chaining. These optimizations
are: 1) the implementation of the selection function, which
implements the ordering the body clauses in one rule by the
number of free variables, 2) the upgraded substitute function,
which implements the substitution of the free variables in the
body clauses in one rule based on calculating a threshold that
switches resolution methods, 3) the application of OLDT and
4) solving of the owl:sameAs problem. Of these, optimiza-
tion 1 is an adaptation of techniques employed in other rea-
soning contexts [29][30] and optimizations 3 and 4 have
appeared in [24, 31] whereas techniques 2 are new. We will
describe the implementation details of these optimizations
below. A preliminary evaluation of these techniques is re-
ported in a separate paper. [3] A more extensive evaluation is
reported here in Section VII.

A. Ordered Selection Function

The body of a rule consists of a conjunction of multiple
clauses. Traditional SLD (Selective Linear Definite) clause
resolution systems such as Prolog would normally attempt
these in left-to-right order, but, logically, we are free to at-
tempt them in any order.

BackwardChaining(pattern,headClause,bodylist,level,varList)

{

 if (pattern not in solutionList){

 candidateTriples+= matches to pattern that found in knowledge base;

 solutionList+= mapping from pattern to candidateTriples;

 relatedRules = rules with matching heads to pattern that found in ruleList;

 realizedRules = all the rules in relatedRules with substitute variables from pattern;

 backupvarList = back up clone of varList;

 for (each oneRule in realizedRules){

 if(attemptToProveRule(oneRule, varList, level)){

 resultList= unify(headClause, varList);

 candidateTriples+= resultList;

 }

 oldCandidateTriples = triples in mappings to headClause from solutionList;

 if (oldCandidateTriples not contain candidateTriples){

 update solutionList with candidateTriples;

 if(UpdateafterUnificationofHead(headClause, resultList))

 {

 newCandidateTriples = triples in mappings to headClause from solutionList;

 candidateTriples+= newCandidateTriples;

 }

 }

 }

}

 else /* if (solutionList.contains(pattern)) */

{

 candidateTriples+= triples in mappings to pattern from solutionList;

 Add reasoning context, including head and bodyRest to lookupList;

}

SameAsTripleSearch(candidateTriples);

return candidateTriples;

}

Figure 4. Process of BackwardChaining.

attemptToProveRule(oneRule,varList,level)

{

 body = rule body of oneRule;

 sort body by ascending number of free

 variables;

 head = rule head of oneRule;

 for (each bodyClause in body)

 {

 canBeProven =

 attemptToProveBodyClause (

 bodyClause, body, head,

 varList, level);

 if (!canBeProven) break;

 }

 return canBeProven;

}

Figure 5. Process of proving one rule.

31

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We expect that given a rule under proof, ordering the
body clauses into ascending order by the number of free var-
iables will help to decrease the reasoning time. For example,
let us resolve the goal “?y rdf:type Student”, and consider the
rule:

[rdfs3: (?x ?p ?y) (?p rdfs:range ?c) -> (?y rdf:type ?c)]

The goal “?y rdf:type Student” matches the head of rule “?y

rdf:type ?c”, and ?c is unified with Student.
If we select body clause “?x ?p ?y” to prove first, it will

yield more than 5 million (using LUBM(40) [22]) instances
of clauses. The proof of body clause “?x ?p ?y” in backward
chaining would take up to hours. Result bindings of “?p” will
be propagated to the next body clause “?p rdfs:range ?c” to
yield new clauses (p1 rdfs:range Student), (p2 rdfs:range

Student), …, (p32 rdfs:range Student), and then a separate
proof would be attempted for each of these specialized forms.

If we select body clause “?p rdfs:range Student” (?c is
unified with Student) to prove first, it will yield zero (using
LUBM(40)) instances of clauses. The proof of body clause
“?p rdfs:range Student” would take up to seconds. No result
bindings would be propagated to body clause “?x ?p ?y”. The
process of proof terminates.

The body clause “?p rdfs:range ?c” has one free varia-
ble ?p while the body clause “?x ?p ?y” has three free varia-
bles. It is reasonable to prove body clause with fewer free
variables first, and then propagate the result bindings to ?p to
next body clause “?x ?p ?y”. Mostly, goals with fewer free
variables cost less time to be resolved than goals with more
free variables, since fewer free variables means more bind-
ings and body clauses with fewer free variables will match
fewer triples.

B. Switching between Binding Propagation and Free

Variable Resolution

Binding propagation and free variable resolution are two
modes of for dealing with conjunctions of multiple goals.
We claim that dynamic selection of these two modes during
the reasoning process will increase the efficiency in terms of
response time and scalability.

These modes differ in how they handle shared variables
in successive clauses encountered while attempting to prove
the body of a rule. Suppose that we have a rule body contain-
ing clauses (?x p1 ?y) and (?y p2 ?z) [other patterns of com-
mon variables are, of course, also possible] and that we have
already proven that the first clause can be satisfied using
value pairs {(x1, y1), (x2,y2),…(xn,yn)}.

In the binding propagation mode, the bindings from the
earlier solutions are substituted into the upcoming clause to
yield multiple instances of that clause as goals for subse-
quent proof. In the example given above, the value pairs
from the proof of the first clause would be applied to the
second clause to yield new clauses (y1 p2 ?z), (y2 p2 ?z), …,

(yn p2 ?z), and then a separate proof would be attempted for
each of these specialized forms. Any (y,z) pairs obtained
from these proofs would then be joined to the (x,y) pairs from
the first clause.

In the free variable resolution mode, a single proof is at-
tempted of the upcoming clause in its original form, with no
restriction upon the free variables in that clause. In the ex-
ample above, a single proof would be attempted of (?y p2 ?z),
yielding a set of pairs {(yn, z1), (yn+1,z2),…(xn+k,zk)}. The join
of this with the set {(x1, y1), (x2,y2),…(xn,yn)} would then be
computed to describe the common solution of both body
clauses.

The binding propagation mode is used for most backward
chaining systems [15]. There is a direct tradeoff of multiple
proofs of narrower goals in binding propagation against a
single proof of a more general goal in free variable resolution.
As the number of tuples that solve the first body clause
grows, the number of new specialized forms of the subse-
quent clauses will grow, leading to higher time and space
cost overall. If the number of tuples from the earlier clauses
is large enough, free variable resolution mode will be more
efficient. (In the experimental results in Section VII, we will

attemptToProveBodyClause(goal, body,

head, varList, level)

{

 canBeProven = true;

 dthreshold = Calculate dynamic

 threshold;

 patternList = get unified patterns by

 replacing variables in bodyClause

 from varList for current level with

 calculated dthreshold;

 for(each unifiedPattern in

 patternList) {

 if(!unifiedPattern.isGround()) {

 bodyRest = unprocessedPartOf(

 body, goal);

 triplesFromResolution+=

 BackwardChaining(

 unifiedPattern, head,

 bodyRest, level+1,

 varList);

 }

 else if(unifiedPattern.isGround()) {

 if (knowledgeBase contains

 unifiedPattern){

 triplesFromResolution+=

 unifiedPattern;

 }

 }

 }

 if(triplesFromResolution.size()>0) {

 update_varList with varList,

 triplesFromResolution, goal, and

 level;

 if (varList==null) {

 canBeProven = false;

 }

 }

 else{

 canBeProven = false;

 }

 return canBeProven;

}

Figure 6. Process of proving one goal.

32

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

demonstrate that neither mode is uniformly faster across all
problems.)

Following is an example (using LUBM(40)) showing one
common way of handling shared variables between body
clauses.

Suppose we have an earlier body clause 1: “?y type

Course” and a subsequent body clause 2: “?x

takesCourse ?y”. These two clauses have the common varia-
ble ?y. In our experiments, it took 1.749 seconds to prove
body clause 1 while it took an average of 0.235 seconds to
prove body clause 2 for a given value of ?y from the proof of
body clause 1. However, there were 86,361 students satisfy-
ing variable ?x, which means it would take 0.235
*86,361=20,295 seconds to finish proof of 86,361 new
clauses after applying value pairs from the proof of body
clause 1. 20,295 seconds is not acceptable as query response
time. We need to address this problem to improve reasoning
efficiency in terms of response time and scalability.

We propose to dynamically switch between modes based
upon the size of the partial solutions obtained so far. Let n
denote the number of solutions that satisfy an already proven
clause. Let t denote threshold used to dynamically select
between modes. If n≤t, then the binding propagation mode
will be selected. If n>t, then the free variable resolution mode
will be selected. The larger the threshold is, the more likely
binding propagation mode will be selected.

Suppose that we have a rule body containing clauses (a1

p1 b1) (a2 p2 b2). Let (a1 p1 b1) be the first clause, and (a2

b2 c2) be the second clause. ai, bi and ci (i∈[1,2]) could be

free variable or concrete value. Assume that there is at least
one common variable between two clauses.

In the binding propagation mode, the value pairs from the
proof of the first clause would be applied to the second
clause to yield new clauses (a21 p21 b21), (a22 p22 b22), …,

(a2n p2n c2n), and then a separate proof would be attempted
for each of these specialized forms. Any value sets obtained
from these proofs would then be joined to the value sets from
the first clause. Let join1 denote the time spent on the joint
operations. Let proof1i denote the time of proving first clause
with i free variables and proof2j be the average time of prov-

ing new specialized form with j free variables. (i∈[1,3], j ∈
[0,2])

In the free variable resolution mode, a single proof is at-
tempted of the upcoming clause in its original form, with no
restriction upon the free variables in that clause. A single
proof would be attempted of (a2 p2 b2), yielding a set of
value sets. The join of the value sets yielded from the first
clause and the values sets yielded from the second clause
would then be computed to describe the common solution of
both body clauses. Let join2 denote the time spent on the joint
operations. Let proof3k denote the time of proving second

clause with k free variables. (k∈[1,3])

Determining t is critical to switching between two modes.
Let us compare the time spent on binding propagation mode
and free variable resolution mode to determine t. Binding
propagation is favored when

proof1i + proof2j * n + join1 < proof1i + proof3k + join2

Isolating the term involving n,
proof2j *n < proof1i + proof3k + join2 - proof1i - join1

proof2j *n < proof3k + join2 - join1

join1 is less than or equal to join2, because the value sets
from the second clause in the binding propagation mode
have already been filtered by the value sets from the first
clause first. The join operations in binding propagation mode
are therefore a subset of the join operations in free variable
resolution mode. Let t be the largest integer value such that

proof2j *t < proof3k

then
proof2j *t <= proof2j *n < proof3k + join2 - join1

We conclude that:

 t = floor(proof3
k/ proof2

j) (1)

Formula (1) provides thus a method for calculating the
threshold t that determines when to employ binding propaga-
tion. In that formula, k denotes the number of free variables
in the second clause (a2 p2 b2), j denotes the number of free
variables of the new specialized forms (a21 p21 b21), (a22 p22

b22), (a2n p2n c2n) of the second clause with (k∈[1,3], j ∈
[0,2]). The specialized form of the second clause has one or
two less free variables than the original form. Hence, the
possible combinations of (k,j) are {(3,2), (3,1), (2,1), (2,0),
(1,0)}.

To estimate proof3k and proof2j, we record the time spent
on proving goals with different numbers of free variables.
We separately keep a record of the number of goals that have
one free variable, two free variables and three free variables
after we start calling our optimized backwardChaining algo-
rithm. We also record the time spent on proving these goals.
After we have recorded a sufficient number of proof times
(experiments will give us an insight into what constitutes a
‘sufficient’ number), we compute the average time spent on
goals with k free variables and j free variables, respectively,
to obtain an estimate of proof3k and proof2j.

In order to adopt accurate threshold to help improve the
efficiency, we apply different thresholds to different situa-
tions with corresponding number of free variable set (k,j).

We assign the initial value to t from previous experi-
ments in a particular knowledge base/query environment if
they exist or zero otherwise.

We update the threshold several times when answering a
particular query. The threshold will change as different que-
ries are being answered. For each query, we will call the
optimized backward chaining algorithm recursively several
times. Each call of backwardChaining is given a specific
goal as an input. During the running of backwardChaining,
the average time of proving a goal as a function of the num-
ber of free variables will be updated after a goal has been
proven. During the running of backwardChaining, every time
before making selection between two modes the estimate
threshold is updated before making the decision.

C. How to Avoid Repetition and Non-Termination

Given RDFS Rules [26], Horst rules [27] and custom
rules [28] in the rule set and queries for answering, backward
chaining for ontology reasoning may hit the same goals for
several times. Some body clauses such as ?a

rdfs:subClassOf ?b and ?x rdfs:subPropertyOf ?y appear in

33

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

multiple rules in Horst rule set that is used in many reasoning
systems. During the process of answering a given query,
these rules containing the same body clauses might be neces-
sary to be proved to answer the query. During the process of
answering a given query, some rules may be repeatedly
called for more than one time, leading to proving the same
body clause like ?a rdfs:subClassOf ?b more than one time.
Within the process of answering one query, such a repetition
decreases the efficiency in terms of response time. Backward
chaining with memorization will help to avoid repetition.

Backward chaining is implemented in logic programming
[32] by SLD resolution [33]. When we apply conventional
backward chaining process to ontology reasoning, it has the
same non-termination problem as SLD resolution does. Dur-
ing the proving process, the rule body needs to be satisfied to
prove the goal. In some cases, the rule body requires proving
goals that have the same property as the goal, resulting pos-
sibly in an infinite loop unless steps are taken to ensure ter-
mination.

For example, [rdfs8: (?a rdfs:subClassOf ?b), (?b

rdfs:subClassOf ?c) -> (?a rdfs:subClassOf ?c)] is one rule in
the RDFS rule set used for ontology reasoning. When we
apply standard backward chaining to ontology reasoning,
proving the head (?a rdfs:subClassOf ?c) requires proving
of the body (?a rdfs:subClassOf ?b) and (?b

rdfs:subClassOf ?c). This loop will be infinite without apply-
ing any techniques.

We use an adaptation of the OLDT algorithm to solve
this non-termination problem. The OLDT algorithm is an
extension of the SLD-resolution [33] with a left to right
computation rule. OLDT maintains a solution table and
lookup table to solve the recursion problem.

D. owl:sameAs Optimization

The “owl:sameAs” relation poses a problem [31] for al-
most all the reasoning systems including forward chaining.
In our reasoning system, we first pre-compute all possible
owl:sameAs pairs and save them to a sameAs table. Second,
we select a representative node to represent an equivalence
class of owl:sameAs URIs. Third, we replace the equivalence
class of owl:sameAs URIs with the representative node. At
last, if users want to return all the identical results, we popu-
late the query response using the sameAs table by replacing
the representative node with the URIs in the equivalence
class.

As we described in Section V, reasoning with the
owl:sameAs relation can result in a multiplication of the
number of instances of variables during backward-chaining
and expanded patterns in the result. As long as that triple is
in the result set, all of the members in its equivalence class
would be in the result set as well. This adds cost to the rea-
soning process in both time and space. The optimization that
applies pre-computation and selects a representative node
improves the performance in terms of time and space.

This optimization is a novel adaptation of owl:sameAs
optimization in forward chaining reasoning system, such as
OWLIM-SE [34] and Oracle [13], to backward chaining
reasoning systems.

VII. BACKWARD CHAINING WITH EXTERNALLY STORED

KNOWLEDGE BASE

In Section IV and in our earlier experiments assessing the
effectiveness of our optimized reasoner [3], all our experi-
ments were performed ‘in-memory’, which limited the study
to a knowledge base of less than 10 Million triples.

In this section, we switch to implementations that use ex-
ternal storage for the knowledge base. We consider Jena
SDB [35], Jena TDB [36] and OWLIM-SE [34]. We extend
our study based on a knowledge base of more than 100 Mil-
lion triples.

The employment of external storage introduces new fac-
tors and has implications on how to improve the scalability
of our backward chaining reasoner. First, any optimization
technique needs to balance the number of accesses to data
and the size of the retrieved data against the size of in-
memory cache and its use. Second, the algorithm has to take
now into account that it will take longer to access a triple (or
a set of triples) due to having to perform I/O. In-memory
reasoners typically have a ‘model’ of the knowledge base in
which they store the facts and an API to access them. When
an external storage is used they would provide transparent
connections from the model to the external databases that
would allow the reasoner to use the same API for accessing
the model. This leads to a third factor effecting the scalabil-
ity and performance of the reasoner: the middleware that
realizes the transparent linking.

Jena SDB provides persistent triple stores using relational
databases. An SQL database is required for the storage and
query of triples for SDB. In this paper, we used MySQL and
PostgreSQL as the relational database for SDB. Jena TDB is
claimed as a more scalable and faster triple store than SDB
[35].A special Jena adapter permits access to OWLIM-SE
repositories [34]. Reasoners can access all three storage sys-
tems via a common Jena API.

A. Preliminary Analysis

We begin by exploring the relative impact on overall per-
formance of the three major components of the backward
chaining reasoner, the middleware, and the storage system
itself. The purpose of this analysis is to determine how much
time we can save by improving any one of these subsystems
in isolation.

 We employed Jena SDB + MySQL as the external stor-
age for our backward chaining reasoner in the experiment,
evaluating the query response time of 14 queries from
LUMB [22] using LUBM(30).

 A single function in our backward chaining algorithm
implementation is responsible for all data retrievals from the
triple store. We refer to this function as “the Data-retrieval
function” in the remainder of this section. Data-retrieval
function in this paper. We recorded the clock time Tf and
CPU time tf spent within the Data-retrieval function and in
the whole query processing (Ttot and ttot, respectively) in Ta-
ble IX.

The portion of the CPU and clock times spent I answer-
ing the query but not spent in the Data-retrieval function is
attributable to the backward chaining reasoner:

34

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IX CLOCK TIME, CPU TIME AND I/O TIME FROM EXPERIMENTS

WITH JENA SDB USING LUBM (30)

 Total
Clock
time,

Ttot

Total
CPU

Time,
ttot

Clock
 time in
 Data-

retrieval
function,

Tf

CPU
time in

I/O
function,tf

Query1 1405.00 951.00 920.00 546.00

Query2 9631.00 6084.00 5058.00 2293.00

Query3 203.00 78.00 109.00 31.00

Query4 35354.00 8096.00 31140.00 5070.00

Query5 173.00 78.00 94.00 15.00

Query6 23744.00 7035.00 19984.00 3712.00

Query7 24058.00 9984.00 18659.00 6333.00

Query8 28694.00 11029.00 22680.00 5896.00

Query9 29598.00 11700.00 23899.00 6988.00

Query
10

18612.00 6630.00 15040.00 3572.00

Query
11

3636.00 561.00 2964.00 124.00

Query
12

7567.00 1903.00 5226.00 405.00

Query
13

187.00 46.00 95.00 0.00

Query
14

1873.00 811.00 1451.00 452.00

Tbw = Ttot – Tf
Tbw = ttot – tf

The clock time observed during the Data-retrieval function
includes actual input operations on the underlying triple store,
together with the CPU-intensive manipulation of the input
data by the middleware layer. Assuming that the ratio, ρ
=ttot/Ttot, of CPU time to clock time observed over the pro-
cessing of an entire query would remain approximately con-
stant during the middleware CPU, we were able to estimate
the portion of the Data-retrieval function clock time that was
attributable to the middleware:

Tmid = ρ tmid

and can attribute the remaining clock time as the actual time
spent doing I/O:

TIO = Tf – Tmid

Then we can estimate a minimal clock time to answer the
query, assuming 100% CPU utilization, as

Tmin = tbw+ ρ Tmid + TIO

 Table X shows the values of these estimates, together the
percentage of that value attributable to each of the three
components. In Table X, the percentage of time spent in I/O

operations ranges from 22% to 75%, a considerable variation.
This might be because some retrievals from triple store re-
trieve huge numbers of triples while others are far more fo-
cused and process much less data.

The percentage of the time devoted to the middleware
ranges from 0% to 44%, with an average around 20%, indi-
cating that the triple storage layer adds a significant compo-
nent of CPU time. Our backward chaining code running on
top of that accounts for 13 to 45% of minimal processing
time, and the average is 25%.

These percentages are surprisingly balanced, suggesting
that improvements to any one of the three major components
of the system can have only modest effect on the total time.
Dramatic improvements will be possible only by improve-
ment in all three areas. One possible avenue of exploration is
changes to the reasoner that would not only speed up the
reasoner but would affect the number and size of requests for
input from the underlying store. Indirectly, at least, several of
the optimizations we have proposed in Section VI could have
such an effect. Caching, an effect not explored in this exper-
iment, could also have a major impact across all three areas.

B. Evaluation of the Optimization techniques

In this section, we examine the impact of the two major
optimizations proposed in Section VI.

TABLE X ESTIMATED I/O TIME AND IDEAL PERCENTAGES FROM

EXPERIMENTS WITH JENA SDB USING LUBM (30)

 Min possi-
ble clock
time to

answer a
query,

Tmin

% of
 Tmin
spent
in I/O

% of
 Tmin

 spent in
BW

chaining

% of
 Tmin time
spent in

middleware

Query1 1217.15 0.22 0.33 0.45

Query2 8376.00 0.27 0.45 0.27

Query3 125.00 0.38 0.38 0.25

Query4 32175.53 0.75 0.09 0.16

Query5 153.19 0.49 0.41 0.10

Query6 22818.84 0.69 0.15 0.16

Query7 19277.93 0.48 0.19 0.33

Query8 26801.04 0.59 0.19 0.22

Query9 27147.26 0.57 0.17 0.26

Query
10

17497.60 0.62 0.17 0.20

Query
11

3334.32 0.83 0.13 0.04

Query
12

6496.09 0.71 0.23 0.06

Query
13

141.00 0.67 0.33 0.00

Query
14

1730.68 0.53 0.21 0.26

35

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Ordered Selection Function
We have proposed replacing the traditional left-to-right

processing of clauses within rule bodies by an ordering by
ascending number of free variables.

Table XI compares our backward chaining algorithm
with our clause selection based on free variable count to the
traditional left-to-right selection on a relatively small
knowledge base (100,839 triples) LUBM(1) [22] stored in
Jena TDB. Traditional left-to-right selection has been used in
Jena [15] and Prolog [32]. Backward chaining with the or-
dered selection function yields considerably smaller query
response times for all the queries than left-to-right. The I/O
time of accessing the external triple storage magnifies the
problem of left-to-right selection compared to [3] because
the knowledge base is in external triple storage TDB now.

The difference becomes even more dramatic for a larger
knowledge base (1,272,871 triples), LUBM(10) stored in
Jena TDB, as shown in Table XII. With left-to-right selec-
tion, we are unable to answer any query within 30 minutes,
and out-of-memory errors occur for almost half of the que-
ries. The I/O time of accessing the external triple storage
magnifies the problem of left-to-right selection compared to
[3] because the knowledge base is in external triple storage
TDB now.

2) Switching between Binding Propagation and Free

Variable Resolution
Binding propagation and free variable resolution are two

modes of for dealing with conjunctions of multiple goals.
We have proposed dynamic selection of these two modes
during the reasoning process to increase the efficiency in
terms of response time and scalability.

We compare our backward chaining algorithm with three
different modes of resolving goals on LUBM(10) stored in
Jena TDB in Table XIII. The first mode uses dynamic selec-
tion between binding propagation mode and free variable
resolution mode. The second mode uses binding propagation
mode only. The third mode uses free variable resolution
mode only.

Table XIII shows that neither binding propagation mode
nor free variable resolution mode is uniformly better than the
other on all cases. From query 1 to query 5 and query 13,

dynamic mode performs almost same as binding propagation
mode. From query 6 to query 10, dynamic mode performs
dramatically better than binding propagation mode with
much less query response time. For query 11, query 12 and
query 14, dynamic mode performs better than binding prop-
agation mode with less query response time.

For query1, query3 and query 14 only, dynamic mode
performs almost same as free variable resolution mode. For
the other queries, dynamic mode performs dramatically bet-
ter than free variable resolution mode with much less query
response time. The query response times of query6 to que-
ry10 are less by orders of magnitude when running our algo-
rithm with the dynamic selection mode in comparison com-
pared to running with binding propagation mode only and
free variable resolution mode only. In all cases the optimized
version finishes faster than the better of the other two ver-
sions. Overall, the results in Table XIII confirm the ad-
vantage of dynamically selecting between propagation
modes. The I/O time of accessing the external triple storage
magnifies the problem of binding propagation mode only
and free variable resolution mode only compared to [3] be-

TABLE XII. EVALUATION OF CLAUSE SELECTION OPTIMIZATION ON

LUBM(10) USING TDB AS EXTERNAL STORAGE

Time (ms),

Ordered

Time (ms),

Left-to right

Result

Size (tri-

ples)

Query1 1045 OutOfMemoryError:

Java heap space

4

Query2 2433 >2.0*106 28

Query3 31 >2.0*106 6

Query4 3744 >2.0*106 34

Query5 15 >2.0*106 719

Query6 1435 OutOfMemoryError 99,566

Query7 1903 OutOfMemoryError 67

Query8 2106 OutOfMemoryError 7,790

Query9 1918 OutOfMemoryError 2,540

Query10 1138 OutOfMemoryError 4

Query11 140 >2.0*106 224

Query12 358 >2.0*106 15

Query13 15 >2.0*106 33

Query14 187 >2.0*106 75,547

TABLE XIII . EVALUATION OF DYNAMIC SELECTION VERSUS

BINDING PROPAGATION AND FREE VARIABLE MODES ON LUBM(10)

USING TDB AS EXTERNAL STORAGE

Time (ms),

Dynamic

selection

Time (ms),

Binding propa-

gation only

Time (ms),

Free variable

resolution only

Query1 1045 904 904

Query2 2433 2683 26535

Query3 31 15 15

Query4 3744 4149 41605

Query5 15 15 2244810

Query6 1435 >6.0*105 20514

Query7 1903 >6.0*105 20763

Query8 2106 >6.0*105 42831

Query9 1918 >6.0*105 21512

Query10 1138 >6.0*105 19921

Query11 140 904 19094

Query12 358 1435 41745

Query13 15 31 24117

Query14 187 1154 187

TABLE XI. EVALUATION OF CLAUSE SELECTION OPTIMIZATION ON

LUBM(1) USING TDB AS EXTERNAL STORAGE

Time (ms),

Ordered
Time (ms),

Left-to right
Result Size

(triples)

Query1 296 >6.0*105 4

Query2 811 >6.0*105 0

Query3 46 >6.0*105 6

Query4 1419 >6.0*105 34

Query5 31 >6.0*105 719

Query6 265 >6.0*105 7,790

Query7 234 >6.0*105 67

Query8 483 >6.0*105 7,790

Query9 202 >6.0*105 208

Query10 156 >6.0*105 4

Query11 218 >6.0*105 224

Query12 202 >6.0*105 15

Query13 15 >6.0*105 1

Query14 31 >6.0*105 5,916

36

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIV .COMPARISON AMONG SDB, TDB AND OWLIM-SE AS

EXTERNAL STORAGE ON I/O TIME PER STORE ACCESS

LUBM(50)

Number of

facts

(triples)

6,890,640

 Time

(ms),

SDB+

Post-

greSQL

Time

(ms),

TDB

Time (ms),
OWLIM-

SE

#of Number

of access to

store

Query1 41.42 2.32 0.70 132

Query2 50.76 0.48 0.35 353

Query3 1.63 0.42 0.28 65

Query4 82.38 0.38 0.14 455

Query5 1.57 0.36 0.20 81

Query6 298.74 0.67 5.12 153

Query7 237.69 0.13 0.52 286

Query8 72.24 0.07 0.43 917

Query9 221.45 0.02 0.17 351

Query10 223.33 0.07 0.14 218

Query11 2.08 0.05 0.12 616

Query12 2.07 0.03 0.10 2792

Query13 1.28 0.21 0.13 86

Query14 111.76 0.03 0.22 67

cause the knowledge base are in external triple storage TDB
now. The selection of the threshold in dynamic mode would
be affected by the employment of external storage and affect
the number of accesses to store.

C. Storage System Impact

To explore the effect of switching the underlying storage
manager, we compared three external storage employed in
our optimized backward chaining reasoner on I/O time. For
all 14 queries from LUBM, the three storage managers SDB,
TDB and OWLIM-SE, all have same number of accesses
(calls to the Data-retrieval function) to the underlying store.

Based on this observation, we show in Table XIV the I/O
time per access for SDB, TDB and OWLIM-SE using
LUBM(50). The I/O time per store access of SDB is dramat-
ically longer than both TDB and OWLIM-SE through all 14
queries in LUBM. From query 1 to 5 and query 13, the I/O
time per store access of TDB is slightly longer than
OWLIM-SE. For the other queries, TDB has shorter I/O time
per store access. In general, TDB and OWLIM-SE have the
similar performance in terms of I/O time.

D. Overall Performance

Finally, we consider the overall performance of our op-
timized backward chaining reasoner when based upon each
of the three storage managers.

In order to compare the general performance of three tri-
ple store when employed in our optimized backward chain-
ing reasoner, for all 14 queries from LUBM, we perform a
comparison among SDB, TDB and OWLIM-SE on query
response time using LUBM(50) in Table XV .
 In Table XV, for LUBM (50), from query 1 to query 3
and query 6, OWLIM-SE has the fastest response time. Jena

SDB + PostgreSQL performs fastest only for query 4, be-
cause the I/O time of Jena SDB is the longest out of three
stores. For the rest of the queries, Jena TDB is fastest.

In Table XVI, we show a similar comparison of TDB and
OWLIM-SE on query response time using LUBM(100).
SDB was omitted from this comparison because the loading
time of SDB is prohibitively long.

TABLE XV.COMPARISON BETWEEN SDB, TDB AND OWLIM-SE

AS EXTERNAL STORAGE ON QUERY RESPONSE TIME

LUBM(50)

Number of

facts

(triples)

6,890,640

 Clock Time

 Time (ms),

SDB+PostgreSQL

Time (ms),

TDB

Time (ms),

OWLIM-SE

Query1 6430 13440 3549

Query2 24960 36102 17046

Query3 406 58 61

Query4 46400 71298 45680

Query5 533 78 156

Query6 59144 32590 30470

Query7 83799 34580 45527

Query8 85563 48307 53013

Query9 95992 34583 49566

Query10 63100 20191 27916

Query11 3466 528 876

Query12 16253 2403 3199

Query13 374 39 37

Query14 8581 4731 5364

TABLE XVI.COMPARISON BETWEEN SDB, TDB AND OWLIM-SE

AS EXTERNAL STORAGE ON QUERY RESPONSE TIME

LUBM(100)

Number

of facts

(triples)

13,405,677

 Time (ms),

TDB

Time (ms),

OWLIM-SE

Query1 2652 5085

Query2 13884 29657

Query3 31 46

Query4 49109 82664

Query5 46 78

Query6 26020 51277

Query7 39873 76752

Query8 58609 98343

Query9 46925 85456

Query10 26894 52821

Query11 452 826

Query12 920 1716

Query13 15 31

Query14 7222 11263

37

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In Table XVI, for LUBM(50), Jena TDB has better per-
formance through all 14 queries. In general, our optimized
backward chaining reasoner and external storage Jena TDB
has the best performance especially when the size of the
knowledge base increases.

VIII. CONCLUSION AND FUTURE WORK

As knowledge bases proliferate on the Web, it becomes
more plausible to add reasoning services to support more
general queries than simple retrievals. In this paper, we have
addressed a key issue of the large amount of information in a
semantic web of data about science research. Scale in itself is
not really the issue. Problems arise when we wish to reason
about the large amount of data and when the information
changes rapidly. In this paper, we report on our efforts to use
backward-chaining reasoners to accommodate the changing
knowledge base. We developed a query-optimization algo-
rithm that will work with a reasoner interposed between the
knowledge base and the query interpreter. We performed
experiments, comparing our implementation with traditional
backward-chaining reasoners and found, on the one hand,
that our implementation could handle much larger
knowledge bases and, on the other hand, could work with
more complete rule sets (including all of the OWL rules).
When both reasoners produced the same results our imple-
mentation was never worse and in most cases significantly
faster (in some cases by orders of magnitude).

The analysis of reasoning over a large knowledge base
that requires external storage has shown that no one compo-
nent (backward chaining, I/O, middleware) dominates per-
formance and thus improvements to any one of the three
major components of the system will have only modest ef-
fect on the total time.

We have also addressed the issue of being able to scale
the knowledge base to the level forward-chaining reasoners
can handle. Preliminary results indicate that we can scale up
to real world situations such as 6 Million triples. Optimizing
the backward-chaining reasoner, together with the query-
optimization allows us to actually outperform forward-
chaining reasoners in scenarios where the knowledge base is
subject to frequent change.

Although 6 million triples remains a modest size for a
knowledge base, we believe that the key performance limita-
tion is associated with the number of triples that are being
brought into memory as intermediate results during the rea-
soning for a specific query. In [37] we tie the use of reason-
ing to a concept of “trust” reflecting changes made to the
knowledge base since its last instantiation. Trust can be ex-
ploited to decide what goals arising during evaluation of a
query require reasoning and what can be resolved by imme-
diate lookup. The net effect is that considerably larger
knowledge bases can be handled by limiting the scope of
backward chaining to portions of the knowledge base un-
trusted due to recent changes.

Assessing the impact of using external storage on the in-
dividual optimization techniques produced in both of the
cases we analyzed the same result. Having an external triple
store magnified the effect of our optimization techniques.
When we analyzed storage access we found that SDB was

significantly slower than TDB and OWLIM-SE. The latter
two had about the same performance. As the size of the
knowledge base kept increasing the advantage of using Jena
TDB with our optimized backward-chaining algorithm be-
came more pronounced.

We will explore in future work ways to minimize in our
backward chaining algorithms the number and size of re-
quests for input from the underlying store and to employ
caching techniques.

REFERENCES

[1] H. Shi, K. Maly, and S. Zeil, “Query optimization in cooperation
with an ontological reasoning service,” The Fifth International
Conferences on Advanced Service Computing (SERVICE
COMPUTATION 2013), IARIA XPS Press, May-Jun. 2013, pp. 26-
32.

[2] S.J.Russell and P. Norvig, Artificial intelligence: a modern approach.,
1st ed.. Upper Saddle River: Prentice hall, pp. 265–275, 1995.

[3] H. Shi, K. Maly, and S. Zeil, “Optimized backward chaining
reasoning system for a semantic web,” Proc. The Fourth International
Conference on Web Intelligence, Mining and Semantics (WIMS'14),
ACM Press, June 2014.

[4] Microsoft. Microsoft Academic Search. [Online]. Available from:
http://academic.research.microsoft.com/ 2014.02.25

[5] Z. Nie, Y. Zhang, J. Wen, and W. Ma, “Object-level ranking:
bringing order to web objects,” The 14th international World Wide
Web conference (WWW2005), ACM Press, May 2005, pp. 567–574,
doi:10.1145/1060745.1060828.

[6] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann,
M. Sayyadian, and W. Shen., “Community information management,”
IEEE Data Engineering Bulletin, Special Issue on Probabilistic
Databases, vol. 29, iss. 1, pp. 64–72, Mar. 2006.

[7] J.Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” Proc.
Fourteenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD'2008), ACMPress, Aug. 2008,
pp. 990–998, doi:10.1145/1401890.1402008.

[8] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, and C. Becker,
“DBpedia-a crystallization point for the Web of Data,” Web
Semantics: Science, Services and Agents on the World Wide Web,
vol. 7, iss. 3, pp. 154–165, Sep. 2009,
doi:10.1016/j.websem.2009.07.002.

[9] F. Suchanek, G. Kasneci, and G. Weikum, “Yago: a large ontology
from wikipedia and wordnet,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 6, iss.3, pp.203–217, Sep. 2008,
doi:10.1016/j.websem.2008.06.001.

[10] B. Aleman-Meza, F. Hakimpour, I. Arpinar, and A. Sheth,
“SwetoDblp ontology of Computer Science publications,” Web
Semantics: Science, Services and Agents on the World Wide Web,
vol. 5, iss. 3, pp. 151–155, Sep. 2007,
doi:10.1016/j.websem.2007.03.001.

[11] H. Glaser, I. Millard, and A. Jaffri, “Rkbexplorer. com: a knowledge
driven infrastructure for linked data providers,” The Semantic Web:
Research and Applications, vol. 5021, pp. 797–801, Jun. 2008,
doi:10.1007/978-3-540-68234-9_61.

[12] A. Kiryakov, D. Ognyanov, and D. Manov, “OWLIM–a pragmatic
semantic repository for OWL,” Proc. 6th international conference on
Web Information Systems Engineering (WISE'05), Springer-Verlag,
pp. 182-192, Nov. 2005, doi:10.1007/11581116_19.

[13] Oracle Corporation. 2013. Oracle Database 11g R2. [Online].
Available from:
http://www.oracle.com/technetwork/database/database-
technologies/express-edition/overview/ 2014.02.25

38

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] O. Erling and I. Mikhailov, “RDF support in the Virtuoso DBMS,”
Networked Knowledge-Networked Media, vol. 221, pp.7-24, 2009,
doi:10.1007/978-3-642-02184-8_2.

[15] The Apache Software Foundation. Apache Jena. [Online]. Available
from: http://jena.apache.org/ 2014.02.25

[16] Y.E. Ioannidis, “Query optimization,” ACM Computing Surveys
(CSUR), vol. 28, iss. 1, pp. 121-123, March 1996,
doi:10.1145/234313.234367.

[17] Semanticweb.org. SPARQL endpoint. [Online]. Available
from:http://semanticweb.org/wiki/SPARQL_endpoint 2014.02.25

[18] W3C. SparqlEndpoints. [Online]. Available from:
http://www.w3.org/wiki/SparqlEndpoints 2014.02.25

[19] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D.Reynolds,
“SPARQL basic graph pattern optimization using selectivity
estimation,” The 17th international conference on World Wide Web
(WWW 2008), ACM Press, pp. 595–604, Apr. 2008,
doi:10.1145/1367497.1367578.

[20] O. Hartig and R. Heese, “The SPARQL query graph model for query
optimization,” Proc. 4th European conference on the Semantic Web:
Research and Applications (ESWC '07), Springer-Verlag, pp. 564-
578, Jun. 2007, doi:10.1007/978-3-540-72667-8_40.

[21] W. Le, “Scalable multi-query optimization for SPARQL,” Proc. IEEE
28th International Conference on Data Engineering (ICDE 2012),
IEEE Press, pp. 666–677, Apr. 2012, doi:10.1109/ICDE.2012.37.

[22] Y. Guo, Z. Pan, and J. Heflin, “LUBM: a benchmark for OWL
knowledge base systems,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 3, iss. 2-3, pp.158–182, Oct.
2005, doi:10.1016/j.websem.2005.06.005.

[23] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Application of hash
to data base machine and its architecture,” New Generation
Computing, vol. 1, iss.1, pp. 63–74, Mar. 1983,
doi:10.1007/BF03037022.

[24] H. Tamaki and T. Sato, “OLD resolution with tabulation,” Proc.
Third international conference on logic programming, Springer, pp.
84-98, July 1986, doi:10.1007/3-540-16492-8_66.

[25] W3C. OWL web ontology language reference. [Online]. Available
from: http://www.w3.org/TR/owl-ref/ 2014.02.25

[26] P. Hayes and B. McBride. RDF semantics. [Online]. Available from:
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ 2014.02.25

[27] H. Horst, “Combining RDF and part of OWL with rules: Semantics,
decidability, complexity,” Proc. 4th International Semantic Web
Conference (ISWC 2005), Springer, pp. 668-684, Nov. 2005,
doi:10.1007/11574620_48.

[28] H. Shi, K. Maly, S. Zeil, and M. Zubair, “Comparison of ontology
reasoning systems using custom rules,” International Conference on
Web Intelligence, Mining and Semantics, ACM Press, May 2011, doi:
10.1145/1988688.1988708.

[29] K. Marriott and P. J. Stuckey, Programming with constraints: an
introduction. Cambridge: MIT press, 1998.

[30] J. Santos and S. Muggleton, "When does it pay off to use
sophisticated entailment engines in ILP?," in Inductive Logic
Programming, P. Frasconi and F. A. Lisi, Eds. Heidelberg: Springer,
pp. 214-221, 2011.

[31] Ontotext. Owl-sameAs-optimization. [Online]. Available from:
http://www.ontotext.com/owlim/owl-sameas-optimisation 2014.02.25

[32] J. Lloyd, “Foundations of Logic Programming,” 2nd extend ed..
Springer-Verlag: Berlin, 1987.

[33] R. Kowalski and D. Kuehner, “Linear resolution with selection
function,” Artificial Intelligence, vol. 2, iss. 3, pp. 227-260, 1972,
doi: 10.1016/0004-3702(71)90012-9.

[34] Ontotext. OWLIM-SE. [Online]. Available from:
http://owlim.ontotext.com/display/OWLIMv43/OWLIM-SE
2014.02.25

[35] The Apache Software Foundation. SDB - persistent triple stores using
relational databases. [Online]. Available from:
http://jena.apache.org/documentation/sdb/ 2014.02.25

[36] The Apache Software Foundation. TDB. [Online]. Available from:
http://jena.apache.org/documentation/tdb/ 2014.02.25

[37] H. Shi, K. Maly, and S. Zeil, “Trust and hybrid reasoning for
ontological knowledge bases,” Proc. the companion publication of the
23rd international conference on World wide web companion (WWW
Companion '14), International World Wide Web Conferences
Steering Committee, pp. 1189-1194, April 2014, doi:
10.1145/2567948.2579033.

