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Abstract—We present examples of agent-based and stochas-
tic models of competition and business processes in economics
and finance. We start from as simple as possible models,
which have microscopic, agent-based, versions and macroscopic
treatment in behavior. Microscopic and macroscopic versions
of herding model proposed by Kirman and Bass new product
diffusion are considered in this contribution as two basic ideas.
Further we demonstrate that general herding behavior can be
considered as a background of nonlinear stochastic model of
financial fluctuations.

Keywords-agent-based modeling; stochastic modeling; busi-
ness models; financial market models.

I. INTRODUCTION

Statistically reasonable models of social and economic
systems, first of all stochastic and agent-based, are of great
interest for a wide scientific community of interdisciplinary
researchers dealing with diversity of complex systems [1],
[2], [3], [4]. Computer modeling is one of the key aspects of
modern science, be it physical or social or economic science,
[5], [6]. In case of complex system modeling it serves
as a technique in the quest for the understanding of the
interrelation between microscopic interactions of individual
agents and macroscopic, colective, dynamics of the whole
complex system. Nevertheless, some general theories or
methods that are well developed in the natural and physical
sciences can be helpful in the development of consistent
micro and macro modeling of complex systems [3], [4], [7],
[8], [9].

As computer modeling is very prominent and important in
modern science, we start this paper by discussing our online
publishing and collaboration platform, see Section III. The
open-source applets made available online on the website
“Physics of Risk”, see [10], allow to reproduce most of the
results presented in this paper. This is very important as
reproducibility of the results is one of the key demands in
scientific society [5], [6].

From the Section IV we start discussing various mod-
els applicable in economics and finance, which highlight
the important correspondence between microscopic, agent-
based, and macroscopic, stochastic, modeling. In the opening

Section IV, we present Kirman’s agent-based model (see
[11] for original paper) and derive its stochastic alternative,
which was also done by Alfarano et al. in [12] using a more
complex manner. In the Section V we show that modified,
unidirectional, Kirman’s agent based model can be seen as
microscopic alternative to the widely known Bass diffusion
model [13]. Further, in Section VI, we apply the stochastic
treatment of the Kirman’s model for financial markets and
obtain stochastic model of absolute return similar to the
CEV process [14] and earlier proposed model of 1/f noise
[15], [16], [17]. In the Section VIII we show that Kirman’s
model possesses multifractal features, which are seen as an
important feature of many natural phenomena [18]. Section
IX closes presented discussion with some definitions and
results regarding burst duration statistics generated by the
class of nonlinear SDE and observable in the financial
markets.

In the last section, Section X, we sum up everything
discussed in this paper and share some ideas on future
developments of the discussed research.

II. REVIEW OF THE RELATED WORKS

Current on-going financial economic crisis provoked
many papers calling for a revolution of economical thought
and emphasizing a need for a wider applications of statistical
physics in the research of social complexity [3], [8], [9],
[19], [20], [21], [22], [23], [24], [25]. Most of them pointing
out that agent based models are very important if one wants
to effectively understand what is going on in the complex
social and economic systems and the physical intuition might
provide the important bridging between the macroscopic and
microscopic modeling. These ideas somewhat traceback to
the thoughts put down by Waldrop and Axelrod in the 1990s
(see [4], [7]).

In the recent decades there were many attempts to create
an agent-based model for the financial markets, yet no model
so far is realistic enough and tractable to be considered
as an ideal model [26]. One of the best examples of
realistic models is so-called Lux and Marchesi model [27],
which is heavily based on the behavioral economics ideas
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mathematically put down as utility functions for the agents
in the market, thus it is considered to be very reasonable
and realistic [26]. Yet this model is too complex, namely
it has many parameters and complex agent interaction me-
chanics, to be analytically tractable. Another example of a
very complex agent-based model would be Bornholdt’s spin
model [28], [29], which is based on a certain interpretation
of the well-known Ising model (for the details on the original
model see any handbook on statistical physics (ex., [30])).

Some might argue that agent-based models need not to be
analytically tractable and in fact that agent-based models are
best suited to model phenomena, which is too complex to
be analytically described [31]. But the recent developments
show that many groups attempt to build a bridge between
microscopic and macroscopic models. Possibly one of the
earliest attempts to do so started from not so realistic, nor
tractable “El Farol bar problem” [32]. This simple model
quickly became known as the Minority Game [33] and
over few years received analytic treatment [34]. Another
prominent simple agent-based model was created by Kirman
[11], which gained broader attention only very recently
[12], [35], [36], [37]. In [38] we have given this model
and extended analytical treatment and have shown that this
model coincides with some prominent macroscopic, namely
stochastic, models of the financial markets (see Section
VII of this work for more details). Another interesting
development was made by following the aforementioned
Bornholdt’s spin model, which has recently received an
analytical treatment via mean-field formalism [39].

Our work in the modeling of complex social and eco-
nomic systems has begun from the applications of nonlinear
stochastic differential equations (abbr. SDE) seeking repro-
duce statistics of financial market data. The proposed class
of equations has power law statistics evidently very similar
to the ones observed in the empirical data. As all of this
work (for broad review see [16]) was done by relying on
the macroscopic phenomenological reasoning, we are now
motivated to find the microscopic reasoning for the proposed
equations. The development of the macroscopic treatments
for the well established agent-based models appears to be the
most consistent approach, as the movement in the opposite
direction seems to be very complex and ambiguitious task.
Thus we decided that we should select the simple agent-
based models, which would have an expected macroscopic
description. In this contribution we present a few examples
of the agent-based modeling, based on the Kirman’s model,
in the business and finance while showing that the examples
have useful and informative macroscopic treatments.

Kirman’s ant colony model [11] is an agent-based model
used to explain the importance of herding inside the ant
colonies and economic systems (see the later works by
Kirman (ex. [40]) and other authors, which develop on this
idea, [12], [35]). The analogy can be drawn as human crowd
behavior is ideologically and statistically similar in many

senses. On our website, [10], we have presented interactive
realizations of the original Kirman’s agent-based model (see
[41]), of its stochastic treatment by Alfarano et al. [12] (see
[42]) and of its treatment in the financial market scenario
done by our group [38] (see [43], [44]).

The diffusion of new products is one of the key problems
in marketing research, and also one of the fields where
we see that Kirman’s model might be applied. The Bass
diffusion model is a very prominent model related to this
problem. This model is formulated as an ordinary differential
equation, which might be used to forecast the number of
adopters of the new successful product or service [13]. There
were suggestions that such basic macroscopic description
in marketing research can be studied using the agent-based
modeling as well [45]. Thus it is a great opportunity to
explore the correspondence between the micro and macro
descriptions looking for the conditions under which both
approaches converge. The Bass Diffusion model is of great
interest for us as representing very practical and widely
accepted area of business modeling. Web based interactive
models, presented on the site [46] serve as an additional
research instrument available for very wide community. On
our website we also provide an interactive applet for the
Bass diffusion treatment in terms of the modified Kirman’s
model [47] (for details on modification see Section V of this
work).

Another interesting problem tackled in this work is related
to the dynamics of the intermittent behavior. This kind of
behavior is observed in many different complex systems
ranging from the geology (ex., earthquakes [48]) and astron-
omy (ex., sunspots [49]) to the biology (ex., neuron activity
[50]) and finance [51]. Great review of the universality of the
bursty behavior is given by Karsai et al. [52] and Kleinberg
[53]. In [52] the bursting behavior is considered as a point
process with threshold mechanism. In this contribution we
analyze the class of nonlinear SDE exhibiting power law
statistics and bursting behavior, which was derived from the
multiplicative point process [54], [55], [56] with applications
for the modeling of trading activity in financial markets
[57], [58]. This provides a very general, via hitting time
formalism [14], [59], [60], approach to the modeling of
bursty behavior of trading activity and absolute return in
the financial markets [61].

III. WEB PLATFORM

Our web site [10] was setup using WordPress webloging
software [62]. The setup pays to be user-friendly, powerful
and easily extensible web publishing platform, which with
some effort can be adapted to the scientist’s needs. There is
a wide choice of plugins, which enable convenient usage of
equations (mostly using LaTeX). While during the setup we
found that bibliography management plugins were lacking
at the time.
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To accommodate our needs for equations we have worked
on improving WP-Latex plugin (available from [63]).
Namely we have introduced a possibility to write equations
in both inline and ordinary math modes. Implemented equa-
tion labeling, numbering and referencing. And finally fixed
some noticeable problems with vertical placement of the
inline mode equations.

Another important task was to implement bibliography
management and citations. For this cause we have used
the bibtexParse PHP code (available from [64]) to setup
BiBTeX backend. From this point on we have written our
own original PHP code to link between bibtexParse, our
database and WordPress. By using this plugin we can now
easily manage and present our own papers (ex. generate
our own bibliographies), papers we have read (tag them
with keywords, write our own comments and etc.) and also
communicate with the visitors using numerous citations.

Interactive models themselves are independent from the
publishing framework. Most of them were implemented
using the Java applet technology. Some of the applets were
created using multi-paradigm simulation software AnyLogic
[65], while the others were programmed from scratch using
Java programing language [66]. AnyLogic was used in the
most of agent-based scenarios as it is a very convenient tool
for agent-based modeling, while programing from scratch
gave us more control over the applets behavior needed while
doing stochastic modeling.

Either way by compiling appropriate files one obtains Java
applets, which can be included in to the articles written
using WordPress. This way articles become interactive -
visitor can both theoretically familiarize himself with the
model and test if the claims made in the post describing
model were true. This happens in the same browser window,
thus the transition between theory and modeling appears to
be seamless. Due to the fact that models are implemented
as Java applets all of the numerical evaluation occurs on
client machine, while the visitor must have Java Runtime
Environment installed, and server load stays minimal. The
requirement for JRE might appear to be cumbersome, but the
technology is somewhat popular and freely available from
Oracle Corp.

One of the goals of developing these models on the web
site was to provide theoretical background of Bass Diffusion
model and discuss practical steps on how such computer
simulations can be created even with limited IT knowledge
and further applied for varying purposes (see [46]). Thus,
we have targeted small and medium enterprises to encourage
them to use modern computer simulation tools for business
planning, sale forecasting and other purposes.

Consequently computer models and their corresponding
descriptions published at the [46] provide a relatively easy
starting point to get acquainted with computer simulation
in business. The published content enables site visitors
to familiarize themselves with these models interactively,

running the applets directly in a browser window, changing
the parameter values and observing results. This significantly
increases accessibility and dissemination of these simula-
tions.

Our web site also offers another level of reproducibility
by including source code files inside the Java applet files. In
this way any willing user may use modern archiver software
(ex., 7Zip) to obtain the source code. After doing so one
can analyze source code and more deeply understand the
presented models and their implementations. This is a very
important level of reproducibility in the modern scientific
context [5], [6].

IV. EXTENDED MACROSCOPIC TREATMENT OF
KIRMAN’S MODEL

There is an interesting phenomenon concerning behavior
of ant colony. It appears that if there are two identical food
sources nearby, or two identical paths to the same food
source (the experiment done by Pasteels and Deneubourg
[67], [68]), ants exploit only one of them at a given time.
Evidently the food source which will be used at a given
time is not certain. It is so as switches between food sources
occur, though the food sources, or paths, remain the same.

One could assume that those different food sources are
different trading strategies or, if putting it simply, the actions
available to traders. Thus, one could argue that speculative
bubbles and crashes in the financial markets are of similar
nature as the exploitation of the food sources in ant colonies
- as quality of stock and quality of food in the ideal case
can be assumed to be constant. Thus, model [11] was created
using ideas obtained from the ecological experiments [67],
[68] can be applied towards the financial market modeling.

Kirman, as an economist, actually developed this model
as a general framework in context of economic modeling
(see [11], [40] and his other works). Recently his framework
was also used by other authors who are concerned with
the financial market modeling (see [12], [35]). Thus basing
ourselves on the main ideas of these authors and our pre-
vious results in stochastic modeling (see [16]) we introduce
specific modifications of Kirman’s model providing a class
of nonlinear stochastic differential equations [17] applicable
for the financial variables.

Kirman’s one step transition probabilities might be ex-
pressed in the following form [11],

p(X → X + 1)=(N −X) (σ1 + hX) ∆t, (1)
p(X → X − 1)=X (σ2 + h[N −X]) ∆t, (2)

where X is a number of agents exploiting the chosen trading
strategy (the one used to describe system state), while N
is a total number of agents in the system (thus the other
trading strategy is used by the N −X agents). In the above
the original Kirman’s approach was extended by introducing
fixed event time scale ∆t by replacing the original models
individual decision εi → σi∆t and herding (1− δ)→ h∆t
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parameters. Later we will need a more general assumption
that parameters σ and h may depend on X and N , but for
now we omit it.

Note that the transition probabilities (1) and (2) describe a
scenario where the interaction among agent groups depends
on the overall number of agents in alternative state. Such a
choice makes the transition rates non-extensive, the connec-
tivity between agent groups increases with the number of
agents N . The herding interactions have a global character.
Opposite scenario - extensive one will be also used further
in this paper.

The lack of memory of the agents is the crucial assump-
tion to formalize the population dynamics as a Markov
process. Furthermore to describe the aforementioned dy-
namics in a continuous time we will need to obtain the
transition rates, transition probabilities per unit time, which
for continuous x = X/N may be expressed as

π+(x)=(1− x)
(σ1
N

+ hx
)
, (3)

π−(x)=x
(σ2
N

+ h[1− x]
)
. (4)

Here the large number of agents N is assumed to ensure
the continuity of variable x, which expresses the fraction
of agents using the selected trading strategy, X . Relation
between the discrete transition probabilities, (1) and (2), and
continuous transition rates, (3) and (4), should be evident:

p(X → X ± 1) = N2π±(x)∆t. (5)

One can compactly express the Master equation for the
system state probability density function, ω(x, t), by using
one step operators E and E−1 (see [69] for a details on this
formalism) as

∂tω(x, t) =N2
{

(E− 1)[π−(x)ω(x, t)]+

+(E−1 − 1)[π+(x)ω(x, t)]
}
. (6)

By expanding E and E−1 using the Taylor expansion (up
to the second term) we arrive at the approximation of the
Master equation

∂tω(x, t) =−N∂x[{π+(x)− π−(x)}ω(x, t)]+

+
1

2
∂2x[{π+(x) + π−(x)}ω(x, t)]. (7)

By introducing custom functions

A(x)=N{π+(x)− π−(x)} = σ1(1− x)− σ2x, (8)
D(x)=π+(x) + π−(x) = 2hx(1− x)+

+
σ1
N

(1− x) +
σ2
N
x, (9)

one can make sure that the (6) is actually a Fokker-Planck
equation:

∂tω(x, t) = −∂x[A(x)ω(x, t)] +
1

2
∂2x[D(x)ω(x, t)]. (10)

Note that in the limit of large N one can neglect individual
behavior terms in the D(x). The above Fokker-Planck
equation was first derived in a slightly different manner in
the [12].

It is known (for details see [59]) that the Fokker-Planck
equation can be rewritten as Langevin equation, or in other
words stochastic differential equation,

dx=A(x)dt+
√
D(x)dW =

=[σ1(1− x)− σ2x]dt+
√

2hx(1− x)dW, (11)

here W stands for Wiener process. This step was also present
in the [12].

In Fig. 1 we show that the statistical properties obtained
from the agent-based model, defined by transition probabil-
ities (1) and (2), match statistical properties of the solutions
of (11). Thus the approximations done while deriving the
Langevin equation for population fraction are valid. Inter-
estingly enough we have obtained agreement with not so
high number of agents - N = 100.

Note that the method used to derive Eq. (11) gives us an
opportunity to consider parameters σ1, σ2, h dependent on
the variable x and N . We will need this generalization in the
further elaboration on various applications. From our point
of view, the general form of SDE (11) derived from the very
basic agent-based herding model provides a wide choice of
opportunities in consistent micro and macro modeling of
complex social systems.

V. AGENT BASED MODEL FOR THE BASS DIFFUSION

The Bass Diffusion model is a tool to forecast the diffu-
sion rate of new products or technologies [13]. Mathemati-
cally it is formulated as an ordinary differential equation

∂tX(t)=[N −X(t)]

[
σ +

h

N
X(t)

]
, (12)

X(0)=0. (13)

where X(t) denotes the number of consumers at time t, N
can be seen as the market potential, being a starting number
of the potential consumers (agents), σ is the coefficient
of innovation, the likelihood of an individual to adopt the
product due to influence by the commercials or similar
external sources, h is the coefficient of imitation, a measure
of likelihood that an individual will adopt the product due to
influence by other people who already adopted the product.
This nonlinear differential equation serves as a macroscopic
description of new product adoption by customers widely
used in business planning [45].

The agent-based approach to the same problem is related
with modeling of product adoption by individual users, or
agents. One can simulate diffusion process using computers,
where individual decisions of adoption occur with specific
adoption probability affected by the other individuals in the
neighborhood. It is easy to show that Bass diffusion process
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Figure 1. Agreement between statistical properties of population fraction, x, (a) probability density function and (b) power spectral density, obtained
from stochastic (red and blue curves) and agent-based (green and magenta squares) models. Two qualitatively different model phases are shown: red curve
and green squares correspond to herding dominant model phase (σ1 = σ2 = 0.2, h = 5), while blue curve and magenta squares correspond to individual
behavior dominant model phase (σ1 = σ2 = 16, h = 5). Agent based model results obtained with N = 100.

is a unidirectional case of the Kirman’s herding model [11].
Indeed, let us define x(t) in the same way as in previous
section x(t) = X(t)/N , then the potential users will adopt
the product at the same rate as in Kirman’s model agents
switch from one state to another

π+(x)=(1− x)

(
σ

N
+
h

N
x

)
. (14)

π−(x)=0. (15)

The form of (15) should be self explanatory - in case of the
product diffusion agent should not be allow to withdraw
from the consumer state, thus this transition probability
should be forced to equal zero.

The mathematical form of (14) is not as evident, note
that we have substituted h with h

N (compare with the
original model transition probability (3)), and needs further
discussion. Mathematically this substitution can be backed
by the need for the stochastic term to become negligible
in the limit of large N . In the modeled market terms
this substitution means an introduction of the interaction
locality - namely it is an assumption that each individual
communicates only with his local partners (epidemic case).

One can compare the expression of the transition prob-
ability, (14), with the adoption probabilities of the Linear
and GLM models of Bass Diffusion discussed in [70]. The
match in expressions is clear in the small time step limit,
∆t→ 0.

In case of the transition rates (14) and (15) the macro-
scopic description functions, namely drift, A(x), and diffu-
sion, D(x), become

A(x)=Nπ+(x) = (1− x) (σ + hx) , (16)

D(x)=π+(x) =
(1− x)

N
(σ + hx) . (17)

In the large market potential limit, N � 1, D(x) becomes
negligible and thus one can consider the obtained equation
to be equivalent to the Bass Diffusion ordinary differential

equation (12) instead of the stochastic differential equation.
This serves as a proof that Bass Diffusion is an unidirec-
tional epidemic case of Kirman’s herding model. Though
this simple relation looks straightforward, we derive it and
confirm by numerical simulations in fairly original way.

In Figure 2 we demonstrate the correspondence between
the Bass Diffusion model (macroscopic description) and
unidirectional Kirman’s herding model (microscopic de-
scription). Both, agent-based and continuous, descriptions
of the product adoption, ∆X , converge while the market
potential, N , or the selected observation time interval, τ ,
become larger.

VI. NONLINEAR STOCHASTIC DIFFERENTIAL EQUATION
AS A MODEL OF THE FINANCIAL MARKETS

Earlier we have introduced a class of non-linear SDEs
providing time series with power-law statistics, and most
notably reproducing 1/fβ spectral density, [54], [55], [56].
The general form of the proposed class of Ito SDEs is

dy =

(
η − λ

2

)
y2η−1dts + yηdWs, (18)

here y is the stochastic process exhibiting power-law statis-
tics, η is the power-law exponent of the multiplicative
noise, while λ defines the exponent of power-law probability
density function (PDF), and W is a Wiener process (the
Brownian motion). Note that SDE (18) is defined in the
scaled time, ts = σ2

t t, where σ2
t is the scaling parameter.

Empirically we have determined that σ2
t = 1/6 · 10−5s−1 is

appropriate in terms of the return model proposed in [71].
From the SDE (18) follows that the stationary probability

density function (PDF) of this stochastic process is power-
law, p0(y) ∼ y−λ, with the exponent λ [59]. While in Refs.
[72] and later more precisely in [17] it was shown that the
time series obtained while solving SDE (18) have power-law
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Figure 2. Comparison of the product adoption per observation interval, ∆X/τ versus t, obtained from the macroscopic description by the Bass Diffusion
model, (12), (red line) and the microscopic description using the unidirectional Kirman’s model, (14), (blue points). The models tend to converge when
time window, τ , or market potential, N , become larger: (a) N = 1000, τ = 0.1; (b) N = 1000, τ = 1; (c) N = 10000, τ = 0.1; (d) N = 10000,
τ = 1. Other model parameters were the same for all subfigures and were as follows σ = 0.01, h = 0.275.

spectral density

S(f) ∼ 1

fβ
, β = 1 +

λ− 3

2(η − 1)
. (19)

Note that exponent of spectral density, β, is defined only for
η 6= 1. In case of η = 1 the SDE (18) becomes identical to
the geometric Brownian motion.

Power law statistics of the signal y obtained by solving
SDE (18) and exponents λ, β are defined for large y values.
Thus one has to introduce the diffusion restriction terms
in the limit of small y values when attempting to solve
SDE (18) or applying it in a stochastic modeling. There
is a wide choice of restriction mechanisms adjustable to the
needs of real systems with negligible influence on the power
law exponents. We have introduced a term of additive noise
while attempting to model the absolute return [71]

dy=

(
η − λ

2

)
(1 + y2)η−1ydts+

+(1 + y2)
η
2 dWs. (20)

In such case the stationary probability density function of
the SDE (18) is a q-Gaussian (see [16], [71])

Pλ(y) =
Γ(λ/2)√

πΓ(λ/2− 1/2)

(
1

1 + y2

)λ
2

. (21)

While modeling the trading activity [58] we have used the
exponential diffusion restriction for small values of variable
y ' ymin

dy=

[
η − 1

2
λ+

m

2

(
ymmin

ym

)]
y2η−1dt+

+yηdW. (22)

Equation (22) has a very general form, which includes the
well known models applicable to financial markets such
as the Cox-Ingersoll-Ross (CIR) process or the Constant
Elasticity of Variance (CEV) process [14]

dy = µydt+ yηdW, (23)

where µ = (η − 1)y
2(η−1)
min , as a less general cases of the

SDE (22).
The class of equations based on SDE (18) gives only a

general idea how to model power-law statistics of trading
activity and return in the financial markets. The problem is
to determine the parameter set λ and η in a way giving the
empirical values for the λ and β. The task becomes even
more complicated if one considers the more sophisticated
behavior of the spectral density - power spectral densities
have not one, but two power-law regions with different
values of β. In the series of papers [71], [72], [58], [57] we
have shown that trading activity and return can be modeled
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by a more sophisticated version of the SDE than (18) now
including the two powers of the noise multiplicativity. In the
case of return instead of Eq. (20) one should use

dy=

(
η − λ

2

)
(1 + y2)η−1

(ε
√

1 + y2 + 1)2
ydts+

+
(1 + y2)

η
2

ε
√

1 + y2 + 1
dWs, (24)

here ε divides the area of diffusion into the two different
noise multiplicativity regions to ensure the spectral density
of |y| with two power law exponents.

The proposed form of the SDE enables reproduction of
the main statistical properties of the return observed in the
financial markets. Similarly one can deal with a more sophis-
ticated model for the trading activity [58]. This provides an
approach to the financial markets with behavior dependent
on the level of activity and exhibiting two stages: calm
and excited. Equation (24) models the stochastic return y
with two power-law statistics, namely the probability density
function and the power spectral density, reproducing the
empirical power law exponents of the return in the financial
markets.

VII. KIRMAN’S MODEL AS A MICROSCOPIC APPROACH
TO THE FINANCIAL MARKETS

The drawback of the stochastic models is a lack of direct
insights into the microscopic nature of replicated dynamics.
Bridging between microscopic and macroscopic approaches
is needed for better grounding of stochastic modeling.

Top-down approach, namely starting from the stochas-
tic modeling and moving towards the agent-based mod-
els, seems to be a very formidable task, as the macro-
behavior of complex system can not be understood as a
simple superposition of varying micro-behaviors. While in
the case of sophisticated agent-based models [26] bottom-
up approach provides too many opportunities. But there is
selection of rather simple agent-based models (ex. [11]),
whose stochastic treatment can be directly obtained from
the microscopic description [12].

Here we consider an opportunity to generalize Kirman’s
ant colony model [11] with the intention to modify its
microscopic approach to the financial market modeling [12]
reproducing the main stylized facts of this complex system.
In the Section IV we have already introduced Kirman’s
ant colony model, proposed its generalization and derived
stochastic model for the two state population dynamics.

As Kirman’s model considers the two available agent
states one must define two types of agents acting inside
the market in order to relate Kirman’s model to financial
markets. Currently, the most common choice is assuming
that agents can be either fundamentalists or noise traders
[26].

Fundamentalists are assumed to have the fundamental
knowledge about the market, which is assumed to be quanti-
fied by the so-called fundamental price, Pf (t), of the traded
stock. By having this knowledge they can make long term
forecasts on a notion that infinitely long under-evaluation or
over-evaluation of the stock is impossible - the market in
some point in the future will have to set a fair price on the
stock. Thus their excess demand, which is shaped by their
long term expectations, is given by [12]

Df (t) = Nf (t) ln
Pf (t)

P (t)
, (25)

here Nf (t) is a number of fundamentalists inside the market
and P (t) is a current market price. As long term investors
fundamentalists assume that P (t) will converge towards
Pf (t) at least in a long run. Therefore if Pf (t) > P (t),
fundamentalists will expect that P (t) will grow in future
and consequently they will buy the stock (Df (t) > 0). In
the opposite case, Pf (t) < P (t), they will expect decrease of
P (t) and for this reason they will sell the stock (Df (t) < 0).

The other group, the noise traders are investors who
attempt estimate the stocks future price based on its re-
cent movements. As there is a wide selection of technical
trading strategies, which are used to analyze stocks price
movements, one can simply assume that the average noise
traders demand is based on their mood, ξ(t), [12]

Dc(t) = r0Nc(t)ξ(t), (26)

here Dc(t) is a total excess demand of noise trader group,
Nc(t) is a number of noise traders inside the market and r0
can be seen as a relative noise trader impact factor.

Price and, later after a brief derivation, return can be
introduced into the model by applying the Walrassian sce-
nario. One can assume that trading in the market is cleared
instantaneously to set a price, which would stabilize the
market demand for a given moment. Thus the sum of all
groups’ excess demands should equal zero:

Df (t) +Dc(t)=Nf (t) ln
Pf (t)

P (t)
+ r0Nc(t)ξ(t) =

=0, (27)

P (t)=Pf (t) exp

[
r0
Nc(t)

Nf (t)
ξ(t)

]
, (28)

where without loosing generality one can assume that fun-
damental price remains constant, Pf (t) = Pf .

Consequently the return, which is defined as logarithmic
change of price, in the selected time window T is given by:

r(t)=lnP (t)− lnP (t− T ) =

=r0

[
x(t)

1− x(t)
ξ(t)− x(t− T )

1− x(t− T )
ξ(t− T )

]
, (29)

where we have set that Nc(t)
N = x and Nf (t)

N = 1 − x
according to the notation introduced in Section IV. Alfarano
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et al. [12] simplified the above by assuming that x(t) is
significantly slower process than ξ(t), obtaining adiabatic
approximation of the return

r(t) = r0
x(t)

1− x(t)
ζ(t), (30)

where ζ(t) = ξ(t)−ξ(t−T ). If ζ(t) is modeled using spin-
noise model, as in [12], then the middle term, x(t)

1−x(t) , can
be seen as an absolute return.

Using Ito formula for variable substitution [59] in SDE
(11) we obtain nonlinear SDE for the y(t) = x(t)

1−x(t)

dy=(σ1 − y[σ2 − 2h])(1 + y)dt+

+
√

2hy(1 + y)dW. (31)

Agreement between the agent-based Kirman’s model applied
towards financial markets using the ideas discussed above
and the new stochastic model for y, (31), is demonstrated
in Fig. 3.

Note once again that the actual derivation, and thus, the
final outcome, does not change even if σ1, σ2 or h are the
functions of either x or y. Therefore, one can further study
the possibilities of the obtained stochastic model, (31), by
checking different scenarios of σ1, σ2 or h being functions
of either x or y. Nevertheless, the most natural way is to
introduce a custom function τ(y) to adjust the inter-event
time according to the system state. From the financial market
point of view this can be seen as introduction of variability
of trading activity based on the return.

We have chosen the case when h and σ2 are functions
of y, namely we make the substitutions, σ2 → σ2

τ(y) and
h → h

τ(y) , in the Kirman’s model transition probabilities,
(1) and (2), and stochastic model for y, (31). To further
simplify the model we can introduce scaled time, ts = ht,
and make related model parameter transformations, εi = σi

h .
By making these substitutions we arrive at

dy=

[
ε1 + y

2− ε2
τ(y)

]
(1 + y)dts+

+

√
2y

τ(y)
(1 + y)dWs, (32)

where Ws is appropriately scaled Wiener process. Note
that we left σ1, and consequently ε1, independent of y
on purpose as one could argue that individual behavior of
fundamentalist trader should not depend on the observed
returns as he is a long term investor uninterested in the
momentary fluctuations of the market mood.

Note that absolute return, y, defined in Eqs. (31) and (32),
serve as a measure of volatility in the financial markets. It is
known that volatility has long-range memory and correlates
with trading activity and has probability density function
with power law tail [51]. We are particularly interested in
the case of τ(y) = y−α. This selection is defined by the fact
that trading activity has positive correlation with volatility

and the class of SDE (18) is invariant regarding power-law
variable transformation, see [56]. In such case the obtained
stochastic differential equation, Eq. (32), in the limit of y �
1 is very similar to the stochastic models discussed in the
Section VI.

In the aforementioned limit of y, y � 1, we can consider
only the highest powers in Eq. (32). In such case Eq. (32)
is reduce to the

dy = (2− ε2)y2+αdts +
√

2y3+αdWs. (33)

The direct comparison of Eqs. (18) and (33) yields:

η =
3 + α

2
, λ = ε2 + α+ 1. (34)

Consequently we expect that the stochastic process y defined
by Eq. (33) will have the power law stationary probability
density function,

p(y) ∼ y−ε2−α−1, (35)

and also a power law spectral density,

S(f) ∼ 1

fβ
, β = 1 +

ε2 + α− 2

1 + α
, (36)

where we have used the relation between model parameters,
Eq. (34).

While if we linearize drift function of Eq. (31) with the
respect to the absolute return, y, namely set ε2 = 2, we
would obtain a stochastic differential equation (once again
in the limit y � 1)

dy = ε1ydts +
√

2y3+αdWs. (37)

similar to the generalized CEV process [14], [73], which
was considered in [73],

dy = aydt+ byηdW. (38)

In [56] the latter was noted to be a special case of Eq.
(22) with exponential restriction of diffusion applied. The
comparison with this special case is important on its own
as this equation generalizes some stochastic models used in
risk management. Theoretical prediction of PDF and spectral
density for y defined by Eq. (37), is given by [73]

p(y) ∼ y−3−α, (39)
S(f) ∼ 1

fβ
, β = 1 + α

1+α , (40)

where we have used the previously obtained relation between
model parameters, Eq. (34).

In the Figure 4 we show that the theoretical predictions
discussed in this section are valid and that they enable the
reproduction of different spectral densities and probability
density functions.

Note that while the stochastic model based on herding
behavior of agents appears to be too crude to reproduce
statistical properties of financial markets in such details
as the stochastic model driven by the Eq. (24), which is
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Figure 3. Agreement between statistical properties of y, (a) probability density function and (b) power spectral density, obtained from the stochastic (red
and blue curves) and agent-based (green and magenta squares) models. Two qualitatively different model phases are shown: red curve and green squares
correspond to herding dominant model phase (σ1 = σ2 = 0.2, h = 5), while blue curve and magenta squares correspond to individual behavior dominant
model phase (σ1 = σ2 = 16, h = 5). Agent based model results obtained with N = 100.
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Figure 4. Statistical properties, (a) and (c) - probability density function, (b) and (d) - spectral density, of the time series obtained by solving Eq. (32)
(colored squares). Fits are provided by the theoretical predictions made in this section, (a) and (b) are fitted by using (35) and (36), (c) and (d) are fitted by
using (39) and (40), (curves of corresponding colors). Model parameters for the (a) and (b) were set as follows: α = 1, ε1 = 0, ε2 = 0.5 (red squares), 1
(green squares), 1.5 (blue squares) and 2 (magenta squares). Model parameters for the (c) and (d) were set as follows: ε1 = ε2 = 2, α = 0 (red squares),
1 (green squares) and 2 (blue squares).

heavily based on the empirical research, it contains very
important long range power law statistics of the absolute
return. Obtained equations are very similar to some general
stochastic models of the financial markets [17], [73] and
thus, in future development might be able to serve as a
microscopic justification for them and maybe for the more
sophisticated model driven by the Eq. (24).

It is possible to extend agent-based model by introducing

additional agent groups or splitting old ones. Let us assume
that chartist agents may disagree in their expectations and
thus divide into pessimists and optimists. Therefore it is nat-
ural to introduce three agent groups (see Fig. 5) interacting
among themselves. Our first attempts in this direction proves
that in case of the three agent groups (as shown in Fig. 5),
when the herding parameter hcc � hcf , might confirm the
expectation of a more complex behavior exhibiting fractured
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Figure 5. The general case of the three groups of interacting agents: f - fundamentalists, c+ - chartists optimists, c− - chartists pessimists. hij are
herding terms, while ai, bi and ci stand for individual transitions in the direction of the arrow.

power spectral density of absolute return. More detailed
study of such approach in comparison with macroscopic
modeling by SDE (24) is ongoing.

VIII. MULTIFRACTAL BEHAVIOR OF RETURN SERIES

In the last few decades it was noted that many natural
phenomena have very complex intrinsic structure, which
has a very specific scaling properties. This notion was
generalized as fractal framework [74]. Later it was also
noted that the scaling properties of some processes exhibit
even more complex scaling behavior - namely they appeared
to have features of the multiple fractals. Few examples of
such phenomena include geoelectrical processes [75], human
heartbeat [76] and gait [77]. The financial market time series
apparently are also of the multifractal nature [78], [79], [80].

There are few established methods to detect multifractal
time series and two very prominent methods. One of them
is generalized height-height correlation function method
(GHHCF) and multifractal detrended analysis method (MF-
DFA). In our previous approaches [81], [38] we have used
the GHHCF method, so let us in this contribution to rely on
the MF-DFA method.

To start with the multifractal analysis of the time series,
yk, we have to obtain the profile of the time series, Yk:

Yk =

k∑
j=1

(yk − 〈y〉). (41)

Next we have divide the Yk series into equally sized and non
overlapping segments. Thus if our segments are of the size s,
then we will have Ns = int(N/s) segments (here N is the
length the series, while int(. . . ) is a function which takes an
integer part of the argument). For the most of the segment
sizes some of the data will be lost, in order to account for
it one might want to take another set of segments, but now
splitting from the end of the series.

Further, one has to determine the trends in the obtained
segments. Generally this can be done using varying poly-
nomial fits, but linear fits in the most cases are more than
enough. After the trends, Ȳ , are known one has to evaluate
how well the trend fits the actual series:

F 2
ν (s)=

1

s

s∑
i=1

[
Y(ν−1)s+i − Ȳν(i)

]2
, (42)

F 2
ν (s)=

1

s

s∑
i=1

[
yN−(ν−Ns)s+i − ȳν(i)

]2
. (43)

The Eq. (42) holds for segments ν = 1, . . . , Ns, while
the Eq. (43) should applied towards segments ν = Ns +
1, . . . , 2Ns. Finally one has to average over all segments
using

Fq(s) =

{
1

2Ns

2Ns∑
ν=1

[
F 2
ν (s)

] q
2

} 1
q

, (44)

here q stands for generalized coefficient, which is the one
enabling us to recover multifractal features it is also the only
difference from the original detrended fluctuation analysis
(DFA) method [18]. Note that in case of q = 2 the Fq(s) is
the same as the one in the original DFA method.

All that is left is to determine is the power law trend, h(q),
of the Fq(s). These trends, h(q), are also frequently named
the generalized Hurst exponents. If the Hurst exponents are
different for different q, which can be any real number, then
the signal can be seen as multifractal. In the opposite case
or if the variation is negligible, time series can be assumed
as monofractal. For more details on the MF-DFA method
see [18].

In Figure 6 we show that the stochastic differential
equations obtained for the modeling of financial markets
and derived from the Kirman’s agent-based model have
broad multifractal spectra. The curves capture a region of
the Brownian motion, h(q) ≈ 1.5, and a region of long
range memory, h(q) ≈ 1. Note that in case of α = 1 and
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α = 2 (green and blue curves) h(2) = 1, which can be seen
as a proof that the obtained time series posses the long term
correlated (have so-called long range memory) behavior,
while for α = 0 interim behavior between the Brownian
motion and long range memory is observed, 1 < h(2) < 1.5.

IX. STATISTICS OF BURSTS GENERATED BY NONLINEAR
SDE

In the Section VII we have shown that the herding model
of return in the financial markets leads to the class of
stochastic differential equations, whose general form is given
by SDE (18). This class of stochastic differential equations
reproduces power law statistics, namely the probability
density function and the spectral density, of return and
trading activity in the financial markets. The burst statistics
of the financial markets are also very important for the risk
management and would serve as an additional criteria to
determine the model consistency. In this section we provide
some initial results of burst statistics generated by the SDE
(18).

We define a burst as a part of the time series lying above
the certain threshold, hI . In Figure 7 we present an example
burst of the simple bursty time series, I(t). Evidently a burst
as itself can be described by its duration, T = t2 − t1,
maximum value, Imax, and burst size, which we define as
an area above the selected threshold yet bellow time series
curve (highlighted by x pattern in the Fig. 7), S.

There is a well established passage, or alternatively hit-
ting, time framework, which is frequently used to tackle
practical problems in both mathematical finance [14] and
physics [59], [60]. One can also apply this framework to
understand the burst durations, T . Interestingly enough we
can consider the first hitting time of the stochastic process
starting infinitesimally near the hitting threshold as the burst
duration itself, T .

Brownian motion, geometric Brownian motion and Bessel
process are highly applicable models (for examples of the
application in the mathematical finance, see [14]) for which
hitting times statistics are known. The Bessel process,

dR =
N − 1

2

dts
R

+ dWs, (45)

is one of the most interesting as some prominent math-
ematical finance models can be transformed to a similar
form. In order to simplify further handling of the Bessel
process it is convenient to introduce ν = N

2 − 1, which
is known as the index of the Bessel process. While N
is also frequently retained and mentioned as it bears an
actual physical meaning - the Bessel process is an Euclidean
norm, length of the vector, of N -dimensional Brownian
motion, which starts at the origin. Note that for N > 1, or
alternatively ν > −0.5, R tends to diverge towards infinity.

In our case the Bessel process is of high interest as by
using the Lamberti transform defined as

` : y 7→ z(y) =
1

(η − 1)yη−1
, (46)

we can reduce a general class of SDE (18) to the Bessel
process,

dz =

(
ν +

1

2

)
dts
z

+ dWs, (47)

with index ν = λ−2η+1
2(η−1) . The corresponding dimension of

the Brownian motion is given by N = 2(ν + 1) = λ−1
η−1 .

Let us assume that a burst starts at time t0, with y0 =
y(t0) slightly exceeding the selected threshold, hy . By
definition the burst lasts until y(t) crosses hy once again,
but now from the above. Equivalently, in the terms of Bessel
process the burst lasts until at a certain time, t, the z process
crosses the boundary hz = `(hy) from the below, while the
starting position, z0 = z(t0), which in the terms of Bessel
process is below the threshold, z0 = `(y0) < hz .

Consequently by choosing z0 arbitrarily close yet below
hz , we can obtain an estimate for the burst duration, T , in
terms of the hitting times of the Bessel process, τ (ν)z0,hz

,

T=τ
(ν)
z0,hz

= inf
t>t0

{
t, z(t) ≥ hz

}
, (48)

0 < hz − z0 < ε,

where ε is an arbitrary small positive constant. As given in
[82], the following holds for 0 < z0 < hz

ρ
(ν)
z0,hz

(t)=
hν−2z

zν0

∞∑
k=1

jν,kJν
(
z0
hz
jν,k

)
Jν+1(jν,k)

·

· exp

(
−
j2ν,k
2h2z

t

)]
, (49)

where ρ
(ν)
z0,hz

(t) is a probability density function of the
hitting times at level hz of Bessel process with index ν
starting from z0, Jν is a Bessel function of the first kind of
the order ν, while jν,k is a k-th zero of Jν .

We have to replace ρ(ν)z0,hz
(t) by density function regarding

hz to avoid the self-evident convergence of ρ(ν)z0,hz
(t) (for t >

0) to zero, when z0 → hz . This is achieved introducing the
probability density function p(ν)hz

(t) as a probability density
function of the burst duration

p
(ν)
hz

(t) = lim
z0→hz

ρ
(ν)
z0,hz

(t)

hz − z0
, (50)

where we have selected the threshold at level hz and ν is
the original model parameter. To evaluate this limit we have
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to expand Jν
(
z0
hz
jν,k

)
near z0

hz
= 1:

Jν

(
z0
hz
jν,k

)
≈Jν(jν,k)−

(
1− z0

hz

)
·

· [νJν(jν,k)− jν,kJ1+ν(jν,k)] = (51)

=(1− z0
hz

)jν,kJ1+ν(jν,k).

By using this expansion we can rewrite (50) as:

p
(ν)
hz

(t) ≈ C1

∞∑
k=1

j2ν,k exp

(
−
j2ν,k
2h2z

t

)
, (52)

here C1 is a normalization constant. By taking a note that
jν,k are almost equally spaced, we can replace the sum by
integration

p
(ν)
hz

(t) ≈ C2

∫∞
jν,1

x2 exp
(
− x2t

2h2
z

)
dx =

= C2

h2
zjν,1 exp

(
−
j2
ν,1

t

2h2z

)
t +

√
π
2

h3
zerfc

(
jν,1

√
t

√
2hz

)
t3/2

 . (53)

From the expression above follows that the probability
density of the burst durations in the time series obtained
by solving SDE (18) can be approximated by a power law

with exponential cut-off. Or mathematically

p
(ν)
hz

(t) ∼ t−3/2, for t� 2h2
z

j2ν,1
, (54)

p
(ν)
hz

(t) ∼
exp

(
−
j2
ν,1

t

2h2z

)
t , for t� 2h2

z

j2ν,1
(55)

This result is in agreement with a general property of one
dimensional diffusion processes presented in [60], namely
that the asymptotic behavior of first hitting times is a power
law t−3/2 irrespectively of the nature of stochastic one
dimensional process or the actual mathematical expressions
of the Langevin or the Fokker-Plank equations. The expo-
nential cutoff for longer burst durations can be explained
by the direction preference of the Bessel processes (note
the positive drift term in case of N > 1, or alternatively
ν > −0.5). The actual empirical data, as shown in Fig. 8
(b), also has the predicted asymptotic behavior, though the
inconsistence in fitting is clearly higher than for the model’s
probability density Fig. 8 (a).

Our empirical data set includes all trades made on NYSE,
which were made from January, 2005 to March, 2007 and
involved 24 different stocks, ABT, ADM, BMY, C, CVX,
DOW, FNM, GE, GM, HD, IBM, JNJ, JPM, KO, LLY,
MMM, MO, MOT, MRK, SLE, PFE, T, WMT, XOM.
We have used one hour window moving average filter on
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Figure 8. Numerical (a) and empirical (b) PDF of burst durations, hy = 2. In both subfigures numerical and empirical data is represented by filled
shapes, while fits, (53), are represented by gray curves. Model, (18), parameters were set as follows: σ2

t = 1/6 · 10−5s−1 (in all three cases), λ = 4 (in
all three cases), η = 2.5 (red squares, ν = 0), η = 2 (green circles, ν = 0.5) and η = 1.5 (blue triangles, ν = 2). Empirical data fitted by assuming that
ν = −0.2.

empirical one minute return series. As we consider the
model to be universal, i.e., applicable towards the modeling
of varying financial markets and stocks, we can consider
each stocks’ time series as a separate realization of the
same stochastic process. Time series are first normalized and
later averaged over the whole set. We back this approach
by recalling that in [16] we have shown that the more
sophisticated versions of (24) may be well used to model
absolute return of different stocks from NYSE and Vilnius
Stock Exchange.

There are numerous reasons for the observed inconsis-
tence in fitting of empirical data Fig. 8 (b). Firstly, we were
unable to remove intra-day pattern from the time series.
But the main reason is that the simple stochastic model,
driven by (18), is unable to reproduce the full complexity of
empirically observed spectral density. In order to reproduce
the correct, fractured, shape of the spectral density one must
use double stochastic model, driven by a more sophisticated
version SDE (24), [16]. Nevertheless, derived equations for
the burst duration distribution (52) and (53) of the general
process (18) are in agreement with empirical time series
of return. This provides one more argument for the further
development of stochastic models based on herding behavior
of agents and nonlinear SDE (18).

X. CONCLUSIONS AND FUTURE WORK

Reasoning of stochastic models of complex systems by
the microscopic interactions of agents is still a challenge
for researchers. Only very general models such as Kirman’s
herding model in ant colony or Bass diffusion model for
new product adoption have well established agent-based
versions and can be described by stochastic or ordinary
differential equations. There are many different attempts
of microscopic modeling in more sophisticated systems,
such as financial markets or other social systems, intended
to reproduce the same empirically defined properties. The
ambiguity of microscopic description in complex systems

is an objective obstacle for quantitative modeling. Simple
enough agent-based models with established or expected
corresponding macroscopic description are indispensable in
modeling of more sophisticated systems. In this contribu-
tion we discussed various extensions and applications of
Kirman’s herding model.

First of all, we modify Kirman’s model introducing
interevent time τ(y) or trading activity 1/τ(y) as func-
tions of driving return y. This produces the feedback from
macroscopic variables on the rate of microscopic processes
and strong nonlinearity in stochastic differential equations
responsible for the long range power-law statics of financial
variables. We do expect further development of this approach
introducing the mood of chartists as independent agent-based
process.

Nonlinear SDEs derived from the agent herding model
generate multifractal time series. This gives more confidence
in the modeling of multifractal series observed in financial
markets. We derive PDF of burst duration for the basic
form of nonlinear SDE (18). This is in agreement with
empirical time series of return. Further investigation of burst
statistics in financial markets in comparison with analytical
results from nonlinear SDE is ongoing. This would serve as
an independent method to adjust model parameters to the
empirical data.

One more outcome of Kirman’s herding behavior of
agents is one direction process - Bass diffusion. This simple
example of correspondence between very well established
microscopic and macroscopic modeling becomes valuable
for further description of diffusion in social systems. Models
presented on the interactive web site [10] have to facilitate
further extensive use of computer modeling in economics,
business and education.
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