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Abstract—For most users, interacting with mobile computing
devices requires visual commitment to the input mechanism.
As a result, devices such as smartphones and PDAs are not
suitable in situations when visual attention is already focused
on another task. Chording devices do not have this drawback
but require some training. We evaluate the performance of a
key-to-character mapping for a 5-key chording device designed
to minimize the learning phase. The subjects in our study were
able to memorize the mapping in the first 45 minutes of training.
After approximately 350 minutes, the average entry speed was
20 words per minute. The influence of having visual, audio or no
feedback was also evaluated. We found that the typing rates were
the same under all three conditions, but the error rates were the
smallest in the absence of feedback (2.32%) and the largest when
the users could see what they typed (3.41%).

Keywords–chording keyboard, text entry, key mapping, feedback.

I. INTRODUCTION

There are currently many methods for interacting with
mobile computing devices; the most popular ones are graphical
interfaces, voice command and text input. Graphical interfaces
are probably the most user-friendly, but they require the user’s
visual attention, which makes them unsuitable in situations
where vision is already committed, such as walking in a
crowded place, pushing a shopping cart, riding a bike, and
driving a car. Yet, it would be nice if we could send a
quick note while walking to work, or if we could look up
the characteristics and the location of an item while pushing
a shopping cart. While exerting physical activities such as
jogging or riding a bike, the smart phone could process
biometric information and could respond to various queries.
Even though more controversial, it would be nice if, while
driving a car, we could issue commands like “find fastest way
home” or “inform partner of arrival time”. If we could issue
such commands safely, there would be no problem for the on-
board computer to estimate the arrival time and interact with
the driver’s smartphone to send a message to the partner. If we
could issue such commands with voice, few people would be
concerned about safety, but there are many problems associated
with using voice to control a computer: the performance is
not satisfactory, particularly in noisy places, there is an issue
with privacy, and there are moments/places where other people
would not appreciate hearing us speak aloud to our computer.
Brain computer interfaces would solve all these problems, but
the technology is not sufficiently developed yet. Although text
is not the most user-friendly way to interact with a mobile
device, it could be the most efficient in the aforementioned

situations if we could type without looking at the keyboard
and without a significant extra cognitive load.

This paper extends our previous work [1], [2] by presenting
a study on a 5-key chording device that, we believe, has
high potential for application in all of the above mentioned
situations. This type of keyboard enables users to generate a
character by simultaneously pressing a combination of keys,
similarly to playing a note on a musical instrument. With five
keys, there are 31 combinations in which at least one key
is pressed, enough for the 26 letters of the English alphabet
and five other characters. If the keys are in a position that
is naturally under the fingertips, a person can type using
the fingers of one hand, without committing the eyes to the
keyboard. For instance, by placing the keys on the handlebar of
a bike, we can control the bike with both hands and type at the
same time, because typing only requires varying the pressure
under the fingertips. Some visual (or auditive) feedback is still
needed occasionally to verify the output and correct eventual
mistakes, but this requires considerably less commitment than
continuously looking at the input device. The required visual
attention can be further reduced by displaying the output in
the natural field of vision, for instance on a windshield or on
goggles.

The main drawback of a chording device is that before
being able to use it, one should learn the correspondence be-
tween key combinations and characters. We present a mapping
designed to minimize the learning time by assigning intuitive
combinations to each character, and a study that evaluates the
proposed mapping. We will evaluate the achievable typing
rates, the error rates, the characters that are more difficult
to type, and the distribution of typing errors. Afterwards, we
will analyze how different types of feedback (visual, auditive,
and no feedback) affect the ability to type with a chording
keyboard.

The paper is organized as follows. In Section II, we present
a brief overview of related work. In Section III, we describe
a key-to-character mapping for a 5-key keyboard designed
to reduce the learning time. We denote this mapping in the
following as 5keys. In Section IV, we present an experiment
that evaluates the learnability of the mapping, and in Section
V, we evaluate the achievable text-entry rates, typing accuracy,
common error patterns, and three different feedback types.
In Section VI, we conclude the paper and discuss future
directions.
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II. RELATED WORK

In order to make a keyboard suitable for mobile tech-
nologies, we can make the keys very small and/or remove
the one-to-one mapping between keys and characters [3]. The
first method includes mini-QWERTY, on-screen keyboards, or
RearType [4], and the second method includes multi-tap (with
or without T9), LetterWise [5], TiltText [6], FrogPad [7], or
chording keyboards. Another possibility is given by gestural
text-entry techniques such as Graffiti [8], Edgewrite [9], and
the minimal device independent text input method (MDITIM)
[10]. Dynamic selection techniques such as Dasher [11] use
probabilistic techniques to make the most likely characters or
sets of characters easier to type, based on the already typed
text.

Chording keyboards were first used in stenotype machines
(starting from the 1830s) and telegraph communications. One
such example is the Baudot code [12] (patented in 1874)
that assigns five bits to a character and evolved into the
International Telegraphy Alphabet No. 2, still used by some
radio amateurs. Another application is represented by the
Braille system, that enables blind people to read and write.
Subsequent studies were performed by IBM, where researchers
developed both single-handed and two-handed keyboards, with
the number of keys ranging from 8 to 14 [13]. However,
research stopped in 1978. Douglas Engelbart, the inventor of
the computer mouse, also proposed a 5-key keyset, but this was
not incorporated in any system [14]. Microwriter [15] was a
chording portable word processor commercialized in the early
1980s, but again, it was not a commercial success.

As traditional desktop applications such as text editors,
schedulers or e-mails have become available on mobile
devices, there has been a significant increase in text entry
research. This also lead to renewed interest in chording
keyboards and to the appearance of several new devices:
DataEgg, appeared in the early 1990s, is a 7-key handheld
device with pager, phonebook, e-mail and calendar functions
[16]. GKOS (2000) is a 6-key two-handed input device
that can be used for text input or game control [17].
Chordite (2002), Twiddler (2004) and EkaPad (2009) are
pocket sized, single-handed keyboards that can also have
miniature joystick or mouse-like abilities [18], [19], [20].
The chording glove [21] is a chord keyboard where the
buttons are mounted directly on the fingers. Typing studies
involving chording keyboards include those performed
by Lyons et al. for the Twiddler, [3], [19], [22], and by
Rosberg and Slater for the chording glove [21]. Sandnes
et al. propose a chording interface for controlling in-car
devices such as music player, navigation system, lights
or telephone [23], and an error correction mechanism
for three and five-key chording keyboards [24], [25].

In mobile environments, users cannot usually look at the
text-input device and/or at the display while typing; this
condition is denoted as “blind” or “eyes-free” typing [26].
Therefore, it is important to analyze how visual feedback
affects the text-entry process. Silfverberg examined the effect
of both tactile and visual feedback when using mobile phone
keypads [26] and found that reduced tactile feedback increases
the typing error rate. In addition, low visual feedback also
leads to more errors, decreasing accuracy. A similar study

made by Clawson et al. [27], concerning typing with mini-
QWERTY keyboards, demonstrates the importance of seeing
the keys while typing. However, no significant differences in
typing speeds and error rates were noticed when users could
or could not see the typed text.

The above studies stress the importance of seeing the input
device in the case of 4 × 3 multi-tap keypads and mini-
QWERTY keyboards. But this should not be an issue for
most chording keyboards, that are specifically designed to be
operated without looking at the keys. Typing experiments with
limited visual feedback for the Twiddler chording keyboard
were performed by Lyons et al. [22], and show that, surpris-
ingly, typing and error rates actually improve with reduced
visual feedback. Mascetti et al. propose and evaluate a Braille
typing system for smartphones [28]. As it is intended for
visually impaired persons, there is no visual, but only audio
feedback.

Other studies where participants do not look at the typing
device or are involved in dynamic activities that require vision
commitment include the already mentioned chording glove
[21], a two-handed chorded software keyboard for PDAs [29],
half-QWERTY touch typing [30], or the keyboard proposed
by Gopher and Raij [31].

The chording keyboard used in this study has five keys,
placed directly under the natural position of the fingertips.
Unlike the Braille keyboard, it is designed to be operated
by only one hand. In comparison to some of the devices
presented above, with our device the users do not have to
move their fingers from one key to another, so it should
make no difference if they are able to see the keys or not.
Considering this, we will only evaluate different feedback
conditions regarding the typed text. Also, the small number
of keys allows for higher design flexibility. The five keys
can be directly integrated into a mobile phone case, around a
computer mouse, or on a bike handlebar, thus being considered
an extension rather than a separate object. This is important
because some users might find it inconvenient to carry too
many different devices.

III. CHARACTER MAPPING

An important aspect of designing a chording keyboard is
the mapping between the key combinations and the characters.
One possibility is to assign easier combinations for more
frequent letters, as in the Morse code, thus leading to higher
typing speeds. Even if these mappings are easy to determine,
the user must learn by heart the key-to-letter correspondence
as there is no intuitive link between them. Another possibility
is to use a semantically richer mapping, which would be easier
to learn. The chording keyboard described in this paper is
intended to be used in situations where desktop or other mobile
keyboards are not appropriate, such as mobile environments.
This is why we expect it to be used to type short texts, or to
control a mobile device. Considering this, being able to easily
learn the mapping is more important than being able to type
fast.

We have designed the key-to-character mapping presented
in this work with the primary goal of making it easy to
remember. It is designed for a five-key keyboard, where each
character is represented by a different key combination. From
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here on, we will focus only on lowercase letters, plus the
period, space and backspace, as they are the most used. An
additional button can be used to toggle between modes that
enable typing uppercase letters, numbers, or other characters.
The complete key map is given in the appendix.

To create enough possibilities for assigning an intuitive key
combination to each character, we conceived five mnemonic
categories. With them, a user usually can remember most
combinations within minutes.

1) Single-key category: “t”, “i”, “.”, “r”, “p”. Remem-
bering the map for the characters in this category is
totally trivial. Characters are produced by pressing a
single finger and the letter is the initial of the finger.
So, by pressing the key under thumb, index, ring and
pinky, we obtain “t”, “i”, “r”, and “p”, respectively.
There is an exception to the rule: since “m” fits well
in another category (see below), we have reserved the
middle finger for the period. The mnemonics for the
characters in this category are presented in Figure 1.

Figure 1. Single-key category

2) Fingers-down category: “c”, “m”, “n”, “u”, “y”. The
most natural way to produce the shape of a “m” with
the hand is to stretch down the index, middle, and ring
fingers, as shown in Figure 2. In a similar fashion,
the shape of the fingers pressing the keys suggests the
other letters in this category, namely “c”, “n”, “u”,
and “y”.

Figure 2. Fingers-down category

3) Fingers-up category: “e”, “l”, “j”, “v”, “w”, space,
backspace, enter. The idea is basically the same as
for the previous category, but here we look at the
fingers that are not used. A natural way to produce
the shape of a “w” is to stretch up the index, middle,
and ring fingers. The associated character is obtained
by pressing the key(s) under the remaining fingers, as
shown in Figure 3. “v”, “l”, “e”, and “j”, follow the
same idea. We have included space and backspace
in this category as backspace can be associated with
the thumb pointing to the right and space with the
pinky pointing to the left. For enter, the unused
fingers represent a ∨ (pointing down) and a left arrow,
suggesting the beginning of a new line.

4) Character landmark category: “a”, “f”, “h”, “k”, “o”,
“s”, “x”, “z”. By looking at the shape of “h”, we
notice three landmark spots, and naturally enough,
we associate them to the thumb, index and pinkie

Figure 3. Fingers-up category

(see Figure 4). As a general rule, the thumb is for
spots that are left and low, the index for left high,
the ring for right high, and the pinky for right low.
With a little bit of imagination, we can fit in this
category also “a”, “f”, “k”, “o”, “s”, “x”, and “z”.
For “o”, we imagine five dots spread around a circle,
and we obtain it by pressing all buttons. For “s”, we
choose the points so that they remind us of a slalom
(fingers-down and fingers-up alternate).

Figure 4. Character landmark category

5) Associative category: “b”, “d”, “g”, “q”. We remem-
ber these letters by associating them to similar letters.
“b” and “d” can be seen as an “o” with a vertical bar
on the left and right, respectively. We use the index
and the ring fingers to represent these bars. “g” was
inspired from “y” (they look alike in handwriting),
and “g” inspires “q” (the tail ends left and right,
respectively, so for “g” we use the thumb and for
“q” the pinky). These mappings are shown in Figure
5.

Figure 5. Associative category

The reader has probably noticed that some of the above
mnemonics are easier to remember than others. With five
keys, however, there are only 31 usable combinations and
we use them all to map the 26 characters, plus the space,
backspace, period, enter and comma. Hence, any change aimed
at improving one mnemonic implies at least one other change.

The effectiveness of the proposed mapping is assessed
through the studies described in the next sections. In the
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first study, we compare this mapping to two others from a
learnability point of view, or how easy users can remember
the key-to-character correspondences. In the second study, we
estimate the usability of the mapping (typing speed, accuracy
[32] and the most common mistakes), and how three different
types of feedback affect the typing process.

IV. LEARNABILITY STUDY

This first study compares, from a learnability point of view,
the proposed mapping (5keys) to two others. The references
are the Microwriter mapping [15], also based on intuitive
mnemonics, and the Baudot code [12], which is based on
letter frequency and assigns easier key combinations to the
most common characters. All three mappings are designed for
five-key keyboards.

A. Experimental Setup

Design: The experiment had a 3 × 10 between-subjects
design. Each of the 30 participants was assigned to work under
one of the three conditions: 5keys, Microwriter or Baudot.

The experiment consisted of three sessions of three rounds
each. For each participant, the sessions took place on consecu-
tive days. For each round, the subjects had 5 minutes to look at
a printed version of the mappings and try to remember them.
Afterwards, they used a Java application to warm up, by typing
each letter of the alphabet. During the warm-up phase, a help
image showing the key combination for the letter to be typed
was shown to the participants. In the next step, the help image
was not available any more and the participants had to type
the alphabet three times. The order of the letters was random,
but the same for all participants. The subjects had five seconds
and only one attempt to type each target character. The correct
key combination was displayed for one second when the user
typed a character (right or wrong), or when the user typed
nothing for five seconds. The typing rounds were separated by
breaks of two minutes.

Participants: We have recruited 30 participants, 10 for each
of the three mappings, from the students of our university
(undergraduate, master’s and PhD programs). The participants
were between 19 and 30 years old, and four were female. None
of the subjects had used a chording keyboard before. As the
participants who know how to play a musical instrument could
have had an advantage, they were equally distributed among
the three experiment groups. We also tried to equally distribute
them based on gender and study level. Two participants
abandoned the experiment after the first session, one testing
the 5keys and one the Microwriter mapping.

Equipment and Software: We designed a Java application
to simulate the chording keyboard on a regular QWERTY
Apple desktop keyboard. It only allows for the use of five
keys, each representing a key of the chording keyboard. Each
of these keys corresponds to a finger of the right hand. A
screenshot of the application is visible in Figure 6. The top-
left window contains the target characters to be typed. The
bottom-left window represents the typing area, and the help
image is displayed on the right.

The Java application recorded log files containing the time
of each key press and release, the typed text, the corresponding

Figure 6. Application interface used during the study

key combination, the total number of errors and the total time
spent writing each character.

Procedure: The participants were given written and verbal
instructions regarding the goal of the experiment. The partici-
pants were given unique anonymous ID and were shown only
the mapping that they were going to use. For each session of
the experiment (approximately 30 minutes), they received a
fixed monetary compensation.

During the experiment, the participants sat at a desk. Before
the first session, the participants were explained how to press
multiple keys to generate the chords, and were allowed to
choose which five keys of the desktop keyboard they wanted
to use. The only constraint was the space key for the thumb.
They were not able to change the keys afterwards. A typical
choice was the keys for f, t, y and u for the index, middle
finger, ring and pinky, respectively.

The software was self-administered. Once started, it
launches the warm-up phase, and then it goes automatically to
the typing phase. The characters to be typed are also updated
automatically.

B. Experiment Results

For each typing round, the participants had to type a
total of 78 characters (3 × 26). To determine which of the
mappings is easier to learn, we compared the number of
errors (wrongly typed or not typed characters) for each round.
Exponential regressions were derived to fit these error values.
The average values for each mapping and for each round, and
the exponential regressions are presented in Figure 7.

After two sessions (six rounds of approximately five min-
utes of typing each), the total number of errors was consider-
ably lower for the mnemonic based mappings (5keys and Mi-
crowriter) compared to the mapping based on letter frequency.
Therefore, we conclude that mnemonic based mappings are
learned faster. This is confirmed by the anova test (F = 24.15,
p = 0.0001). The goal of the study was to evaluate which
mapping is easier to learn, and the Baudot mapping is clearly
more difficult. Hence, in the third session, we only analyzed the
5keys and Microwriter mappings. Upon checking the average
number of errors, no significant difference between these two
was noticed (F = 0.95, p = 0.358). An advantage of 5keys
can be observed from the analysis of the regression curves,
because the curve for 5keys is slightly below the curve for
Microwriter.

In addition to the total number of errors, the number of
characters that were typed wrong at least once for each round
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Figure 7. Average number of errors (for each mapping and for each round)
and regression curves
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Figure 8. Average number of character errors (for each mapping and for
each round) and regression curves

were also compared. For example, if “a” was typed incorrectly
two times, this counted only as one character error. The results
are shown in Figure 8 and provide an indication of how many
characters are difficult to remember for each mapping. In
this case, the difference between the 5keys and Microwriter
mappings is more visible than in Figure 7, and statistically
significant (F = 5.4, p = 0.0486). As expected, both
mnemonic-based mappings lead to significantly less character
errors than the Baudot mapping (F = 18.65, p = 0.0004).
The Baudot mapping might lead to higher typing rates, but
ascertaining this was not the goal of the presented study.

At the end of the third typing session (after nine rounds
or approximately 45 minutes of actual typing), the participants
were asked how confident they felt about their knowledge of
the mappings and if they could use the presented method as
a text input mechanism. All of them answered affirmatively
and most mentioned that they had completely learned the
mappings. This is confirmed by a low error rate (3.16% after
6 rounds and 2.14% after 9 rounds for the proposed mapping).

From this experiment, we draw the conclusion that a
mnemonic-based mapping facilitates the process of learning
the code. We also conclude that the proposed 5keys mapping
outperforms the Microwriter mapping, also mnemonic-based,
in terms of average error rate.

The mnemonic set was designed based on the finger
positions of the right hand. Two of the participants (one for
the 5keys and one for the Microwriter) were left-handed. Yet,
they also typed with their right hand and, interestingly, their
error rates were actually lower than the average.

V. USABILITY STUDY

The first study showed that an intuitive mapping can be
learned in less than 45 minutes. It was followed by an indepen-
dent experiment aimed at determining achievable typing rates,
accuracy, and common error patterns for the 5keys mapping.
Moreover, we evaluated different feedback types, when the text
can and cannot be seen.

The input method that we present is designed to be used
in situations where the visual attention is partially or totally
unavailable for the typing process. In these conditions, audio
feedback is often suggested as an alternative. This is indeed
useful in some environments, but could be difficult to use in
noisy areas. Considering this, we designed a 3 × 10 within-
subjects experiment where we analyzed three different typing
conditions. Under the first condition, subjects were able to
see the outcome of what they have typed, under the second
condition they received voice output for each typed letter
(without visual feedback), and under the third condition they
received no feedback at all about the typing. From here on,
we will refer to these conditions as visual, auditive, and no-
feedback, respectively.

A. Experimental Setup

Although there are a few similar aspects between this
experiment and the previous one (same mapping and similar
software interface), the study structure is completely differ-
ent. Therefore, in this subsection, we will describe the new
experimental setup.

Design: The experiment had a 3 × 10 within-subjects
design. Each of the ten participants was asked to type under
all three conditions.

The experiment was based on a Java application similar to
the one shown in Figure 6, but the subjects were asked to type
full sentences and used a chording keyboard prototype, not a
desktop keyboard. The participants were asked to type for 10
sessions of 30 minutes. Each session consisted of three rounds
of 10 minutes separated by breaks of 2 minutes, and each
round corresponded to a different typing condition. The order
of the typing conditions was random for each session, but the
same for all subjects. For each user, the typing sessions took
place on consecutive days, with the exception of weekends.

The first session enabled the subjects to remember the
mapping between keys and characters. A help image showing
the key combination for the letter to be typed was always
displayed. During the subsequent sessions, the help image was
only available on demand by pressing the shift key. At the
beginning of each round, the participants warmed up by typing
each letter of the alphabet. Afterwards, they typed phrases
from a set considered representative of the English language
[33]. These phrases were pre-prepared before the experiment
to contain only small letters and no punctuation signs.

Participants: Ten participants took part in this study. Six
of them also took part in the learnability study described
in Section IV, using the 5keys mapping. The other four
participants did the same experiment on a different occasion.
Overall, they had approximately 45 minutes of training. All
were PhD students from our university, eight male, two female,
between 24 and 31 years old.
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Equipment and Software: The keyboard prototype has the
keys placed around a computer mouse and is presented in
Figure 9. We designed the prototype in this way because
we wanted the subjects to see a practical application of a
chording device: allowing typing and screen navigation at the
same time, with only one hand. The buttons are placed so that
they can be easily operated while holding the mouse with the
palm. We used keys and not pressure or touch sensors because
they provide a distinct tactile feedback. The keyboard is
designed using an Arduino Pro Mini microcontroller board and
communicates with the computer by Bluetooth. The buttons
are placed in a position that is naturally under the fingertips
when the users hold their palm on the mouse.

Figure 9. Chording keyboard prototype

The Java application is similar to the one described in
Section IV. The typed text was displayed only for the visual
condition. For the auditive condition, the participants used
headphones to receive feedback. Log files containing the time
of each key press and release, the typed text, the number
of occurrences for each character, the corresponding key
combination, the total number of errors and the total time spent
writing each character were recorded. For each typing error,
we checked what character was typed in lieu of the correct
one.

Procedure: As before, the participants were given written
and verbal instructions regarding the goal of the experiment.
During the experiment, they sat at a desk, and each of them
had an unique anonymous ID. The participants were instructed
to type as quickly and as accurately as possible. Once a target
text was completed, they were instructed to press the ’Next’
button in order to display the next target text. They were told
to not correct eventual mistakes and to keep typing, but this
was not enforced and they were allowed to delete typed text.
As a reward for the time commitment during the experiment,
they received a fixed monetary compensation for the first nine
sessions. For additional motivation, for the last session, the
reward was proportional to the number of typed words and to
the accuracy.

Experimental Data: The total amount of data gathered
during the experiment consists of 40 345 words, out of which
4052 (10.17%) contain errors. The total number of characters
is 219 308, from which 6386 (2.91%) are errors.
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Figure 10. Average typing rates for each condition and for each typing
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1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

Typing session

T
y
p

in
g

 r
a

te
 (

w
p

m
)

 

 

Average

Subjects

Figure 11. Average typing rates for each subject and for each typing session,
for the no-feedback condition

B. Text-Entry Speed

We use the words-per-minute measure to describe the text-
entry speed. This is defined as

wpm =
60L

t

1

5
, (1)

where L is the total number of typed characters and t is the
typing time in seconds. The scaling factor of 1/5 is based on
the fact that the average English word length is approximately
5 characters. Because the average word length for the typed
text differed from one session to another, the use of the
above formula provides a more reliable estimate than actually
counting the words.

In Figure 10, we show the average typing rates for each
session and for each condition. For the first three sessions, the
rates are higher for the no-feedback condition, and the anova
tests showed that the differences are statistically significant
(F = 10.85, p < 0.0001). From the fourth session onward,
the differences between the typing rates are not so visible.
Moreover, the effect of the feedback type is no longer signif-
icant (F = 0.28, p = 0.75). This probably happened because,
in the beginning, subjects paused while typing to check the
provided feedback, visual or audio. As they gained experience,
they became more confident and did not analyze the feedback
as often, therefore reducing the differences between conditions.

In Figure 11, we show the typing rates for each user
and for each session, during the no-feedback condition. We
notice that the fastest subject typed three times faster than the
slowest subject, the differences being statistically significant
(F = 53.8, p < 0.0001).
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Figure 12. Chording keyboard prototype mounted on a bike handlebar. The
four visible buttons correspond to the index, middle, ring and pinky fingers.
The thumb button is on the other side of the prototype.

At the end of the experiment, the average typing rates
were 19.77, 20.16 and 20.00 wpm for the visual, audio and
no-feedback conditions, with maximums of 31.24, 30.48 and
31.78 wpm, respectively. Considering the participants’ expe-
rience from the previous experiment, these values correspond
to approximately 350 minutes of practice. Because the text
entry rates would probably still improve, we use exponential
regressions to estimate how fast people will be able to type
after longer training periods. Based on these calculations, after
20 sessions (300 more minutes of practice), the average could
be 26 wpm, and the fastest typist could reach 42 wpm.

As a reference, the typing rates achieved after 350 minutes
of practice are 13.5 wpm for multi-tap mobile phones [5] and
24.2 wpm for Twiddler [19]. Rates of 20.36 wpm were reached
by expert T9 users [34]. Handwriting speed is usually between
15 and 25 wpm [35]. We point out that the experimental
conditions were not the same for all devices, hence, the above
typing rates are only of indicative nature. For both multi-tap
and T9 techniques, visual attention is essential for most users.
For the 5keys device, it makes essentially no difference if
the user has visual contact with the keys or not. It should
also be taken into consideration that Twiddler uses 12 keys,
whereas our mapping only requires 5 keys, thus providing a
clear space advantage and more design flexibility. If placed in
a position that is naturally under the fingertips (for example on
the handlebar of a bike, as in the prototype from Figure 12), the
users will have continuous access to the keys. Moreover, users
do not have to move their fingers from one key to another,
which probably leads to fewer errors.

C. Error Analysis

We used the total error metric presented by Soukoreff and
Mackenzie in [36]: it considers both corrected and uncorrected
errors. It is defined as

ErrorRate =
IF + INF

C + IF + INF
× 100% , (2)

where C is the number of correctly typed characters, INF
is the number of incorrectly spelled characters that were not
corrected (it includes substitutions, when one character is typed
for another, insertions, when an extra character is typed, and
deletions, when a character is omitted), and IF is the number
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Figure 13. Average error rates and regressions for each condition and for
each typing session

of incorrectly spelled characters that were corrected by the
user.

The errors could have two main causes: the subject does
not recall the correct key combination or, alternatively, a coor-
dination mistake is produced during execution. We call these
error types cognitive and sensorimotor errors, respectively. We
expect the cognitive errors to decrease faster, as a function
of training, because it is easier to learn the code than to
improve motor skills. This is confirmed by the statements of
the participants in the two experiments: they said that they
had learned the mapping by the end of the training, and the
errors were due to lack of attention or finger combinations that
seemed more difficult.

In Figure 13, we display the average error rates for each
session, accounting for both uncorrected and corrected errors,
and the corresponding exponential regressions. All of the error
rates are below 5%, except for the second typing session,
visual condition. The reason for this could be the fact that
in the first session the help image was always displayed,
whereas in the second session it was hidden. Moreover, the
first typing condition in session 2 was the visual one, giving
subjects more practice time for the auditive and no-feedback
conditions, which do not have much of an increase in the error
rates. The averages for all sessions and for all users under the
visual/auditive/no-feedback conditions are 3.41%, 2.97% and
2.32%, respectively. Anova tests show that feedback plays a
relevant role in the error rates (F = 25.57, p < 0.0001).

Initially, it might seem surprising that the error rates are
the lowest for the no-feedback condition and the highest for
the visual condition. This is explained, however, by the fact
that increased cognitive loads generally lead to more errors
[37]. For our study, the cognitive load is the highest in the
visual condition: users can check the whole typed phrase; it
is reduced by the audio condition when users only hear the
last typed character, and minimum in the absence of feedback.
Noticing an error could cause someone to become less focused,
thus favoring new mistakes.

The error rates decrease during the first four sessions (with
the exception mentioned above), but afterwards they remain
stationary or even increase. Similar effects, when after a certain
point the error rates do not decrease anymore as users gain
experience, are also noticed by Matias et al. [30] and Lyons
et al. [19].

As in Section V-B, we compare the error rates with those
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Figure 14. Error rates for each character for each typing condition

TABLE I. AVERAGE ERROR RATES(%) VERSUS THE REQUIRED
NUMBER OF KEYS

Typing condition Number of keys Anova test1 2 3 4 5
All conditions 2.06 3.01 4.99 4.73 3.40 F = 1.15, p = 0.358

Visual 2.74 3.89 6.39 5.00 4.20 F = 0.92, p = 0.472
Auditive 1.91 3.18 4.87 5.14 3.22 F = 1.24, p = 0.323

No-feedback 1.50 2.14 3.67 4.19 2.81 F = 1.46, p = 0.248

TABLE II. AVERAGE ERROR RATES(%) VERSUS THE MNEMONIC
CATEGORY. SK - SINGLE-KEY; FD - FINGERS-DOWN; FU - FINGERS-UP;

CL - CHARACTER LANDMARK; A - ASSOCIATIVE.

Typing condition Mnemonic category Anova testSK FU FD CL A
All conditions 2.06 2.53 4.51 3.63 6.31 F = 1.15, p = 0.358

Visual 2.74 3.29 5.83 4.77 7.43 F = 0.92, p = 0.472
Auditive 1.91 2.72 4.21 3.91 6.94 F = 1.24, p = 0.323

No-feedback 1.50 1.63 3.28 3.30 4.80 F = 1.46, p = 0.248

for multi-tap (∼5%) and Twiddler (4.2%) after 350 minutes of
practice, and also with expert T9 users (0.52%). Even if the
Twiddler allows for higher typing rates, the error rates are also
higher. Again, these values are only indicative, due to different
experimental conditions.

It is important to analyze the error rates for each character,
because this knowledge could be used to design a more
efficient learning technique for the proposed mapping. For
instance, subjects could be asked to practice more on characters
with higher error rates. In Figure 14, we present the error rates
for each character and for each typing condition. We notice
that the character errors respect the pattern of the overall error
rates: the highest for the visual condition and the lowest for
the no-feedback condition: this is the case for 20 of the 27
analyzed characters.

For all three conditions, the error rates are higher for
characters that are less frequent in the English language, such
as “q” and “j”, probably because the subjects had fewer
opportunities to practice on them. Non-negligible error rates
can also be observed for high-frequency characters, as users
probably try to type faster as they gain more experience. The
character error rates are similar between the three conditions,
up to a scaling factor: if a character has an error rate lower
than other characters for a specific condition, it usually also
has a lower error rate relative to the same other characters
for the other conditions. This is confirmed by the correlation
coefficients between the error vectors, all above 0.9.

TABLE III. MOST FREQUENT LETTER SUBSTITUTIONS

substitution percentage substitution percentage
v → b 3.21 n→ a 1.88
q → j 2.90 q → p 1.69
q → d 2.90 j → f 1.61
b→ y 2.46 x→ o 1.49
j → x 2.42 d→ g 1.42
j → q 2.42 v → z 1.35
k → h 2.24 p→ r 1.34

In general, characters requiring three or four keys have
higher error rates, but this is not statistically significant, as
shown in Table I. Letters from the single-key category have the
lowest error rates and those from the associative category the
highest, but again, these results are not statistically significant
(Table II).

D. Common Errors

To understand the error patterns that appear most fre-
quently, we computed the confusion matrix [38] corresponding
to the typed text. This is a square matrix with rows and
columns labeled with all possible characters. The value at
position ij shows the frequency of character j being typed when
i was intended. The values are given as percentages from the
total number of occurrences for character i.

In Table III, we present the 14 most common substitutions
and the corresponding percentages. The values correspond to
the whole experiment, including all three typing conditions.
The confusion matrices for the whole experiment and for each
condition are similar, with correlation coefficients higher than
0.99. If we consider only the erroneously typed characters (by
setting the diagonal values, which are at least two orders of
magnitude higher than the other values, to zero), the correlation
coefficients are above 0.9, still showing a strong similarity:
if one character is frequently typed instead of another under
one condition, the same will happen under the other two
conditions; if the probability for one character to be typed
instead of another is low under one condition, it is also low
under the other two conditions.

It is useful to represent a key combination by a 5-bit
codeword in which the first digit represents the key under
the thumb, the second digit the key under the index, etc. The
value of a position is 1 if the corresponding key is pressed.
So, for instance, 10111 is the codeword for “b”, for which all
fingers, except the index, press the keys. By analyzing the 5-
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Figure 15. Composition times for each character for each typing condition

bit code for the substitutions from Table III, we notice that in
8 of the 14 cases the errors appear between characters that
differ only by one bit (for example “b”, code 10111, and
“v”, code 10011). In the other six cases, the errors appear
between characters that differ by two bits. Overall, 44.81% of
the wrongly typed characters differ from the intended character
by one bit, 39.22% by two bits, 8.72% by three bits, 5.87%
by four bits and 1.39% by five bits.

If we check word by word and consider only substitution
errors, i.e., errors that arise from substituting individual char-
acters (75% of the total errors), 91.48% of the erroneous words
contain one substitution, 7.68% contain two substitutions and
0.67% three substitutions. From a bit-error point of view,
40.56% of the erroneous words contain a one-bit error, 40.92%
a two-bit error, 7.62% a three-bit error, 7.20% a four-bit
error and 2.13% a five-bit error. These values were used to
implement an error correcting mechanism that relies both on a
dictionary and on the probability that a character be substituted
for another [39].

E. Character Typing Duration

As the coordination effort is not the same for all key
combinations, we expect that different characters require more
time than others to be typed. The time needed to form a key
combination, called composition time, is measured from the
moment the first key of a combination is pressed until a key is
released. It is when a key of the combination is released that
the corresponding character is produced. From that moment
on, the pressing of a key indicates the start of a new character.
In Figure 15, we present the average composition time for each
character. Instead of ordering the characters alphabetically, we
order them with respect to the composition time under the
visual condition.

We notice that the composition times are higher for char-
acters which are less frequent in the English language, such
as “q” and “j”, or for characters that require four keys, as
“x”, “d” and “b”. Not surprisingly, “o” requires less time
than the four-key letters, as it is easier to press all five
keys than to press a specific subset of them. Also, letters
requiring key combinations perceived as more difficult (for
example “q”, code 01101, or “d”, code 11101, for which
the middle finger and the pinky are down while the ring
finger is up) require more time than others. In general, the

TABLE IV. AVERAGE COMPOSITION TIMES EXPRESSED IN
MILLISECONDS VERSUS THE REQUIRED NUMBER OF KEYS

Typing condition Number of keys Anova test1 2 3 4 5
All conditions 151 194 254 288 277 F = 10.54, p < 0.0001

Visual 150 189 248 277 229 F = 13.31, p < 0.0001
Auditive 144 184 245 279 209 F = 8.25, p = 0.0003

No-feedback 159 205 266 307 241 F = 10.35, p < 0.0001

TABLE V. AVERAGE COMPOSITION TIMES EXPRESSED IN
MILLISECONDS VERSUS THE MNEMONIC CATEGORY. SK - SINGLE-KEY;

FD - FINGERS-DOWN; FU - FINGERS-UP; CL - CHARACTER LANDMARK;
A - ASSOCIATIVE

Typing condition Mnemonic category Anova testSK FU FD CL A
All conditions 151 198 237 236 290 F = 6.45, p = 0.0014

Visual 150 195 232 231 278 F = 7.01, p = 0.0008
Auditive 144 190 230 227 277 F = 4.77, p = 0.0064

No-feedback 159 209 248 248 311 F = 6.96, p = 0.0009

composition time increases with the number of required keys
per character, and the dependence is statistically significant.
This is shown in Table IV. We also studied the dependency
between composition times and the letter category and we
summarize the results in Table V. These values confirm those
from Table IV, as the average number of keys per character
is 1 for the single-key category, 2.4 for fingers-down, 2.8 for
fingers-up, 3 for character landmark, and 3.5 for the associative
category. These results are also statistically significant.

As subjects gained more experience, they were able to type
faster and the average letter duration decreased from 265.9
milliseconds in the first session under the visual condition to
183.9 milliseconds in session 10, or by 29.5%. During the
same period, the text entry rates increased from 7.23 to 19.78
wpm, or by 173.8%. The difference is explained by the fact
that the idle time between the end of one character and the
beginning of the next also decreased.

VI. CONCLUSION

In this paper, we have presented the results of a study
aimed at evaluating a mapping for a chording input device.
The overhead needed to learn the mapping was reduced by
choosing easy-to-remember key combinations. A first exper-
iment showed that the mapping was learned after less than
45 minutes of actual typing. Moreover, the total number of
errors was considerably smaller than for a letter-frequency
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based mapping and slightly smaller than for another mnemonic
based mapping.

A second experiment enabled us to determine achievable
typing rates, error rates, and the effect of different types of
feedback for a chording keyboard. The subjects were asked to
type under three conditions: with visual feedback, with auditive
feedback and with no feedback at all. Due to the keyboard
design, whether the user can see the keys or not should not
make any difference on the typing process — at the end of
the experiment, participants confirmed that they did not look
at the keys. Similarly, someone playing a saxophone does not
look at the keys to be pressed.

After approximately 350 minutes of typing (taking into
consideration the previous typing experience of the subjects),
the average entry rates are approximately 20 wpm under all
three conditions, with the maximums above 30 wpm. We
conclude, therefore, that having visual, audio or no feedback
has no influence on the typing speed with the presented
chording keyboard. The average error rates are 2.32% under
the no-feedback, 2.97% under the auditive and 3.41% under
the visual conditions. This is explained by the fact that the
cognitive loads are different under the three typing conditions:
the highest under the visual and the lowest under the no-
feedback condition. Hence, not seeing the typed text actually
provides an advantage. The error patterns are similar between
conditions, the characters with the highest error rates and the
most common substitutions being the same. We also analyzed
which characters are perceived as more difficult to type and the
most common errors. This data was used to develop an error
correction mechanism specifically designed for a chording
keyboard using the proposed mapping.

During the experiments, the subjects sat at a desk. To go
one step further, we designed, built and tested a prototype
for a bike, shown in Figure 12. We fit the five keys under
the natural position of the fingers on the handlebar. With the
help of a wrapper application that captured the input text, we
used the keyboard to control the operation of a smartphone:
controlling the music player, writing a short note, or initiating
a phone call, without touching or looking at the touchscreen.
Two of the authors tested the device and felt that they could
effortlessly ride and type while controlling the bike with both
hands and staying focused on the road. Moreover, as the keys
are directly under the fingers, we could also type accurately on
a slightly bumpy road. Though encouraging, these results are
only exploratory, and performing a more detailed study will
be difficult due to legal issues related to the risk of accidents.

The presented text entry method is not designed to com-
pletely replace desktop or on-screen keyboards, but to be used
in certain specific situations. The typing rates comparable to
handwriting speed, the low error rate, and the fact that the
lack of visual or audio feedback does not impede the typing
process make it a valuable option for situations where a person
is not able to continuously check the output. In addition, the
keyboard can be used with only one hand. The small number
of keys also represents an advantage from the size and design
flexibility point of view. Even if so far we envisaged the
chording keyboard as a means of typing in dynamic or busy
environments, due to its advantages, it can also be successfully
used in other areas: for example, it can facilitate text input for

disabled users who can only use one hand, or for persons who
are visually impaired.

APPENDIX

During the study, we have only focused on small letters and
space. However, with the help of a mode button, we can also
type capitals, numbers and other symbols. The complete map-
ping is given in Table VI. The numbers are given by translating
the code from binary to decimal. The least significant bit is
the left one, because it is probably easier to think of the thumb
as “one” and index as “two” than of the pinky as “one” and
ring as “two”. For other symbols, we tried to provide logical
correspondences, such as the same code for “a” and “@”, for
“m” from minus and “-”, for “u” from underscore and “_”,
etc. Other mappings may be less intuitive, but it is virtually
impossible to assign easy-to-remember correspondences to all
characters. Several symbols repeat, and this could be used to
accommodate other characters, such as letters with diacritics.

TABLE VI. COMPLETE MAPPING

Five bit code Character
Mode 1 Mode 2 Mode 3 Mode 4

00110 a A ∼ @
10111 b B ] }
10100 c C 5 (
11101 d D ) )
11000 e E 3 =
01010 f F ” :
11100 g G 7 &
11001 h H > >
01000 i I 2 up
01011 j J : $
11010 k K * ˆ
00111 l L \ /
01110 m M ; -
01100 n N 6 —
11111 o O 0 *
00001 p P ( right
01101 q Q = ”
00010 r R 8 down
10101 s S + +
10000 t T 1 left
01001 u U ’ _
10011 v V tab tab
10001 w W ¡ ¡
11011 x X [ {
10110 y Y @ #
10010 z Z 9 %
11110 space
01111 backspace
00011 new line
00100 . ? 4 ’
00101 , ! - ;
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