
68

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Multilingual Ontology Library Generator

for Smart-M3 Information Sharing Platform

Dmitry G. Korzun∗†, Alexandr A. Lomov∗, Pavel I. Vanag∗, Sergey I. Balandin‡, and Jukka Honkola§

∗Department of Computer Science

Petrozavodsk State University – PetrSU

Petrozavodsk, Russia
†Helsinki Institute for Information Technology – HIIT

Aalto University

Helsinki, Finland
‡FRUCT Oy

Helsinki, Finland
§Innorange Oy

Helsinki, Finland

Email: {dkorzun, lomov, vanag}@cs.karelia.ru, sergey.balandin@fruct.org, jukka@innorange.fi

Abstract—Web Ontology Language (OWL) allows struc-
turing smart space content in high-level terms of classes,
relations between them, and their properties. Smart-M3 is an
open-source platform that provides a multi-agent distributed
application with a shared view of dynamic knowledge and
services in ubiquitous computing environments. A Smart-M3
Semantic Information Broker (SIB) maintains its smart space
in low-level terms of triples, based on Resource Description
Framework (RDF). This paper describes SmartSlog, a software
development tool for programming Smart-M3 agents (Knowl-
edge Processors, KPs) that consume/produce smart space
content according with its high-level ontological representation.
SmartSlog applies the code generation approach. Given an
OWL ontology description, SmartSlog produces the ontology
library. The latter provides 1) API to access the smart space
via its SIB and 2) data structures and functions to represent
and maintain locally in KP code all ontology classes, relations,
properties, and individuals. The developer easier constructs
the KP code, thinking in high-level ontology terms instead
of low-level RDF triples. SmartSlog supports generation of
multilingual ontology libraries (ANSI C and C# in the current
implementation). Such libraries are modest to the device
capacity, portable and suitable even for small devices. The
SmartSlog ontology library generation scheme, architecture,
design solutions, and directions for use are the main output of
this paper.

Keywords-Smart spaces; Smart-M3; OWL/RDF ontology; code
generator; knowledge processor; low-performance devices

I. INTRODUCTION

Smart-M3 is an open-source platform for information

sharing [1]–[3]. It provides applications with a smart space

infrastructure to use a shared view of dynamic knowledge

and services in ubiquitous computing environments [4]. Ap-

plications are implemented as distributed agents (knowledge

processors, KPs) running on the various computers, includ-

ing mobile and embedded devices. Shared knowledge is

represented using Resource Description Framework (RDF)

and kept in RDF triple-stores, each is accessible via a

Semantic Information Broker (SIB). The RDF representation

allows semantic reasoning; simple methods are available

on the SIB side, more complex ones are implemented in

dedicated KPs.

A Smart-M3 application consists of several KPs that share

the smart space using the space-based [5] and pub/sub [6]

communication models. The KPs produce (insert, update,

remove) or consume (query, subscribe/unsubscribe) informa-

tion. The Smart Space Access Protocol (SSAP) implements

the SIB ↔ KP communication, using operations with RDF

content as parameters. Each KP understands its subset of

information, usually defined by the KP ontology.

Real-life scenarios often involve a lot of information,

which leads both to largish ontologies and possibly complex

instances that the KPs need to handle. Thus, programming

KPs on the level of SSAP operations and RDF triples bring

unnecessary complexity for the developers, who have to

divert effort for managing triples instead of concentrating on

the application logic. The OWL representation of knowledge

as classes, relations between classes, and properties maps

quite well to object-oriented paradigm in practice (but not so

well in theory). Therefore, it is feasible to map OWL classes

into object-oriented classes and instances of OWL classes

into objects in programming languages. (These objects only

have attributes, but no methods and thus no behavior.) This

approach effectively binds the RDF subgraph describing an

instance of an OWL class (individual) to an object in a

programming language.

SmartSlog is a Smart Space ontology library generator [1],

[7] for Smart-M3. It maps an OWL ontology description to

code (ontology library), abstracting the ontology and smart

space access in KP application logic. As a result, SmartSlog

simplifies constructing KP code compared with the low-level



69

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

RDF-based KP development. The code manipulates with

ontology classes, relations, and individuals using predefined

data structures and library Application Programming Inter-

face (API). The number of domain elements in KP code

is reduced. The API is generic, hence does not depend on

concrete ontology; all ontology entities appear as arguments

in API functions. Search requests to SIB are written com-

pactly by defining only what you know about the object to

find (even if the object has many other properties).

The vision of ubiquitous involves a lot of small devices to

participate in surrounding computing environments. Smart-

Slog targets low-performance devices by producing ontology

libraries in pure ANSI C with minimal dependencies to

system libraries, the property is essential in many embed-

ded systems [8]. SmartSlog takes into account the limited

resources available on small computers such as mobile and

embedded devices. For example, the KP code does not need

to maintain the whole ontology as unused entities can be

removed. Also, RDF triples are not kept indefinitely, and

the local memory is freed immediately after the use. Even

if a high-level ontology entity consists of many triples, its

synchronization with SIB transfers only a selected subset,

saving on communication.

ANSI C programming is too low-level for some classes of

devices. For example, although writing KP in ANSI C for

the Blue&Me platform (Windows mobile for Automotive)

is possible, it is complicated, and some developers prefer

the .NET/C# language for this case. SmartSlog allows mul-

tilingual ontology library generation. The current SmartSlog

implementation supports ontology libraries in ANSI C and

C#, validating our multilingual approach.

The rest of the paper is organized as follows. Section II

provides an introduction to the Smart-M3 platform. Sec-

tion III overviews Smart-M3 KP development tools with

focus on SmartSlog; we describe the ontology library ap-

proach for KP development. In Section IV, we introduce the

ontology library generation scheme designed for SmartSlog.

Example application construction with SmartSlog is shown

in Section VI. Then, Section VII analyzes the problems that

are common for ontology library generators independently

on target programming languages. It includes the issues of

ontology manipulations and code optimization on the KP

side. Section VIII summarizes the paper.

II. SMART-M3 PLATFORM AND ITS NOTION OF

APPLICATION

Smart-M3 is an open-source interoperability platform for

information sharing [2], [3], [9]. “M3” stands for Multide-

vice, Multidomain, and Multivendor. It has been developed

by a consortium of companies and within research projects:

EU Artemis funded Sofia project (Smart Objects for In-

telligent Applications) [10] and Finnish nationally funded

program DIEM (Device Interoperability Ecosystem) [11].

Smart-M3 implements smart space infrastructures for multi-

agent distributed applications following the smart space

concept [12]–[14]; the latter is becoming popular in semantic

computing. In this section we provide an overview of Smart-

M3 platform and its core concepts.

A. Space-based computing

Space-based (or tuplespace) computing has its roots in

parallel and distributed programming. Gelernter [15] de-

fined the generative communication model where common

information is shared in a tuplespace; parallel processes of

a distributed application cooperate by publishing/retrieving

tuples into/from the space. A tuple is an ordered list of typed

fields. Data tuples contain static data. Process tuples repre-

sent processes under execution. This asynchronous (publish-

based) inter-process communication model allows building

programs by gluing together active pieces [5].

Aiming at automated processing in such a giant distributed

system as the World Wide Web, Berners-Lee [16] introduced

the Semantic Web. Its content is described in a structured

manner, where ontologies become the basic building block.

Fensel [17] brought the idea of triple space computing as

communication and coordination paradigm based on the

convergence of space-based computing and the Semantic

Web. Triple space computing inherits the publication-based

communication model from the tuplespace communication

model and extends it with semantics: tuples are RDF triples

(subject, predicate, object). They in turn are composed

to RDF graphs with subjects and objects as nodes and

predicates as edges. Hence, semantic-aware queries to the

space are possible, utilizing matching algorithms [18] and

semantic query languages like SPARQL [19].

In fact, the triple space computing paradigm states a

scalable semantic infrastructure for web applications; it

enables integration, communication, and coordination of

many autonomous, distributed, and heterogeneous web ser-

vice providers and consumers. Information stored in the

same space can be further processed, providing deduced

knowledge that otherwise cannot be available from a single

source [5]. Semantic web spaces [20] apply this possibility

for a new coordination model: a participant can infer new

facts as a reaction to knowledge that has been published by

others. Semantic web spaces extends tuplespaces: tuples are

RDF triples and matching uses RDF Schema reasoning.

Conceptual Spaces (CSpaces) [21] extends triple space

computing to be applicable in different scenarios apart from

web services. An important set of scenarios is due to the

ubiquitous computing vision, i.e. when computers seam-

lessly integrate into human lives and applications provide

right services anywhere and anytime [22]. One of the key

features of CSpaces is a composition of the tuplespace

publish-based model with the publish/subscribe model from

the pub/sub communication paradigm (e.g., see [6]). Trans-

action support is included to guarantee the successful exe-



70

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cution of a group of operations. This advanced coordination

model provides flow decoupling from the client side [6], in

addition to time and space decoupling already available in

the tuplespace coordination model.

B. Smart spaces and Smart-M3 infrastructure

Smart spaces constitute a smart environment, which is

“able to acquire and apply knowledge about its environment

and to adapt to its inhabitants in order to improve their

experience in that environment” [12]. In accordance with

the ubiquitous computing vision, smart spaces encompass

the following information spaces: (i) physical spaces with

sensing devices such as homes or cars, (ii) service spaces

with information retrieval and processing such as Inter-

net services or surrounding services in tourist place, and

(iii) user spaces with personal information such as user

profiles or address books. The information is dynamically

shared by multiple heterogeneous participants (humans and

machines), allowing each user to interact continuously with

the surrounding environment, and the services continuously

adapt to the current needs of the user [14].

Smart spaces require a software infrastructure that turns

the constituting spaces into programmable distributed en-

tities. Smart-M3 provides such an infrastructure to use a

shared view of dynamic knowledge and services within

a distributed application. Although several studies have

showed the convenience of the space-based approach for

ubiquitous and pervasive computing environments and even

for Internet of Things [23]–[25], to the best of our knowl-

edge the Smart-M3 platform is the only general-purpose

open-source platform available recently.

In addition to the normal range of personal computers

and embedded devices, mobile devices with various means

of connectivity become the primary gateway to the service

space and the major storage point in the user space [13],

[14]. Smart-M3 follows the space-agent approach. Each

device, service, or storage point is programmable as an

agent. In this multidevice system, agents place, share, and

manipulate with local and global information using their own

locally agreed semantics [13].

Information sharing in Smart-M3 is based on the space-

based models using the same mechanisms as in the Semantic

Web, thus allowing multidomain applications, where the

RDF representation allows easy exchange and linking of

data between different ontologies, making cross-domain

interoperability straightforward [26]. Smart-M3 currently

supports only limited reasoning, e.g., queries with subclass

relations; see [27] for more details and possible extensions.

The security issues of information sharing in Smart-M3 can

be found in [28]–[30].

The basic architecture of Smart-M3 space infrastructure

is illustrated in Figure 1. Its core component is semantic

information broker (SIB)—an access point to the smart

space. Each SIB maintains a part of information represented

Figure 1. Smart spaces form a publish/subscribe system in a ubiquitous
environment: KPs run on various types of computers and devices, the dis-
tributed knowledge store supports reasoning over cross-domain information

as an RDF triplestore. It provides simple reasoning, e.g.,

understanding the owl:sameAs concept. The current Smart-

M3 implementation supports WilburQL as a basic query

language; migration to SPARQL is in progress. Note that

WilburQL was originally conceived as Nokia Research

Center’s toolkit (Helsinki, Finland) for applications that use

RDF, written in Common Lisp; the new Python-based toolkit

(Piglet) is partially open-sourced as a part of Smart-M3.

A device participates in the space using a software

agent—knowledge processor (KP). A KP connects a SIB

over some network and can modify and query the infor-

mation by insert, remove, update, query, and (un)subscribe

operations using the smart space access protocol (SSAP).

Each SIB provides many network connectivity mechanisms

(e.g., HTTP, plain TCP/IP, NoTA, Bluetooth), yielding

multivendor device interoperability. Accessing the space is

session-based with join and leave operations, thus providing

the base for mechanisms of access control and secure

information sharing.

From the KP point of view the information in the space

constitutes an RDF graph, usually according to some OWL

ontology. The use of any specific ontology is not mandated,

and a group of KPs can locally agreed which ontology to use

for interpreting a certain part of the space. The consistency

of stored information is not guaranteed. KPs are free to

interpret the information in whatever way they want.

When several SIBs make up a smart space the SIB

network follows a protocol with distributed deductive clo-

sure [31]. Hence any KP sees the same information content

regardless the SIB it connects to. The current implementa-

tion supports the simplest case with one SIB only.



71

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Smart-M3 applications

A Smart-M3 application can be considered a composition

of possible scenarios enabled by a certain group of KPs.

Execution of the composition targets the current needs of

the user. For instance, an email application consists of the

following scenarios [26]: sending, receiving, composing,

and reading email. Each scenario can be implemented by

a dedicated KP. The same KP can be used in different

applications. For instance, a KP for composing email can

be a part of application for browsing social networks.

From this point of view, the basic principle is that the user

has a collection of KPs. They are capable to execute certain

scenarios. If the given collection does not support a needed

scenario, additional KPs should be found. Each KP should

understand its own, non-exclusive set of information. The set

is typically described with the ontology of the KP, at least

implicitly. Overlap of the sets of different KPs is needed for

interoperability; the KPs can see each other actions.

An application is constructed as ad-hoc assembly of KPs.

Each scenario emerges from the observable actions taken

by KPs based on smart space content or from the use

of available services. Some scenarios can be transient: the

execution is changed as the participating KPs join and leave

the smart space as well as some services become available

or unavailable.

The aim of this Smart-M3 approach is at the ease of

combining multiple scenarios into various applications. The

key point is the loose coupling between the participating

KPs. They use the space-based and pub/sub communication

models modifying and querying the information in the com-

mon smart space. Thus, the effect of any KP participation to

others is limited by to the information the KP provides into

the space. Note that Smart-M3 does not prevent direct con-

tacts between KPs, thus some actions can be activated based

on traditional inter-process communication models. Adding

elements of this traditional approach, however, impedes the

easy use of affected KPs in other applications, reducing the

benefit from Smart-M3.

Concrete examples of Smart-M3 applications include con-

text gathering in meetings [32], organization of conferences

and meetings [33], [34], smart home [35], gaming, wellness

and music mashup [26], social networks [36], and semantic

multi-blogging [37].

III. SMART-M3 ONTOLOGY LIBRARIES AND RELATED

WORK

Existing Smart-M3 KP development tools are language-

specific and platform-dependent. Many of them are oriented

to the RDF representation of information, thus complicating

the KP code compared with the OWL representation. In

this section we overview available tools and motivate the

ontology library approach for Smart-M3 applications. The

approach is implemented in SmartSlog with possibility to

write KPs in different languages and for different platforms.

The developers of KP application logic use a KP In-

terface (KPI) to access information in the smart space.

The content conform the ontological description. Low-level

access requires the user code to operate with RDF triples

(directly following the SSAP operations with triples as basic

exchange elements). In contrast, high-level KP development

is based on an ontology library. It allows the user code to be

written using high-level ontology entities (classes, relations,

individuals); they implemented in the code with predefined

data structures and methods. Table I shows available low-

level KPIs and ontology library generators for several pop-

ular programming languages.

An ontology library simplifies constructing KP application

logic providing the developer a programming language view

to the concepts of the given ontology. The number of domain

elements is reduced since an ontology entity consists of

many triples. The library API is generic: its syntax does

not depend on a particular ontology, ontology-related names

do not appear in names of API methods, and ontology

entities are used only as arguments. For example, creating

an individual of lady Aino Peterson can be written in C as

individual_t *aino

= new_individual(CLASS_WOMAN);

set_property(aino, PROPERTY_LNAME, "Peterson");

Figure 2 shows the SmartSlog ontology library structure.

It consists of two parts: ontology-independent and ontology-

dependent. The former is the same for any KP and im-

plements generic API to access knowledge in the smart

space. The latter is produced by SmartSlog CodeGen by a

given OWL description (provided by the KP developer) and

implements data structures for particular ontology entities.

The library internally performs OWL-RDF transformations

and calls a low-level KPI for data exchange with SIB.

In particular, the current SmartSlog implementation uses

KPI Low, both for ANSI C and C# ontology libraries. If

the low-level KPI is in a different language then a kind of

wrappers can be used for corresponding calls. For instance,

SmartSlog utilizes wrappers to implement a C# ontology

library since it uses KPI Low written in C.

Templates

Ontology
OWL

Developer

Application logic

Dependent part

Independent part

Ontology library

Knowledge processor

KPI_Low

Wrapper

SmartSlog

CodeGen

Figure 2. The SmartSlog ontology library architecture: ontology-dependent
and ontology-independent parts



72

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
KP INTERFACES TO SMART-M3 SMART SPACE

Library Description
Low-level KP programming: RDF triples

Whiteboard,
Whiteboard-Qt + QML

Language: C/Glib, C/Dbus, C++/Qt. Network: TCP/IP, NoTA. BSD license. A part of the Smart-M3 distribution,
http://sourceforge.net/projects/smart-m3/

KPI Low Language: ANSI C. Network: TCP/IP, NoTA. GPLv2. Primarily oriented to low-performance devices. VTT-Oulu
Technical Research Centre (Finland), http://sourceforge.net/projects/kpilow/

Smart-M3 Java KPI library Language: Java. Network: TCP/IP. University of Bologna (Italy) and VTT-Oulu Technical Research Centre (Finland),
http://sourceforge.net/projects/smartm3-javakpi/

M3-Python KPI (m3 kp) Language: Python. Network: TCP/IP. BSD license. A part of the Smart-M3 distribution, http://sourceforge.net/projects/
smart-m3/

Smart-M3 PHP KPI library Language: PHP. Network: TCP/IP. University of Bologna (Italy), http://sourceforge.net/projects/sm3-php-kpi-lib/

C# KPI library Language: C#. Network: TCP/IP. University of Bologna (Italy), http://sourceforge.net/projects/m3-csharp-kpi/

High-level KP programming: OWL ontology
Smart-M3 ontology to C-API
generator

Language: Glib/C, Dbus/C. Network: TCP/IP, NoTA. BSD license. A part of the Smart-M3 distribution, http:
//sourceforge.net/projects/smart-m3/

Smart-M3 ontology to Python
generator

Language: Python. Network: TCP/IP, NoTA. BSD license. A part of the Smart-M3 distribution, http://sourceforge.net/
projects/smart-m3/

SmartSlog Language: ANSI C, C#. Network: TCP/IP, NoTA. GPLv2. Petrozavodsk State University (Russia), http://sourceforge.
net/projects/smartslog/

This library division into two parts improves development

of Smart-M3 applications. If the ontology changes the

ontology-independent part does not require recompiling; it is

shared by several KPs although they use different ontologies.

Ontology-dependent part can be shared by KPs with the

same ontology. These cases are typical since multiple smart

space applications with different ontologies can run on the

same device as well as multiple KPs form one smart space

application with a common ontology.

The model of code generation is similar for all three on-

tology library generators from Table I. They use a common

Jena-based back-end for analyzing the ontologies. SmartSlog

API and Smart-M3 ontology to C-API share the same core.

In contrast, SmartSlog is more concerned with restrictions

of low-end devices. It keeps dependencies to minimum and

memory usage is predictable and bounded. Furthermore,

SmartSlog is focused on efficiency optimization. For in-

stance, search requests are written compactly by defining

only what is needed for or known about the object to

find in the smart space (even if the object has many other

properties).

Ontology based code generation facilities are also pro-

vided as part of the Sofia ADK [38] for Java-based KPs.

The Sofia ADK is an Eclipse-based toolset for creating smart

space applications. The view towards software developer is

very similar to the SmartSlog, namely providing program-

ming language view to the concepts defined in an ontology.

Similar ideas also exist in the semantic web world, with

projects aiming to provide object-RDF mapping libraries

(in the spirit of object-relational mapping). These libraries

are typically not tied to any ontology and implemented in

interpreted languages, such as RDFAlchemy [39] in Python

or Spira [40] in Ruby. Obviously the approach is very

difficult both to implement and to use in statically typed

compiled languages such as C, while very convenient in

dynamically typed, interpreted languages.

IV. ONTOLOGY LIBRARY GENERATION SCHEME

In this section, we describe the multilingual ontology

library generation scheme used in SmartSlog. Figure 3

shows the scope. We practically approved this scheme im-

plementing the support for generating libraries in ANSI C

and C# programming languages.

The scheme defines two basic steps a KP developer

performs. First, the developer provides a problem domain

specification as an OWL description. The generator inputs

the description and outputs the ontology-dependent part

of the ontology library. The latter is composed with the

ontology-independent part forming the ontology library for

the target language. Second, the developer applies the library

in the KP code by using given data structures and calling

API functions. As a result, the KP logic is implemented in

high-level terms of the specified ontology.

SmartSlog CodeGen is written in Java and implements

generation of the ontology-dependent part of the library. The

following static templates/handlers scheme is used. Code

templates are “pre-code” of data structures that implement

ontology classes and their properties. Each template con-

tains a tag 〈name〉 instead of a proper name (unknown in

advance). A handler transforms one or more templates into

final code replacing tags with the names from the ontology.

Templates and handlers are language-specific.

This scheme belongs to a class of source code genera-

tors [41] where templates define an ontological model for

the generation process and handlers implement template pro-

cessors. The transformation follows the concept of automatic

programming [42]. High-level objects (tags) are transformed

to low-level elements (names in source code) by a set

of logical applicability conditions (handlers). The scheme

applies the horizontal transformation since only names of

data structures and arguments in methods are affected.

SmartSlog CodeGen utilizes Jena toolkit [43] to construct



73

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Smart-M3 ontology library generation scheme.

an RDF ontology graph (Jena meta-model). The graph is

iteratively traversed. When a node is visited its appropriate

handlers are called to transform templates into final code.

Optionally, a KP template (a code skeleton) can be gener-

ated, and the developer can easier start writing her KP.

The ontology-independent part implements API providing

basic data structures/classes (for generic ontology class,

property, and individual) and functions/methods for their

manipulation. Internally it also implements all high-level

ontology entity transformations to low-level RDF triples and

vice versa. Calls to KPI Low is used for communications

with SIB. Since KPI Low is written in C, the C# version

needs a KPI Low wrapper. Note that our scheme permits

other low-level KPI, different from KPI Low.

Based on this scheme, introducing a new language needs

the following appropriate language-specific modules.

• Templates and handlers in the generator.

• Ontology-independent part of the library.

• Interface to the low-level KPI.

V. LIBRARY API

SmartSlog API provides generic API, both for ANSI

C and C# variants of ontology library. Consequently, the

SmartSlog API model covers two important classes of pro-

gramming languages: procedural and object-oriented. In this

section we focus on the API model of the ANSI C version.

The characteristic property of generic API is that names

are independent on a concrete ontology. Classes, proper-

ties, and individuals appear as arguments in API functions.

Datatype and object properties are treated similarly. One of

the main retribution of this generic approach is the perfor-

mance; run-time checking must be done for arguments.

In the ANSI C version, each ontology class, property,

and individual is implemented as a C structure (types

property_t, class_t, and individual_t). The API

has generic functions that handle such data objects regardless

of their real ontology content. Currently supported OWL

constraints are class, datatypeproperty, objectproperty, do-

main, range, and cardinality. For example, a class knows

all its superclasses, OWL one of classes, properties, and

instances (individuals); the implementation is as follows.

typedef struct class_s {

int rtti; /* run-time type information */

char *classtype; /* type of class, name */

list_t *superclasses; /* all superclasses */

list_t *oneof; /* class oneof value */

list_t *properties; /* all properties*/



74

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

list_t *instances; /* all individuals */

} class_t;

API functions are divided into two groups: for manipu-

lating with local objects and for communicating with SIB.

The first group (local) includes functions for

• Classes and individuals: creating data structures and

manipulating with them locally.

• Properties: operations set/get, update, etc. in local store

(also run-time checks for correctness, e.g., cardinality

and property values).

For example, creating individual and setting its properties:

individual_t *aino = new_individual(CLASS_WOMAN);

set_property(aino, PROPERTY_LNAME, "Peterson");

In this example, the definitions of CLASS_WOMAN and

PROPERTY_LNAME are in the library ontology-dependent

part for the ontology shown in Figure 4. (We used GrOwl

tool [44]: classes are in blue rectangles, datatype properties

are in brown ovals, object properties are in blue ovals.)

The second group (to/from smart space) has prefix “ss_”

in function names and allows accessing smart space for

• Individuals: insertion, removal, and update.

• Properties: similarly to the local functions but the data

are to/from smart space (it requires transformation

to/from triples and calling the mediator library).

• Querying for individuals in smart space (existence,

yes/no answer).

• Populating individuals from smart space by query or

by subscription.

For example, inserting an individual and then updating some

of its properties:

ss_insert_individual(aino);

. . .

ss_update_property(aino,

PROPERTY_LNAME, "Ericsson");

Subscription needs more discussion. In advance, a sub-

scription container is created to add those individuals which

to subscribe for. Optionally, the container contains the prop-

erties whose values are interested only. Then KP explicitly

subscribes for selected properties of selected individuals.

Subscription is synchronous or asynchronous. The former

case is simplest; KP is blocked waiting for updates. Even de-

vices without thread support allow synchronous subscription.

The latter case is implemented with a thread that controls

Figure 4. Ontology for humans and their drinks

updates from smart space and assigns them to the containers.

KP is not blocked, and updates come in parallel.

Internally, communication with SIB leads to the compo-

sition/decomposition of high-level ontology entities from/to

RDF triples and calling the low-level KPI for triple-based

data exchange. To the best of our knowledge, SmartSlog is

the only ontology library generator that uses KPI Low as

the low-level mediator KPI (see Table I). Since KPI Low is

oriented to low-performance devices, this design selection

strengthens SmartSlog applicability in application develop-

ment for this class of devices.

Compared with the Smart-M3 ontology to C-API gen-

erator, which provides similar communication primitives,

SmartSlog has the following advantages. The Smart-M3

ontology to C-API generator depends on glib library, e.g.,

using list data structures. Low-performance devices do not

support glib. In contrast, SmartSlog has no such require-

ments for underlying libraries. The Smart-M3 ontology to

C-API generator does not allow asynchronous subscription

important for smart space applications.

SmartSlog generic API is extended with ‘knowledge pat-

terns’ for ontology-based filtering and search. A general

model of a knowledge pattern will be considered later in

Section VII-B; here we illustrate its representation for ANSI

C. Each knowledge pattern is an individual_t structure

and can be thought as an abstract individual where only a

subset of properties is set. A knowledge pattern is either

pattern-mask or pattern-request.

A pattern-mask is for selecting properties of a given a

class or individual. It needs when a subset of properties is

used, and the pattern includes only those properties. Then

this pattern is applied to the given class or individual, e.g. for

modest updating the properties. For example, let us update

only the last name of “Aino” (see the ontology in Figure 4).

pattern_t *aino_p = new_pattern(CLASS_WOMAN, NULL);

add_check_property_pattern(aino_p, PROPERTY_LNAME,

NULL, PATTERN_COND_NO);

ss_update_by_pattern(aino, aino_p);

As a result, only the last name value is transferred to

smart space. Compared with ss_update_property()

the benefit becomes obvious when KP needs to update

several properties at once or it can form the property subset

only in run-time. The same scheme works for population to

transfer data modestly from smart space.

A pattern-request is for compact definition of search

queries to smart space. A pattern is filled with those prop-

erties and values that characterize the individual to find. For

example, let us find all men whose first name is “Timo” and

wife’s first name is “Aino”.

pattern_t *timo_p = new_pattern(CLASS_MAN, NULL);

pattern_t *aino_p = new_pattern(CLASS_WOMAN, NULL);

add_check_property_pattern(timo_p, PROPERTY_FNAME,

"Timo", PATTERN_COND_NO);

add_check_property_pattern(aino_p, PROPERTY_FNAME,



75

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

"Aino", PATTERN_COND_NO);

add_check_property_pattern(timo_p, PROPERTY_HAS_WIFE,

aino_p, PATTERN_COND_NO);

timo_list = ss_get_individuals_by_pattern(timo_p);

In this example, two patterns (“Timo” and “Aino”) and

two properties (datatype “fname” and object “has wife”)

form a subgraph. The SmartSlog library matches the sub-

graph to the smart space content. As a result, a list of

available individuals is returned. Currently, searching leads

to iterative triple exchange and matching on the local side.

In future, it can be implemented on the top of SPARQL on

the SIB side.

VI. USE CASE EXAMPLE

In this section, we show how SmartSlog can be used for

constructing a simple Smart-M3 application in C. In spite of

the simplicity, the example illustrates such SmartSlog fea-

tures as knowledge patterns and subscriptions (synchronous

and asynchronous). Both datatype and object properties are

used.

Let Ericsson’s family consist of Timo (husband) and Aino

(wife). Timo likes drinking beer outside home. Aino has to

control Timo’s drinking via monitoring the amount of beer

he has drunk already. If the amount is exceeding a certain

bound (e.g., MAX_LITRES_VALUE=3) she notifies Timo

by SMS that it’s good time to come back to home.

The ontology for such personal human data was shown

in Figure 4 above. When Timo starts drinking he associates

his object property “drinks” with class “Beer”. Then Timo

keeps his drink counter “number of drinks” in smart space

and regularly updates it. Aino can subscribe to this counter.

For messaging, the family uses the ontology shown in

Figure 5. Aino sends SMS to notify Timo via smart space.

Timo subscribes for SMS and checks each SMS he received

for who sent it (by phone number). Hence Timo recognizes

a notification SMS from his wife.

Given these two ontology files, SmartSlog generator pro-

duces files drinkers.{c, h}. Since the ontology includes

more details than needed for this application, excessive

classes and properties can be disabled in the final code by

compiler preprocessor directives.

The KP code for Timo can be constructed with SmartSlog

using the following scheme.

Figure 5. Ontology for messaging

1. Create Timo, set his properties, and insert the individual

to the smart space.

individual_t *timo = new_individual(CLASS_MAN);

set_property(timo,PROPERTY_FNAME, "Timo");

. . .

ss_insert_individual(timo);

2. Timo keeps his counter in the smart space.

individual_t *beer = new_individual(CLASS_BEER);

ss_set_property(timo, PROPERTY_DRINKS, beer);

3. Timo subscribes to SMS from Aino: creating an in-

dividual for SMS and filling the subscribe container. Then

asynchronous (parameter “true”) subscription starts.

individual_t *sms = new_individual(CLASS_SMS);

add_data_to_list(subscribed_prop_list,

PROPERTY_FROM);

add_data_to_list(subscribed_prop_list,

PROPERTY_TO);

subscription_container_t *container=

new_subscription_container();

add_individual_to_subscribe(container,

sms, subscribed_prop_list);

ss_subscribe_container(container, true);

4. Timo drinks, updates the counter, and checks SMS.

while(sms_notify(sms)) {

amount += drink(timo);

ss_update_property(timo,

PROPERTY_NUMBER_OF_DRINKS, amount);

}

Similarly, the KP code for Aino is constructed as follows.

1. Aino searches Timo in the smart space by pattern.

individual_t *wife = new_individual(CLASS_WOMAN);

set_property(wife, PROPERTY_LNAME, "Ericsson");

set_property(wife, PROPERTY_FNAME, "Aino");

pattern_t *timo_p = new_pattern(CLASS_MAN, NULL);

add_check_property_pattern(timo_p, PROPERTY_FNAME,

"Timo", PATTERN_COND_NO);

add_check_property_pattern(timo_p, PROPERTY_HAS_WIFE,

aino_p, PATTERN_COND_NO);

. . .

list = ss_get_individuals_by_pattern(timo_p);

individual_t *timo = ...;

2. Synchronous (parameter “false”) subscription waits for

Timo is starting to drink.

subscription_container_t *container=

new_subscription_container();

add_individual_to_subscribe(container, timo,

properties);

ss_subscribe_container(container, false)

property_t *drinks = get_property(timo,

PROPERTY_DRINKS);

if (drinks==NULL) wait_subscribe(container);

3. Monitoring Timo’s counter and checking the limit.

Synchronous subscription is similar to the above.

/* Subscribing for Timo’s counter */



76

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

. . .

while(1) {

amount = get_property(timo,

PROPERTY_NUMBER_OF_DRINKS);

if (amount >= MAX_LITRES_VALUE) {

/* Send SMS to Timo */

break;

}

wait_subscribe(container_counter);

}

4. Create an individual for SMS and insert it to the smart

space. Properties “to” and “from” are required.

individual_t *sms=new_individual(CLASS_SMS);

set_property(sms, PROPERTY_TO,

TIMO_PHONE_NUMBER);

set_property(sms, PROPERTY_FROM,

WIFE_PHONE_NUMBER);

ss_insert_individual(sms);

VII. DESIGN FEATURES

The same ontological and optimization methods, which

improves the KP development and code efficiency, can be

applied in the multilingual case. In this section, we discuss

currently implemented features as well as recent design

solutions.

A. Ontology composition

Smart space content can be structured with a set of

different ontologies instead of a single big ontology. Figure 6

shows that in this case the generator produces a common

library for several ontologies.

Figure 6. Ontology composition: a common ontology library.

1) Ontology integration: Integration is either complete or

partial [45]. Complete integration means that the multiple

ontologies are treated as all combined into a single one.

Partial integration means that only some entities (classes,

properties) are taken from each ontology. After integration

the KP can work with knowledge structured in the smart

space with different ontologies.

The KP can cooperate with other KPs even if they access

the smart space differently, e.g., each of them operates with

a disjoint part of the space. Given a set of ontologies, the

generator produces the library that allows KP to manipulates

with entities from the ontologies. All namespaces, entity

names are available in KP application logic and it can

manipulate with several knowledge sets in the smart space

via a single KP. Similarly to the previous SmartSlog design,

the developer can select (or deselect) the ontology entities

she needs (does not need).
2) The same property in different ontologies: Figure 7

shows another scheme for composition of multiple ontolo-

gies. Assume that there is a mapping that defines what prop-

erties are the same in several ontologies of the given set. This

mapping uses additional properties—bridge properties [46].

Values of such a multi-ontology property are stored in all

corresponding parts of the smart space.

Figure 7. Ontology composition: different ontologies refer to the same
property

The same knowledge can be of different types due to

different ontologies. In some cases the type is not important.

For example, titles of books are available in different parts

of the space. In one part the title corresponds to a printed

book. In another part it corresponds to an electronic version

of the same book.

The KP code can use the only active property for ma-

nipulating with all of the same properties. Active property

links all other properties via the bridge property. The latter

duplicates the request to corresponding parts of the smart

space, and KP accesses values of all properties. Furthermore,

bridge property can transform data to common format. For

example, if the property refers to a date then the bridge

property converts the value to the format the KP requires.



77

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. KP controller.

3) KP controller: There are smart applications where

access to the smart space is controlled by a dedicated

KP. Smirnov et al. [33] suggested a KP for resolving the

problem of simultaneous access to the smart space content.

Luukkala and Honkola [27] introduced the same idea for

coordinated access to devices. Korzun et al. [47] employed

a KP mediator for sharing the knowledge between two smart

spaces: smart conference and blogosphere.

KP controller has to know several ontologies, see Figure 8.

It controls ontology entities that are shared by other KPs.

The controller publishes control information to the smart

space and receives information about KP states to decide

further control actions. For example, many devices can

support on–off states. Such a state is described differently

in different ontologies. If the application needs to turn off

several devices, this function can be implemented using a

dedicated KP controller.

B. KP code optimization

SmartSlog cannot optimize its low-level mediator KPI,

since the latter is an external library. Instead, SmartSlog

optimizes local data structures, the (de)composition (to)from

triples, and the way how the low-level mediator KPI is used.

Clearly, these optimizations are also valid for computers with

no hard performance restrictions.

1) Local data structures for OWL ontology entities: Each

ontology entity is implemented as a C structure or a C#

class of constant size. Consequently, for an ontology with N

entities the SmartSlog ontology-dependent part of ontology

library is of size O(N).
In many problem domains, the entire ontology contains a

lot of classes and properties. First, SmartSlog provides pa-

rameters (constants) that limits the number of entities, hence

the developer can directly control the code size. Second, if

the KP logic needs only a subset of the specified ontology,

then SmartSlog allows ontology entity selection/deselection.

Furthermore, if an object in the smart space has many

properties, the KP can keep locally only a part of them. For

example, in Figure 9, the object D is represented locally

only with 3 datatype properties, regardless that D has also

an object property in the smart space.

Note that when KP modifies an object locally the KP

is responsible for timely updates. That is, in Figure 9, the

object B has locally an extra object property compared with

the primary instance of B in the smart space.

2) Local RDF triple repository: The Smart-M3 ontology

C-to-API generator follows the straightforward and expen-

sive strategy: its ontology library requires KP to maintain

locally a cache of the whole smart space content. In contrast,

SmartSlog does not intend to store any RDF triple for long

time. OWL ontology entities are stored in own structures.

When a triple is needed it is created locally or retrieved from

the smart space. Then the local memory is freed immediately

after the use of the triple.

3) Knowledge patterns: They provide a mechanism for

searching and filtering the content: selecting those individu-

als that are of the current interest. To define which individ-

uals the KP logic needs to process the developer constructs

knowledge patterns. Then they are applied in filtering locally

available objects or in searching and retrieving appropriate

objects from the smart space.

A knowledge pattern can be thought as a graph of abstract

ontology objects. Its nodes are objects augmented with

datatype properties. Nodes are linked by object properties.

It is similar to OWL ontology instance graph, but objects

are abstract; they do not represent actual individuals. The

developer specifies only a part of properties available for

such objects in the ontology. For filtering these properties

in the pattern are compared with properties of locally stored

individuals. For searching these properties are used to find

and retrieve individuals from the smart space. This way

reduces the amount of data to keep, process, and transfer,

even if concrete individuals have many properties.

Figure 9 shows an example. Applying the pattern for

filtering with the abstract object A results in the individual

A having been stored locally. Applying the same pattern for

searching with the abstract object D results in the real object

D having been shared in the smart space. In both cases,

an application solves the matching problem for a subgraph

(pattern with abstract objects) to a ontology instance graph

(real objects in the local KP storage or the global smart

space). Note that result can consists of several individuals

that satisfy the pattern.

In fact, a pattern represents a semantic query. Currently

Smart-M3 does not support SPARQL, which can be used

for efficient implementation of the knowledge pattern mech-

anism. SmartSlog implements own algorithms that run on

the KP side. In searching, it leads to transferring a lot of

triples form the smart space with their subsequent iterative



78

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Smart Space
(sib store)

KP
(local objects)

Pattern
(abstract object)

Filtering Searching

DataType

Object

DataType

Object

DataType

ObjectDataType

Object

Object

Object

Object

Object

Object

Object

Object

DataType

DataType

DataType

DataType

DataType

DataType

DataType

DataType DataType

DataType

DataType

DataType

DataType

DataType

DataType

DataType

DataType

DataType

DataType

DataType DataType

DataType

DataType

DataType

DataType

DataType

Object A

Object B

Object C

Object D

Object A

Object B

Object C

Object D

Object A

Object B

Object C

Object D

Figure 9. SmartSlog content representation and knowledge patterns for filtering and searching. Objects are stored globally in the smart space (SIB); KP
caches them partially; knowledge patters allow efficient manipulations with both object stores.

processing.

Knowledge patterns allow defining an object by ontolog-

ical class, UUID, and checked properties (properties that

object should have). For more intelligent characterization,

patterns can be extended to support unchecked properties

(properties that object should not have) and conditional

properties (with relations like ≤,≥,≤,≥).

The possible points of further optimization are the follow-

ing. Optimization of patterns as semantic queries since the

performance of matching algorithms depends on the query

representation [18]. For filtering, the access to properties can

be optimized using hash tables.

4) Synchronization: SmartSlog supports both types of

subscriptions: synchronous and asynchronous. The latter

case requires threading. SmartSlog uses POSIX threads,

available on many embedded systems [8]. Nevertheless,

SmartSlog allows switching the asynchronous subscription

off if the target device has no thread support.

SmartSlog provides direct access both to the smart space

and local content. If many KPs asynchronously change

information in the smart space, the KP is responsible to

keep in the actual state the knowledge that KP is interested

in. Another way for data synchronization is subscription.

Consider the example in Figure 10. Let A be data to

synchronize. After local manipulations A is transformed

to A′ on the local side. In the smart space it is still A.

After the synchronization both sides keep the same A′. Then

A′ is transformed to A′′ on the SIB side (by some other

participants) while A′ remains locally. After synchronization

the same A′′ is on both sides. ∆1 is the period with stale

data in SIB and ∆2 is the period with locally stale data. The

synchronization problem is to minimize these periods.

SmartSlog supports blocking and non-blocking synchro-

nization (synchronous and asynchronous subscription). Both

require setting explicitly the objects to synchronize. In some

cases it can be difficult from the point of view of a KP

programmer. Therefore, KP should track for changing of

objects itself and keep them up to date.

When an object is changed locally then it is marked for

future synchronization. When an object is changed in the

smart space then the KP synchronizes the object in the non-

blocking mode. As a result, the developer uses local objects

assuming that they are always up to date. Since frequent

synchronization leads to the high resource consumption

(network throughput, SIB processing time) there should

be options to control synchronization. For instance, the

developer sets the data importance for better tradeoffs.

Finally, there should be a mechanism for determination

of synchronization time moments. The following parameters

affects this mechanism.

• Memory use: marking changed objects uses additional

memory, synchronize when the memory threshold has

been reached.

• Latest synchronization: synchronize when a time

threshold has been reached after the latest synchroniza-

tion. For instance, if a data item is changed rarely it is

synchronized immediately after its change.

• Network load: if the network is overloaded then the



79

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Synchronization problem. δs are periods of desynchronization.

synchronization rate is reduced;

• Device load: if the device is overloaded then the syn-

chronization rate is reduced.

VIII. CONCLUSION

The addressed area of ontology library generation for

multitude of devices is very important. The realization of

the ubiquitous computing vision will by definition include a

lot of heterogeneous and transiently available devices around

us. Allowing these devices to easily share information with

other devices and architectures, large or small, will be very

important. SmartSlog is a tool that supports easy program-

ming of such devices for participating them in Smart-M3

applications.

This paper contributed the design of SmartSlog with

the advanced scheme of ontology library generation. A

KP developer can choose among several programming lan-

guages for the ontology library. The current implementation

supports ANSI C and C#. The operability was tested on

Linux- and Windows- based platforms, including console

(ANSI C), Qt (C/C++), and .NET (C#) environments.

The KP code is compact due to high-level ontology style.

SmartSlog ontology libraries are portable due to the reduc-

tion of system dependencies. For low-performance devices

the ontology library code follows ANSI C and POSIX stan-

dards. There are mechanisms for making ontology library

code modest and optimizable to device capacity.

The SmartSlog design allows adopting advanced ontolog-

ical and optimization methods. We showed that the ontology

library generation scheme supports multiple ontologies if

KP needs to access different parts of the smart space.

We identified several points in the SmartSlog generation

process where certain performance optimization methods

can be applied for the problems of device CPU/memory

consumption, network load, and data synchronization. Im-

plementation of these ontological and optimization features

as well as its experimental confirmation are topics of our

ongoing research.

ACKNOWLEDGMENT

Authors would like to thank Open Innovations Association

FRUCT for the provided support and R&D infrastructure.

We would also like to thank Iurii Bogoiavlenskii, Vesa

Luukkala, and Ronald Brown for providing feedback and

guidance during the construction of the SmartSlog tool.

REFERENCES

[1] D. Korzun, A. Lomov, P. Vanag, J. Honkola, and S. Balandin,
“Generating modest high-level ontology libraries for Smart-
M3,” in Proc. 4th Int’l Conf. Mobile Ubiquitous Computing,
Systems, Services and Technologies (UBICOMM 2010), Oct.
2010, pp. 103–109.

[2] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-
M3 information sharing platform,” in Proc. IEEE Symp.
Computers and Communications, ser. ISCC ’10. IEEE
Computer Society, Jun. 2010, pp. 1041–1046.

[3] “Smart-M3: Free development software downloads at
SourceForge.net,” Release 0.9.5beta, Dec. 2011. [Online].
Available: http://sourceforge.net/projects/smart-m3/

[4] I. Oliver, “Information spaces as a basis for personalising
the semantic web,” in Proc. 11th Int’l Conf. Enterprise
Information Systems (ICEIS 2009), May 2009, pp. 179–184.

[5] L. J. B. Nixon, E. Simperl, R. Krummenacher, and F. Martin-
recuerda, “Tuplespace-based computing for the semantic web:
A survey of the state-of-the-art,” Knowl. Eng. Rev., vol. 23,
pp. 181–212, Jun. 2008.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec, “The many faces of publish/subscribe,” ACM Comput.
Surv., vol. 35, pp. 114–131, June 2003.

[7] “SmartSlog: free development software downloads
at SourceForge.net,” Dec. 2011. [Online]. Available:
http://sourceforge.net/projects/smartslog/

[8] M. Barr and A. Massa, Programming Embedded Systems:
With C and GNU Development Tools. O’Reilly Media, Inc.,
2006.



80

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] P. Liuha, A. Lappeteläinen, and J.-P. Soininen, “Smart ob-
jects for intelligent applications - first results made open,”
ARTEMIS Magazine, no. 5, pp. 27–29, Oct. 2009.

[10] “SOFIA project – smart objects for intelligent applications,”
Dec. 2011. [Online]. Available: http://www.sofia-project.eu/

[11] “Devices and interoperability ecosystem,” Dec. 2011.
[Online]. Available: http://www.diem.fi/

[12] D. J. Cook and S. K. Das, “How smart are our environments?
an updated look at the state of the art,” Pervasive and Mobile
Computing, vol. 3, no. 2, pp. 53–73, 2007.

[13] I. Oliver and S. Boldyrev, “Operations on spaces of informa-
tion,” in Proc. IEEE Int’l Conf. Semantic Computing (ICSC
’09). IEEE Computer Society, Sep. 2009, pp. 267–274.

[14] S. Balandin and H. Waris, “Key properties in the development
of smart spaces,” in Proc. 5th Int’l Conf. Universal Access in
Human-Computer Interaction. Part II: Intelligent and Ubiq-
uitous Interaction Environments (UAHCI ’09). Springer-
Verlag, 2009, pp. 3–12.

[15] D. Gelernter, “Generative communication in linda,” ACM
Trans. Program. Lang. Syst., vol. 7, pp. 80–112, Jan. 1985.

[16] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic
web,” Scientific American, pp. 34–43, May 2001.

[17] D. Fensel, “Triple-space computing: Semantic web services
based on persistent publication of information,” in Proc. IFIP
Int’l Conf. Intelligence in Communication Systems (INTELL-
COMM 2004), ser. LNCS 3283. Springer, Nov. 2004, pp.
43–53.

[18] J. Euzenat and P. Shvaiko, Ontology matching. Heidelberg
(DE): Springer-Verlag, 2007.

[19] E. Prud’hommeaux and A. Seaborne, “SPARQL query
language for RDF,” W3C Recommendation, Jan. 2008.
[Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[20] L. Nixon, E. P. B. Simperl, O. Antonechko, and R. Tolksdorf,
“Towards semantic tuplespace computing: the semantic web
spaces system,” in Proc. 2007 ACM symp. Applied computing,
ser. SAC ’07. ACM, 2007, pp. 360–365.

[21] F. Martı́n-Recuerda, “Towards Cspaces: A new perspective
for the Semantic Web,” in Proc. 1st IFIP WG12.5 Working
Conf. Industrial Applications of Semantic Web, M. Bramer
and V. Terziyan, Eds., vol. 188. Springer, Aug. 2005, pp.
113–139.

[22] M. Weiser, “The computer for the twenty-first century,”
Scientific American, vol. 265, no. 3, pp. 94–104, 1991.

[23] D. Khushraj, O. Lassila, and T. W. Finin, “sTuples: Semantic
tuple spaces,” in Proc. 1st Annual Int’l Conf. Mobile and
Ubiquitous Systems (MobiQuitous 2004). IEEE Computer
Society, 2004, pp. 268–277.

[24] R. Krummenacher, J. Kopecký, and T. Strang, “Sharing
context information in semantic spaces,” in Proc. OTM 2005
Workshops on the Move to Meaningful Internet Systems 2005,
ser. LNCS 3762. Springer, 2005, pp. 229–232.

[25] A. Gómez-Goiri and D. López-De-Ipiña, “A triple space-
based semantic distributed middleware for internet of things,”
in Proc. 10th Int’l Conf. Current trends in web engineering
(ICWE’10). Springer-Verlag, 2010, pp. 447–458.

[26] J. Honkola, H. Laine, R. Brown, and I. Oliver, “Cross-domain
interoperability: A case study,” in Proc. 9th Int’l Conf. Next
Generation Wired/Wireless Networking (NEW2AN’09) and
2nd Conf. Smart Spaces (ruSMART’09), ser. LNCS 5764.
Springer-Verlag, 2009, pp. 22–31.

[27] V. Luukkala and J. Honkola, “Integration of an an-
swer set engine to smart-m3,” in Proc. 3rd Conf. Smart
Spaces (ruSMART’10) and 10th Int’l Conf. Next Generation
Wired/Wireless Networking (NEW2AN’10). Springer-Verlag,
2010, pp. 92–101.

[28] J. Suomalainen, P. Hyttinen, and P. Tarvainen, “Secure infor-
mation sharing between heterogeneous embedded devices,” in
Proc. 4th European Conf. Software Architecture (ECSA ’10):
Companion Volume. ACM, 2010, pp. 205–212.

[29] A. Koren and A. Buntakov, “Access control in personal
localized semantic information spaces,” in Proc. 3rd Conf.
Smart Spaces (ruSMART’10) and 10th Int’l Conf. Next
Generation Wired/Wireless Networking (NEW2AN’10), ser.
ruSMART/NEW2AN’10. Springer-Verlag, 2010, pp. 84–91.

[30] A. D’Elia, D. Manzaroli, J. Honkola, and T. S. Cinotti,
“Access control at triple level: Specification and enforcement
of a simple RDF model to support concurrent applications in
smart environments,” in Proc. 11th Int’l Conf. Next Genera-
tion Wired/Wireless Networking (NEW2AN’11) and 4th Conf.
Smart Spaces (ruSMART’11). Springer-Verlag, 2011.

[31] S. Boldyrev, I. Oliver, and J. Honkola, “A mechanism for
managing and distributing information and queries in a smart
space environment,” UBICC Journal, Jul 2009.

[32] I. Oliver, E. Nuutila, and S. Törmä, “Context gathering
in meetings: Business processes meet the agents and the
semantic web,” in The 4th Int’l Workshop on Technologies for
Context-Aware Business Process Management (TCoB 2009)
within Proc. Joint Workshop on Advanced Technologies and
Techniques for Enterprise Information Systems. INSTICC
Press, May 2009.

[33] A. Smirnov, A. Kashnevik, N. Shilov, I. Oliver, S. Balandin,
and S. Boldyrev, “Anonymous agent coordination in smart
spaces: State-of-the-art,” in Proc. 9th Int’l Conf. Next Genera-
tion Wired/Wireless Networking (NEW2AN’09) and 2nd Conf.
Smart Spaces (ruSMART’09), ser. LNCS 5764. Springer-
Verlag, 2009, pp. 42–51.

[34] D. Korzun, I. Galov, A. Kashevnik, K. Krinkin, and
Y. Korolev, “Integration of Smart-M3 applications: Blog-
ging in smart conference,” in Proc. 4th Conf. Smart
Spaces (ruSMART’11) and 11th Int’l Conf. Next Generation
Wired/Wireless Networking (NEW2AN’11).

[35] K. Främling, A. Kaustell, I. Oliver, J. Honkola, and J. Nyman,
“Sharing building information with smart-m3,” International
Journal on Advances in Intelligent Systems, vol. 3, no. 3&4,
pp. 347–357, 2010.



81

International Journal on Advances in Intelligent Systems, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/intelligent_systems/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[36] S. Balandin, I. Oliver, and S. Boldyrev, “Distributed architec-
ture of a professional social network on top of M3 smart space
solution made in PCs and mobile devices friendly manner,”
in Proc. 3rd Int’l Conf. Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies (UBICOMM 2009). IEEE
Computer Society, 2009, pp. 318–323.

[37] D. Zaiceva, I. Galov, and D. Korzun, “A blogging application
for smart spaces,” in Proc. 9th Conf. of Open Innovations
Framework Program FRUCT and 1st Regional MeeGo Sum-
mit Russia–Finland, Apr. 2011, pp. 154–163.

[38] J. F. Gómez-Pimpollo and R. Otaolea, “Smart objects for
intelligent applications – ADK,” in Proc. 2010 IEEE Symp.
Visual Languages and Human-Centric Computing (VL/HCC),
Sep 2010, pp. 267–268.

[39] “RDFAlchemy: an ORM (Object RDF Mapper) for semantic
web users,” Dec. 2011. [Online]. Available: http://www.
openvest.com/trac/wiki/RDFAlchemy

[40] B. Lavender, “Spira: A linked data ORM for Ruby,” Dec.
2011. [Online]. Available: http://blog.datagraph.org/2010/05/
spira

[41] K. Czarnecki and U. W. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[42] C. Rich and R. C. Waters, “Approaches to automatic pro-
gramming,” Advances in Computers, vol. 37, pp. 1–57, 1993.

[43] “Jena: Java toolkit for developing semantic web applications
based on W3C recommendations for RDF and OWL,” Dec.
2011. [Online]. Available: http://jena.sourceforge.net/,http:
//incubator.apache.org/jena/

[44] S. Krivov, R. Williams, and F. Villa, “GrOWL: A tool for vi-
sualization and editing of OWL ontologies,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 5,
no. 2, pp. 54–57, 2007.

[45] N. Choi, I.-Y. Song, and H. Han, “A survey on ontology
mapping,” SIGMOD Record, vol. 35, pp. 34–41, Sep. 2006.

[46] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz,
“Ontologies for enterprise knowledge management,” IEEE
Intelligent Systems, vol. 18, pp. 26–33, Mar. 2003.

[47] D. Korzun, I. Galov, A. Kashevnik, K. Krinkin, and Y. Ko-
rolev, “Blogging in the smart conference system,” in Proc.
9th Conf. of Open Innovations Framework Program FRUCT
and 1st Regional MeeGo Summit Russia–Finland, Apr. 2011,
pp. 63–73.


