
388

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Specification and Application of a Taxonomy for Task Models in Model-Based User

Interface Development Environments

Gerrit Meixner

German Research Center for

Artificial Intelligence (DFKI)

Kaiserslautern, Germany

Gerrit.Meixner@dfki.de

Marc Seissler

German Research Center for

Artificial Intelligence (DFKI)

Kaiserslautern, Germany

Marc.Seissler@dfki.de

Marius Orfgen

German Research Center for

Artificial Intelligence (DFKI)

Kaiserslautern, Germany

Marius.Orfgen@dfki.de

Abstract—This paper presents a taxonomy allowing for the

evaluation of task models with a focus on their applicability in

model-based user interface development processes. Task

models are explicit representations of all user tasks which can

be achieved through a user interface. It further supports the

verification and improvement of existing task models, and

provides developers with a decision-making aid for the

selection of the most suitable task model for their development

process or project. The taxonomy is applied on the Useware

Markup Language 1.0, the ConcurTaskTrees notation and the

AMBOSS notation. The results of the application are briefly

described in this paper which led to the identification of

substantial improvement potentials for the Useware Markup

Language.

Keywords-Task model; Taxonomy; useML; CTT; AMBOSS;

Model-based User Interface Development; MBUID.

I. INTRODUCTION

This contribution is a revised and extended version of our
ACHI 2011 paper [22].

The improvement of human-machine-interaction is an
important field of research reaching far back into the past
[26]. Yet, for almost two decades, graphical user interfaces
have dominated their interaction in most cases. In the future,
a broader range of paradigms will emerge, allowing for
multi-modal interaction incorporating e.g., visual, acoustic,
and haptic input and output in parallel [46]. But also the
growing number of heterogeneous platforms and devices
utilized complementarily (e.g., PC’s, smartphones, PDA)
demand for the development of congeneric user interfaces
for a plethora of target platforms; their consistency ensures
their intuitive use and their users’ satisfaction [18].

To meet the consistency requirement, factors such as
reusability, flexibility, and platform-independence play an
important role for the development of user interfaces [7].
Further, the recurring development effort for every single
platform, single device or even use context solution is way
too high, so that a model-based approach to the abstract
development of user interfaces appears to be favorable [35].

The purpose of a model-based approach is to identify
high-level models, which allow developers to specify and
analyze interactive software applications from a more
semantic oriented level rather than starting immediately to
address the implementation level [20][40]. This allows them
to concentrate on more important aspects without being

immediately confused by many implementation details and
then to have tools, which update the implementation in order
to be consistent with high-level choices. Thus, by using
models, which capture semantically meaningful aspects,
developers can more easily manage the increasing
complexity of interactive applications and analyze them both
during their development and when they have to be modified
[32]. After having identified relevant abstractions for
models, the next issue is specifying them with suitable
languages that enable integration within development
environments.

The pivotal model of a user-centric model-based
development process is the task model [21]. Task models—
developed during a user and use context analysis—are
explicit representations of all user tasks [34]. Recently,
several task modeling languages have been developed, which
differ, for example, in their degree of formalization, and their
range of applications. To make the selection of a suitable
task modeling language simpler, this paper introduces a task
model taxonomy that enables all participants involved in an
integrated model-based user interface development
(MBUID) process, to evaluate and compare task modeling
languages.

The rest of this paper is structured as follows: Section II
explains the proposed taxonomy for task models in detail.
Section III gives a short introduction on the Useware Markup
Language (useML) 1.0 and shows the application of the
taxonomy. Section IV evaluates the ConcurTaskTrees (CTT)
notation, Section V the AMBOSS notation. The paper
finishes with Section VI, which gives a brief summary and
an outlook on future activities.

II. THE TAXONOMY AND ITS CRITERIA

The proposed taxonomy focuses on the integration of
task models into architectures for model-based development
of user interfaces allowing for consistent and intuitive user
interfaces for different modalities and platforms. For the
evaluation of different task models, criteria describing
relevant properties of these task models are needed. The
criteria employed herein are based on initial work of [1] and
[43], and are extended by additional criteria for task models
with their application in MBUID. A summary of the criteria
and their values are given in TABLE I.

389

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Criterion 1: Mightiness

The most important criterion in the taxonomy is the

mightiness of the task model. Therefore it is divided into 8

sub criteria.

According to [30], a task model must help the developer

to concentrate on tasks, activities, and actions. It must focus

on the relevant aspects of task-oriented user interface

specifications, without distracting by complexity. Yet, the

granularity of the task definition is highly relevant. For the

application of a task model in a MBUID process, the task

model must comprise different levels of abstraction [17],

describing the whole range of interactions from abstract top-

level tasks to concrete low-level actions. According to [38],

it is commonly accepted that every person has her own

mental representations (mental models) of task hierarchies.

The hierarchical structure thereby constitutes the human’s

intuitive approach to the solution of complex tasks and

problems. Consequently, complex tasks are divided into less

complex sub-tasks [11] until a level is reached where sub-

tasks can be performed easily. Normally, task models are

divided into two levels of abstraction. With abstract tasks the

user is able to model more complex tasks, e.g., “Edit a file.”

On the other hand a concrete task is an elemental or atomic

task, e.g., “Enter a value.” Tasks should not be modeled too

detailed, e.g., like in GOMS [8] at least at development time

[10].

Tasks can also be modeled from different perspectives. A

task model should differentiate at least between interactive

user tasks and pure system tasks [4]. Pure system tasks

encapsulate only tasks, which are executed by the computer

(e.g., database queries). This differentiation is preferable,

because it allows for deducting when to create a user

interface for an interactive system, and when to let the

system perform a task automatically.

A further aspect determining the mightiness of a task

model is its degree of formalization. Oftentimes, task

modeling relies on informal descriptions, e.g., use cases [10]

or instructional text [9]. According to [31], however, these

informal descriptions do rarely sufficiently specify the

semantics of single operators as well as the concatenation of

multiple operators (i.e., to model complex expressions).

These task models therefore lack a formal basis [37], which

impedes their seamless integration into the model-based

development of user interfaces [29]. On the one hand,

developers need a clear syntax for specifying user interfaces,

and on the other hand, they need an expressive semantic.

Furthermore, the specification of a task model should be

checked for correctness, e.g., with a compiler. For these

reasons a task model should rather employ at least semi-

formal semantics [28].

By using temporal operators (sometimes called

qualitative temporal operators [16]) tasks can be put into

clearly defined temporal orders [12]. The temporal order of

sub-tasks is essential for task modeling [31] and opens up the

road to a completely model-based development of user

interfaces [17].

The attribution of optionality to tasks is another
important feature of a task modeling language [1]. By
itemizing a task as either optional or required, the automatic
generation of appropriate user interfaces can be simplified.
Similarly, the specification of cardinalities for tasks [30]
allows for the automatic generation of loops and iterations.
Several types of conditions can further specify when exactly
tasks can, must, or should be performed. For example,
logical [36] or temporal [16] conditions can be applied.
Temporal conditions are also called quantitative temporal
operators [16].

B. Criterion 2: Integratability

Due to the purpose of this taxonomy, the ease of a task
model’s integration into a consistent (or even already given)
development process, tool-chain or software architecture
[17], is an important basic criterion. Therefore it is necessary
to have a complete model-based view, e.g., to integrate
different other models (dialog model, presentation model,
etc.) in the development process [41]. Among others, the
unambiguity of tasks is essential, because every task must be
identified unequivocally, in order to match tasks with
interaction objects, and to perform automatic model
transformations [45].

C. Criterion 3: Communicability

Although task modeling languages were not explicitly

developed for communicating within certain projects, they

are suitable means for improving the communication within

a development team, and towards the users [33]. Task

models can be employed to formalize [1], evaluate [36],

simulate [31] and interactively validate [3] user

requirements. A task model should therefore be easily,

preferably intuitively understandable, and a task modeling

language must be easy to learn and interpret. Semi-formal

notations have shown to be optimally communicable [28] in

heterogeneous development teams.

D. Criterion 4: Editability

This criterion defines how easy or difficult the creation

and manipulation of a task model appears to the developer

[6]. In general, we can distinguish between plain-text

descriptions like e.g., GOMS [8] and graphical notations like

e.g., CTT [30] or GTA [43]. For the creation of task models,

graphical notations are better utilizable than textual notations

[12]. For example, graphical notations depict hierarchical

structures more intuitively understandable. Here, one can

further distinguish between top-down approaches like CTT,

and left-right orders such as in GTA.
Although this fourth criterion is correlated to the third

one (communicability), they put different emphases. For
every graphical notation, obviously, dedicated task model
editors are essential [31].

E. Criterion 5: Adaptability

This criterion quantifies how easily a task model can be
adapted to new situations and domains of applications. This
applies especially to the development of user interfaces for

390

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different platforms and modalities of interaction. The
adaptability criterion is correlated to the mightiness criterion.
Especially while using task models in the development
process of user interfaces for ubiquitous computing
applications [44], run-time adaptability is an important
criterion [5], which must be considered.

F. Criterion 6: Extensibility

The extensibility of a task modeling language is
correlated to its mightiness and adaptability. This criterion
reveals the ease or complicacy of extending the semantics
and the graphical notation of the task modeling language.
This criterion is highly significant, because it is commonly
agreed that there is no universal task modeling language,
which can be applied to all domains and use cases [6]. In
general, semi-formal notations are more easily extendable
than fully formal ones. Formal notations are usually based on
well-founded mathematical theories, which rarely allow for
fast extensions.

G. Criterion 7: Computability

Computability quantifies the degree of automatable
processing of task models. This criterion evaluates, among
others, the data management, including the use of well-
established and open standards like XML as data storage
format. Proprietary formats should be avoided, because they
significantly hinder the automatic processing of task models.

H. Summary

Some of the criteria are partly correlated, e.g., the
Editability criterion is aiming in the same direction as the
Communicability criterion, but their focus in terms of
usability is quite different (see Figure 1). The Adaptability
criterion is correlating with the Mightiness and the
Extensibility criteria. Furthermore the Extensibility criterion
is correlated to the Mightiness criterion.

Figure 1: Correlating criteria

Table 1 shows all criteria and their possible values. All

these possible values are more or less subjective. According
to [6], the definition of more precise values is not possible,
because there are no suitable metrics for value quantification.

TABLE I. CRITERIA AND VALUES

Criterion Values

1. Mightiness

a. Granularity

b. Hierarchy
c. User- and system task

d. Degree of formalization

e. Temporal operators
f. Optionality

g. Cardinality

h. Conditions

High, Medium, Low

High, Medium, Low

Yes, No
Yes, No

High, Medium, Low

Yes, No
Yes, No

Yes, No

High, Medium, Low

2. Integratability High, Medium, Low

3. Communicability High, Medium, Low

4. Editability High, Medium, Low

5. Adaptability High, Medium, Low

6. Extensibility High, Low

7. Computability High, Low

III. EVALUATION OF USEWARE MARKUP LANGUAGE 1.0

This section gives a short introduction on the Useware
Markup Language (useML) 1.0 and shows the application of
the taxonomy.

A. Overview of useML 1.0

The Useware Markup Language (useML) 1.0 has been
developed by Achim Reuther [36] to support the user- and
task-oriented Useware Engineering Process [46] with a
modeling language that could integrate, harmonize and
represent the results of an initial analysis phase in one use
model in the domain of production automation. Figure 2
visualizes the structure of useML 1.0. Accordingly, the use
model abstracts platform-independent tasks, actions,
activities, and operations into use objects that make up a
hierarchically ordered structure. Each element of this
structure can be annotated by attributes such as eligible user
groups, access rights, importance. Use objects can be further
structured into other use objects or elementary use objects.
Elementary use objects represent the most basic, atomic
activities of a user, such as entering a value or selecting an
option. Currently, five types of elementary use objects exist
[25]:

 Inform: the user gathers information from the
user interface

 Trigger: starting, calling, or executing a certain
function of the underlying technical device (e.g.,
a computer or field device)

 Select: choosing one or more items from a range
of given ones

 Enter: entering an absolute value, overwriting
previous values

 Change: making relative changes to an existing
value or item

391

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2: Schematic of useML 1.0

B. Mightiness of useML 1.0

a) Granularity

useML 1.0’s differentiation between use objects and five

types of elementary use objects is sufficiently granular. With

the classification of these elementary use objects types,

corresponding, abstract interaction objects can be determined

[36]—which the rougher differentiation of task types in the

de facto standard CTT does not allow [2] [18] [39].

b) Hierarchy

The hierarchical structure of the use model satisfies the
Hierarchy sub-criterion of this taxonomy. Beside hierarchical
structures, useML 1.0 also supports other structures, e.g., net
structures.

c) User and System Task

The use model by [36] focuses on the users’ tasks, while
those tasks, which are fulfilled solely by the (computer)
system, cannot be specified. Yet, for subsequently linking
the use model to the application logic of a user interface, this
task type is also required [2]. Querying a database might be
such a pure system task, which however, might require that
the query results are being presented to the user in an
appropriate way. Pure system tasks can obviously be a part
of a more complex, interactive action.

d) Degree of formalization

The use model or the useML 1.0 language can be
categorized as semi-formal. Though useML 1.0 is not based
on formal mathematical fundamentals as e.g., Petri Nets [13],
its structure is clearly defined by its XML schema. It allows,
among others, for syntax and consistency checks, which
ensure that only valid and correct use models can be created.

e) Temporal Operators

For the current useML 1.0 specification, no temporal
operators were specified, which constitutes a substantial
limitation for the later integration of useML 1.0 into a fully
model-based development process.

In [36], Reuther himself admits that useML 1.0 does not
possess temporal interdependencies between tasks. Task
interdependencies must therefore be specified with other
notations such as, e.g., activity diagrams. Such a semantic
break, however, impedes developers in modeling the
dynamics of a system, because they need to learn and use
different notations and tools, whose results must then be

consolidated manually. This further broadens the gap
between Software- and Useware Engineering [46].

f) Optionality

The current useML 1.0 version cannot indicate that
certain use objects or elementary use objects are optional or
required, respectively. Although there is a similar attribute,
which can be set to a project-specific, relative value
(between 1 and 10, for example), this is not an adequate
mean for formally representing the optionality of a task.

g) Cardinality

There are no language elements in useML 1.0 that
specify the cardinality (repetitiveness) of a task’s execution.

h) Conditions

Although use models allow for specifying logical pre-
and post-conditions, they don’t support quantitative temporal
conditions. Also, they lack means for specifying invariant
conditions that must be fulfilled at any time during the
accomplishment of the respective task.

C. Integratability of useML 1.0

Since no other models or modeling languages instead of

use models or useML 1.0, respectively, have been applied

and evaluated within projects pursuing the Useware

Engineering Process, it is difficult to assess the applicability

of use models into an integrated MBUID architecture.

Luyten mainly criticized the lack of dialog and presentation

models complementing useML 1.0 [18].

Further, no unambiguous identifiers exist in useML 1.0,

which however, are required for linking (elementary) use

objects to abstract or concrete interaction objects of a user

interface—currently, use objects and elementary use objects

can only be identified by their names that, of course, don’t

need to be unique. UseML 1.0 must therefore be extended to

arrange for unique identifiers for (elementary) use objects,

before it can be integrated into a complex architecture

comprising multiple models representing relevant

perspectives on the interaction between humans and

machines. Until then, the integratability of useML 1.0 into

such a model-based architecture must be rated low.

D. Communicability of useML 1.0

Since Useware Engineering demands for an

interdisciplinary, cooperative approach [25], use models and

useML 1.0 should be easily learnable and understandable.

Being an XML dialect, in principal, useML 1.0 models can

be viewed and edited with simple text or XML editors. Yet,

these representations are difficult to read, understand, and

validate. Readers with little knowledge in XML will have

problems handling use models this way. Much better

readability is achieved with the web-browser-like

presentation of use models in the useML-Viewer by Reuther

[36] (see Figure 3).

392

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3: Excerpts of a use model as presented by the useML-Viewer

This HTML-based viewer allows for easily reading,

understanding, and evaluating use models even without any

knowledge in XML. It also prints use models using the web

browsers’ printer functions. However, the quality of the

print is rather bad, among other reasons, because use models

cannot be scaled to preferred paper sizes. Finally, the

useML-Viewer can only display and print static use models,

but does not provide means for interactive simulations or for

the validation and evaluation of use models. Therefore, the

communicability of useML 1.0 can only be rated medium.

E. Editability of useML 1.0

Though a simple editor may be sufficient for editing

useML 1.0 models, XML editors are much more

comfortable tools, especially those XML editors that run

validity checks. Naturally, however, common versatile

XML editors from third party developers are not explicitly

adapted to the specific needs of useML 1.0. Therefore, they

cannot provide adequate means to simply and intuitively

edit use models. The editability criterion of useML 1.0 must

be rated low.

F. Adaptability of useML 1.0

useML 1.0 had been developed with the goal of

supporting the systematic development of user interfaces for

machines in the field of production automation. It focuses

on the data acquisition and processing during the early

phases of the Useware Engineering Process. Tasks, actions,

and activities of a user are modeled in an abstract and

platform-independent way. Thereby, the use model can be

created already before the target platform has been

specified. useML 1.0 provides for the incorporation of the

final users and customers during the whole process, by

allowing for the automatic generation of structure

prototypes.

The project-specific attributes (e.g., user groups,

locations, device types) can be assigned as needed, which

means that useML 1.0 can be employed for a huge variety

of modalities, platforms, user groups, and projects. Among

others, useML 1.0 has already been applied successfully,

e.g., in the domain of clinical information system

development [19]. In conclusion the adaptability criterion

can be rated high.

G. Extensibility of useML 1.0

The fact that useML 1.0 is not strictly based upon well-

grounded mathematical theories, actually simplifies its

enhancement and semantic extension. This can simply be

done by modifying the XML schema of useML 1.0.

In most cases, however, not even this is necessary,

because useML 1.0 comprises a separate XML schema

containing project-specific attributes (e.g., user groups,

locations, device types), which can easily be adjusted

without changing the useML 1.0’s core schema. Since this

allows for storing an unlimited number of use-case or

domain-specific useML 1.0 schemes, the extensibility of

useML 1.0 can be rated high.

H. Computability of useML 1.0

Since useML 1.0 is a XML dialect, use models can be

further processed automatically. Employing dedicated

transformations (e.g., XSLT style sheet transformations)

prototypes can be generated directly from use models [25].

I. Summary of the evaluation of useML 1.0

The subsequently depicted table summarizes the

evaluation of useML 1.0. Those criteria that were rated

“No” or “Low”, highlight severe deficits of the language.

Figure 4 visualizes the results of the evaluation in a radar

chart that reveals these deficits: They identify starting points

for the upcoming, and for future improvements of the

useML 1.0.

TABLE II. CRITERIA AND VALUES OF USEML 1.0

Criterion Values

1. Mightiness

a. Granularity
b. Hierarchy

c. User- and system task

d. Degree of formalization
e. Temporal operators

f. Optionality

g. Cardinality
h. Conditions

Low

High
Yes

No

Medium

No

No

No

Medium

2. Integratability Low

3. Communicability Medium

4. Editability Low

5. Adaptability High

6. Extensibility High

7. Computability High

393

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4: Results of the evaluation of useML 1.0

IV. EVALUATION OF CTT

This section gives a short introduction on CTT and

shows the application of the taxonomy.

A. Overview of CTT

The notation of CTT was developed by Fabio Paternò in
1995. CTT can be seen as an extension of notations like
LOTOS [15] with a graphical syntax. In difference to other
graphical notations like GTA [42] it features the temporal
operators Interruption and Optionality. It is used in the
description of task models and one of the most common
notations, which is aided further through support with
different tools, e.g. CTTE (ConcurTaskTree Environment).

CTTs form a hierarchic tree structure and provide several
operations to model temporal relationships in tasks. It
focuses on “the activities that the users aim to perform” [31],
thereby abstracting from low-level application tasks.

B. Mightiness of CTT

a) Granularity

CTT differentiates between four task categories: User
tasks, which are performed by the user alone, “usually [...]
important cognitive activities” [30], application tasks, which
are “completely executed by the application” [30],
interaction tasks, where user and application interact and
abstract tasks, “which require complex activities whose
performance cannot be universally allocated, for example, a
user session with a system.” [30]. The categories can be used
at every abstraction level, from very high-level tasks to very
concrete ones.

Although the differentiation into four types of tasks and
further information in form of task relations has been
provided, it is not sufficient to specify all user tasks clearly
and efficiently. For example, the abstract task type can
contain tasks like using an application (which involves
physical movement, cognitive activities, interaction and
application tasks). The whole structure has a higher
granularity than other task models, which might provide a
possibility of defining the structure with better classification
for tasks enabling easier identification.

b) Hierarchy

CTT has a hierarchical tree structure. “It provides a wide
range of granularity, allowing large and small task structures
to be reused, and it enables reusable task structures to be
defined at both low and high semantic levels.” [30].

In contrast to useML 1.0, CTT has no explicit concept of
primitive or atomic tasks.

c) User and System Task

With CTT it is possible to specify interactive user tasks
as well as system tasks. It further differentiates between user
tasks that involve interaction and those that do not (e.g.
mental processes) [30].

d) Degree of formalization

The CTTE tool can save CTTs as “… XML format. To
this end, the DTD format for task models specified by CTTs
has been developed. Its purpose is to indicate the syntax for
XML expressions that correctly represent task models.” [31].

However, the task descriptions are given as informal text,
which can only be further processed manually.

Therefore the degree of formalization can be rated as
semi-formal.

e) Temporal Operators

CTT supports several temporal operators [31] (see
TABLE III.).

TABLE III. TEMPORAL OPERATORS OF CTT

Operator Description

Hierarchy This operator is used for
decomposing tasks into less abstract
subtasks. A subset of the subtasks
has to be performed to perform the
decomposed task.

Enabling Specifies that a “second task cannot
begin until [the] first task has been
performed.” [31]

Enabling with
information passing

Like Enabling, but information that
is produced in the first task is
provided as input to the second one.

Choice With this operator, starting one task
disables the other.

Concurrent tasks This operator specifies that two tasks
“can be performed in any order, or at
the same time, including the
possibility of starting a task before
the other one has been completed”
[31].

Concurrent
Communicating
Tasks

With this operator, it is possible to
specify concurrent tasks that also
exchange information while being
performed.

Task independence Specifies that “Tasks can be
performed in any order, but when
one starts then it has to finish before
the other can start” [31]

Disabling With the “disabling” operator, a
“task is completely interrupted by the

394

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

second task” [31]. The interrupted
task cannot be resumed.

Suspend-Resume This operator extends the “disabling”
operator by allowing to resume the
interrupted task after the interrupting
task has been finished. After
completion of the second task, the
first “can be reactivated from the
state reached before.” [31]

f) Optionality

The operator ‘Optional tasks’ allows choosing whether
the mentioned task is optional [24]. In [30] it is noted that
optionality can only be used with concurrent or sequential
operators.

g) Cardinality

CTT supports cardinality with the operator ‘Iteration’,
which indicates “that the tasks are performed repetitively
[…] until the task is deactivated by another task.” [24] .

Another operator “Finite Iteration” is used to define a
fixed number of iterations [31].

h) Conditions

It is possible to specify preconditions with CTT: “For
each single task, it is possible to directly specify a number of
attributes and related information. […] General information
includes […] indication of possible preconditions.” [31]

C. Integratability of CTT

CTT models created with CTTE can be imported into the
tool MARIAE [48]. MARIAE allows mapping of system
tasks to web service descriptions, which can then be used to
derive web-based user interfaces. It can also be used to
generate Abstract User Interfaces (AUI) from CTT models.

Integration into another tool therefore exists and the
Integratability can therefore be rated as Medium.

D. Communicatability of CTT

The CTTE tool allows exporting and viewing of task
models based on a graphical notation as well as graphical
comparison of task models and simulation of the dynamic
behavior. The communicability can be rated as High.

Figure 5: Detail screenshot of CTTE [47]

E. Editability of CTT

The CTTE tool allows editing of task models based on a
graphical notation (see Figure 5) and annotation with
informal descriptions.

Models can be checked for completeness and compared
graphically. CTTE allows simulation of the dynamic
behavior. The editability can be rated as High.

F. Adaptability of CTT

CTT is a general-purpose model for describing tasks.
Since user tasks, application tasks as well as interactions can
be described, it can be used to specify interfaces from a user
perspective or by taking into account internal behavior of the
application. The annotation of tasks with roles further helps
to specify models for a wide range of domains. The
Adaptability has therefore to be set to High.

G. Extensibility of CTT

CTT is integrated into several graphical environments
like CTTE or MARIAE. While this improves the editability
and communicatability of CTT, it has the drawback of
making changes to the notation difficult, since it requires
updating the environments as well, with substantial
development effort. Extensibility is therefore also set to Low.

H. Computability of CTT

CTTE saves CTTs as an XML format. A ”… DTD
format for task models specified by CTTs has been
developed. Its purpose is to indicate the syntax for XML
expressions that correctly represent task models.

This can be useful to facilitate the possibility of
analyzing its information from other environments or to
build rendering systems able to generate user interfaces for
specific platforms using the task model as abstract
specification.” [24]. The Computability can therefore be set
to High.

I. Summary of the evaluation of CTT

While CTT supports every subcriterion of mightiness,
properties like granularity or the degree of formalization is
only moderately supported, leading to the overall medium
rating for mightiness.

TABLE IV. CRITERIA AND VALUES OF CTT

Criterion Values

1. Mightiness
a. Granularity

b. Hierarchy

c. User and System task
d. Degree of formalization

e. Temporal operators

f. Optionality
g. Cardinality

h. Conditions

Medium
Medium

High

Yes
Medium

Yes

Yes
Yes

Medium

2. Integratability Medium

3. Communicability High

4. Editability High

5. Adaptability High

6. Extensibility Low

7. Computability High

395

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: Results of the evaluation of CTTE

V. EVALUATION OF AMBOSS

This section gives a short introduction on AMBOSS and

shows the application of the taxonomy.

A. Overview of AMBOSS

AMBOSS [14] is a graphical editing tool for the task
model approach of the same name. The model and the
environment are tightly integrated, resulting in good
editability but drawbacks on the extensibility.

The tool was developed from 2005 to 2006 at the
University of Paderborn. While it can be used for general-
purpose task modeling, its focus lies in the support for
modeling of properties for safety-critical systems.
Additionally to task objects and roles, it supports barriers and
risk factors.

B. Mightiness of AMBOSS

a) Granularity

With AMBOSS, tasks of different abstraction levels can
be defined. The tool allows high flexibility for creating task
models and consistency checkers for validating the correct
structure afterwards. Its granularity can therefore be set to
high.

b) Hierarchy

Tasks can be abstract or concrete and can be refined into
more concrete subtasks. It therefore supports hierarchy.

c) User- and system task

AMBOSS has three basic types of actors: human, system
and abstract [14]. Abstract tasks are “tasks performed in co-
operation between”[14] human and system. Human tasks are
performed just by the human, similar to CTT. System tasks
are also similar to CTT. AMBOSS therefore supports user-
and system tasks.

d) Degree of formalization

The AMBOSS environment contains checkers that test
for cycles other constraints. The resulting task model is
formal enough so it can be simulated. Its formalization is
therefore high.

e) Temporal operators

“AMBOSS contains six different temporal relations” [14]
(see TABLE V.).

TABLE V. AMBOSS TEMPORAL RELATIONS

Operator Description
Fixed Sequence Subtasks have to be performed in a

fixed sequence.

Sequence with
arbitrary order

Subtasks can be performed in any
order.

Parallel Subtask can be started and stopped
independently.

Simultaneous “All subtasks have to start before any
subtask may stop.” [14]

Alternative “Exactly one subtask is performed.”
[14]

Atomic This task has no further subtasks.

f) Optionality

AMBOSS allows a temporal relationship called “ALT”
(for alternative), which means that exactly one subtask is
being performed. There exist different temporal relationships
for defining, which tasks can or must run parallel or separate.
It therefore supports optionality.

g) Cardinality

There are no language elements to define how many
times a task has to be executed.

h) Conditions

AMBOSS supports “two different types of preconditions.
Message preconditions” [14] and barriers. There seems to be
no support for postconditions or invariants. Conditions are
therefore rated as medium.

C. Integratability of AMBOSS

The AMBOSS environment provides an API for linking
other analysis tools to it. It also uses a XML-based storage
format. While a plug-in mechanism allows extension of
AMBOSS with new functionality, the storage format is not
standardized, resulting only in a medium integratability.

D. Communicatability of AMBOSS

The language features the refinement of tasks into
subtasks as well as temporal operators. Task models are
created and viewed using the AMBOSS environment, which
is a graphical application based on the Eclipse Rich Client
Platform [50]. Besides creation and viewing, the
environment allows simulation and validation of models.
Communicability can therefore be set to High.

396

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Editability of AMBOSS

The AMBOSS environment [49] allows tree-based and
free-form editing. Nodes can be placed on arbitrary positions
and connected later.

AMBOSS implements structural constraints that check
for design errors (e.g. cycles). The integrated simulator
allows testing and evaluating AMBOSS task models.

While the focus of the simulation is the checking of
safety-criticality of a given task model, it can be used to
generally simulate the temporal behavior of the modeled
tasks.

The editability has therefore been rated as High.

F. Adaptability of AMBOSS

The focus of AMBOSS is the safety-criticality of
systems. Other than that, there is no specific domain for this
language and it is therefore adaptable for different platforms
and modalities. Therefore the Adaptability is set to high.

G. Extensibility of AMBOSS

Since the AMBOSS approach is tightly integrated with
the AMBOSS modeling environment, extensions of the
model require also adapting the environment, which requires
investing development effort. Therefore the Extensibility has
to be set to low.

H. Computability of AMBOSS

AMBOSS imports and exports are files in a custom, but
XML-based format. Therefore, tools can be created that
parse or convert the format, but since the format is not
standardized, it might change in future versions. The
computability can therefore be set to Medium.

I. Summary of the evaluation of AMBOSS

Based on the subcriterion of mightiness, it can be rated as
high. While the cardinality can be an important factor (and a
possible improvement for AMBOSS), the other subcriteria
support this rating.

TABLE VI. CRITERIA AND VALUES OF AMBOSS

Criterion Values

1. Mightiness

a. Granularity
b. Hierarchy

c. User and System task

d. Degree of formalization
e. Temporal operators

f. Optionality

g. Cardinality
h. Conditions

High

High
High

Yes

High
Yes

Yes

No

Medium

2. Integratability Medium

3. Communicability High

4. Editability High

5. Adaptability High

6. Extensibility Low

7. Computability Medium

Figure 8: Results of the evaluation of AMBOSS

VI. CONCLUSION AND OUTLOOK

In this paper, a taxonomy for task models has been
proposed to simplify the selection of the most suitable task
model for projects employing model-based development
processes for user interfaces.

Furthermore, to show the feasibility of the task model
taxonomy, it has been applied to the task model notations
useML 1.0, CTT and AMBOSS.

The application of the taxonomy on useML 1.0 showed
the need for enhancing useML 1.0 semantically, while the
specific strengths and weaknesses of CTT [31] and
AMBOSS [14] as shown in the analysis can be used to
improve task models that lack these strengths. The analysis
further showed a general inverse correlation between
editability and extensibility.

Based on the evaluations, the existing models should be
extended to provide the properties that they currently lack.
Also, the criteria should be evaluated in the context of
model-based user interface development projects to refine
their individual importance and impact on the modeling of
tasks.

Figure 7: Detail screenshot of the AMBOSS environment

397

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] S. Balbo, N. Ozkan, and C. Paris, “Choosing the right task modelling
notation: A Taxonomy” in the Handbook of Task Analysis for
Human-Computer Interaction, D. Diaper and N. Stanton, Eds.,
Lawrence Erlbaum Associates, pp. 445–466, 2003.

[2] M. Baron and P. Girard, “SUIDT: A task model based GUI-Builder”,
Proc. of the 1st International Workshop on Task Models and Diagrams
for User Interface Design, 2002.

[3] M. Biere, B. Bomsdorf, and G. Szwillus, „Specification and
Simulation of Task Models with VTMB”, Proc. of the 17th Annual
CHI Conference on Human Factors in Computing Systems, ACM
Press, New York, pp. 1–2, 1999.

[4] B. Bomsdorf and G. Szwillus, “From task to dialogue: Task based
user interface design”, SIGCHI Bulletin, vol. 30, nr. 4, pp. 40–42,
1998.

[5] K. Breiner, O. Maschino, D. Görlich, G. Meixner, and D. Zühlke,
“Run-Time Adaptation of a Universal User Interface for Ambient
Intelligent Production Environments”, Proc. of the 13th International
Conference on Human-Computer Interaction (HCII) 2009, LNCS
5613, pp. 663–672, 2009.

[6] P. Brun and M. Beaudouin-Lafon, “A taxonomy and evaluation of
formalism for the specification of interactive systems”, Proc. of the
Conference on People and Computers, 1995.

[7] G. Calvary, J. Coutaz, J., and D. Thevenin, “A Unifying Reference
Framework for the Development of Plastic User Interfaces”, Proc. of
the Eng. Human-Computer-Interaction Conference, pp. 173-191,
2001.

[8] S. K. Card, T. P. Moran, and A. Newell, “The psychology of human-
computer interaction”, Lawrence Erlbaum Associates, 1983.

[9] J. Carroll, “The Nurnberg Funnel: Designing Mini-malist Instruction
for Practical Computer Skill”, MIT Press, 1990.

[10] L. Constantine and L. Lockwood, “Software for Use:
A Practical Guide to the Models and Methods of Usage-Centered
Design”. Addison-Wesley, 1999.

[11] A. Dittmar, “More precise descriptions of temporal relations within
task models”, Proc. of the 7th International Workshop on Interactive
Systems: Design, Specification and Verification, pp. 151–168, 2000.

[12] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, ”Human-Computer
Interaction, 3rd ed., Prentice Hall, 2003.

[13] C. Girault and R. Valk, “Petri Nets for Systems Engineering”,
Springer, 2003.

[14] M. Giese, T. Mistrzyk, A. Pfau, G. Szwillus, and M. Detten,
„AMBOSS: A Task Modeling Approach for Safety-Critical
Systems”, Proc. of the 2nd Conference on Human-Centered Software
Engineering and 7th international Workshop on Task Models and
Diagrams, Pisa, Italy, pp. 98–109, 2008.

[15] ISO/IS 8807: LOTOS – A Formal Description Based on Temporal
Ordering of Observational Behaviour

[16] X. Lacaze and P. Palanque, “Comprehensive Handling of Temporal
Issues in Task Models: What is needed and How to Support it?”,
Proc. of the 22th Annual CHI Conference on Human Factors in
Computing Systems, 2004.

[17] Q. Limbourg, C. Pribeanu, and J. Vanderdonckt, “Towards
Uniformed Task Models in a Model-Based Approach”, Proc. of the
8th International Workshop on Interactive Systems: Design,
Specification and Verification, pp. 164–182, 2001.

[18] K. Luyten, “Dynamic User Interface Generation for Mobile and
Embedded Systems with Model-Based User Interface Development”,
PhD thesis, Transnationale Universiteit Limburg, 2004.

[19] G. Meixner, N. Thiels, and U. Klein, “SmartTransplantation –
Allogeneic Stem Cell Transplantation as a Model for a Medical
Expert System”, Proc. of Usability & HCI for Medicine and Health
Care, Graz, Austria, pp. 306–317, 2007.

[20] G. Meixner, D. Görlich, K. Breiner, H. Hußmann, A. Pleuß, S. Sauer,
and J. Van den Bergh, “4th International Workshop on Model Driven

Development of Advanced User Interfaces”, CEUR Workshop
Proceedings, Vol-439, 2009.

[21] G. Meixner, “Model-based Useware Engineering”, W3C Workshop
on Future Standards for Model-Based User Interfaces, Rome, Italy,
2010.

[22] G. Meixner, M. Seissler, “Selecting the Right Task Model for Model-
based User Interface Development”, Proc. of the 4th International
Conference on Advances in Computer-Human Interactions, pp. 5–11,
2011.

[23] T. Mistrzyk and G. Szwillus: Modellierung sicherheitskritischer
Kommunikation in Aufgabenmodellen, i-com, vol. 7, nr. 1, pp. 39–
42, 2008.

[24] G. Mori, F. Paternó , and C. Santoro: CTTE: Support for Developing
and Analyzing Task Models for Interactive System Design, IEEE
Transactions on Software Engineering, vol. 28, nr. 8, pp. 797–813,
2002.

[25] K. S. Mukasa and A. Reuther, “The Useware Markup Language
(useML) - Development of User-Centered Interface Using XML”,
Proc. Of the 9th IFAC Symposium on Analysis, Design and
Evaluation of Human-Machine-Systems, Atlanta, USA, 2004.

[26] B. Myers, “A brief history of human-computer interaction
technology”, interactions, vol. 5, nr. 2, pp. 44–54, 1998.

[27] H. Oberquelle, “Useware Design and Evolution: Bridging Social
Thinking and Software Construction”, in Social Thinking – Software
Practice, Y. Dittrich, C. Floyd, and R. Klischewski Eds., MIT-Press,
Cambridge, London, pp. 391–408, 2002.

[28] N. Ozkan, C. Paris, and S. Balbo, “Understanding a Task Model: An
Experiment”, Proc. of HCI on People and Computers, pp. 123–137,
1998.

[29] P. Palanque, R. Bastide, and V. Sengès, “Validating interactive
system design through the verification of formal task and system
models”, Proc. of the IFIP Working Conference on Engineering for
Human-Computer Interaction, pp. 189–212, 1995.

[30] F. Paternò, “Model-based design and evaluation of interactive
applications”, Springer, 1999.

[31] F. Paternò, “ConcurTaskTrees: An Engineered Notation for Task
Models” in the Handbook of Task Analysis for Human-Computer
Interaction, D. Diaper and N. Stanton, Eds., Lawrence Erlbaum
Associates, pp. 483–501, 2003.

[32] F. Paternò, “Model-based Tools for Pervasive Usability”, Interacting
with Computers, Elsevier, vol. 17, nr. 3, pp. 291–315, 2005.

[33] C. Paris, S. Balbo, and N. Ozkan, “Novel use of task models: Two
case studies”, in Cognitive task analysis, J. M. Schraagen, S. F.
Chipmann and V. L. Shalin, Eds., Lawrence Erlbaum Associates, pp.
261–274, 2000.

[34] C. Paris, S. Lu, and K. Vander Linden, ”Environments for the
Construction and Use of Task Models” in the Handbook of Task
Analysis for Human-Computer Interaction, D. Diaper and N. Stanton,
Eds., Lawrence Erlbaum Associates, pp. 467–482, 2003.

[35] A. Puerta, “A Model-Based Interface Development Environment”,
IEEE Software, vol. 14, nr. 4, pp. 40–47, 1997.

[36] A. Reuther, “useML – systematische Entwicklung von
Maschinenbediensystemen mit XML“, Fortschritt-Berichte pak, nr. 8,
Kaiserslautern, TU Kaiserslautern, PhD thesis, 2003.

[37] D. Scapin and C. Pierret-Golbreich, “Towards a method for task
description: MAD”, Proc. of the Conference on Work with
DisplayUnits, pp. 27–34, 1989.

[38] S. Sebillotte, “Hierarchical planning as a method for task analysis:
The example of office task analysis”, Behavior and Information
Technology, vol. 7, nr. 3, pp. 275–293, 1988.

[39] J. Tarby, “One Goal, Many Tasks, Many Devices: From Abstract
User Task Specification to User Interfaces” in the Handbook of Task
Analysis for Human-Computer Interaction, D. Diaper and N. Stanton,
Eds., Lawrence Erlbaum Associates, pp. 531–550, 2003.

[40] J. Van den Bergh, G. Meixner, K. Breiner, A. Pleuß, S. Sauer, and H.
Hußmann, “5th International Workshop on Model Driven

398

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Development of Advanced User Interfaces”, CEUR Workshop
Proceedings, Vol-617, 2010.

[41] J. Van den Bergh, G. Meixner, and S. Sauer, „MDDAUI 2010
workshop report“, Proc. of the 5th International Workshop on Model
Driven Development of Advanced User Interfaces, 2010.

[42] G. Van der Veer, B. Lenting, and B. Bergevoet: GTA: Groupware
task analysis - modeling complexity. In: Acta Psychologica, Heft 91,
S. 297-322, 1996

[43] M. Van Welie, G. Van der Veer, and A. Eliens, “An ontology for task
world models”, Proc. of the 5th International Workshop on Interactive
Systems: Design, Specification and Verification, pp. 57–70, 1998.

[44] M. Weiser, “The computer for the 21st century”, Scientific American,
vol. 265, nr. 3, pp. 94–104, 1991.

[45] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, „Linking GUI
Elements to Tasks – Supporting an Evolutionary Design Process”,
Proc. of the 4th International Workshop on Task Models and
Diagrams for User Interface Design, pp. 27–34, 2005.

[46] D. Zuehlke and N. Thiels, „Useware engineering: a methodology for
the development of user-friendly interfaces”, Library Hi Tech, vol.
26, nr. 1, pp. 126–140, 2008.

[47] http://giove.isti.cnr.it/ctte.html, Retrieved at January 13, 2012.

[48] http://giove.isti.cnr.it/tools/MARIAE/home, Retrieved at January 13,
2012.

[49] http://mci.cs.uni-paderborn.de/pg/amboss/, Retrieved at January 13,
2012.

[50] http://www.eclipse.org/home/categories/rcp.php, Retrieved at January
13, 2012.

