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Abstract—For the management of IT systems, numerous
models, protocols and tools have been developed. To achieve the
long-term goal of comprehensive, highly automated IT manage-
ment, the various sources of information need to be combined.
As syntactic translation is often not sufficient, ontologies can
be used to unambiguously and comprehensively model IT
environments including management rules. In this paper, we
present an approach that combines the domain model, rules,
instance data (which represents real-world systems) into an
ontology. As the basis for an IT management ontology, we
convert the Common Information Model (CIM), a Distributed
Management Task Force (DMTF) standard, into an OWL
(Web Ontology Language) ontology. Moreover, probabilistic
knowledge of the domain is modeled using Bayesian networks
and integrated into the ontology. Furthermore, the approach
describes a runtime system that merges monitoring data into
the ontology and then uses a reasoner to evaluate management
rules.

Keywords-ontology; IT management; CIM; Bayesian net-
work

I. INTRODUCTION

In the domain of IT management, numerous models,
protocols and tools have been developed. Notable models
include the OSI (Open Systems Interconnection) network
management model (also known as Common Management
Information Protocol (CMIP)) and the still widely used sim-
ple network management protocol (SNMP). A more recent
approach to specify a comprehensive IT management model
is the Common Information Model (CIM, [2]), a widely
recognized Distributed Management Task Force (DMTF)
standard. The more complex an IT environment gets, the
more important the capability becomes to automate as many
tasks as possible. Both commercial and free management
tools and frameworks exist that cover different parts of the
required feature set for management tasks, but usually not
only a single tool, but a set of tools is used. In order
to achieve a unified view of the heterogenous integrated
management models, mappings between different types of
models can be defined. However, syntactic translations are
often not sufficient, when the same concept is represented
differently in multiple domains. This problem can be ap-
proached by using ontologies to clearly define the semantics.

Only when a comprehensive formal representation of the
domain data exists, that is also capable of modeling rules,

a largely automatic management becomes possible, because
then not only structural, but also behavioural information can
be expressed in the model. To achieve such an automated
management system, we describe a runtime system that
imports the corresponding domain model into the ontology
and evaluates the rules, based on up to date monitoring data
from the system under management. In order to represent the
monitoring data in the ontology, instance data is acquired
at runtime and added to the ontology, so that rules can
be evaluated by a reasoner according to both model and
instance data.

The approach presented in this paper uses an OWL (Web
Ontology Language, [3]) ontology to combine the domain
model, instance data and rules defined in SWRL (Semantic
Web Rule Language) in order to create a system that can
automatically manage an IT environment. This results in
a comprehensive knowledge base that includes both the
statically loaded domain model and dynamically updated
runtime information about the system under management,
as well as rules to control the behavior of the system. To
model entities and relationships of an IT environment, the
CIM model was converted into an OWL ontology.

A domain as complex as IT management cannot be
modeled solely using exact and complete information, which
might not be available. Instead, probabilistic modeling and
evaluation might be adequate. To enable that, the ontology
and the runtime system need to be extended accordingly. As
neither CIM nor an OWL ontology have native facilities for
the representation of such information, Bayesian Networks
are employed. Bayesian networks are probabilistic models
to specify causal dependencies between random variables in
a directed acyclic graph. To model probabilistic knowledge,
ontology elements are annotated so that a Bayesian network
can be partially derived from the ontology at runtime.

Section II gives a short introduction on the Common
Information Model and describes related work in the context
of ontologies and IT management. The concepts for the
translation of CIM into an OWL ontology and the concepts
for the combination of Bayesian networks with an ontology
are described in Section III. Section IV gives an overview
of our architecture for the runtime system, that is based on
the aforementioned concepts for automated IT management.
The paper draws a conclusion in Section V.



292

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK

A. The Common Information Model (CIM)

This section briefly describes the basic properties of the
Common Information Model [2]. CIM is an object-oriented
model that describes the entities in an IT environment and
the relationships between them. This covers both hardware
and software entities. The goal is to comprehensively model
every aspect that is needed for consistently monitoring and
managing the IT environment. CIM consists of three parts:

• A basic information model called the meta schema.
The meta schema is defined using Unified Modeling
Language (UML, [4]).

• A syntax for the description of management objects
called the Managed Object Format (MOF).

• Two layers of generic management object classes called
Core Model and Common Model.

Figure 1 shows the CIM meta schema definition in UML,
from the CIM specification [2]. The meta schema specifies
most of the elements that are common in object-oriented
modeling, namely

• Classes, Properties and Methods. The class hierarchy
supports single inheritance (generalization) and over-
loading of methods. For methods, the CIM schema
specifies only the prototypes of methods, not the im-
plementation.

• References are a special kind of property that point to
classes.

• Qualifiers are used to set additional characteristics
of Named Elements, e.g., possible access rules for
properties (READ, WRITE), marking a property as a key
for instances (using Key) or marking a class as one that
can not be instantiated. Qualifiers can be compared to
Java annotations; some qualifiers also have parameters.

• Associations are classes that are used to describe a
relation between two classes. They usually contain two
references.

• Triggers represent a state change (such as create, delete,
update, or access) of a class instance, and update or
access of a property.

• Indications are objects created as a result of a trigger.
Instances of this class represent concrete events.

• Schemas group elements for administrative purposes
(e.g., naming).

Properties, references, parameters and methods (method
return values) have a data type. Datatypes that are supported
by CIM include {s,u}int{8,16,32,64} (e.g., uint8 or sint32),
real{32,64}, string, boolean, datetime, and strongly typed
references (<classname> ref).

In addition to the CIM schema, CIM specifies a protocol,
based on XML over HTTP, which is used by CIM-capable
managers to query classes, instances and invoke methods
against a so-called CIM object manager (CIMOM).

B. Ontologies in IT Management

There are several publications that examine the application
of ontologies to the domain of IT management, e.g., [5], [6],
[7]. The general consensus is that OWL is well suited for the
modeling of IT systems, as it provides powerful modeling
capabilities paired with the ability to formulate rules as part
of the model and the ability to modularize the ontology.
Still, both the complete translation or mapping of existing
IT management models into OWL and the creation of an
ontology-based automated IT management system are no
solved problems.

In [5] the authors provide mappings for parts of different
IT management models to OWL, including Structure of
Management Information (SMI) and the Common Informa-
tion Model (CIM). The resulting ontology can be used to
combine the knowledge given in the different representations
into a joint model. One problem the authors point out for the
mapping is information that can be expressed in the original
languages, but has no direct representation in OWL, such as
the attachment of measurement units or access authorizations
to properties. To solve this problem, the data is presented on
the Resource Description Framework (RDF) layer of OWL.
In RDF, it is possible to attach additional information to
edges in the graph so that the data can be represented.
However, this information is not available for evaluation
by an OWL reasoner and therefore this approach has only
limited use for automation that relies on the evaluation of
rules from the ontology.

[6] describes how to represent several abstraction layers
of a system in split ontologies to achieve a pyramid-like
structure of ontologies, where often used ontologies are at
the bottom of the figure. The reuse of components and
models is an important topic in IT systems, and especially
for ontology-based automation. The paper shows that OWL
is capable of organizing several abstractions of a system in
ontologies and reuse defined components in higher layers.
This is an important aspect for the realization of a real-world
management system.

A real-world management application is shown in [7]
where ontologies are used to manage a network infrastruc-
ture. SWRL rules are used to create new object property
connections between entities in case of a blackout. For
this, properties and instance structures are observed. As
a basis, Policy-based Network Management (PBNM) [8]
was used. Rules are evaluated periodically during runtime,
and new facts are added to the ontology. A management
component observes the ontology and maps newly added
facts to management operations to adjust the system.

In order to create a comprehensive ontology to model
the system under management, a suitable domain model is
required. The Common Information Model was examined
in several publications (e.g., [9], [10]) and is often proposed
as a domain model for the IT management domain, but the
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Figure 1. CIM Meta Schema [2]

authors in [9] show that it is a semi-formal ontology that has
limited abilities for knowledge interoperability, knowledge
aggregation and reasoning. In practice, this means that it is
difficult to combine it with models from other domains, that
it has no features for reasoning or the definition of rules as
part of the model, and that it has only very limited built-in
querying capabilities.

One solution to overcome the shortcomings of CIM while
still benefiting from the comprehensive model is to translate
CIM into a standard ontology format. In [9] the authors
compare possible conversions of CIM to RDFS (Resource
Description Framework Schema) and to OWL. They find
that RDFS is unsuitable to express CIM as it does not allow
to express constructs such as cardinality restrictions and
some CIM qualifiers. In [5] the authors provide a possible
mapping for a subset of CIM to OWL and the authors in
[10] introduce a meta-ontology to model CIM constructs
that have no direct OWL correspondence, but they do not
describe how this meta-ontology is constructed, and their
approach does not specify how several qualifiers and more
complex elements, such as CIM methods, can be converted.

We developed a full mapping of CIM to OWL, which
we use in this paper (see Section III-A) and which is first
described in [11].

C. Bayesian Networks in IT Management

Bayesian Networks are used for the prediction of states for
unobservable random variables. In IT systems management
the probabilistic model of Bayesian Networkds suits root
cause analysis and failure prediction well.

In [12] Bayesian Networks are used for hard disk failure
prediction. Recorded Self-Monitoring, Analysis and Report-
ing Technology (SMART) data is used to generate the
conditional probabilities for the nodes of the network. Two
methods are used for the learning process, a clustering meth-

ods for sub model extraction and Expectation Maximization
(see [13]) and Supervised naive Bayes Learning (see [14]).
After the learning process, the SMART characteristics of
a hard disk can be set as evidence in the network and a
prediction for the probability of an upcoming failure can be
made.

[15] considers the reliability for software systems. A
special form of Bayesian Networks, the Markov Bayesian
Networks, is used to predict failures in discrete time systems.
Especially the working profiles of the system defined in
[16] are considered as input parameters for the network.
The conditional probabilities are extracted from software
metrics. It is shown that the model does not provide optimal
predications for failure rates, but better predictions than
the Discrete Time Hyperexponential Model for Software
Reliability [17].

[18] shows another attempt to predict software failures
with Bayesian Networks. Complex internal relationships and
correlations are considered to identify factors for failure
contributions of components. For the construction of the
network, a directed graph is generated where all variables
are connected. Only boolean state spaces are allowed for
variables. Every edge is weighted with its probability and
a maximum weighted spanning tree is generated. By the
choice of a root node a directed graph is achieved. Test data
of the Eclipse Project [19] was used to show that the model
can make statistically significant assertions about the failure
probability.

D. Combination of Ontologies and Bayesian Networks in IT
Management

There are no methods known to the authors for the
combination of ontologies and Bayesian Networks in an IT
Management context, but there are approaches to embed
probabilities into OWL. In [20] the embedding of proba-
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bilistic knowledge for OWL class membership is presented.
The major problems are the representation of probabilistic
knowledge in OWL, the derivation of an acyclic graph and
the construction of the conditional probabilities. Therefore,
special OWL classes are defined to represent the expressions
P (A), P (A|B) and P (A|B), which have properties for
conditions, values and probabilities. These properties are
used to generate the conditional probabilities. A specially
modified reasoner is needed to evaluate the ontology, so that
existing reasoners cannot be used.

[21] defines the language PR-OWL. In contrast to [20],
no existing language constructs of OWL are used, but a
proprietary extension is defined. A probabilistic ontology
must define at least one individual of the special class
“MTheory”. A theory consists of a set of fragments that can
be either context, residuum or input. Every random variable
is a node with a set of possible values and conditional
probabilities. With a special reasoner these constructs can
be evaluated.

E. Belief Change

The process of changing beliefs to take into account a new
piece of information about the world is called belief change.
Belief change studies the process an agent has to perform
to accommodate new or more reliable information that is
possibly inconsistent with existing beliefs. Usually, beliefs
are represented as a set of sentences of a logical language.

In the literature, three types of belief change operations
can be distinguished: contraction, expansion and revision.
Contraction is retracting a sentence from a belief set, expan-
sion is adding a sentence to a belief set regardless of whether
the resulting belief set is consistent or not, and revision is
incorporating a sentence into a belief set while maintaining
consistency. Alchourrón, Gärdenfors and Makinson [22]
specified postulates for contraction and revision operators,
which they claim should be satisfied by all rational belief
change operators.

The problems described hold for the change of ontologies
as well, as an ontology can be considered a belief base in the
sense of the belief change theory. In this context, the problem
is known as ontology change. Belief change theory can not
be directly applied to description logics because it is based
on assumptions that generally fail for description logics [23].
However, the authors in [24] show that all logics admit
a contraction operator that satisfies the postulates except
the recovery postulate. In [25], the authors show that the
theory can be applied if the recovery postulate is slightly
generalized.

Another approach to the problem of ontology update is
taken in [26], which proposes an ontology update framework
where ontology update specifications describe certain change
patterns that can be performed. Change requests (adding or
removing pieces of information to the ontology) are only
accepted if the corresponding update specification accounts

for it. The update specification is implemented similar to
a database trigger and possibly carries out more ontology
changes than explicitly requested to ensure ontology consis-
tency.

Updating the ontology can be avoided, when changes over
time are modeled in the ontology. For this approach, so-
called fluents are used, where facts are tagged with the time
or range of time at which they are valid. The authors in [27]
describe how fluents can be modeled in OWL. However,
this creates a large number of additional instances in the
ontology, which makes it impractical for the application in
the IT management context, where many changes of the
ontology take place in short time frames.

III. CONCEPTS

A. Transformation of the Common Information Model to
OWL

As pointed out in Section II-B, a translation of CIM
to OWL must be performed. The translation approach de-
scribed in this section has first been published in [11] and
is described in full detail in [28]. This section gives an
overview of the translation approach and describes (previ-
ously unpublished) technical details necessary for the imple-
mentation of the translation using exemplary values. Note
that the resulting OWL ontology is available for download
at [29].

The translation creates an ontology that consists of two
parts. The first part is a manually modeled meta-ontology
that describes super classes, properties and annotations that
meta-model CIM constructs, which can not be directly
translated to OWL. The meta ontology has the namespace
cim-meta. The second part is the CIM schema ontology,
which is modeled using OWL-, RDFS- and CIM meta
constructs, and which represents the actual CIM model. This
part is generated programmatically by parsing the original
MOF files and applying the following translation rules.
The implementation uses pattern matching techniques on
the abstract syntax tree of the CIM model to apply the
translation rules.

Structural translation is mostly straightforward. CIM
classes can be mapped to OWL classes, although a class
in object-oriented modeling is not identical to the concept
of a class in an ontology. Likewise, generalisation (inheri-
tance) can be expressed using the OWL subclass concept
rdfs:subClassOf. CIM has another basic construct for
the expression of relationships, a so-called Association,
which is a special kind of class with two typed refer-
ence properties (antecedent and dependent). Associations are
mapped to OWL classes that inherit from the special meta
class cim-meta:CIM Association. CIM aggregations are
handled accordingly.

Each CIM property is translated into an OWL object prop-
erty and an OWL class that inherits from cim-meta:CIM

Value. The domain of the object property is the class that
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originally contained the property, while the range is the
CIM Value subclass. This class in turn then has a data
property, which contains the actual value. The additional
indirection is necessary for two reasons: CIM properties
can have values of both primitive types such as uint32

and references to classes, also the CIM Value subclass is
necessary to be able to express the CIM qualifiers on the
property.

1 class CIM System : CIM EnabledLogicalElement {
2 string Name;
3 }
4
5 class CIM ComputerSystem : CIM System {
6 uint32 SetPowerState(uint32 PowerState , datetime

Time);
7 }

Listing 1. CIM properties

In the following paragraphs, the mapping is illustrated using
a concrete example. For the first class in Listing 1 the
following OWL elements are created:
• An OWL class CIM System that is a subclass of the

OWL class CIM EnabledLogicalElement

• An OWL class CIM System Name Value that is
a subclass of cim-meta:CIM Value

• An OWL object property CIM System Name with
domain CIM System and range CIM System

Name Value

Information about qualifiers on the property can then be
added to the CIM System Name Value class as anno-
tations or further object or data properties.

To translate methods, even more structural elements are
required. The method itself, its parameters and return type,
and the types of each parameter must be modeled. The
second class in Listing 1 is translated into the following
CIM elements:
• An OWL class CIM ComputerSystem that is a sub-

class of the OWL class CIM System

• An OWL instance CIM ComputerSystem

SetPowerState Method that is an instance of
cim-meta:CIM Method (which has data properties
cim-meta:methodName and cim-meta:methodType)

• An OWL object property CIM ComputerSystem

SetPowerState that has the domain
CIM ComputerSystem and the range
cim-meta:CIM Method and an annotation
cim-meta:methodInstance that points to the
instance

• An OWL object property CIM ComputerSystem

SetPowerState Parameters that has the method
instance as domain and a range of an owl:oneOf

enumeration
• The enumeration contains the instances
CIM ComputerSystem SetPowerState

Parameters PowerState and CIM

ComputerSystem SetPowerState

Parameters Time, which are both instances of
cim-meta:CIM Method Parameter, which in turn
has the data properties cim-meta:parameterName,
cim-meta:parameterType and cim-meta:

parameterPosition.
CIM datatypes are translated into the corresponding XSD

datatype, as shown in table I.

Table I. Translation of CIM types to XSD types

CIM
type

XSD type CIM
type

XSD type

uint8 unsignedByte string string

sint8 byte boolean boolean

uint16 unsignedShort real32 float

sint16 short real64 double

sint32 int datetime dateTime

uint32 unsignedInt char16 string

sint64 long uint64 unsignedLong

The translation of CIM qualifiers is performed by express-
ing the semantics of each qualifier using OWL features, as
far as possible. In cases where this is not possible, corre-
sponding classes and properties are modeled in the CIM
meta ontology that the schema ontology can refer to. Table II
gives an overview of the translation of CIM structures and
qualifiers to OWL.

Table II. Translation of CIM constructs to OWL

CIM Construct Translation in OWL
Abstract cim-meta:isAbstract

Aggregate Handled together with Aggregation
Aggregation cim-meta:CIM Aggregation,

cim-meta:CIM Aggregation Parent,
cim-meta:CIM Aggregation Child

Alias owl:equivalentProperty

Association cim-meta:CIM Association,
cim-meta:CIM Association Role

Class owl:Class

ClassConstraint cim-meta:classConstraint

Composition cim-meta:CIM Composition,
cim-meta:CIM Composition Parent,
cim-meta:CIM Composition Child

Correlatable No translation
Datatypes See table I
Default values Union of original property range

and default value singleton
Deprecated owl:DeprecatedClass,

owl:DeprecatedProperty

Description rdfs:comment

DisplayName cim-meta:displayName

Exception cim-meta:exception
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Experimental cim-meta:experimental

In cim-meta:in

Inheritance rdfs:subClassOf

Key owl:inverseFunctionalProperty

MappingStrings cim-meta:mappingStrings

Max owl:maxCardinality

MaxLen owl:Restriction, xsd:maxLength

MaxValue owl:Restriction, xsd:maxInclusive

Methods cim-meta:CIM Method

(plus one instance),
cim-meta:CIM Method Parameter (plus
one instance), cim-meta:methodName,
cim-meta:methodType,
cim-meta:parameterName,
cim-meta:parameterType,
cim-meta:parameterPosition, object
property for method, object
property for method parameters

Method-
Constraint

cim-meta:methodConstraint

Min owl:minCardinality

MinLen owl:Restriction, xsd:minLength

MinValue owl:Restriction, xsd:minInclusive

ModelCorrespon-
dence

rdfs:seeAlso

Out cim-meta:out

Override rdfs:subPropertyOf

Property cim:CIM <Class> <Property> Value

(subclass of cim-meta:CIM Value),
cim:CIM <Class> <Property>

Property-
Constraint

cim-meta:propertyConstraint

PUnit cim-meta:punit

UMLPackage-
Path

cim-meta:UMLPackagePath

Read cim-meta:readable

Required owl:minCardinality of 1
Terminal cim-meta:isTerminal

Units cim-meta:units

ValueMap cim-meta:valueMap

Values cim-meta:value

Version owl:versionInfo

Write cim-meta:writable

B. Combination of Ontologies and Bayesian Networks

The goal of the new architecture is to combine precise
and probabilistic knowledge. A central concept is to model
an ontology with entities and relationships and to derive the
Bayesian Network dynamically from the ontology. There-
fore, several specifications need to be defined to put some
additional semantics into the ontology. Mainly,

• how random variables are represented in the ontology
and

• how relationships are represented in the ontology.
1) Variable Representation: As mentioned before, OWL

ontologies are able to represent continuous and discrete vari-
ables as data properties. As Bayesian Networks only operate
on discrete random variables, a discretization must be ap-
plied. To discretize continuous variables, some additional
information is needed. OWL does not support the adding
of supplemental data to data property assertions. In [5],
this problem was solved by adding the data on the RDF
layer of OWL. The approach veers away from the con-
cepts of OWL and the support for most editors and tools
gets lost. Hence, for this approach another representation is
used, which capsulates random variables through instances
of variable classes, which has a data property that contains
the actual value of the variable. There are three different
types of variables:
• Continuous variables
• Discrete variables
• Enumerations
Continuous variables are containers for floating point val-

ues, discrete variables are containers for integers. In contrast
enumerations do not store primitive data but OWL individ-
uals as a value.

A mechanism is needed to map values of all three types
of variables from the ontology to the generated Bayesian
Network and back again. Since enumerations generally have
just a small state space the values can be mapped one by one.
For continuous and discrete variables the mapping is prob-
lematic and a discretization must be applied. A discretization
for variables that are already discrete is needed, because the
state space (in most cases full integer state space) is too
large for Bayesian Networks. For a random variable x the
size of its conditional probability table probsize(x) grows
with

probsize(x) = spacesize(x) ·
∏

c∈cause(x)

spacesize(c) (1)

where cause(x) is the set of causing variables of variable
x and spacesize(c) is the size of the state space of the
variable c.

To support the discretization mechanism, we defined spe-
cial interval properties for both types of variables. These
intervals are used to discretize values in the runtime environ-
ment. They are defined in a math-based syntax as additional
data properties of the variable class. For the mapping from
OWL to the network, the matching interval is taken. Every
interval is an unique discrete value in the network. The map-
ping back from the network to OWL is more complicated,
because the discrete data has to be enriched. For this, the
median of the matching interval is used.

2) Relationship Representation: Another part of the OWL
model are relationships. They describe the coherence be-



297

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tween random variables of the system. Three types of rela-
tionships are considered in the model:
• Functional relationships
• Causal relationships
• Correlations
Functional relationships are based on known dependen-

cies, which can be expressed by a mathematical formula.
SWRL as part of the OWL specification already supports
the usage of mathematical expressions and is used for the
definition of functional relationships. The rules are evaluated
at runtime by an OWL reasoner and new axioms are gener-
ated depending on the bound variables. Because correlations
can be seen as bidirectional edges and causal relationships as
unidirectional edges, the OWL object property concept can
be used for the representation of both. In general it is not
possible to connect data properties in OWL, but in this case
it is feasible because all variables are already encapsulated
by instances of the variable class.

3) Ontology Structure: A base ontology has been defined,
which defined all OWL concepts needed for the use of the
specialized variables and relationships in a client-specific
ontology. Figure 2 shows the structure of the ontology, which
is described in detail as follows.
• The Variable class is the base class for all variable

types. It is the domain and the range for the causation
object property, which defines causation between vari-
ables and the correlation object property that defines
a correlation between variables.

• The NumericVariable class extends the variable class
and is the base class for all numerical variables. It
is the domain of the interval data property, which
defines intervals for discretization and the the unit data
property that defines the unit of a numerical variable.

• The ContinuousVariable class extends the numerical
variable class and is used for continuous variables in the
model. It is the domain of a continuousValue data
property, which stores the discrete value of a continuous
variable.

• The DiscreteVariable class extends the numerical
variable class and is used for discrete variables in the
model. It is the domain of a discreteValue data prop-
erty, which stores the discrete value of a discrete vari-
able.

• The Enumeration class extends the variable class and
is used for enumerations in the model. It is the domain
of the enumerationClass data property, which defines
an OWL class as state space and the enumerationValue
object property that stores the value of an enumeration
variable.

• The System class, which is the base class for all root
nodes of defined systems.

The ontology can be imported into any other ontology
and instances of the classes and assertions of the properties

can be created. To create a system model independent of
these special properties and classes but capable of using the
features it is possible to import both the system ontology
and the variable and relationships defining ontology to a new
ontology and define same individual, same object property
and same data property axioms.

4) Joint Model Evaluation: For the evaluation of the re-
lationships between variables different techniques are used.
Since functional relationships are already defined as SWRL
rules, the evaluation is simple. An OWL reasoner binds the
variables in the body of each rule and creates the axioms in
the head of the rule.

Causations are mapped to a Bayesian Network where each
instance of the variable class becomes a node. For numerical
variables each variable is checked for intervals. A discrete
state is created for each interval in the state space of the node
in the network. Enumerations are checked for their defined
enumeration class and for each individual of this class a state
is created with the unique name of the individual. Causal
relationships between variables become arcs in the Bayesian
Network.

After the structure of the network has been created the
runtime values are mapped from the individuals in the on-
tology to the nodes in the network in every reasoning cycle.
For a numerical variable the value is read, the fitting interval
is found and the state of the node is set to the unique interval.
For enumerations the individual is extracted and the state of
the node in the network is set to the unique identifier of the
individual.

In the next step an inference algorithm is applied to cal-
culate the belief for the states of each unobserved vari-
able (variables which have no value set in the ontology)
which part a causal relationship. If the calculated belief is
above a defined threshold the deduced value is fed back into
the ontology as an property assertion for the variable. For
enumerations that step is quite simple because the state is
exactly the identifier of the individual. In case of numerical
variables the matching interval is found and the median of
the interval is set as value for the variable in the ontology.
Values derived from the Bayesian Network are marked as
being fuzzy by a property in the ontology so that other
inference algorithms are aware of that fact.

Correlations are more complex to handle because they
are based on precise knowledge (that the correlation exists)
but the coherence between the variables is just a statistical
measurement. An evaluation compared to that of causations
is not possible, because correlations are bidirectional and
thus cannot be presented in an acyclic graph. Therefore,
correlations are analyzed offline for their functional rela-
tionship and are replaced by SWRL rules. These rules can
be evaluated like the rules for functional relationships, the
result is marked as being fuzzy as well.

Given that system facts can be revoked a mechanism is
needed to revoke facts in the ontology as well as facts, which
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Figure 2. Entity structure of the created ontology.

have been derived based on those facts. OWL does not have
a concept to automatically remove depending facts. Hence
a directed acyclic graph is used to store the dependencies
between the axioms of the ontology. If an axiom is removed,
all child axioms are removed as well. Thus, not the whole
derived knowledge must be revoked but only a subset of
axioms.

IV. ARCHITECTURE

A new architecture for ontology-based automated IT man-
agement is currently under development by the authors and
the main ideas are sketched in this section. The architecture
consists of a set of components (shown in Figure 3), which
can be grouped into
• Importers that add new data to the ontology
• Reasoning components, which use the existing data to

derive new knowledge
• Management components, which interact with the sys-

tem under management.
The central element of the system is an ontology that is

used as a shared knowledge base (blackboard) for all com-
ponents. Each component can read data from the knowledge
base and add or remove facts from it. Service invocations
are used for the inter-component communication. The archi-
tecture is designed to be used in a distributed fashion.

A. Importers

The combination of different domain models raises the re-
quirement for corresponding importers. These specific com-
ponents know how to map the domain specific model to
an ontology model. Hence, an interface is defined, which
allows the use of new domain specific model importers.
Implemented model importers are an ontology importer and
a CIM importer. The ontology importer simply reads the
data from an OWL ontology and adds the facts to the shared
knowledge base. The CIM importer uses the mapping rules
described in III-A to map the CIM schema to OWL facts.

As well as models, rules can be specified in a domain
specific manner. Hence, an interface is provided for the
implementation of domain specific rule importers. Internally,
SWRL is used as rule format for the shared ontology and
an according importer was implemented.

In general, the domain model contains just the taxonomy
of the monitored system but not the instance data. There-
fore, a component is needed that monitors the system under
management and imports runtime data into the ontology by
creating according instances. Such components are called
instance importers. An interface is provided for the integra-
tion of domain specific instance importers. Already imple-
mented instance importers are the log record importer, which
maps log records to instances and relations, and the CIM
instance importer, which uses the OpenPegasus CIMOM
to get information from a CIM-based management system.
Other application-specific instance importers can be added
as needed.

Figure 3. Components of the developed architecture

B. Reasoning

The strength of OWL and its formal grounding is the
ability to reason new knowledge from an existing knowledge
base. In our architecture this feature is used to derive new
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facts from the domain specific models, the imported rules
and the monitored instance data.

In many cases it is insufficient to just consider exact
knowledge in IT management, because side effects and com-
plex relationships are either not known or can not be mod-
eled in an adequate level of abstraction. But especially for
state prediction and root cause analysis probabilistic knowl-
edge and the statistical consideration of historical data are
needed. Because of that, a concept is used to make proba-
bilistic modeling and reasoning possible, which is described
in detail in III-B. The structure of the Bayesian network is
derived from the OWL model. The conditional probabilities
are not modeled in the ontology directly, but trained using a
maximum likelihood algorithm during a precedent training
phase, which uses real data from the system under manage-
ment.

In the next step the OWL model is analyzed for vari-
able states, which will be set as evidences in the Bayesian
network. Subsequently, an inference algorithm is applied
to calculate the belief for the states of unobserved vari-
ables (variables which have no value set in the ontology).
If the calculated belief is above a defined threshold, the
deduced value is set for the variable in the ontology and can
thereby be used by the exact reasoners for further reasoning.
To ensure the knowledge exchange between the reasoning
components a component can be called multiple times in a
reasoning cycle.

C. Management components

Management components are used to reconfigure the sys-
tem under management. They contain the knowledge that is
needed to interact with a specific component of the system.
Depending on the evaluation results of the rules, accord-
ing actions are triggered. When CIM is used as a domain
model, the management components can call methods on the
CIMOM, which in turn controls the particular component,
or it can execute external commands directly.

D. Runtime

The first step on application startup is the import of re-
quired domain models and rules using the according model
and rule importers. After that, the management cycle is started
(also known as MAPE-K loop [30], which stands for mon-
itor, analyze, plan, execute and knowledge). The loop be-
gins with the monitoring phase, where information from the
system under management is read and imported into the
ontology as instances.

In the analysis phase, the domain models, the rules and the
monitored data are used for the reasoning of new knowledge.
The reasoning process is shown in Figure 4.

The base ontology contains all the imported and moni-
tored data. When the reasoning process starts, all data of
the base ontology is copied into the working ontology. All
reasoners are applied to this ontology sequentially and add

Figure 4. Multi step ontology reasoning process

their reasoned knowledge to it. When all reasoners have
finished, the data of the working ontology is copied to the
reasoned ontology, which is used for queries into the knowl-
edge base and stays untouched until the next reasoning phase
has finished.

The reasoning takes place in this multi-step process for
two reasons: The first reason is handling ontology change,
as new information can be added easily to an ontology,
but not retracted easily. By keeping the base model and
inferred knowledge from different reasoners in separate sub-
ontologies, inferred knowledge from a single reasoner can
be retracted without effort. The second reason is that the
last version of the reasoned ontology can still be queried,
while the new version is being created. As reasoning can
be slow on large ontologies, this makes sure that clients do
not block on queries but can always receive an instant reply.
The query result therefore may be as old as one reasoning
cycle.

The last steps in the cycle are the plan and execute phases.
The management components use the data of the reasoned
ontology to make management decisions and execute them
on the system under management. The presented architec-
ture was prototypically implemented in Java using the OSGi
Framework as service middleware. The implementation com-
prises the core components and the specific features de-
scribed above (i.e., model importers, rule importers and in-
stance importers). More domain-specific components will be
added in the course further application of the approach (see
Section V).

For the service abstraction the interfaces of the OWL API
are used.

V. CONCLUSION AND FUTURE WORK

In this paper we presented an approach for ontology-based
IT management. The approach comprises an architecture that
uses an ontology which integrates the domain model, rules
and dynamically updated instance data. Two main problems
were solved: The first problem is the creation of a suitable
domain model, which was covered by the translation of
CIM to OWL and the expression of probabilistic knowledge
using Bayesian networks. The integration of other domain
models has yet to be examined. The second problem is the
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continuous update of the ontology with new facts. This is
a topic of current research, and our solution is a multi-
step reasoning process. Performance comparisons to other
approaches and with different ontologies must be conducted.

Future work includes the development of importers for
other domain models. The application of the presented ap-
proach is currently underway in two different concrete do-
mains: One is the domain of storage management, the other
is the domain of ambient assisted living (AAL). The applica-
tion in these domains includes the development of domain-
specific importers and the overall optimization of perfor-
mance of the runtime system.

In the context of storage management the Storage Man-
agement Initiative Specification (SMI-S), which is a special-
ization of the CIM Model, can be used to manage storage
systems. Rules, which are verbally defined in the specifi-
cation, are formalized and integrated into the OWL model.
Besides, the probabilistic part is used to make assertions
about future states (e.g., how high is the probability of a
full file system tomorrow if there is a peak) and to analyze
previous scenarios (e.g., what was the most likely reason for
a file server crash). In combination a pro-active management
can be achieved and systems can be reconfigured before a
failure occurs.

In the context of ambient assisted living the domain is
a living environment, equipped with a set of sensors and
effectors. That environment is modeled in a hierarchy of
ontologies and monitored during runtime. The observed data
is used to derive higher level knowledge, e.g., that lights
should automatically be switched on or off when a person
enters a room.

The proof-of-concept implementation of the ontology-based
management system and the integration of probabilistic knowl-
edge with the OWL ontology enables rule-based automatic
management of domains for which a domain ontology was
created.
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