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Abstract—Utility functions are a popular tool for achieving self-

optimization in autonomic computing systems. Utility functions 

are used to guide a system in optimizing its own behavior in 

accordance with high-level objectives specified by the system 

administrators. It is, however, difficult to define a new utility 

function or evaluate whether an existing utility function is 

appropriate for a specific system management scenario. In this 

paper, we discuss the fundamental properties of an effective 

utility function for autonomic workload management in 

database management systems (DBMSs). We present two 

concrete examples of utility functions to illustrate the 

properties. The utility functions are used for dynamic resource 

allocation and for query scheduling in DBMSs. The utility 

functions help the systems translate high-level workload 

management policies into low-level tuning actions, and 

therefore ensure the workloads achieve their required 

performance objectives. A set of experiments are presented to 

illustrate the effectiveness of the two example utility functions. 

Keywords-Self-Optimization; Utility Function; Autonomic 

Computing; Workload Management; Database Management 

Systems 

I. INTRODUCTION 

A database workload is a set of requests that have some 
common characteristics such as application, source of 
request, type of query, priority, and performance objectives 
(e.g., response time or throughput objectives) [2]. Workload 
management in database management systems (DBMSs) is 
a performance management process. The primary objectives 
of workload management in DBMSs are to achieve the 
performance goals of all workloads (particularly, the critical 
ones, such as the workloads for directly generating revenue 
for business organizations, or those issued by a CEO or VP 
of the organizations), maintain DBMSs running in an 
optimal state (i.e., neither under-utilized nor overloaded), 
and balance resource demands of all requests to maximize 
performance of the entire system. 

For both strategic and financial reasons, many business 
organizations are consolidating individual data servers onto 
a single shared data server. As a result, multiple types of 
requests are present on the data server simultaneously. 
Request types can include on-line transaction processing 
(OLTP) and business intelligence (BI). OLTP transactions 
are typically short and efficient, consume minimal system 

resources, and complete in sub-seconds while BI queries 
tend to be more complex and resource-intensive and may 
require hours to complete. Requests generated by different 
applications or initiated from different business units may 
have unique performance objectives that are normally 
expressed in terms of service level agreements that must be 
satisfied for business success. 

Multiple requests running on a data server inevitably 
compete for shared system resources, such as system CPU 
cycles, buffer pools in main memory, disk I/O bandwidth, 
and various queues in the database system. If some requests, 
for example, long BI queries, are allowed to consume a 
large amount of system resources without control, the 
concurrently running requests may have to wait for the long 
queries to complete and release their used resources, thereby 
resulting in the waiting requests missing their performance 
objectives and the entire data server suffering degradation in 
performance. Moreover, the mix of arriving requests present 
on a data server can vary dynamically and rapidly, so it 
becomes virtually impossible for database administrators to 
manually adjust the system configurations to dynamically 
achieve performance objectives of all the requests during 
runtime. Therefore, autonomic workload management 
becomes necessary and critical to control the flow of the 
requests and manage their demands on system resources to 
achieve their required performance objectives in a complex 
request mix environment. 

Since autonomic computing was introduced [3], a great 
deal of effort has been put forth by researchers and 
engineers in both academia and industry to build autonomic 
computing systems. An autonomic computing system is a 
self-managing system that manages its own behavior in 
accordance with high-level objectives specified by human 
administrators [3] [4]. Such systems regulate and maintain 
themselves without human intervention to reduce the 
complexity of system management and dynamically achieve 
system objectives, such as performance, availability and 
security objectives. In particular, an autonomic workload 
management system for DBMSs is a self-managing system 
that dynamically manages workloads present on a data 
server in accordance with specified high-level business 
objectives such as workload business importance policies. 

Achieving the goal of autonomic workload management 
may involve using utility functions to facilitate the mapping 

66

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of high-level business objectives to low-level DBMS tuning 
actions in order to guide a database system to optimize its 
own behavior and achieve required performance objectives. 
Utility functions are well known as a measure of user 
preference in economics and artificial intelligence [5]. In 
this paper, we illustrate the use of utility functions in 
different aspects of database workload management, namely 
dynamic resource allocation and query scheduling, to ensure 
mixed-type requests on a data server achieve their required 
performance objectives. The contribution of this study is a 
set of fundamental properties of a utility function used for 
building autonomic workload management systems, and the 
use of the properties to evaluate whether an existing utility 
function is appropriate for autonomic workload management 
in DBMSs. The methods and properties were first presented 
in our (ICAS’11) paper [1] and have been elaborated upon 
and extended with experimental validation here. 

The paper is organized as follows. Section II reviews the 
background and related work, in which a short review of 
workload management for DBMSs, a brief description of 
autonomic computing, and utility functions used for 
building autonomic computing systems are presented. 
Section III discusses the fundamental properties of a utility 
function that can be used in realizing autonomic workload 
management for DBMSs. Section IV provides two examples 
to illustrate the properties of two different types of utility 
functions that are used in our studies. Section V presents 
experiments to evaluate and compare the two utility 
functions in accordance with some given high-level workload 
business importance policies. Finally, we conclude our work 
and propose future research in Section VI. 

II. BACKGROUND AND RELATED WORK 

In the past several years, considerable progress has been 
made in workload management for DBMSs. New 
techniques have been proposed by researchers, and new 
features of workload management facilities have been 
implemented in commercial DBMSs. These workload 
management facilities include IBM

®
 DB2

®
 Workload 

Manager [6], Teradata
®
 Active System Management [7], 

Microsoft
®
 SQL Server Resource and Query Governor [8] 

[9] and Oracle
®
 Database Resource Manager [10]. The 

workload management facilities manage complex workloads 
(e.g., a mix of business processing and analysis requests) 
present on a data server using predefined procedures. The 
procedures impose proper controls on the requests, based on 
the request’s characteristics such as estimate costs, resource 
demands, or execution time, to achieve their required 
performance objectives. 

Recent research [11] [12] shows that the process of 
workload management in DBMSs may involve three typical 
controls, namely admission, scheduling, and execution 
control. Admission control determines whether or not an 
arriving request can be admitted into a database system, thus 
it can avoid increasing the load while the system is busy. 
Request scheduling determines the execution order of 
admitted requests based on some criteria, such as the 
request’s level of business importance and/or performance 
objectives. Execution control dynamically manages some 

running requests to limit their impact on other concurrently 
running queries. In this paper, we demonstrate our techniques 
used for workload management in DBMSs. 

In 2001, IBM presented the concept of autonomic 
computing [3]. The initiative aims to provide the foundation 
for computing systems to manage themselves according to 
high-level objectives, without direct human intervention in 
order to reduce the burden on the system administrators. An 
autonomic computing system (i.e., a self-managing system) 
has four fundamental properties, namely self-configuring, 
self-optimizing, self-protecting and self-healing. Self-
configuring means that a system is able to configure itself 
automatically to allow the addition and removal of system 
components or resources without system service disruptions. 
Self-optimizing means that a system automatically monitors 
and controls its resources to ensure optimal functioning with 
respect to the specified performance goals. Self-protecting 
means that a system is able to proactively identify and 
protect itself from arbitrary attacks. Self-healing means that a 
system is able to recognize and diagnose deviations from 
normal conditions and take action to normalize them [3]  [4]. 

In the past decade, autonomic computing has been 
intensively studied. Many autonomic computing components 
(with some self-managing capabilities) have been developed 
and proven to be useful in their own right, although a large-
scale fully autonomic computing system has not yet been 
realized [13] [14]. In particular, Tesauro et al. [15] and 
Walsh et al. [16] studied autonomic resource allocation 
among multiple applications based on optimizing the sum of 
the utilities for each application. In their work, a data center 
consisting of multiple and logically separated application 
environments (AEs) was used. Each AE provided a distinct 
application service using a dedicated, but dynamically 
allocated, pool of servers, and each AE had its own service-
level utility function specifying the utility to the data center 
from the environment as a function of some service metrics. 
The authors compared two methodologies, a queuing-
theoretic performance model and model-free reinforcement 
learning, for estimating the utility of resources. 

Bennani et al. [17] presented another approach for the 
same resource allocation problems in the autonomic data 
center. They observe that the table-driven approach 
proposed by Walsh et al. [16] has scalability limitations 
with respect to the number of transaction classes in an AE, 
the number of AEs, and the number of resources and 
resource types. Moreover, they claim that building a table 
from experimental data is time consuming and has to be 
repeated if resources are replaced within the data center. 
They instead proposed using predictive multi-class queuing 
network models to implement the service-level utility 
functions for each AE. In this paper, we show the principles 
of autonomic computing applied in workload management 
for DBMSs, and applications of utility functions in building 
autonomic workload management systems. 

III. UTILITY FUNCTIONS IN WORKLOAD MANAGEMENT 

Achieving autonomic workload management for DBMSs 
can involve the use of utility functions. In this section, we 
consider the following questions: 
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 Why are utility functions appropriate for autonomic 
workload management? 

 What utility functions are most suitable (i.e., what 
properties does a utility function need to possess) 
for autonomic workload management? 

The first question can be answered based on the research 
of Kephart et al. [5] and Walsh et al. [16], who proposed the 
use of utility functions to achieve self-managing systems. In 
their work, the authors presented utility functions as a 
general, principled and pragmatic way of representing and 
managing high-level objectives to guide the behavior of an 
autonomic computing system. Two types of policies were 
discussed in guiding behavior of a system, namely action 
policies and goal policies. An action policy is a low-level 
policy that is represented in the form of IF (conditions) 
THEN (actions). Namely, if some conditions are satisfied, 
then certain actions must be taken by the system. In contrast 
with an action policy, a goal policy only expresses high-
level objectives of a system, and the system translates the 
high-level objectives into specific actions for every possible 
condition. Utility functions are proposed for the translation 
as they are capable of mapping system states to real 
numbers with the largest number representing a system’s 
preferred state. In using utility functions, a computing 
system, via maximizing its utilities under each condition, 
recognizes what the goal states are, and then decides what 
actions it needs to take in order to reach those states. Thus 
by maximizing utilities, a computing system optimizes its 
own behavior and achieves the specified high-level 
objectives. 

As introduced in Section I, in a mixed request data 
server environment, the concurrently running requests can 
have different types, levels of business importance, 
performance objectives and arrival rates. These properties 
may dynamically change during runtime rendering it 
impossible for human administrators to manually make an 
optimal resource allocation plan for all workloads in order 
to meet their resource requirements. A utility function, 
however, is suited for this situation, based on the properties 
discussed above. It dynamically identifies resource 
preferences for a workload during runtime, and the utility 
functions of the workloads can be further used to define an 
objective function. A solution to optimizing the objective 
function is an optimal resource allocation plan. Autonomic 
workload management systems use the resource allocation 
plan to allocate resources to the workloads and to achieve 
the required performance objectives. Thus, to manage 
workloads in DBMSs, using utility functions is naturally a 
good choice. 

To answer the second question, we begin by discussing 
performance behavior of a workload. The performance of a 
running workload on a data server depends on the amount of 
desired system resources that the workload can access. 
Typically, the performance of a workload increases non-
linearly with additional resources assigned to it. As an 
example, in executing a workload in an OLTP system, by 
increasing the multi-programming levels, the throughput of 
the workload initially increases, but at a certain point the 
throughput starts to level off. That is, at the beginning when 

the workload starts to run with a certain amount of resource 
allocated, performance of the workload increases rapidly. 
However, with additional resources allocated to the workload, 
the performance increment of the workload becomes very 
small. This can be caused either by a bottleneck resource 
among the system resources, such as too small buffer pools, 
which significantly limits the workload performance increase, 
or it may be the case that the database system has become 
saturated (e.g., system CPU resource is fully utilized). 

Utility functions in database workload management 
must capture the performance characteristics of a workload 
and represent the trend of the changes in performance based 
on the amount of assigned resources. A utility function 
defined for database workload management should be a 
monotonically non-decreasing function, and it should be 
capable of mapping the performance achieved by a 
workload with a certain amount of allocated resources into a 
real number, u. 

There is no single way to define a utility function. 
However, we believe the following properties are necessary 
for an effective utility function in autonomic workload 
management for DBMSs: 

 The value, u, should follow the performance of a 
workload. Namely, it should increase or decrease 
with the performance. 

 The amount of change in the utility should be 
proportional to the change in the performance of a 
workload. 

 The input to a utility function should be the amount 
of resources allocated to a workload, or a function of 
the resource allocation, and the output, u, should be a 
real number without unit. 

 The value, u, should not increase (significantly) as 
more resources are allocated to a workload, once the 
workload has reached its performance objective. 

 In allocating multiple resources to a workload, a 
utility function should capture the impact of the 
allocation of a critical resource on performance of 
the workload. 

 For objective function optimization, a utility function 
should have good mathematical properties, such as 
an existing second derivative. 

The first two properties describe the general 
performance behavior of a workload that a utility function 
needs to capture, and the third property presents the domain 
and codomain of a defined utility function. These three 
properties are fundamental for a utility function that can be 
used in building autonomic workload management in 
DBMSs. The fourth and fifth properties represent the 
relationships among workload performance, resource 
provisions, and performance objectives. Namely, if a 
workload has met its required performance objective, the 
value produced by the utility function would not increase 
(significantly) as additional resources are allocated to the 
workload. So, by checking the marginal utility (the value is 
very small), the database system can know it should stop 
allocating additional resources to the workload. If there is a 
critical resource for a workload, then the utility function 
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should reflect the impact of changes to the allocation of that 
resource. The database system then knows to provide the 
resource to the workload for meeting its performance 
objective. The last property provides a way of effectively 
optimizing objective functions. 

IV. UTILITY FUNCTION EXAMPLES 

Two examples from our work of the use of utility 
functions in autonomic workload management for DBMSs 
are presented in this section. The first example demonstrates 
Dynamic Resource Allocation, which is driven by workload 
business importance policies [18]. The second example 
shows a Query Scheduler managing the execution order of 
multiple classes of queries [19]. The two utility functions are 
discussed with respect to the properties listed in Section III. 

A. Dynamic Resource Allocation 

In workload management for DBMSs, dynamic resource 
allocation can be triggered by workload reprioritization (a 
workload execution control approach) [6]  [18]. That means 
a workload’s priority may be dynamically adjusted as it runs, 
thereby resulting in immediate resource reallocation to the 
workload according to the new priority. 

Two shared system resources are considered in the study, 
namely buffer pool memory pages and CPU shares, as they 
are key factors in DBMS performance management. The 
DBMS concurrently runs multiple workloads, which are 
classified in different business importance classes with 
unique performance objectives. A certain amount of the 
shared resources is allocated to a workload according to its 
business importance level. High importance workloads are 
assigned more resources, while low importance workloads 
are assigned fewer. The resource allocation is based on an 
economic model [18]. Namely, the DBMS conducts 
“auctions” to sell the shared system resources, and the 
workloads submit “bids” to buy the resources via an 
auctioning and biding based trade mechanism. All the 
workloads are assigned some virtual “wealth” to reflect their 
business importance levels. High importance workloads are 
assigned more wealth than low importance ones. 

The dynamic resource allocation approach consists of 
three main components, namely the resource model, the 
resource allocation method and the performance model. The 
resource model is used to partition the resources and to 
determine an available total amount of the resources for 
allocation. We consider that each competing workload is 
assigned its own buffer pool, so buffer pool memory pages 
can be directly assigned to a workload. The CPU resources, 
on the other hand, cannot be directly assigned to a workload, 
so we partition CPU resources by controlling the number of 
database agents that are available to serve requests on a 
database server. In our study, we use a DB2 DBMS and 
configure it such that one database agent maintains one client 
connection request from the workloads. We conducted 
experiments and verified the relationship between the 
number of database agents and system CPU utilization of a 
workload, and observed that the more database agents that 
are allocated to serve requests for a particular workload, the 
more CPU resources the workload receives [18]. The 

available total amounts of resources are parameters in the 
resource allocation approach, so it can adapt to different 
system configurations. 

The resource allocation method determines how to 
obtain an optimal resource pair of buffer pool memory pages 
and CPU shares for a workload in order to maximally benefit 
the workload performance. Namely, a workload needs to 
capture the resources in an appropriate amount such that 
none of the resources become a bottleneck resource. In our 
approach, a greedy algorithm is used for identifying resource 
preferences of a workload in a resource allocation process. 
The resource allocation is determined iteratively. In an 
iteration of the algorithm, by using its virtual wealth, a 
workload bids for a unit of the resource (either buffer pool 
memory or CPU) that it predicts will yield the greatest 
benefit to its performance. Figure 1 shows a representation of 
the search state space for the allocation of buffer pool memory 
and CPU to a workload in our experiments, as described in 
Section V. The starting node, n1,1, represents the minimum 
resource allocation to a workload, namely one unit of buffer 
pool memory and one unit of CPU, at the beginning of a 
resource allocation process. The workload then traverses the 
directed weighted graph to search for the optimal <cpu, 
mem> pair in order to achieve its performance objective. 

The performance model predicts the performance of a 
workload with certain amount of allocated resources in order 
to determine the benefit of the resources. In our approach, 
queuing network models (QNM) [20] are used to predict 
performance of a workload at each step of the algorithm, that 
is, to assign the weights to the edges of the graph in Figure 1. 
We consider OLTP workloads and use throughput as the 
performance metric to represent the performance required 
and achieved by the workloads. We model the DBMS used 
in our experiments for each workload with a single-class 
closed QNM, which consists of a CPU service center and an 
I/O service center. The CPU service center represents the 

 
 

Figure 1. Resource Pair Search State Space 
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system CPU resources and the I/O service center represents 
buffer pool and disk I/O resources. The request concurrency 
level of a workload in the DBMS is the number of database 
agents (i.e., CPU resources) assigned to the workload. The 
average CPU service demand of requests in the workload can 
be expressed as a function of the CPU shares allocated to the 
workload, using equation (1). 

                

We experimentally defined the relationship between the CPU 
service demand and the number of database agents used in a 

DBMS. In the equation (1), n is database agents, nN, and a 

and d are constants, aR+, dR+, that can be determined 
through experimentation. 

For an OLTP workload, the average I/O service demand 
can be expressed as a function of buffer pool memory size, 
which can be derived from Belady’s equation [21]. The I/O 
service demand is: 
          

where c and b are constants, cR+, bR-, and m is buffer 

pool memory pages assigned to the workload, and mN. In 
the equation the constants c and b can be determined through 
experimentation. 

Performance of a workload with some allocated 
resources, <cpu, mem>, can be predicted by solving this 
analytical performance model (i.e., the QNM) with Mean 
Value Analysis (MVA) [20]. The predicted throughput of a 
workload can be expressed as a function of its allocated 
resources, using equation (3). 

                                 

where, X is the predicted throughput of a workload by using 
MVA on the QNM for a workload with its allocated resource 
pair, <cpu, mem>; n is the number of requests from the 
workload concurrently running in the system (i.e., the 
number of database agents assigned to the workload); 
           is the average CPU service demand determined in 
equation (1);           is the average I/O service demand 
determined in equation (2); and Z is think time. 

To guide workloads to capture appropriate resource pairs, 
utility functions are employed in the approach. We define a 
utility function that normalizes the predicted throughput 
from the performance model relative to the maximum 
throughput that the workload could achieve when all the 
resources are allocated to it. The utility function is given by: 

                                                

where, MVAthroughput                           is the predicted 
throughput determined in equation (3), and Xmax is the 
maximum throughput achieved by a workload with all the 
resources allocated, which can be determined through 
experimentation. 

This utility function, as shown in Figure 2, maps 
performance achieved by a workload given a certain amount 

of resources into a real number u, u  [0, …, 1]. If the utility 
of resources allocated to a workload is close to 1, it means 
the performance of the workload is high, while if the utility 
of resources allocated to a workload is close to 0, it means 
the performance of the workload is low. Workloads employ 
the utility function to calculate marginal utilities, that is, the 
difference in utilities between two possible consecutive 
resource allocations in a resource allocation process. As the 
utility function is non-decreasing, the value of a marginal 
utility is also in the range [0, …, 1]. 

The marginal utility reflects potential performance 
improvement of a workload. For some resources, if the 
calculated marginal utility of a workload is close to 1, then it 
means these additional resources can significantly benefit the 
workload’s performance, while if the calculated marginal 
utility is close to 0, then the additional resources will not 
greatly improve the workload’s performance. By examining 
the marginal utility value, a workload can determine the 
preferred resources for bid. The bid of a workload is the 
marginal utility multiplied by current available wealth of the 
workload, and indicates that a workload is willing to spend 
the marginal-utility percentage of its current wealth as a bid 
to purchase the resources. Wealthy workloads, therefore, can 
acquire more resources in the resource allocation processes. 
A workload ceases bidding for additional resources when it 
has reached its performance objective. 

B. Query Scheduling 

Our query scheduler [19] is built on a DB2 DBMS and 
employs DB2 Query Patroller (DB2 QP) [6] (a query 
management facility) to intercept newly arriving queries. 
Information about the queries is then acquired, and the 
scheduler determines an execution order for the queries. The 
query scheduler works in two main processes, namely the 
workload detection and the workload control. The workload 
detection process classifies arriving queries based on their 
service level objectives (SLOs), and the workload control 
process periodically generates new plans to respond to the 
changes in the SLOs of arriving requests. 

In the query scheduler’s architecture shown in Figure 3, 
DB2 QP is set to inform the query scheduler’s monitor 
when an arriving query has been intercepted. The monitor 
collects information about the query from the DB2 QP 
control tables, which includes query identification, query 
costs and query execution information, and passes the 
query’s information to the classifier and the scheduling 
planner. The classifier assigns the query to a service class 
based on its performance goals and puts the query in a 
queue, which is associated with the service class and 
managed by the dispatcher. The dispatcher receives a 
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Figure 2. Sample Curve of Utility Function in Resource Allocation 
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scheduling plan from the scheduling planner and releases 
the queries in the queues according to the plan’s 
specifications. The scheduling planner, given SLOs, 
receives query information from the monitor, and consults 
the performance solver to make a scheduling plan for all the 
queued queries. 

We consider a system with n service classes for arriving 
requests, each with a performance goal and a level of 
business importance, denoted as   

 
    , where  

 
 is the 

performance goal of the i-th service class, and    is the class 
business importance level. The pair   

 
     is a service level 

objective. We denote           as the predicted performance 
of the n service classes given a resource allocation plan 
           (i.e., multi-programming levels in our case). The 
performance of the i-th service class,   , can be predicted by 
using a performance model (queuing network models [20] 
are used in our study) given   , the amount of resources 
allocated to the service class. The utility of the i-th service 
class,   , can be expressed as a function of  

 
,    and 

    namely         
         and the n SLOs can be 

encapsulated into an objective function                Thus, 
the scheduling problem can be solved by optimizing the 
objective function f.  

We specifically consider business analysis requests, such 
as those found in decision support systems. In emulating the 
environment, we use the TPC-H benchmark [22] as the 
database and workloads in our experiments. Since queries in 
decision support systems can widely vary in their response 
times, we employ the performance metric query execution 
velocity, which is the ratio of expected execution time of a 
query to the actual time the query spent in the system (i.e., 
the total time of execution and delay), to represent the 
performance required and achieved by the queries. Query 
execution velocity captures both the performance goals and 
the business importance levels of queries. 

Through our experiments we found the following general 
form of utility functions satisfies our requirements: 

      
  

    

     

where,   is the performance goal of a service class to be 
achieved, m is the importance level of the service class, 

mN,    is the lowest performance allowed for the service 
class,   is the actual performance, and a is an importance 

factor that is a constant, aN, and can be experimentally 
determined or adjusted to reflect the distance between two 
adjacent importance levels. In using a, we control the size 
and shape of the utility function, as shown in Figure 4. 

The objective function, f, is then defined as a sum of the 
service class utility functions, using equation (6): 

      
 
    

In query scheduler, the performance solver employs a 
performance model to predict query execution velocity for a 
service class. That is, given a new value of service class cost 
limit, the performance of the service class can be predicted 
for the next control interval, which is based on its 
performance and service class cost limit at the current 
control interval. The performance at the next control interval 
is predicted by: 

   
   

  
     

   
            

     
   

      

                                 
     

   
      

  

where,   
   and   

 are query execution velocity of service 
class i at (k-1)-th and k-th control intervals, respectively; 
  
    and   

  are cost limits of service class i at the (k-1)-th 
and the k-th control intervals, respectively. 

Therefore, a scheduling plan can be determined. From 
equations (5), (6) and (7), we have: 

      
  

  

   
     

    
     

 

  
     

 

 

   
    

     
   

     

replacing   
  in equation (9) with equation (10) and   

  in 
equation (8) with equation (9), the solution for maximizing 
the objective function,     

    
      

  , is the query scheduling 
plan for k-th control interval, where the object function must 
maintain the constraint,   

    
      

   , and C is the 
system cost limits. 

 
 

Figure 3. Architecture of Query Scheduler 

 
 

 
 

Figure 4. Sample Curves of Utility Function in Query Scheduling 
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V. EXPERIMENTS 

The experimental objective was to validate the utility 
functions defined in our studies of autonomic workload 
management for DBMSs. We developed a dynamic resource 
allocation simulator and implemented a prototype of the 
Query Scheduler to examine whether the utility functions can 
effectively guide the dynamic resource allocation and query 
scheduling actions in accordance with a given high-level 
workload business importance policy. We present the results 
of experiments run using the simulator and the prototype in 
Subsection A and B, and discuss the two utility functions in 
Subsection C. 

A. Experiments for Dynamic Resource Allocation 

To allocate the buffer pool memory and CPU resources, 
we first experimentally determined the appropriate amount 
of total resources for a given data server as well as set of 
workloads. Our experiments were conducted with DB2 
database software [6] running on an IBM xSeries

®
 240 PC 

server with the Windows
®
 XP operating system. The data 

server was equipped with two Pentium
®
 processors, 2 GB of 

RAM and an array of 11 disks. The databases and 
workloads were taken from the TPC-C benchmark [22]. The 
size of the database was 10GB. The three workloads were 
similar to TPC-C OLTP batch workloads. 

We consider the case of a single DB2 instance with three 
identical databases for three competing workloads from 
different importance classes. Each database has one workload 
running on it, thus each workload has its own buffer pool 
and CPU shares while still having accesses to all the same 
database objects. Our dynamic resource allocation technique 
allocates buffer pool memory space and CPU (i.e., database 
agents) resources across the three identical databases based 
on a given workload business importance policy. 

We selected a minimum amount of each resource (i.e., 
buffer pool memory and CPU) where maximum system 
performance was achieved. We experimentally determined 
32,768 buffer pool memory pages as the total buffer pool 
memory and 25 database agents as the total CPU resources 
[18]. We use 1,000 buffer memory pages as one unit of 
buffer pool memory and 1 database agent as one unit of 
CPU resources in our resource allocation experiments (as 
discussed in the following paragraphs) as these granularities 
give a reasonable workload performance increment and 
make the resource allocation process efficient. 

We developed a simulator of our dynamic resource 
allocation approach to generate the resource allocations for 
competing workloads on a DBMS based on a given 
workload business importance policy. The simulator was 
written in Java

TM
 and the three workloads (i.e., the TPCC-

like OLTP batch workloads) were used as the simulator 
input. The output of the simulator was resource allocations, 
that is, a list of the number of buffer pool memory pages and 
database agents for each of the workloads. 

A set of experiments was conducted to determine 
whether our approach generates the resource allocations 
which match a given workload business importance policy. 
The workloads were assigned one of three different 
importance classes, namely the high importance class, the 
normal importance class, and the best effort class. The 
relative importance of the classes was captured by a set of 
importance multipliers for the base wealth assigned to the 
classes. We experimented with three different sets of 
importance multipliers that were of the form [best effort, 
normal importance, high importance]: [1, 1, 1], [1, 5, 6], and 
[1, 5, 10]. The multiplier sets were chosen to demonstrate 
the effect of business importance policies on the resource 
allocations.  

Figures 5 and 6 respectively show buffer pool memory 
page and database agent (representing system CPU 
resources) allocations produced by the simulator using the 
three workload business importance multiplier sets. The 
workload importance multiplier set [1, 1, 1] represents the 
case where the three competing workloads are from three 
different business importance classes of equal importance. 
In this case, the three workloads are allocated approximately 
the same amount of buffer pool memory and CPU resources 
as shown in Figures 5 and 6. Using the importance 
multiplier set [1, 5, 6], the high importance and the normal 
importance classes are much more important than best effort 
class, and the high importance class is also slightly more 
important than the normal important class. When the 
simulator is used to allocate resources in this case, the high 
importance and normal importance workloads are allocated 

 

Figure 5. Buffer Pool Memory Allocation for Different Business 
Importance policies 

 

Figure 6. Database Agent Allocation for Different Business 
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significantly more resources than the best effort workload, 
while the high importance workload is allocated slightly 
more resources than the normal importance workload. The 
set [1, 5, 10] represents the case where the high importance 
class is much more important than the normal importance 
class, and the normal importance class is much more 
important than the best effort class. In this case, the high 
importance workload is allocated more resources than the 
normal important workload, and the normal importance 
workload wins significantly more resources than the best 
effort workload. 

By observing the experimental results shown in Figure 5 
and Figure 6, we have that the defined utility functions (the 
key components of the dynamic resource allocation) can 
effectively guide the resource allocation processes and 
generates resource allocations for the competing workloads 
which match the given workload business importance 
policies (that is, more important workloads assigning more 
resources than less important ones). 

B. Experiments for Query Scheduling 

The same data server, as described in Subsection A, was 
used in the experiments. Our experiments were conducted 
with DB2 database software as well as DB2 Query Patroller 
as a supporting component [6]. The database and workloads 
were taken from the TPC-H benchmark [22]. The size of the 
database was 500MB, and two workloads that consisted of 
TPC-H queries were submitted by interactive clients with 
zero think time [20]. Each workload was assigned to a 
service class described in Section IV-B, namely either class 
0 or class 1, with a different business importance level and a 
unique performance goal, where we considered class 0 is 
more important than class 1. The intensity of a workload in 
the data server was controlled by the number of clients used 
by the workload. Each experiment was run for 12 hours that 
consisted of 6 2-hour periods (as shown in Figure 7, 8 and 
9). 

To evaluate whether our Query Scheduler can manage 
multiple classes of workloads towards their performance 
goals based on given workload business importance policies, 
we first need to determine the total cost limits, as mentioned 
in Section IV-B, for the DBMS and workloads. Thus, we 
experimentally determined 300,000 timerons, a measure 

unit for the resources required by the DB2 database manager 
to execute the plan for a query [6], as the total cost limits in 
our query scheduling experiments [19]. 

The first experiment was conducted to show 
performance of the workloads without control and served as 
the baseline measure to observe how the performance of the 
workloads changes as they run. The performance goals of 
query execution velocity, as described in Section IV-B, for 
the workload (belonging to class 0) and the workload 
(belonging to class 1) were set as 0.65 and 0.45, 
respectively. The results are shown in Figure 7. It shows 
that the “class 0” workload missed its performance goal in 
periods 2 and 3, and the “class 1” workload over performed 
almost all the time in the experiment. 

The experiments were then conducted using our Query 
Scheduler to control the workloads. The performance goals 
for class 0 and class 1 were still 0.65 and 0.45, respectively. 
The results are shown in Figure 8. The dynamic adjustment 
of service class cost limits to achieve the performance goals 
is shown in Figure 9. The experimental results show that our 
Query Scheduler can provide differentiated services for 
competing workloads. As shown in Figure 8, for the Query 
Scheduler, the “class 0” workload could better meet its 
performance goal than the “class 1” workload, which was in 
accordance with the given importance policy. Although the 

 

Figure 7. No Service Class Control for Competing Workloads 

 

Figure 8. Query Execution Velocity for Multiple Competing 
Workloads 

 

Figure 9. Dynamically Assigned Service Class Cost Limits for 

Multiple Competing Workloads 
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Query Scheduler gave preference to the important class, 
class 0, it never allocated too many resources (i.e., multi-
programming levels, discussed in Section IV-B) class 0 to 
prevent class 1 from meeting its performance goal. When 
the workloads were too heavy to meet both performance 
goals as shown at periods 3 and 4 in Figure 8, Query 
Scheduler was still able to help both classes approach their 
goals. From Figure 9, we can observe that our Query 
Scheduler dynamically adjusts the service class cost limits 
according to the workload changes. The amount of 
resources allocated to a class is based on its need in order to 
meet its performance goal, as shown in Figure 9. 

By observing the experimental results shown in Figures 
7, 8 and 9, we have that our Query Scheduler is able to 
respond to query changes and give preference to the queries 
assigned to an important service class, and to the service 
class whose performance goals are violated. These results 
also validate the utility functions as they are key 
components defined in the Query Scheduler. The results 
show that the utility functions effectively guide the Query 
Scheduler to dynamically generate query scheduling plans 
for competing workloads bases on a given workload 
business importance policy with more important workloads 
receiving more shared system resources than less important 
ones. 

C. Discussion 

In dynamic resource allocation, the utility function was 
defined based on a single-class multi-center closed QNM, 
while in query scheduling, the utility function was chosen 
based on an exponential function. These two types of utility 
functions are different in their forms and research 
requirements, but both strictly maintain the same fundamental 
properties listed in Section III. 

The input to the dynamic resource allocation utility 
function is an amount of allocated resources (i.e., the 
resource pair, <cpu, mem>), the output is a real number in the 
range [0, …, 1], and the applied QNM properly predicts 
performance behavior of the workload. A workload ceases 
bidding for additional resources using assigned virtual 
wealth when it has reached its performance objective. 

In query scheduling, the input to the utility functions is 
the query execution velocity of the service classes predicted 
by the performance model given a level of allocated 
resources and the output is a real number in (-∞, +∞). Based 
on the exponential function properties, as the input of the 
utility function increases, the output (i.e., the utility) 
increases and at a certain value, it begins to level off. That 
means, when the service class approaches its performance 
goal, the utility increase is less, and it indicates that the 
database system should not assign more resources to the 
service class. 

If an objective function is continuous, the Lagrange 
method can be applied to solve it [19], otherwise searching 
techniques may be used. In query scheduling, the second 
derivative of the utility function exists and this allows 
mathematical methods to be applied to optimize the 
objective function. In dynamic resource allocation, instead of 
defining an objective function based on the utility functions, 

economic models (the use of virtual wealth and auctions and 
bids) [18] are applied to coordinate the utility functions to 
allocate the shared system resources to competing 
workloads. 

In evaluating the two types of utility functions (using the 
set of properties listed in Section III), both utility functions 
preserve the fundamental properties, that is, a) the utility 
increases as a workload performance increases, and 
decreases otherwise; b) the marginal utility is large as a 
workload performance increases quickly, and is small 
otherwise; c) the input and output are in the required types 
and values. In comparing the two utility functions presented 
in Table 1, we observe that the utility function used in 
dynamic resource allocation has the property of identifying 
critical resources for a workload, but it does not have 
mathematical properties for optimizing objective functions 
(as there is not an objective function defined in the 
approach). The utility function used in query scheduling 
possesses a good mathematical property for optimizing its 
objective function, but it does not have the property of 
identifying system critical resources (as it is not necessary to 
identify critical resources in the problem). In Table 1, Utility 
Increasing Normally means whether the utility increases as 
a workload performance increases, and decreases otherwise, 
and Marginal Utility Increasing Normally means whether 
the marginal utility is large as a workload performance 
increases quickly, and is small otherwise. 

Since the utility functions were strictly defined based on 
their research requirements, the specific research problems 
shaped the utility function’s properties. So, we conclude 
(based on the properties listed in Section III) that the two 
types of utility functions are good in terms of their specific 
research requirements and considered acceptable based on 
the set of properties listed in Section III. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have presented two concrete examples 
to illustrate how utility functions can be applied to database 
workload management, namely dynamic resource allocation 
and query scheduling. Based on the examples, we 
generalized a set of function properties that are fundamental 
for defining utility functions in building autonomic 

TABLE I. COMPARISION OF THE TWO UTILITY FUNCTIONS 

 

Utility functions in 

Dynamic Resource 

Allocation 

Utility functions in 

Query Scheduling 

Utility Increasing 

Normally 
yes yes 

Marginal Utility 

Increasing Normally 
yes yes 

Utility Function Input allocated resources 
a function of the 

allocated resources 

Utility Function 

Output 
a number in [0…1] 

a number in (-∞, 

+∞) 

Critical Resource 

Identifying 
yes no 

Having Mathematical 

Property  
no yes 

Utility Increase Stops 

as Goals Achieved 
yes yes 
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workload management for DBMSs in future practice and 
research. Through experiments, we validated the utility 
functions defined in our studies of autonomic workload 
management for DBMSs. 

As more workload management techniques are proposed 
and developed, we plan to investigate the use of utility 
functions to choose during runtime an appropriate workload 
management technique for a large-scale autonomic 
workload management system, which can contain multiple 
techniques. Thus, the system can decide what technique is 
most effective for a particular workload executing on the 
DBMS under certain particular circumstance. 
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