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Abstract—Inefficient and error-prone interaction between human
operators and technical systems was the reason for various
catastrophic accidents in the past. User interfaces implement the
communication between a human user and a technical system
which is the reason why inaccurate design of user interfaces
has been identified as one major factor for those errors. The
use of adaptive user interfaces is one possible solution to reduce
inefficient interaction by adapting the user interface to a specific
user, task, or context. However, currently no self-contained
formal approach exists that allows for the creation of adaptive
user interfaces despite various advantages of formal methods:
interaction becomes verifiable, formal methods close the gap
between modeling and implementation by using executable formal
languages, and they allow for using existing rewriting concepts
making formal models adaptable. This paper introduces a new
approach to a formal rule generation concept, which enables
a flexible creation of adaptive user interfaces. This concept is
based on a formal modeling and reconfiguration approach for
the creation and adaptation of user interfaces. The applicability
of this approach will be shown through an implementation of
an adaptive user interface for adaptive automation. The main
contribution of the presented work is a new concept for rule
generation that is capable of adapting formally modeled user
interfaces.

Keywords–Formal Modeling; User Interface; Adaptive User
Interface; Formal Reconfiguration; Rule Generation.

I. INTRODUCTION

Inefficient and error-prone interaction occurs during the use
of interactive systems if the user interfaces are not sufficiently
developed with respect to the needs and abilities of the user
or user group [1]. As past events have shown, these errors can
lead to catastrophic accidents, such as the disaster in Cher-
nobyl [2]. Adaptive as well as adaptable user interfaces are
primarily developed in order to increase human performance
by changing the user interface according to a specific user,
task, environment, context, or situation [3]. These kinds of user
interfaces have shown a high potential in increasing usability
[4], reducing errors in interaction [5], or in simplifying interac-
tion with complex systems [6]. Furthermore, formal modeling
approaches for user interfaces offer various advantages, like
making it possible to directly execute or verify created models.
Nevertheless, to our knowledge a self-contained and flexible

formal approach for the implementation of adaptive user
interfaces has not yet been discussed. Therefore, this work
presents a formal modeling and reconfiguration concept for the
creation of user interfaces that is extended by an algorithmic
rule generation approach as a first step towards a generic and
formal generation of adaptive (and adaptable) user interfaces.

The main difference between adaptive and adaptable user
interfaces is the corresponding instance applying an adaptation
to the user interface. An adaptable user interface is mainly
changed manually by the user using tools. In contrast, adaptive
user interfaces are changed by a technical implementation.
For adaptive user interfaces, the type of adaptation is usually
defined in an algorithmic fashion that is further parameterized
by data selected from various sources, the interaction between
user and the system, or from the system itself. Therefore the
implementation of an adaptive user interface involves the type
of user interface description or implementation on the one
hand, and the adaptation concept that changes the user interface
implementation and thereby influences the interaction, on the
other. The description of a user interface can be divided
into two parts: the physical representation and the interaction
logic [7]. The physical representation covers all elements
that are directly accessible by the user. In case of a classic
graphical user interface, these elements can be buttons, sliders,
or text fields. arranged in a specific layout. The interaction
logic specifies the data-based communication between physical
representation and the system to be controlled, as well as the
logic and data-based dependencies between elements of the
physical representation. Thus, interaction logic can also be
denoted as the behavioral model of a user interface.

Based on this differentiation between the outward ap-
pearance of a user interface and its behavior, the adaptation
(whether adaptable or adaptive) can be applied either on the
physical representation, the interaction logic, or both. Using
this concept combined with a set of tools for implementing
an adaptable user interface, we conducted various evaluation
studies. For instance in [5], we discussed a study that showed
a significant error reduction in controlling a complex technical
system by user-side adaptation of the physical representation
and the interaction logic applied to an initial user interface
model. The whole concept has been implemented based on
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a formal modeling approach for user interfaces, which is
based on this two-layered model. To this end, the physical
representation has been formalized using an XML-based de-
scription while interaction logic has been formalized using a
graph-based approach using reference nets, a variant of Petri
nets. Furthermore, this has been combined with a formal rule-
based reconfiguration concept, which is controlled through an
interactive system by the user.

Apart from these aspects, formal modeling approaches
offer further advantages to the modeling and reconfiguration
of user interfaces. A formal user interface model can be
directly executed using a simulator or interpreter. The com-
bination of this approach with a rule-based reconfiguration
technique creates a self-contained formal modeling approach.
This supports the generation of adaptable and adaptive user
interfaces, because a generic (formal) reconfiguration system
can either be controlled by the user through an interactive
system (as shortly described above) or by a system that gen-
erates rules algorithmically. This close integration of model-
based creation and reconfiguration enables adaptation of user
interfaces without losing the focus of creating computer-based
systems [8]. This is a first step towards closing the gap
between modeling and implementation of interactive systems
[9]. Finally, this self contained approach of user interface
modeling and reconfiguration prevents loss of information that
can occur if a formal model is adapted by some informal or
non-deterministic concept.

To extend this basic approach of formal adaptable user
interfaces to the creation of adaptive user interfaces, the
rule generation process necessary for the adaptation of user
interface models has to be extended to enable computer-based
and generic generation of reconfiguration rules. Therefore, the
main concept introduced in this paper combines a description
language for defining rule classes accompanied with a set of
algorithms, which enable a software tool to instantiate a rule
class based on a set of input data. A rule class further specifies
a rule skeleton describing a basic structure of a rule that is
to be instantiated. According to data defining and influencing
the adaptation of a user interface, various channels can be
identified, such as sensory data, a user model, or data generated
by the controlled process (as discussed above). For instance,
sensory data can be gathered to represent the context in which
the interaction takes place. Nevertheless, various other types
of data and data sources can be identified, which cannot be
discussed completely in this paper. The main reason for this is
that provided data is highly use case dependent. For instance,
adaptivity of user interfaces can also introduce the user into
the adaptation loop, such that she provides data or triggers the
adaptation. Therefore, the presented work does not specify the
type of data source but will support the description of various
data types using a formal type specification language, called
Resource Description Framework (RDF) [10]. This makes
the definition (language) of rule classes independent from a
specific use case by abstracting from the explicit data source
to a data type that has to be delivered to the rule generation
algorithm during runtime. Thus, the whole adaptation process
becomes “semi-automatic” through the option of introducing
the user into the loop.

Beside defining input data necessary for the instantiation
of a rule class, various algorithms are discussed in this work

offering functionality to the instantiation of rule classes. The
aforementioned rule skeletons are defined based on grammars
using nonterminal symbols for graphs and graph inscriptions.
Thus, on the one hand, matching of nonterminal symbols in
graphs and in inscriptions has to be performed based on the
user interface model to be adapted, as well as on the input
data as specified in the class and provided during runtime. On
the other hand, algorithms for traversing a given graph are
discussed regarding the extraction of certain parts in the user
interface model that are part of its reconfiguration. Finally,
changes of the visible part of the user interface have to be
defined in the class and have to be finally applied to the
user interface’s physical representation. In conclusion, the
main contribution of this work is an algorithmic approach for
creating adaptive user interfaces based on a newly developed
rule generation concept that defines the adaptation logic of
such user interface models.

Before defining the semi-automatic rule generation, related
work will be discussed in Section II identifying previous work
done in the context of adaptive user interfaces, formal user
interface modeling, reconfiguration, and adaptation. Section III
describes a process to formal modeling and reconfiguration of
user interfaces, which is executable and offers mechanisms
for model-intrinsic adaptation through graph transformation
systems. As computer-based adaptation of user interfaces as-
sumes the accessibility of context information in various senses
in a system’s architecture as a formal model or description.
Section IV presents a modeling approach of rule classes and
an algorithmic rule generation concept that makes system-side
adaptation of formal user interface models possible. In Section
V, the whole adaptation process will be applied to the use case
of adaptive automation and will show how the approach can
be used in automated system control. Finally, Section VI will
conclude the paper and will discuss future work aspects. The
work at hand extends the previous paper by Weyers presented
on the IARIA CENTRIC workshop 2013 [1]. Please consider
that certain parts (Section V-B in particular) of this article have
been reused in the work at hand to underline its origin.

II. RELATED WORK AND STATE OF THE ART

Adaptive user interfaces are nowadays an integral part
of human-computer interaction research. Various works can
be identified discussing different usecase dependent views to
adaptive user interfaces, which have a similar goal: making
interaction between a user and a system less error-prone and
more efficient. Jameson [11] gives a broad overview of various
functions of adaptive user interface that support this goal. One
function he identifies is denoted as “supporting system use”.
He splits this category further up into the functions of “taking
over parts of routine tasks”, “adapting the interface”, and
“controlling a dialog”, which are of main interest in the context
of this work. Lavie et al. [12] identify certain dimensions of
what data or knowledge is needed for the implementation of
adaptive user interfaces: the task, the user, and the type of
situation in which the interaction takes place. The latter, they
characterize as routine vs. non-routine situations. Finally, they
discuss the level of adaptivity that specifies the amount of
adaptation applied to the user interface. These functions are
provided by various implementations and work that has been
done on adaptive user interfaces. A general overview of task
and user modeling is given by Langley [13] and Fischer [14].
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Nevertheless, this work does not focus on how the data and
knowledge is gathered or described, but concentrates on how
this data can be used for applying changes to a given user
interface model.

However, various examples of the successful implementa-
tion of adaptive user interfaces can be found, which consider
the former discussed aspects. For instance, Reinecke and Bern-
stein [4] describe an adaptive user interface implementation
that takes cultural differences of users into consideration. They
showed that users were 22% faster using this implementation.
Furthermore, they made fewer errors and rated the adapted
user interface as significantly easier to use. Cheng and Liu
[15] discuss an adaptive user interface using eye-tracking data
to retrieve user’s preferences. Kahl et al. [16] present a system
called SmartCart, which provides a technical solution for
supporting a customer during her shopping process. It is able
to provide context-dependent information and support, such
as a personalized shopping list or a navigation service. Fur-
thermore, in the context of ambient intelligent environments,
Hervas and Bravo [17] present their approach of adaptive user
interfaces, which is based on Semantic Web technologies. The
so called ViMos framework is able to generate visualization
services for context-dependent information.

All presented approaches and implementation have in com-
mon that they do not support a full-fledged formal modeling
approach for the adaptation of user interfaces. Still, formal
modeling approaches have certain advantages, as briefly dis-
cussed in the introduction. First, generated models can be
directly executed. For instance, Navarre et al. [18] present
their Interactive Cooperative Objects (ICO) approach, which is
based on Petri nets. Using their interpreter called PetShop [19],
generated models can be directly executed or simulated. ICO
models mainly describe interaction logic in the sense discussed
above. Barboni et al. [20] extended the ICO approach with
a graphical user interface markup language, called UsiXML
to define also the physical representation in a user interface
model. UsiXML [21] is an XML-based user interface descrip-
tion language, that offers a “multi-path development” process,
enabling the user to describe a user interface on different levels
of abstraction. Still, UsiXML primarily defines the physical
representation and only specifies, which sort of functionality
is connected to it without describing it. Among others, the User
Interface Markup Language (UIML) [22] is another XML-
based markup language for describing user interfaces, which
also excludes interaction logic from its description. Further
formal modeling approaches can be found, such as the Petri
net-based approach described by de Rosis et al. [23] or by
Janssen et al. [24].

The second argument for the use of formal models is
verification, using for instance, model checking or other formal
verification methods. Brat et al. [25] discuss an approach using
model checking to verify and validate formal descriptions
of dialogs. This is of main interest, e.g., in modeling of
user interfaces in safety critical situations [26]. Furthermore,
Paterno and Santoro [27] discuss the use of formal verification
in context of the investigation of multi-user interaction.

Finally, formal models of user interfaces can be used to
apply reconfigurations to it and thus change their outward
appearance, behavior, or both without necessarily leaving the
formalization. Navarre et al. describe in [28] and [29] the

reconfiguration of formal user interface models based on
predefined replacements that are used in certain situations in
safety-critical application scenarios, such as airplane cockpits.
Blumendorf et al. [30] introduce an approach that changes a
user interface during runtime. This approach is based on so-
called “executable models”, which combine design information
and the current runtime state of the system. Interconnections
between system and user interface are changed appropriately
during runtime. Another approach that applies reconfiguration
during runtime has been introduced by Criado et al. [31].

In conclusion, adaptive user interfaces play a central role in
human-computer interaction and are still an ongoing research
activity. Formal techniques in the development, creation, and
reconfiguration are still discussed in research literature, offer-
ing various advantages regarding modeling, execution, and ver-
ification. Petri net-based as well as XML-based approaches are
already applied in various application scenarios. Nevertheless,
none of these approaches presents a full-fledged approach for
the creation and reconfiguration of user interface models in
one coherent formal modeling approach. Furthermore, none of
the presented approaches discusses a closely related concept
that enables computer-based systems to generate and apply
reconfiguration in a flexible and usecase independent way.
Therefore, this work introduces a self-contained approach for
visual modeling and creation, rule-based reconfiguration, and
algorithmic rule generation of user interfaces that builds a
formal framework for the creation of adaptive user interfaces.

III. FORMAL MODELING OF USER INTERFACES

As has been argued above, formal modeling of user in-
terfaces offers various advantages, such as closing the gap
between modeling and implementation. Nevertheless, formal-
ization is often related to the use of complex description lan-
guages and requires a deep understanding of the whole formal-
ization concept. The latter is addressed by solid documentation,
which still needs a basic expert knowledge of a certain domain.
In case of user interface modeling as introduced here, the
modeler should have a basic understanding of programming
languages and process modeling. Still, the problem of learning
how to use a modeling language is mitigated by the use of a
visual language paired with an intuitive point-and-click editor
implementation.

The gap between modeling and execution is finally closed
by a transformation of a given user interface model into
reference nets, a special type of Petri nets. Using its associ-
ated simulator implementation (called Renew [32]), the whole
model becomes executable, while rendering of the physical
representation of the user interface is supported by a further
software component, as implemented in the UIEditor (further
discussed in Section III-E).

Another advantage of a formal representation of a user
interface model is the possible close integration of recon-
figuration concepts. This is achieved by using a rewriting
concept applicable to reference nets. According to various
reasons (as further discussed below in Section III-D), graph
rewriting based on category theory has been chosen. Using
this kind of rewriting, the rewritten user interface model does
not have to be transformed in anyway reducing possible loss
of information in the transformation. Finally, the rewriting
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System
System Interface

Physical Representation

Interaction Logic

Figure 1. A two layered user interface model: the physical representation
is directly accessed by the user, where the interaction logic specifies the data
processing between physical representation and system to be controlled.

process, as well as the rewritten model is still verifiable in
certain boundaries.

Therefore, this section introduces a formal modeling ap-
proach for user interfaces on a simple architectural basis, which
is associated to a transformation algorithm that generates a
reference net out of a created user interface model. After
discussing a small example of the introduced modeling lan-
guage and the transformation algorithm to reference nets, its
associated reconfiguration concept will be introduced in more
detail. Finally, this section will describe a tool called UIEditor
that implements the modeling and reconfiguration concepts
for user-driven, interactive creation and reconfiguration of user
interface models.

A. Formal Interaction Logic Language - Formal Syntax

The basic concept of our approach for formal modeling
of user interfaces relies on a two layered architecture that
differentiates a user interface into its physical representation
and its interaction logic (cp. Figure 1). In general, the term
physical representation is not restricted to classic graphical
user interfaces (GUIs) or WIMP (Windows, Icons, Menus,
Pointers) interfaces [33]. Thus, a physical representation could
also be a combination of speech recognition as input and a
haptic device for output (this combination relates to multi-
modal user interfaces, such as described in [34]). Nevertheless,
our work focuses on graphical user interfaces involving classic
interaction elements, such as buttons, sliders, or text fields, as
a first step implementation of the approach.

Interaction logic specifies the logical behavior of a user
interface. It is defined by a set of processes that specify
how data is processed that is emitted from the physical
representation, such as events or inputted text, or from the
system to be controlled. The system to be controlled can be
specified as third layer but is not part of the user interface
model (such as can be seen in Figure 1). Thus, interaction
logic specifies the data processing, which takes place between
the physical representation and the system to be controlled.
These processes can be understood as graphs specifying data

flow and data processing, also called interaction processes.
Certain nodes in these graphs are dedicated to connect the
process to the system or to the physical representation. Other
nodes encapsulate complex data processing operations, such
as casting of data types or arithmetic operations, and so forth.

We developed a visual and graph-based formal modeling
language called Formal Interaction Logic Language (FILL)
to support easy modeling capabilities for creating and editing
interaction logic models in a visual editor (see Section III-E).
Thus, FILL fulfills the requirement of providing visual model-
ing capabilities for creating interaction logic. First, the formal
definition of FILL’s syntax is given below (cp. [7]), which is
partly based on nodes defined in the Business Process Model
and Notation language (BPMN) [35].

Definition 1: the Formal Interaction Logic Language
(FILL) is a 19-tuple

(S, I, CI , CO, PI , PO, XI , XO, B, T, P,E, l, g, c, t, ω,L,B),

where S is a finite set of system operations, and I is a finite
set of interaction-logic operations; PI and PO are finite sets of
input and output ports; XI and XO are finite sets of input and
output proxies; CI is a finite set of input channel-operations;
CO is a finite set of output channel-operations; B is a subset
of BPMN-Nodes, with

B = {⊕, ⊗, �}. (1)

S, I , CI , CO, PI , PO, XI , XO, T , and B are pairwise
disjoint.

P is a finite set of pairs

P = {(p, o) | pI(p) = o} ∪ {(p, o) | pO(p) = o}∪
{(p, o)|p′I(p) = o} ∪ {(p, o)|p′O(p) = o}, (2)

where pI : PI → S ∪ I and pO : PO → S ∪ I are functions
with

∀s ∈ S : (∃1(p, s) ∈ P : pI(p) = s)∧
(∃1(p, s) ∈ P : pO(p) = s), and

(3)

∀i ∈ I : ∃1(p, i) ∈ P : pO(p) = i, (4)

and where p′I : PI → CI and p′O : PO → CO are functions
with

∀c ∈ CI : (∃1(p, c) ∈ P ′ : p′I(p) = c)∧
(@(p, c) ∈ P ′ : p′O(p) = c), and

(5)

∀c ∈ CO : (∃1(p, c) ∈ P ′ : p′O(p) = c)∧
(@(p, c) ∈ P ′ : p′I(p) = c).

(6)

E is a finite set of pairs, with

E = {(pO, pI) | e(pO) = pI}∪
{(p, b) | e′(p) = b, b ∈ B}∪
{(b, p) | e′(b) = p, b ∈ B},

(7)

where e : PO ∪XO → PI ∪XI ∪{ω} is an injective function,
ω is a terminator, and

∀(pO, pI) ∈ E : (pO ∈ XO ⇒ pI /∈ XI)∧
(pI ∈ XI ⇒ pO /∈ XO),

(8)
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and where

e′ : PO ∪XO ∪B → PI ∪XI ∪B ∪ {ω} (9)

is a function, extending e from basic FILL, and

∀b ∈ B : (#{(p, b)|(p, b) ∈ E′} > 1⇒ ∃1(b, p) ∈ E′)
∨(#{(b, p)|(b, p) ∈ E′} > 1⇒ ∃1(p, b) ∈ E′).

(10)

l is a function with
l : E′ → L, (11)

where L is a set of labels.
g is a function with

g : B → B, (12)

where B is a set of Boolean expressions, also called guard
conditions or guard expressions.
c is a relation with

c : CI → CO. (13)

T is a finite set of data types and t is a total function with

t : (PI ∪ PO ∪XI ∪XO)→ T. (14)

The visual representation of FILL’s elements (syntax) is
shown in Figure 2. FILL is mainly divided into four kinds
of nodes (operation nodes, proxy nodes, BPMN nodes, and
a terminator node) and two types of edges (data flow edge
and channel reference edge), which are named according to
the previous given syntax definition. Operation nodes are
nodes that specify connections to the system (system oper-
ation), represent data processing operations (interaction-logic
operation), or define relations between different subgraphs of
the interaction logic (channel operation). Operation nodes are
in general equipped with input and/or output ports. These
connection points for edges represent data input or output. For
instance, the shown example of an interaction-logic operation
in Figure 2 consists of three input ports and one output port.
Thus, the semantic of this operation is that it is executed if
three data objects are sent to the three input ports via incoming
edges. After the data processing function or method associated
to the operation has been executed successfully, the result is
passed back into the process via the single output port. In case
of system operations, the inputted data object is passed to the
system and/or a data object is returned from the system into the
interaction process. Channel operations are further connected
to each other by channel reference edges. Data objects sent to
an input channel operation are redirected to one or more output
channel operations as defined by channel reference edges. This
enables FILL models to be modularized.

Another group of nodes are proxy nodes (Figure 2, upper
right corner). These represent interaction elements that are part
of the physical representation. Thus, proxy nodes are capable
of sending data objects to the interaction process emitted
by an interaction element or returning a data object from
an interaction process to the associated interaction element.
BPMN nodes as third group (Figure 2, right) define fusion
and branching of interaction processes. Every node follows
another type of fusion and branching semantics. An AND node
branches an incoming interaction process by sending a copy of
the incoming data object to every outgoing interaction process.
In case of fusing different interaction processes, the outgoing
process will be only triggered if all incoming interaction

processes provide a minimum of one data object. An additional
guard condition has to define which incoming data object
will be copied to the outgoing interaction process, as can be
seen in Figure 2. An XOR node has a contrary semantic to
an AND node. In the branching case, exactly one outgoing
process will be triggered by an incoming data object, which
has to be further specified by a guard condition. In the fusion
case, the XOR node simply redirects an incoming data object
(whatever data process sent this data object) to the outgoing
process. The OR node is a mixture of both AND and OR
nodes. By specifying groups of incoming (fusion case) or
outgoing (branching case) edges, an OR node behaves as an
AND node concerning groups (every edge of a group has to
provide a minimum of one data object in the fusion case, or
every process of a group is triggered in the branching case,
respectively), where edge groups are handled similarly to an
XOR node among each other.

As far as formal languages are defined by formal syn-
tax and semantics, formal semantics can be defined in two
ways: (a) define the semantics of a formal language using
mathematical formalism or (b) formally map a language’s
syntactic elements to another formal language that provides
formal semantics. In case of FILL, a formal transformation
to reference nets has been defined and algorithmically imple-
mented. A reference net is a special type of Petri net, which has
been equipped with formal syntax and semantics definitions
[36]. It is a colored Petri net formalism that specifies an
inscription language offering the definition of typed tokens
and the specification of references to net instances. This
mechanism makes it possible to instantiate nets and to assign
resulting net instances to tokens using references. Furthermore,
transitions can be inscribed with synchronous channels, which
can be also used to call Java methods using the associated
simulator Renew [32], which is implemented in Java. Java
is further used to transform FILL to reference nets, where
interaction-logic and system operations are implemented based
on pre-defined interfaces. This enables Renew to call these
functions through the interfaces’ implementations. In general,
a synchronous channel associates transitions with each other
in such a way that they are only able to fire synchronously,
which is also true for associated Java methods as discussed
above.

B. Formal Interaction Logic Language - Formal Semantics
through transformation to reference nets

The transformation of FILL to reference nets is algorithmi-
cally defined. The whole formal specification of the algorithm
can be found in [7]. In this paper, the transformation will
be discussed visually because the formal definition of the
algorithm would exceed the scope of the paper.

Before starting the description of the transformations, some
definitions are necessary to understand the inscriptions gen-
erated by the algorithm. To stay consistent to the original
specification of the transformation algorithms, the definitions
below have been extracted from the original sources [37] and
[7] respectively.

Definition 2: Assume a given FILL graph as 19-tuple as
defined above. Based on this, the functions f , κ, id, ids can
be defined as follows.
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OperationDatatype
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Connector
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Port
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Guard 
Condition 

guard a>3 -> a;
guard b==true -> b;

Connection

Figure 2. Visual specification of syntactical elements of the Formal Interaction Logic Language (FILL).

f is a function, with

f : S ∪ I ∪ CI ∪ CO → F , (15)

where F is a set of function calls. These function calls refer-
ence different types of underlying structures in the system or in
the implementation of interaction-logic operations. Depending
on the underlying programming language or system, these
references have different syntaxes. Here, reference nets use
Java method calls for calling code from the net.

κ is a function, with

κ : XI ∪XO → I, (16)

where I is a set of references on interaction elements on the
physical layer of the user interface.

id is a total bijective function, with

id : S ∪ I ∪CI ∪CO ∪PI ∪PO ∪XI ∪XO ∪B → ID, (17)

where ID is a set of ids, that identifies any node, port, or
proxy in FILL. Based on the formal, graph-based definition of
FILL, global identifiers are not necessary. In the transformation
to reference nets and for representation in data formats like
XML, ids play an important role.

ids : S′ → ID is a total bijective function that matches a
place in a reference net to an id similar to function id. S′ ⊆ S
is a subset of places representing connections to and from a
BPMN node. This function is necessary for the transformation
of BPMN nodes; it compensates for the fact that a BPMN node
does not have ports associated with ids. The inverse function
id−1s matches an id to a place in a reference net. Due to the



308

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

s

i

o

pO

pI

t

[procID, ieID, v]

[procID, ieID, v]

t

:systemOperationCallback( f(s), procID, ieID, v);

action systemOperationCall( f(s), procID, ieID, v)

Figure 3. Transformation of a system operation into a reference net.
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i1 i2 i3

o

p1

pI

t

[id(pI), ieID, v]

t

p2pO

action ilOperationCall( f(sil), id(sil), procID, ieID, v0, v1, v2)

:ilOperationCallback( f(sil), id(sil), procID, ieID, v);

[id(p0), ieID, v0]

[id(p1), ieID, v1]

[id(p2), ieID, v2]

Figure 4. Transformation of a interaction-logic operation into a reference
net.

bijectivity of ids, there is an inverse function id−1s .

ieID and procID are ids that are generated in the transforma-
tion process. ieID indicates the id associated to the interaction
element that triggers or is triggered by the interaction process.
procID is used to further specify the data flow, as can be seen
in the example discussed in Section III-C.

1) Transformation of Operation nodes: The transformation
of interaction-logic or system operation nodes basically results
in the generation of two transitions; one calling an associated
(Java) method and one for reentering the net after the method
returns. The inscriptions of these transitions only differ in
the naming of the synchronous channel, which calls the
associated method (systemOperationCall vs. ilOperationCall)
and specifies the reentering point (systemOperationCallback
vs. ilOperationCallback). They further differ in the number
of variables that are send to the method (see Figure 3 and
4, respectively), which is indicated by its name f(op), where
op indicates the transformed operation node. Data values sent
to and from operation nodes are associated to variables, here
indicated with v and v0 to v2 in Figure 3 and 4.

The main difference between the transformation of a sys-
tem operation node (as shown in Figure 3) and the transfor-
mation of an interaction-logic operation node (as shown in
Figure 4) is the transformation of input ports. According to
FILL’s syntax definition, every interaction-logic operation has
0 or 1 output port and 0 to n input ports. In case of system
operation nodes, there is exactly 1 input and 1 output port.
In general, input and output ports are transformed into an
edge/place combination as can be seen in Figures 3 and 4.

For the transformation of channel operations, channel edges
have to be considered beside the operation nodes themselves.
First of all, output channel operations are transformed into
a transition-edge-place subnet as can be seen in the lower

left corner of Figure 5. The transformation of an input chan-
nel operation is more complex. For every outgoing channel
edge (connection), a place-edge-transition subnet (indicated as
places q0 to q2 and transitions t0 to t2 in Figure 5) is generated,
which is further connected to a main transition representing
the operation (indicated as tI in Figure 5). The connection
between input and output channel operations is transformed
into inscriptions, such as shown in Figure 5 for cI and c0,
which are indicated by the used id of c0 retrieved by id(c0).
Both transitions are connected via a synchronous channel
named channel. The keyword this references to the current
net instance, thus does not reference another net instance
or external sources. If the shown example net is simulated,
transition t is fired synchronously with transition t0 according
to the synchronous binding semantics of synchronous channels
in reference nets.

2) Transformation of BPMN nodes: For BPMN nodes, the
transformation into reference nets focuses even more on the
structure of the generated net than it is the case for operation
nodes. Here, the firing semantics of reference nets is actively
used for modeling of the semantics of BPMN nodes as used
in FILL. The semantics of BPMN nodes in FILL has been
discussed above in Section III-A. Below, the transformations
will be described per BPMN node in case of fusion and
branching of interaction processes. For any transformation it
is true that for any incoming and outgoing process a place
is generated defining the entrance or exit point of the BPMN
node, as can be seen in Figure 7.

AND(fusion): The outgoing process is only triggered if all
incoming processes provide one or more data objects. This
semantic is reflected in the structure of the reference net by
defining the places representing the incoming processes as
precondition for the transition t, which represent the BPMN
node itself. The associated guard condition specifies which
data object (here the object associated to the variable a) is
copied to the outgoing process. In this case, the guard condition
is obligatory in the FILL graph. The syntax of guard conditions
has been specified compatible to guard conditions in reference
nets, as specified in [36].

AND(branch): All outgoing processes will be triggered if
the incoming process provides a data object. This semantic has
been simply realized by specifying all places representing an
outgoing process as postcondition of the transition representing
the AND node. The shown guard condition in Figure 7 is
optional and specifies under which condition the incoming data
object is redirected to the outgoing processes.

XOR(fusion): Every incoming data object will be redirected
to the outgoing edge by copying the data object to it. Therefore,
for every incoming process one transition is generated that is
optionally inscribed by a guard condition corresponding to the
guard condition specified in the genuine FILL graph.

XOR(branch): Only one of the outgoing processes is trig-
gered in case of an incoming data object. Therefore, any out-
going process is represented as a transition in the transformed
reference net. Which outgoing process will be triggered has to
be defined by an obligatory guard condition in the same sense
as discussed above.

OR(fusion): Groups of processes can be defined by edge
inscription in the FILL graph as can be seen in Figure 7.
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[procID, ieID, v] [procID, ieID, v]
[procID, ieID, v]

this:channel(id(c0), ieID, v)

this:channel(id(c1), ieID, v)

this:channel(id(c2), ieID, v)

[procID, ieID, v]
[procID, ieID, v]

[procID, ieID, v]

t

q

[id(pO), ieID, v]

:channel(id(cO), ieID, v);

Figure 5. Transformation of channel operations into a reference net.

Subsequently, the transformation generates an AND like subnet
for every group and thereby behaves like an XOR node
between the groups. If all incoming processes of one group
provide a data object each, the group’s associated transition can
fire, independent from other groups. Guard conditions control
which data objects are redirected to the outgoing process.

OR(branch): Outgoing process groups are triggered accord-
ing to the guard condition defined in the FILL graph. The
assignment of the guard conditions to the group is defined by
an arrow in the FILL graph’s guard condition, as it is the case
for all guard condition assignments for edges in the above
cases of AND and XOR nodes.

3) Transformation of proxy nodes: Proxy nodes represent
data connectors to and from interaction elements. Therefore, κ
is a function relating a proxy node to its associated interaction
element by a unique reference. This reference is used as
specification of a channel name in case of an output proxy
node (see Figure 6 left), such that an event can be uniquely
redirected to the correct proxy node representation in the
reference net. The callback function from the net to the phys-
ical representation and the associated interaction element is
specified by a fixed channel name called widgetCallback.
To identify the correct interaction element on the side of the

ip

t

q

action widgetCallback(κ(op), v)

[id(q), κ(op), v]
op

t

q

:κ(op)(v)

[id(q), κ(op), v]

Figure 6. Transformation of proxy nodes into a reference net.

physical representation, its identifier (given by κ) is passed as
parameter to the channel (see Figure 6 right).

The section below will present a comprehensive example of
the use of FILL and an associated transformation to reference
nets. The example provides a deeper insight to the semantics
of a FILL graph and how an associate reference net transfor-
mation looks like before Section III-D introduces the rewriting
approach for interaction logic models.

C. FILL Example

Figure 9 shows a FILL graph that consists of two inter-
action processes; on the left an interaction process is shown
using an XOR BPMN node, on the right a simple interaction
process that triggers a system operation is shown. The latter
process starts with an interaction-logic operation that only
supports a single output port without any input port. Thus, the
operation only emits data objects into the process but does not
consume any. In this case, the operation called “ticker” sends a
simple object into the interaction process and thereby triggers
the following system operation called “getSV2Status”. This
system operation returns the associated value, here the status of
SV2 that represents whether a steam valve of a simple nuclear
power plant simulation is open (true) or closed (false). This
value is then sent to an input proxy connected to an interaction
element, such as a lamp widget that flashes green in case of a
true value and red in case of a false value.

Before discussing the interaction processes in more detail,
the simple nuclear power plant simulation will be briefly
presented. In Figure 8, the process is shown. The nuclear power
plant simulation consists of three main elements: the reactor,
the condenser, and the turbine, which transfers steam into
rotation energy that is further transferred into electrical energy
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guard c > 3 -> g2:c;

x

guard x > 0 -> g1;
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Figure 7. Transformation of BPMN nodes into a reference net.
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Figure 8. Feed water circuit of a simplified simulation of a steam water
nuclear reactor called REACTOR.

through a connected generator. The condenser condenses the
steam back into fluid water that is pumped by two pumps
back into the reactor. The nuclear reaction generates thermal
energy and is controlled by control rods, which can be pushed
into or removed from the nuclear core. Removing increases
the amount of thermal energy boiling the water and thereby
generating steam. Various valves can be further used to control
the way of the water and the steam.

The process on the left of Figure 9 also includes an XOR
BPMN node branching the interaction process into two sub-
processes. The whole process is triggered by an interaction
element, like a button, sending an event object to the inter-
action process. Before the XOR node is triggered, the same
system operation is triggered as in the left interaction process,
such that the status of the valve is sent to the XOR node.
The associated guard condition specifies that in case of a false
value, the sub-process indicated with a will be triggered by
the inputted value. In case of a true value, the sub-process
b will be triggered. In both cases, an interaction logic that
generates a Boolean value and emit this to the system operation
“setSV2Status” is executed. Thus, if the current value of the
steam valve is true, it will be changed to false and vice versa.

The result of the transformation to a reference net is
shown in the middle of Figure 9. Gray boxes with different
types of borders indicate which FILL element is transformed
into which subgraph of the reference net. Furthermore, it
can be seen how edges in the FILL graph are transformed
into transitions, simply redirecting incoming data objects to
their outgoing edges. procIDs are used to specify a certain
interaction process throughout the reference net. This is of
special interest in case of transformation of system operations,
which have only one representation in the reference net. This

has various reasons. System operations can influence or return
(part of) the system state; these operations are state-full. Write-
write race condition should be avoided in case of state-full
software components and thereby only single representations
of system operations exists. Please note that the presented
example intends to give a deeper insight how a result looks
like that the algorithm generates.

Therefore, procIDs are necessary to identify the correct
reentering point after returning from a system operation. In
Figure 9, this can be seen in case of the system operation
“getSV2Status”. Here, the relevant procIDs are marked with
dashed ellipses.

Interaction-logic operations are in contrast to system oper-
ations transferred into multiple sub-nets in the reference net.
For every used interaction-logic operation block in the FILL
graph, a subgraph is created. In this case, the above discussed
concurrent method calls could occur. Still, interaction-logic
operations should not be state-full. Thus, the race conditions
as described above will not occur. Additionally, pre-defined
parameters, such as the parameter specifying which Boolean
value should be generated is different between every use
of the interaction-logic operation. In Figure 9, the operation
“generateBooleanValue” is called once with the parameter
new Boolean(true) and once with the parameter new
Boolean(false).

D. Formal Reconfiguration

Adaptive user interfaces offer great opportunities in human-
computer interaction (what has been discussed in detail,
above). Thus, formal user interface models should be enabled
to be adaptive or even adaptable in a certain sense. This
section introduces a formal reconfiguration concept that is able
to adapt the presented graph-based user interface modeling
approach.

Formal reconfiguration can be differentiated from redesign,
where redesign refers to the change of the physical represen-
tation and reconfiguration specifies changes in the interaction
logic of a user interface model. Interaction logic is modeled
using FILL and then transformed to reference nets, not only
for defining formal semantics but also for making FILL graphs
executable. Thus, reconfiguration means changing reference
nets, necessitating a method (a) that is able to change ref-
erence net models and (b) that is defined formally to prevent
reconfigurations from being non-deterministic. Various graph
transformations and rewriting approaches can be found in
literature. Shürr and Westfechtel [38] identify three different
types of graph rewriting systems. The logic-oriented approach
uses predicate logic expression to define rules. This approach
is not wide-spread due to its complex implementation. Another
approach defines rules based on mathematical set theory, which
is flexible and easily applied to various applications. Still, it
has been shown that irregularities could occur applying set-
theoretical rules to graph-based structures.

Finally, graph rewriting based on category theory has been
chosen for reconfiguration according to various features. First
of all, pushouts (see Definition 3) as part of category theory are
well behaved regarding their application to graphs, especially
the double-pushout (DPO) approach as has been discussed
by Ehrig et al. [39]. The DPO approach specifies rules that
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Figure 9. An example of a FILL graph with two interaction processes, showing their corresponding transformation to a reference net.

explicitly define which nodes and edges are deleted in a first
step and then being added to the graph in a second. This
is not true for the single-pushout (SPO) approach, which
is implementation dependent or generates results that are
probably not valid graphs [39]. Only to give a simple example,
the SPO approach can afford dangling edges, which are edges
having only a source or a destination, but not both. A further
problem could be the implicit fusion of nodes, which could
have negative implications to the rewriting of interaction logic.
These aspects have been resolved in the DPO by making
deletion and adding of nodes and edges explicit as well as
defining a condition preventing rules from being valid if they
produce dangling edges. The DPO approach definition will
make this more precise, as given below.

A further argument supporting the use of the DPO approach
for rewriting interaction logic is that it has been extended
and discussed in context of Petri nets as discussed by Ehrig
et al. in [40] and [41]. This work offers a solid basis for
the reconfiguration of reference net-based interaction logic.
Furthermore, the DPO approach (as well as the SPO) is able to

change existing graphs, where graph grammars are production
systems. Using graph grammars for reconfiguration would
mean to change production rules instead of defining rules
changing an existing graph. At a first glance, this seems to
be less comfortable and counter intuitive. Finally, the Petri
net-based DPO approach as described by Ehrig et al. [40]
can be simply extended to colored Petri nets. Within certain
boundaries, also the semantics of the inscription can be taken
into account, as described in detail by Stückrath and Weyers
[42].

As the SPO, the DPO is based on the category theory-
based concept called pushouts. Assuming a fundamental un-
derstanding of category theory (otherwise consider, e.g., [43]),
a pushout is defined as follows.

Definition 3: Given two arrows f : A → B and g : A →
C, the triple (D, g∗ : B → D, f∗ : C → D) is called a
pushout, D is called pushout object of (f, g), and it is true
that

1) g∗ ◦ f = f∗ ◦ g, and
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2) for all other objects E with the arrows f ′ : C → E
and g′ : B → E that fulfill the former constraint,
there has to be an arrow h : D → E with h◦g∗ = g′

and h ◦ f∗ = f ′.

The first condition specifies that it does not matter how A
is mapped to D, that is via B or C. The second condition
guarantees that D is unique, except isomorphism. Thus, defin-
ing (f, g) there is exactly one pushout (f∗, g∗, D) where D is
the rewritten result, also called pushout object. In general, A
and B are given defining the changes applied to C, the graph
to be rewritten. Therefore, a rewriting rule can be specified as
a tuple r = (g, f, A,B), such that D is the rewritten result
by calculating the pushout (object). This procedure is mainly
applied in the SPO approach.

For the definition of the DPO approach, the pushout
complement has to be defined first.

Definition 4: Given two arrows f : A→ B and g∗ : B →
D, the triple (C, g : A → C, f∗ : C → D) is called the
pushout complement of (f, g∗) if (D, g∗, f∗) is a pushout of
(f, g).

A DPO rule is then defined based on the definition of a
production corresponding to the former discussion of pushouts
in category theory.

Definition 5: A matching is a mapping m : L → G; a
production is a mapping p : L → R, where L, R, and G are
graphs. The corresponding mappings of m and p are defined
as mapping m∗ : R → H and p∗ : G → H , where H is also
a graph.

Definition 6: A DPO rule s is a tuple s =
(m, (l, r), L, I, R) for the transformation of a graph G,
with l : I → L and r : I → R, which are two total
homomorphisms representing the production of s; m : L→ G
is a total homomorphism matching L to graph G. L is called
the left side of s, R is called the right side of s, and I is
called an interface graph.

Given a rule s, in a first step the pushout complement C
can be calculated using L, I , m, and l with a given graph G to
be rewritten. In the DPO approach, this step deletes nodes and
edges from G. In the second step, the pushout is calculated
using I , R, and r applied to C resulting in the graph H . This
step adds nodes and edges to C. In conclusion, the difference
between L and I specifies the part deleted from G, where the
difference between I and R defines those elements, which are
added to C and finally to G. The result of applying s to G is
the graph H as can be seen in Figure 10.

Nevertheless, the pushout complement is not in all cases
unique or probably does not even exists. According to the
latter, if the total homomorphisms l and m fulfill the gluing
condition, the pushout complement will always exist. The
gluing condition is defined as follows.

Definition 7: There are three graphs I = (VI , EI , sI , tI),
L = (VL, EL, sL, tL), and G = (VG, EG, sG, tG). Two graph
homomorphisms l : I → L and m : L → G fulfill the gluing
condition if the following assertions are true for both l and m,
given as
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Figure 10. Exemplary DPO rule and its application to a graph G.

@e ∈ (EG \m(EL)) : sG(e) ∈ m(VL \ l(VI))∨
tG(e) ∈ m(VL \ l(VI)),

(18)

and
@x, y ∈ (VL ∪ EL) : x 6= y∧

m(x) = m(y) ∧ x /∈ l(VI ∪ EI).
(19)

Condition 18 is also called dangling condition. The homo-
morphism l of a DPO rule that defines, which nodes have to be
deleted from a graph fulfills the dangling condition if it also
defines which edges associated with the node will be removed.
Thus, the dangling condition avoids dangling edges; a dangling
edge is an edge that has only one node associated with it as its
source or target. Condition 19 is called identification condition.
The homomorphism m fulfills the identification condition if
a node in G that should be deleted has no more than one
preimage in L. However, if one node of G has more than
one preimage in L defined by m and one of these has to
be deleted, it is not defined whether the node will still exist
in G or must be deleted. This confusion is avoided by the
identification condition.

The problems of the SPO approach discussed above are
mainly solved by the gluing condition being an integral part
of the DPO approach. Nevertheless, the pushout complement is
not unique but exists if the gluing condition is fulfilled. If l and
m are injective, the pushout complement will be unique except
isomorphism. This aspect is further discussed by Heumüller et
al. [44] and in [7, p. 107].

The above definition of the DPO approach is only applied
to simple graphs (cp. Figure 10). An extension of this approach
to (simple PT) Petri nets has been discussed by Ehrig et
al. in [40] and [45], and Weyers [7]. Nevertheless, rewriting
of inscriptions has not been considered by these authors.
Inscriptions extend basic Petri nets with further semantics,
such as supporting complex data objects as tokens and the
definition of guard conditions that extends the firing semantics
of transitions. Still, rewriting interaction logic means rewriting
reference nets, which are finally Petri nets with a specific
inscription language that supports guard conditions and the
definition of synchronous channels. Therefore, rewriting in-
scriptions has been discussed by Stückrath and Weyers in [42].
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Finally, rule descriptions have to be serialized in a com-
puter readable form. This is necessary for the implementation-
side use of rewriting rules using the algorithmic rule generation
concept presented in the next section. Therefore, an existing
XML-based description language for Petri nets (PNML [46])
has been used with an extension to structure and describe the
rule specific elements, such as indicating L as deleteNet,
I as interface, and R as insertNet. The mapping
node specifies m as a set of mappingElements, which are
representations of tuples of XML ids. An example showing a
rule in XML format can be seen in the XML snippet included
in Appendix A.

E. The UIEditor

The above sections introduced a formal modeling and
rewriting approach for the creation and reconfiguration of
user interfaces, especially for the description of interaction
logic. This approach is accompanied with a tool implemen-
tation called UIEditor, which offers capabilities for the cre-
ation/modeling, execution, and reconfiguration of user inter-
face models. Figure 11 illustrates a general workflow imple-
mented by the UIEditor that characterizes the creation and
usage of user interface models based on our approach. In the
creation phase, the user interface model is interactively created
by an expert using the visual editor for editing the physical
representation and the interaction logic using FILL. Figure 12
shows the UIEditor in creation mode with two opened visual
editors. On the right, the drag-and-drop editor for the creation
of the physical representation can be seen. On the left, the
editor for creating the interaction logic using FILL is shown.
Generally, FILL nodes and interaction elements are added to
the canvases via drag-and-drop. In the case of FILL nodes,
each node is connected via edges from output to input ports in
an interactive fashion. Parameters of interaction elements can
be specified through context menus and associated dialogs.

For the execution of user interface models, the UIEditor
implements the transformation algorithm discussed in Section
III-B, which is encapsulated in the creation of simulation
files. These files define the connection of reference net-
based interaction logic models, the description of the physical
representation, the associated system to be controlled, and
some further parameters like logging. After finishing the
transformation, the UIEditor changes into simulation mode
loading the simulation file and starting the execution of the
user interface. In simulation mode, the UIEditor shows only
the physical representation of the user interface model and
starts the underlying controlled system. The interaction logic
is loaded to Renew. The UIEditor handles the communication
between reference net simulation, the physical representation,
and the system to be controlled. Here, the user is able to
interact with the system using the modeled and executed user
interface.

If the user stops the simulation (by pressing the stop
button), the UIEditor changes into reconfiguration mode. Here,
the physical representation is shown to the user with a set of
buttons related to the execution of reconfiguration rules. Var-
ious reconfiguration operations are supported, such as paral-
lelization of input operations or discretization of interaction el-
ements. In the first case, the user selects n different interaction
elements and applies the parallelization operation to it. A new
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Adaption Phase

Reconfiguration

Creation Phase

Interactive Modeling

Use Phase

Simulation

Test 
Results
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Figure 11. General workflow for using the UIEditor: creating user interface
models, running these through simulation, and reconfigure these using an
interactive tool.

button is generated that executes all operations in parallel that
were previously connected to the selected interaction elements.
Discretization is a reconfiguration operation that generates
a button, which sends a predefined value to an interaction
process that has been previously connected to a continuous
interaction element, such as a slider. In the current imple-
mentation, these operations generate DPO rules for changing
the underlying interaction logic based on an algorithmic and
hard-coded implementation. This makes the reconfiguration
mechanism inflexible and hard to extend. Therefore, the next
section will introduce a more flexible concept for describing
and instantiating rules in a more flexible and extensible way
using abstract description concepts and formats.

IV. RULE GENERATION

The current implementation of reconfiguration in the UIEd-
itor is exclusively user-driven and based on pre-defined algo-
rithmic implementations for rule generation making the whole
reconfiguration approach inflexible and hard to extend. There-
fore, this section describes an extension based on the modeling
and reconfiguration formalism introduced above (see Section
III) according to (a) a generic and simple-to-use description of
rule classes and (b) the algorithmic implementation of rule gen-
eration based on these classes. In general, the approach aims
at the generation of DPO rules applied to reference net-based
interaction logic as well as basic redesign rules applied to the
physical representation, where the generation of DPO rules will
be the focus of the discussion. The rule generation enables
reconfiguration and redesign to be applied automatically as
well as by the basic approach of user triggered reconfiguration,
as discussed above. The whole approach is embedded into
a rule generation process, which will be discussed in the
following section. This process identifies necessary steps and
algorithmic implementations for the intended rule generation,
which will be presented in more detail in Section IV-B and
IV-C. Finally, the approach will be discussed with an example
of adaptive automation in Section V relating to the previous
work discussed in [1].
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Figure 12. The UIEditor in creation mode: left, the interactive editor for modeling FILL graphs, right, the interactive drag-and-drop editor for modeling the
physical representation.

A. Rule Generation Process

The rule generation process is illustrated in Figure 13. It
specifies the main steps for selecting necessary information
and data for the rule generation, certain validation and decision
steps, and finally the rule generation and the rule application
to the interaction logic and the physical representation of the
user interface model.

First, the process has to be triggered, either by the user
who interactively selects certain interaction elements and a
rule to be applied or by the system that decides to adapt
the user interface based on sensory data and certain domain
knowledge. Still, this part of the reconfiguration process is
not part of the approach discussed here regarding its domain
and use case dependent implementation. However, this trigger
operation ends up in a call of a user interface reconfiguration
(indicated by ¬ in Figure 13) and in the gathering of input data,
which is essential for further steps in the process. In step ¬, a
matching rule class is selected from a data base according to
the information and data provided by the triggering instance. In
step ­, the rule class gets validated based on various aspects.
One major validation step here is the analysis of input data
according to completeness and correct matching to the selected
rule class, as well as the evaluation of the class’ instantiation
precondition. Therefore, rule classes specify preconditions
according to data that has to be provided for a successful
instantiation.

If the rule class is validated to be applicable, it is redi-
rected to step ® generating the rule. Otherwise, the process
terminates. The rule generation step will be discussed in more
detail in Section IV-B below. In general, the rule generation
takes a rule skeleton as input and tries to create a set of
rules using the genuine (interaction logic) net and the input
parameters provided by the triggering instance. If the set is
empty, no matching subnets in the genuine interaction logic
could be found and the process terminates. If the set holds
more than one rule, a rule has to be selected in step ¯ using
a certain heuristic. One simple approach would be to select
one rule randomly or the first that is successfully generated.
Alternatively, it could be also possible to select the rule that
has the greatest impact on the rewritten net. Nevertheless,
the used heuristic has to be specified in context of the rule

class description, as will be further described in Section IV-C.
After the rule has been applied to the genuine net in step
° according to the DPO-based rewriting approach (discussed
above in Section III-D), the rule class is checked according
to necessary changes in the physical representation. If the
physical representation has to be redesigned, the specified
changes are applied to the user interface in step ±. Finally,
the process terminates.

B. Rule Skeleton

Step ® shown in Figure 13 generates rule instances from
rule skeletons using input data and other parameters. This
section will specify the structure of rule skeletons and the
generation algorithm extracting rule instances from a given
skeleton, which involves linking of resources into the skeleton.
This is necessary to extract certain structures from the net to
be rewritten in a second step. Rule skeletons are encapsulated
into rule classes, which provide further information regarding
validation, necessary data for instantiation, and directives for
possible redesigns being applied to the physical representation
of a user interface model. Rule classes will be discussed in
more detail in Section IV-C.

A skeleton specifies three special types of graphs L, I ,
and R that represent a DPO rule, as well as the functions
l and r (cf. Figure 10). Figure 14 shows a simple example
of a rule skeleton. Here, a new interaction element (a slider)

Call
Reconfiguration

Rule Class
Validation

Rule Class

Input Parameter

Rule Generation
Rule Application

-Interaction Logic-

appliable?

unique?Rule Instance

Rule
Selection

redesign?
Rule Application
-Physical Rep.-

yes

yesno

no

yes

no

User
System

1 2

3

4

5

6
empty rule

Original Net

Figure 13. The rule generation process.
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NET_0 trav

'':'', WC, ''('', VAR, '')''

NET_0 trav

'':'', WC, ''('', VAR, '')''

NET_0 trav

''slider:setV(x)''

'':'', WC, ''('', VAR, '')''
VAR

y

x

x

x

x

l r

IL R

Figure 14. Simple example of a rule skeleton.

is added that is combined with an existing one, such that the
existing element has to emit an event before the slider’s value is
redirected into the existing interaction process. The underlying
system could, again, be the simple simulation of a nuclear
reactor, as has been mentioned above (see Section III-C). In
this case, the slider can be used to set the rounds per minutes
or speed of a water pump in the system and then in a second
step to set this value to the system by clicking the button.

1) Graph and text grammars: Rule skeletons are mixtures
of graph and string grammars as well as control structures,
such as loops or alternatives. Graph grammars are “... similar
to a string grammar in the sense that the grammar consists
of finite sets of labels for nodes and edges, an axiom, i.e., an
initial graph, and a finite set of productions” [47, p. 120].
Graph grammars have been shortly presented above when
discussing various rewriting systems (see Section III-D). In
this context, graph grammars were not suitable because they
are defined by rules that generate graphs and as opposed to
change existing graph structures. In context of rule generation,
grammatical descriptions are instead suitable because DPO
rules need to be generated (and not rewritten) and thereby
the graphs L, I , and R in particular.

In case of graph grammars, nodes inscribed with nontermi-
nals are substituted during the generation by graphs or specific
inscriptions, for instance extracted from the original graph
through graph traversing or by given graph structures offered
as initial parameter. Furthermore, inscriptions gets substituted
by additional data or inscriptions extracted from the original
data and the genuine net. Which data source is used for a
substitution of nonterminals in the skeleton is specified in the
rule class description or results from the expansion algorithm
described below. The following list specifies which types of
nonterminals can be used in rule skeletons, where EBNF refers
to the Extended Backus-Naur Form, a special type of language
for the definition of textual grammars:

• EBNF like nonterminal symbols: These nonterminals
are used in inscriptions to be replaced by matching the
associated node to a node in the genuine net (the net
to be rewritten by the resulting rule) or by matching
it to predefined parameters as has been inputted or
specified by the rule class. In general, inscriptions
are specified using EBNF syntax. Nonterminals are
printed in capital letters only, such as WC in Figure
14.

• Net nonterminal symbols: Nodes inscribed by Net
nonterminals getting replaced by (a) a subnet extracted
from the genuine net or (b) by a predefined net given
by the rule class or as additional input data. In case
(a), the nonterminal in the skeleton is extended by a
keyword specifying how the subnet has to be extracted
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'':'', WC, ''('', VAR, '')'' Lookup:
WC = ''setA''
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Figure 15. Example for nonterminal replacement by applying the REP
algorithm.

from the genuine net. The example shown in Figure
14 (NET_0 trav) will be replaced by a traversed
subnet of the genuine net. In case (b), the rule class
has to specify by which net the nonterminal has to
be replaced. In general, a net nonterminal is indicated
by the keyword NET_X, where X specifies a further
identifier of the nonterminal making it usable several
times in the same skeleton.

For the instantiation of a rule skeleton, first nonterminals of
the left side of the rule skeleton are replaced and the matching
function m that is an essential part of the rule instance is
derived by matching the left side to the genuine net. In a second
step, replacements in graphs I and R are made according to
replacements made in the first step and using given data and
information stored in a lookup table. In Figure 15, a sample
graph extracted from the rule skeleton (as shown in Figure 14),
which is using both types of nonterminals can be seen. Before
discussing the example, the replacement algorithm, which is
capable of collecting the replacements for nonterminals and
apply the replacements to the skeleton, will be described in
more detail.

Replacement Algorithm (REP)

1) Lookup table generation: This table is generated from
input parameters and values specified in the rule class.
It can contain values of various types including nets.
Keys are derived from the rule class and should
match names of nonterminals in the skeleton. An
empty or invalid lookup table is prevented by the rule
class validation step executed before the replacement
(Figure 13 ­).

2) Lookup table replacement: All nonterminals with
matchings in the lookup table are replaced in the
skeleton’s nets.

3) Net matching: Based on the partially replaced skele-
ton and especially of the partially replaced net L, a
possible matching in the genuine net is identified to

a) replace nonterminals that have not been re-
placed using the lookup table and

b) find entering points/nodes in the genuine net
for a net traversal.
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4) Net traversal: The genuine net is traversed according
to the previously found matching(s) and due to the
specified traversal method (as specified in the rule
class), which will be described in more detail below.

5) Net nonterminal replacement: Net nonterminals are
replaced by the previously derived subnet(s).

6) Completion of lookup table: The lookup table gets
extended with the derived subnets from net matching
and traversal bound to the nonterminal names used
in the skeleton.

7) Initiate redesign: The redesign as defined in the
rule class is initiated, such that all nonterminals are
replaced in the redesign and the redesign is applied
to the physical representation.

Net traversal is basically implemented by a simple al-
gorithm. It traverses the genuine reference net simply by
following the directed edges through the net from a pre-defined
starting node (derived from a matching of the rule skeleton’s
nets to the genuine net). Guard conditions and further semantic
information are ignored for the traversal because the traversal
aims at extracting a certain sub-structure of the net without
considering the token play during runtime. If the traversal
algorithm hits a transition representing an operation node,
the inscription is interpreted regarding the identification of
the corresponding recall transition. Here, the relevant ID is
extracted from the inscription and tried to be matched to
other transitions’ inscriptions. If the algorithm cannot find
a matching transition, it terminates. A second termination
condition of the traversal is that the algorithm hits a node
in the net that has no further edges leaving it.

Net matching and net traversal are further used to derive
the matching function m necessary for the final rule definition.
Note that m specifies the subnet of the genuine net that is
rewritten by the rule. Furthermore, the net matching is possibly
not unique leading to 0 to n resulting rules from this step in
the algorithm. In the case of n > 1 matchings, n rule instances
result from the process (Figure 13).

Figure 15 shows the application of the REP algorithm onto
the left side of the rule skeleton, as defined in Figure 14.
Assumed that WC is predefined by given input data, such that
WC is defined as the string setA, the initial lookup table is
filled with this information. Therefore, in the first step WC is
replaced by setA resulting in the first intermediate result. In
the next step, the genuine net is matched to the intermediate
result. Thereby, the nonterminal VAR can be replaced by x.
Subsequently, the genuine net is traversed given the initial
node, in this case the transition is inscribed with NET_0
trav. Finally, the result of the traversal is added to the
skeleton.

The whole rule instance is derived by further application
of the lookup table replacement step of the REP algorithm to
all nonterminals. According to the algorithm’s last step, the
traversed subnets are part of the lookup table and thereby can
also be replaced in I and L. Thus, the lookup table should
contain all necessary replacement elements due to the rule class
validation and the previously applied net traversal.

2) Boxing: Up to this point, only graph grammar and
EBNF-like replacements of nonterminals applied to graphs
were used. For more complex rules, for instance, rules in-

alt X>5 X<=5

Nloop Nloop

Y_N

Y_N

'':'', WC, ''('', VAR, '')''

Y_N

Y_N

'':'', WC, ''('', VAR, '')''

'':'', WO, ''('', VAR, '')''

Z_N

VAR VAR
VAR

Figure 16. Example of using boxes in rule skeletons: a combination of
alternative and loop boxes.

volving a number of interaction elements that are not fixed in
advance, further structures are necessary extending the current
modeling approach of rule skeletons. Therefore, the basic
skeleton description is extended by boxes that represent loops
or alternatives, which are parameterized during runtime as
specified in the rule class. Thus, from this boxed description of
a rule skeleton, a simple nonterminal-based representation is
derived algorithmically before the REP algorithm generates the
final rule. This extraction algorithm is composed of recursive
calls of loop box and alternative box extractions following the
nesting of boxes of both types. Before discussing the extraction
algorithm in more detail, the semantics of loop and alternative
boxes will be discussed in detail.

Loop box: A graph defined in a loop box gets replicated
as many times as defined. Therefore, a loop box gets pa-
rameterized by the number of copies that should be created.
Figure 17 shows a loop box indicated by the keyword loop
followed by the parameter N. This parameter can also be used
as nonterminal in the graph. In Figure 17, the nonterminal
WC_N represents for a call method dedicated to an individual
interaction element. The iteration counter N added to the
nonterminal WC specifies that every created copy of the given
net has to be matched to a method name from an individual
interaction element. The matching has to be specified in the
rule class and generated during the generation of the lookup
table in the REP algorithm.

Alternative box: This box defines two different graphs to be
selected in the extraction phase according to the specified con-
dition. This condition is evaluated in an if-then-else fashion. If
the condition is evaluated to true, the graph in the left box is
selected for further extraction, otherwise the right graph gets
selected.

Boxes can be used in a hierarchical fashion, such that boxes
of different type can be nested into one another. Boxes can
also be used in parallel, such that one alternative box holds
a graph that uses two loops on the same hierarchical level.
In general, it is possible to box subgraphs, as it can be seen
in Figure 17. Regarding the use of boxes in the specification
of rule skeletons, these boxes have to be extracted before the
replacement algorithm can be applied to a plain rule skeleton.
The following algorithm is applied to boxed rule skeletons to
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retrieve a plain rule skeleton for input into the replacement
the REP algorithm. The extraction algorithm is mainly based
on two steps: the first step resolves the nesting of the boxes
and the second step applies the extraction to the boxed rule
skeleton. The algorithm can be specified as follows:

Extraction Algorithm (EXT)

1) Create Box Tree: Starting on the highest level defin-
ing the root of the tree (which could be seen as the
left, interface, or right side of the rule), all boxes
on the next lower level are identified. For every box,
one child will be created. This procedure is repeated
until no more boxes can be identified on the next
lower level (i.e., the lowest level has been reached in
a subtree). If the currently selected node references
an alternative box, the condition of the box gets
evaluated before the children are inspected further,
such that the selected subgraph can be inspected
without creating unnecessary subtrees that would not
be interpreted in the following step according to the
evaluation of alternatives.

2) Extraction: To extract the final graph, the box tree
is traversed in post-order. Each time a root node of
a subtree gets selected by the traversal, the corre-
sponding box is ’executed’. In case of an alternative
box, nothing happens because it has already been
evaluated in the box tree creation, before. In case
of a loop box, the ’copy’ operation is performed as
often as specified. After finishing the box execution,
the tree traversal process is continued until the box
tree traversal ends in the root node.

In Figure 17, an example of an application of the extraction
algorithm can be seen. To show the general process in all
details, we decided not to discuss this example in context of
the previous introduced simulation of a nuclear power plant
(see Section III-C). The depicted rule stub is comprised of
an alternative box and various loop boxes. Depending on the
value X, one or two loop boxes have to be extracted. In the
box tree creation step, the alternative box is inspected as the
box on the highest level of the skeleton’s box hierarchy. In
this example, X is set to 3. Thus, the right graph is selected
for further inspection and a node is added to the box tree.
Furthermore, the alternative box is removed from the rule
skeleton as preprocessing of the extraction step. In the next
step, the two loop boxes get inspected. For each box, a node
is created in the tree each referencing one of the boxes. Next,
the create box tree step terminates because no more boxes are
encapsulated in the loop boxes.

The first extraction step as shown in Figure 17 starts with
the traversal of the box tree (in post-order), first selecting the
left loop box for extraction. The result of the first extraction
step is shown on the lower left side of Figure 17. N is set to 2
resulting in two copies of the subgraph as defined in the rule
skeleton. It can also be seen that the box crossing edges are
duplicated in this case. The extraction of the second loop box
is shown in the lower right corner of Figure 17, following the
same extraction operation. The next node selected in the box
node tree is the node representing the alternative node, which
has been previously removed in the box tree creating step. The
next and last node selected is the root node causing the EXT
algorithm to terminate.

The EXT algorithm is applied to all graphs of the rule
skeleton before the left side is inputted into the REP algorithm
for nonterminal replacement. After finishing the EXT and REP
algorithm, the rule has been generated. Before discussing a
more complex example that implements adaptive automation
using this approach, the rule class description has to be further
specified, using XML as described below.

C. Rule Class Description

The rule class description, as briefly discussed above,
specifies which data has to be provided to the REP and EXT
algorithms to finally create the application specific rule. Beside
the rule skeleton and the needed data, the rule class contains a
description of necessary changes of the physical representation.
At a glance, the following information is specified in a rule
class:

• Metadata

• Selection heuristics and use of traversal algorithm

• Instantiation precondition

• Nonterminal declaration and definition

• Box parameter specification

• Rule skeleton

• Redesign of the physical representation

Metadata mainly specifies information regarding the sort
of rule class, how it gets instantiated (interactively or system-
side), its name, and some human readable description. The
net traversal parameter specifies how the nets are traversed
for rule skeleton instantiation. Currently, only the standard
algorithm is implemented, as discussed above. The selection
heuristic specifies how a certain rule is selected from a set
of rules resulting from the instantiation of a rule skeleton.
Currently, only the first strategy is available, simply se-
lecting the first successfully generated rule. Further, a set
of instantiation preconditions can be specified. Therefore,
variables can be defined, which are used in these conditions
in a second step. The variables are then matched against input
data during runtime, similar to nonterminal symbols.

The declaration and definition of nonterminal symbols
mainly specifies how values for the REP algorithm are derived
or how certain nonterminals are associated to specific values.
Values specifying box parameters are necessary to evaluate
loop or alternative boxes in a rule skeleton. All specifications
either define specific values (constants) or define how values
will be derived; through user interaction or system side data
input. Using concepts like RDF, the data specification in the
rule class can be defined even more flexible. In Section V-B,
this will be discussed in more detail with an example. Decla-
ration of nonterminals and box parameters will be defined as
shown in the XML snippet given in Appendix B.

In this context, RDF is used to specify nonterminal’s
datatype declarations and the specification of box parameters
used in the associated rule skeleton. This makes an imple-
mentation independent description of rule classes possible,
such that the concept is not restricted to be used with its
initial implementation. For instance, the nonterminal WO (see
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Figure 17. The application of the EXT algorithm, which extracts a boxed graph skeleton.

Appendix B) represents an interactively selected widget as can
be identified by the specified datatype widgetInteract.
WC represents a newly added widget, which needs an extension
of the physical representation. This aspect will be further
discussed below. Another example is the box parameter X,
which is also inputted interactively as integer value (specified
as intInteract datatype). Furthermore, a description has
been specified to be shown to the user explaining what sort of
parameter X is.

The generated rules are applied using the UIEditor imple-
mentation based on the DPO approach. This implementation
uses a description of the DPO rule, where R, I , and L
are defined as PNML-based graph specification. PNML (Petri
Net Markup Language) is a markup language for specifying
Petri nets of various types [48]. To stay consistent with this
implementation, the description of rule skeletons will be based
on this description concept simply extended by two types of
XML nodes specifying loop or alternative boxes. The XML
stub given in Appendix C shows how the rule skeleton in
Figure 17 is expressed in the extended PNML format.

This extended net description is embedded into a rule
description as discussed above (see Section III-D). Thus, three
rule skeletons are specified with an additional specification of
a mapping function.

In addition to changes of interaction logic, changes of the
physical representation can occur, as it is the case for the
nonterminal WC in Figure 14. In this case, a button should
be added, which is connected to the interaction logic using
the replacement of the WC nonterminal as reference. The REP
algorithm is capable of creating a new interaction element as
described in the rule class, adding it to the physical representa-
tion, and deriving the relevant reference from it to replace the
relevant nonterminal in the rule skeleton. The redesign element
for the rule class is described by the following XML snippet
in Figure 18.

In this first version, only simple changes to the de-
sign of the physical representation are added: newWidget
adds a specified widget to the physical representation and

<rc:redesign>
<rc:newWidget reference="WC"

widgetType=
"http://uieditor.org/widgets/button"

method=
"http://uieditor.org/widgets/actionEvent"/>

<rc:deleteWidget reference="WO"/>
</rc:redesign>

Figure 18. XML snippet of a redesign as specified in a rule class.
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deleteWidget removes an existing widget from the phys-
ical representation. The interpretation system has to decide
where to add the widget and in what initial size. In context of
redesign, various extensions could be made, such as changing
existing interaction elements regarding their outward appear-
ance or their specific functionality. Still, this sort of change
needs a more specific description concept of the physical
representation and its redesign. The current version of the
UIEditor uses a proprietary format for describing the physical
representation. As future work, the use of UIML or UsiXML is
planned to make the description of the physical representation
more flexible and interchangeable between different (hard-
ware) platforms.

Finally, an entire rule class is specified according to the
example given in Appendix D. The following section will
introduce and discuss an entire example using the rule gen-
eration process including the formalization of rule skeletons
and rule classes based on XML as well as the application of
the REP and EXT algorithms. The example presents a concept
of adaptive automation as presented in [1]. It shows the usecase
of a water pump as part of the nuclear power plant simulation
scenario introduced above.

V. ADAPTIVE AUTOMATION

Before presenting an example for adaptive automation
in detail, the main motivation for implementing adaptive
automation concepts will be discussed. The basis for this
argumentation is that research in cognitive psychology has
revealed important consequences of automation with respect
to the human operator’s workload in monitoring and control
of technical processes, especially in critical, non-standard situ-
ations, as has been described in [49] and [50]. High workload
is closely related to error rate, as well as to factors that
influence the error rate in human-machine interaction, such
as motivation, well-being, or situation awareness, as has been
described in [51] and [52]. As has been discussed above,
adaptive user interfaces are capable of reducing complexity
in the interaction with technical systems [3]. Thus, it seems
obvious to adapt user interfaces in order to suit particular
users’ needs and to introduce into the adaption process the
degree of automation as an important parameter influencing
human factors in human-machine interaction [53]. Here, the
degree of automation defines whether the user has more or
less control over the process, which system information in a
critical situation is provided, or how the granularity of input
operations is defined.

Therefore, adaptive automation will be discussed along the
running example of a simplified nuclear power plant simula-
tion. In this context, it is assumed that the mental workload of
a reactor operator is measured for triggering and instantiating
a user interface reconfiguration based on the rule generation
concept discussed above and the UIEditor implementation
with its associated formal user interface modeling approach.
Especially in context of automated systems, the degree of
automation is associated with a potential increase of mental
workload and thereby is an indicator whether the degree of
automation is too high or too low and whether it should be
adapted or not. Weert [54] describes how mental workload
can be measured based on different physiological factors, such
as heartbeat rate, facial expression, perspiration, or eye blink

rate. Out of these factors, pupillometry has been identified
as a promising measurement tool for workload, especially in
context of adaptive automation to increase human performance
[55]. This gives an idea of how mental workload could be
measured in the scenario presented above.

The section below discusses the use of the previously
introduced approach for implementing a simple adaptive user
interface, which is capable to adapt the degree of automation
according to measured mental workload.

A. Example for Adaptive Automation

For making the degree of automation adaptable through a
formal adaptive user interface model, it is assumed that the
automation concept is fully accessible through an external for-
mal model that matches the underlying concept of formal user
interface modeling; therefore, the automation model should
employ a reference net-based representation. If this assumption
holds, the automation process can be also introduced into a rule
skeleton and thereby can be introduced into the interaction
logic through the rule generation and application process.
Thereby, automation can be understood as formal abstraction
of interaction processes between the human user and any
given system that has been technically implemented. Thus,
in our sense, automation is part of the interaction logic and
simultaneously defines the degree of automation as visible
from the user’s perspective.

The automation of steering a water pump will be used
as use case in the presentation, below. This use case of
adaptive automation will be discussed according to a discrete
and recurrent process of two operations: increase (inc) and
decrease (dec) of the rounds per minute of a water pump.
Here, it should be assumed that these operations have to be
executed in an iterative fashion, such as the process shown
in Figure 19. Thus, the process increases and decreases the
rounds per minute (rpm) iteratively. According to the former
assumption, this process can be introduced into reference net-
based interaction logic as indicated by the bold arrow in Figure
19. The automation of this process can then be started by
the user pressing the newly added “Start” button after the
reconfiguration and redesign indicated by the bold arrow to
the existing user interface. From this point on, the user is only
able to monitor the system’s state by observing the tachometer-
like output widget, showing the pump’s current rpm being
controlled. Thus, using the reconfigured interface (indicated
by (I) in Figure 19), she is not able to follow the operations
that are automatically executed by the interaction logic.

As Parasuraman describes in [49] and [50] that workload
increases during critical situations because the user has to
understand the system’s current situation, as well as how the
automated control processes are reacting to the situation. The
user has to gain insight into the automated process, resulting
in an increase of mental workload, sometimes dramatically.
This problem occurs in the example after the the first step of
reconfiguration and redesign has been applied to the initial
user interface. The user has no insights to the automated
process, except that it is running. To adapt automation to this
situation, the user interface (I) can be reconfigured (see Figure
19 (II)), by adding more interaction elements providing deeper
insights into the automated process. Two lamps are added to
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Figure 19. An example of how to change the degree of automation through reconfiguration of interaction logic, using rule generation.

the physical representation accompanied by an extension of the
interaction logic, now showing which operation is executed at
any given moment. Thus, the user is now able to see when the
automation increases or decreases the speed of the pump. This
makes interaction more finely grained and transparent to the
user. A further reconfiguration extends the first by changing the
simple lamps into buttons (see Figure 19 (III)), where the user
is now able to control the automated process and thus gains
more control over the still automated control process of the
pump. Another possibility would be to remove the automation
from the interaction logic and give all control back to the user
without restriction or even, contrarily, to reduce the interaction
and fully automate the process. The first would result in the
initial user interface (see Figure 19 (0)).

B. Implementation using the Rule Generation Concept

The section above just discussed possible reconfigurations
and redesigns that could be applied to a user interface for
controlling the speed of a water pump in the nuclear reactor
simulation. This example shows how the degree of automation
could be increased or decreased using the reconfiguration
concept introduced in this paper. Still, it has not been addressed
how the rule generation process can implement this scenario.
Therefore, this subsection discusses the reconfiguration step
(I) of Figure 19. The needed data will be characterized for
instantiating the rule class that will be described in a next
step.

Mloop

'':'', SYSOP_M, ''('', VAR_M, '')''

L I

Mloop

'':'', SYSOP_M, ''('', VAR_M, '')''

Mloop

'':'', SYSOP_M, ''('', VAR_M, '')''

'':'', WC_N, ''('', VAR_N, '')''R

NET_AUTO

Figure 20. Rule skeleton for deriving the rule necessary for applying
reconfiguration step (I) as defined in Figure 19.

As presented above, cognitive load is a relevant value to
trigger an adaptation of the user interface according to its
value. Various works have identified pupillometry as a possible
indicator of user’s workload, as these by Weert [54], de Greef
et al. [55], and Halverson et al. [56]. Thus, the rule generator
can be triggered by a component that measures workload
through pupillometry. Here, it can be seen that the instantiation
of a rule class is accompanied with a use case dependent pre-
processing, in this case the mental workload. This is necessary
to trigger the rule class instantiation process as defined in
Figure 13. In the rule class validation step, the mental workload
value is further used to decide, (a) which rule class should be
used and (b) whether a selected rule class should be applied
to the user interface. The XML snippet given in Appendix E
shows one possible implementation of a rule class describing
step (I), which would be validated as a rule class that can be
applied to the user interface.

In Figure 20, the rule skeleton used in this rule class can
be seen, which is the relevant structure, which defines the
reconfiguration applied to the user interface in step (I). The
class definition shows that the automation model has to be
provided from outside as graph (cf. externReferenceNet
in Appendix E), thus by the tool that triggers the recon-
figuration. Furthermore, the system operations (inc and dec
in the above example) as well as the involved interaction
elements, which are removed from the physical representation
have to be provided by this external tool. Still, the latter
could also be provided by a net traversal that identifies the
widget transitions connected to the specified system operations.
Here, it was decided to reduce the complexity of the rule
skeleton by assuming the interaction elements to be provided
by the triggering instance. Finally, the subnet NET_AUTO has
to specify which transition is connected to the newly added
interaction element and which transitions are connected to the
system operations inc and dec. This could also be done using
the specification of rule skeletons, as has been discussed above.
Here, through matching of inscriptions, the correct mapping
can be algorithmically derived. The finally derived rule can be
seen in Figure 19, which is comprised of the application of
the REP and EXT algorithm as discussed above.
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VI. CONCLUSION AND FUTURE WORK

The paper at hand introduced a new approach to algorith-
mic rule generation as basis for flexible and formal creation
of adaptive user interfaces. The whole approach is based on a
formal modeling language called FILL that is algorithmically
transformed into reference nets, a special type of Petri nets.
This transformation equips FILL with formal semantics as well
as making it executable. This formal modeling approach is
used to describe interaction logic of a user interface, which is
further extended by a proprietary XML-based format describ-
ing the physical representation of a user interface. By applying
the DPO graph rewriting approach, this kind of user interface
model becomes formally adaptable and thereby fulfills the
requirement of a self-contained approach for formal modeling
and reconfiguration of user interfaces, as has been defined in
the beginning.

Nevertheless, the implementation or creation of adaptive
user interfaces needs an algorithmic and computer based
approach for a flexible creation of adaptation rules applied
to a user interface. Therefore, we introduced a new rule
generation concept based on an XML specification of rule
classes, equipped with a formal description of rule-skeletons
based on graph and string grammars. This makes a flexible dec-
laration of rules possible, as has been shown in a concluding
example. This example discusses the creation of an adaptive
user interface for changing the degree of automation regarding
a user interface to control the throughput of a water pump
as part of a nuclear power plan simulation. Here, automation
becomes a part of the interaction logic of a user interface.

Future work aims at extending the simply structured user
interface modeling approach to be more modularized. This
makes a separation of dialog and system models in the interac-
tion logic possible. Furthermore, the presented approach will
be completely implemented and investigated in an evaluation
study. Here, mainly the aspect of adapting a user interface
according to measured mental workload will be investigated
in cooperation with cognitive psychologists in the context of
a working environment. Questions concerning helpful adapta-
tions and restrictions according to changes in the user interface
will be the focus of our research. Finally, it is planned to
further identify extensions to the rule class and rule skeleton
descriptions following from requirements in other usecases
rather than in context of adaptive automation.

APPENDIX

Appendix A - Below, an example for a DPO rule speci-
fication is given in its specific XML format, which is used
for applying reconfiguration to reference net-based interaction
logic. All nets of the rule are specified using PNML, the Petri
Net Markup Language. deleteNet references the left side
of a DPO rule, interface denotes the interface graph I of a
DPO rule, where insertNet dedicates to the right side of a
DPO rule. The DPO rewriting approach and the associated rule
description concept is subject of discussion in Section III-D.

<rule>
<deleteNet>

<net>
<place id="p1"/>
<place id="p3"/>

<transition id="t2">
<inscription>
<text>guard x==3;</text>

</inscription>
</transition>
<arc id="a1" source="p1" target="t2">
<inscription>
<text>x</text>

</inscription>
</arc>
<arc id="a2" source="t2" target="p3">
<inscription>
<text>x</text>

</inscription>
</arc>

</net>
</delecteNet>
<interface>
<net>
<place id="p1"/>
<transition id="t2">
<inscription/>

</transition>
</net>

</interface>
<insertNet>
<net>
<place id="p1"/>
...

</net>
</insertNet>
<mapping>
<mapElement insertID="p1"
interfaceID="p1" deleteID="p1"/>

...
</mapping>

</rule>

Appendix B - Below, an example of a rule class specifica-
tion is given as XML file, where rc specifies the namespace
for rule classes and bx the namespace for boxes in rule
skeletons. Rule skeletons are subject of discussion in Section
IV-B.

<rc:ntdeclaration name="WO"
rdf:datatype=
"http://uieditor.org/nttypes/widgetInteract"/>

<rc:ntdeclaration name="WC"
rdf:datatype=
"http://uieditor.org/nttypes/newWidget"/>

<rc:ntdeclaration name="Y_N" iterate="N"
rdf:datatype=
"http://uieditor.org/nttypes/netTrav"/>

...
<bx:parameter name="N">
<bx:value

rdf:datatype=
"http://uieditor.org/datatypes/int"
value="2"/>

</bx:parameter>
<bx:parameter name="X">
<bx:value

rdf:datatype=
"http://uieditor.org/datatypes/intInteract"/>

<bx:description>
This is a description shown in the interactive
input box for this value.

</bx:description>
</bx:parameter>
...

Appendix C - Below, an example of the extended PNML
format for describing rule skeletons can be seen, where pnml
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denotes the namespace of PNML and bx the namespace for
the box description. Nonterminals are specified as part of
inscriptions related to transitions, places, or edges. These do
not need an extension of PNML associated to a individual
namespace. Rule skeletons are subject of discussion in Section
IV-B.

<pnml:net>
<bx:alt>
<bx:if condition="X>5">

<pnml:transition id="t1">
<pnml:inscription>

<text>":"WC,"(",VAR,")"</text>
</pnml:inscription>

</pnml:transition>
<pnml:arc id="e1"

source="t1" target"p1">
<pnml:inscription>

<text>VAR</text>
</pnml:inscription>

</pnml:arc>
<bx:loop counter="N">

<pnml:place id="p1"/>
<pnml:place id="p2"/>
<pnml:transition id="t2"/>
<pnml:arc id="e2"

source="p1" target"t2">
<pnml:inscription>

<text>Y_N</text>
</pnml:inscription>

</pnml:arc>
<pnml:arc id="e3"

source="t2" target"p2">
<pnml:inscription>

<text>Y_N</text>
</pnml:inscription>

</pnml:arc>
</bx:loop>

</bx:if>
<bx:else>

...
<bx:loop counter="N">

...
</bx:loop>
<bx:loop counter="N">

...
</bx:loop>

</bx:else>
</bx:alt>

</pnml:net>

Appendix D - Below, an example of a complete rule class
can be seen, which mainly specifies the structure of a rule class
description. The introduction and discussion of rule classes can
be found in Section IV-C. A concrete example of a rule class
is given in Appendix E.

<rc:class
xmlns:bx="http://uieditor.org/boxing/"
xmlns:rc="http://uieditor.org/ruleClass/"
xmlns:rule="http://uieditor.org/rule/"
xmlns:pnml=

"http://www.pnml.org/version-2009/grammar/"
name="Interactive Widget Fusion">

<!-- Class description>
<rc:description>
This class specifies the
interactive fusion of n widgets.

</rc:description>

<!-- Selection Heuristic and Net Traversal>

<rc:select type="first"/>
<rc:travers type="standard"/>

<!-- Instantiation precondition-->
<rc:variable name="..." rdf:datatype="..."/>
...
<rc:precondition con="..."/>
...

<!-- NT and Box Parameter declaration -->
<rc:ntdeclaration name="..."

rdf:datatype="..."/>
...
<bx:parameter name="N">
...

</bx:parameter>
...

<!-- Rule skeleton -->
<rc:ruleSkeleton>
<rule:deleteNet>
<pnml:net>
...

</pnml:net>
</rule:delecteNet>
<rule:interface>
...

</rule:interface>
<rule:insertNet>
...

</rule:insertNet>
<rule:mapping>
...

</rule:mapping>
</rc:ruleSkeleton>

<!-- Redesign -->
<rc:redesign>
...

</rc:redesign>
</rc:class>

Appendix E - Below, an example of a rule class can be seen,
that is dedicated to a concrete example of adaptive automation.
This example is discussed in more detail in Section V-B.

<rc:class
xmlns:bx="http://uieditor.org/boxing/"
xmlns:rc="http://uieditor.org/ruleClass/"
xmlns:rule="http://uieditor.org/rule/"
xmlns:pnml=
"http://www.pnml.org/version-2009/grammar/"

name="Automate process">

<!-- Class description>
<rc:description>
Increase automation

</rc:description>

<!-- Selection Heuristic and Net Traversal>
<rc:select type="first"/>
<rc:travers type="standard"/>

<!-- Instantiation precondition-->
<rc:variable name="MW"
rdf:datatype="mentalWorkload"/>

<rc:precondition con="MW<2"/>
<rc:variable name="OP"
rdf:datatype="int"/>

<rc:precondition con="OP>=2"/>

<!-- NT and Box Parameter declaration -->
<bx:parameter name="M">
<bx:value
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rdf:datatype="int"
value="OP"/>

</bx:parameter>
<rc:ntdeclaration name="NET_AUTO"

rdf:datatype="externReferneceNet"/>
<rc:ntdeclaration name="SYSOP_M"

rdf:datatype="sysOpName"/>
<rc:ntdeclaration name="VAR_M"

rdf:datatype="sysOp"/>
<rc:ntdeclaration name="VAR"

rdf:datatype="widgetInteract"/>
<rc:ntdeclaration name="WC"

rdf:datatype="newWidget"/>
<rc:ntdeclaration name="WO_M"

rdf:datatype="widgetInteract"/>

<!-- Rule skeleton -->
<rc:ruleSkeleton>

<!-- See Fig. 18-->
</rc:ruleSkeleton>

<!-- Redesign -->
<rc:redesign>
<rc:newWidget reference="WC"

widgetType=
"http://uieditor.org/widgets/button"

method=
"http://uieditor.org/widgets/actionEvent"/>

<rc:deleteWidget reference="WO_M"/>
</rc:redesign>

</rc:class>
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Jaquero, “Usixml: A language supporting multi-path development of
user interfaces,” in Engineering human computer interaction and inter-
active systems. Springer, 2005, pp. 200–220.

[22] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E.
Shuster, “Uiml: an appliance-independent xml user interface language,”
Computer Networks, vol. 31, no. 11, 1999, pp. 1695–1708.

[23] F. de Rosis, S. Pizzutilo, and B. De Carolis, “Formal description and
evaluation of user-adapted interfaces,” International Journal of Human-
Computer Studies, vol. 49, no. 2, 1998, pp. 95–120.

[24] C. Janssen, A. Weisbecker, and J. Ziegler, “Generating user interfaces
from data models and dialogue net specifications,” in Proceedings of the
INTERACT’93 and CHI’93 conference on human factors in computing
systems. ACM, 1993, pp. 418–423.

[25] G. Brat, C. Martinie, and P. Palanque, “V&v of lexical, syntactic and
semantic properties for interactive systems through model checking
of formal description of dialog,” in Human-Computer Interaction.
Human-Centred Design Approaches, Methods, Tools, and Environ-
ments. Springer, 2013, pp. 290–299.

[26] R. Bastide, D. Navarre, and P. Palanque, “A tool-supported design
framework for safety critical interactive systems,” Interacting with
Computers, vol. 15, no. 3, 2003, pp. 309–328.
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