
457

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

Automated Dependability Planning in Virtualised Information System

Marco D. Aime
m.aime@polito.it

Paolo Carlo Pomi
paolo.pomi@polito.it

Marco Vallini
marco.vallini@polito.it

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, 10149 Torino, Italy

Abstract

Virtualisation technologies widely affect information de-
pendability practices, and suggest novel approaches for de-
pendable system configuration. We analyse how to exploit
these peculiarities within a tool for semi-automated con-
figuration of virtual information systems. We present the
general architecture of the tool, which is the product of
previous work focused on traditional information systems,
and discuss how to update its configuration strategies when
moving to virtual environments. We present the stepwise
process that, starting from the model of the target service,
computes a set of configuration plans that determine which
virtual machines should be deployed, their internal config-
uration, and their intended interactions. Our tool also gen-
erates re-configuration templates to switch between differ-
ent configuration plans in case of dependability problems
or changed requirements. Actually, reaction plans are heav-
ily affected by virtualisation technologies, which permit fast
re-allocation and reconfiguration of virtual machines. We
finally discuss the integration of our process with virtual
machine management systems, in order to perform configu-
ration and re-configuration in fully automated way.

Keywords: automatic system configuration; depend-
ability ontology; virtualization.

1 Introduction

Virtualisation technologies are changing traditional ar-
chitecture in data center environments [8, 17, 26]. They
widely affect the trade-off between costs and benefits of
standard dependability mechanisms and suggest the intro-
duction of novel approaches. In previous work [6] we ad-
dressed the policy-driven, automatic configuration of infor-
mation systems, taking care of dependability requirements
at the business service level. [6] describes process, algo-
rithms, and tools for semi-automatic generation of depend-

ability configurations for information systems not relying
on modern virtualisation technologies. In [7], we have first
analysed how to adapt our approach to virtualised informa-
tion systems. In this paper, we investigate how virtualisa-
tion changes the best practices of dependability planning,
and how we have updated our configuration framework ac-
cordingly. In particular, after a quick reference to virtualisa-
tion concepts, we summarise the relevant background from
previous works in Sec. 2, discuss virtualisation-based de-
pendability configuration strategies in Sec. 3, describe the
configuration generation algorithms implemented by our
tool in Sec. 4, and give guidelines to integrate with virtual
machine management systems in Sec. 5.

The heart of modern virtualisation technologies is the
Virtual Machine Monitor, or hypervisor, that allows mul-
tiple operating system instances to run on the same physical
host. The first technology class is full virtualisation, like
VMware[28], which introduces a layer that traps and emu-
lates all privileged instructions. On the other hand, para vir-
tualisation [9] uses a modified operating system to let vir-
tual machines directly use hardware resources. This tech-
nique introduces lower overhead and best fits data centres.

Hypervisor offers isolation among hosted virtual ma-
chines: if a service running on a guest machine is tampered,
security threats are confined and do not affect the other vir-
tual machines. Virtual machines (VMs) are connected to-
gether by virtual connections, managed by the hypervisor,
with advantages in terms of performance and security [16].
Actually, process and connection isolation assumes the hy-
pervisor as trusted. The set of techniques to achieve trusted
hypervisors, e.g. Trusted Computing [25], are out of the ob-
jectives of this paper.

Hypervisor can also freeze and restore VMs, but the mi-
gration of a VM requires taking a snapshot of all its re-
sources at a given time, sending this snapshot to the destina-
tion hosting device, and rebuilding there the VM from the
snapshot. Although migration is extremely promising for
dependability, migration functions, as currently provided by

1

458

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

the hypervisor, make hard assumptions: source and destina-
tion hosts must share the same hardware architecture; the
source and destination hosts must share the same network
segment; the VM image and virtual storage must be already
available at the destination host. Moreover, management
of failures in the migration process is generally incomplete
[19]. Therefore, safe VM migration requires in practice a
complex process to be carefully planned.

Our process and tools allow minimising the risks of vir-
tual systems by planning hot/cold standbys for critical VMs,
configuring distributed storage, and protecting data transfer
across the system. Starting from service-level models of the
target dependability requirements, our tools generate mul-
tiple configurations featuring different dependability solu-
tions. Configurations may be further selected according to
other constraints (e.g. performance, cost, energy). We in-
stead exploit these alternative configurations to construct
re-configuration templates, intended in terms of switching
between different configurations to react to dependability
problems or changed requirements.

2 Planning Framework

Our framework implements a model-based approach to
progressive policy refinement and configuration generation.
We developed a tool, able to generate set of alternative con-
figurations for complex ICT systems, considering the de-
pendability requirements at business level.

Approaches for automatic configuration were proposed
by [23], using policy refinement techniques widely adopted
also in our work. The author focused his attention on
configuration of devices, but did not consider in detail the
chance to have different deployment plans. Another inter-
esting work on policy refinement is [10] but it is mainly
focused on authentication and authorisation rules.

In [11] authors present an approach very similar to
ours, but limited to J2EE based applications, whereas ours
presents a technology independent solution, in fact, in this
paper we study its application at virtualized environments.
Furthermore, they do not present a clear methodology for
modelling information system nor a classification of the
system components from the dependability point of view.
[22] shows a promising model-driven approach to achieve
security requirements, but it does not consider dependabil-
ity problems. Another interesting project is [12], but is more
concerned on software development rather than on configu-
ration and management of an existing system.

This tool generates an allocation plan, for alternative
hosting of service components, then for every plan gener-
ates the configuration for the devices involved in the host-
ing, in the communication enabling and protection, and the
protection of hosts.

Our approach is based on a system of rules that act on

the ontology representing the system. Add the beginning
the ontology is separated in service and requirements on
one side, and on the other side the hardware and software
able to host and protect the service. Every rule reads the
information from the ontology and adds some information,
reducing the gap among the two side of the ontology. The
rules executed after can use all the information already gen-
erated, since some rules can add the connection between
the two sides. Such approach permits to fully track the au-
tomatic generation process, and insert other rules to exploit
different scenarios or dependability solutions.

More details of the framework are presented in [6]:
we resume here its building blocks as long as this work
is layered upon them. Three steps compose the process:
model construction, configuration generation and configu-
ration ranking. During model construction, we describe the
information system, composed by business services, virtual
machines, physical resources, and dependability require-
ments. We model business services using a profile of W3C’s
Web Service Choreography Description Language [2]. We
consider services as a set of interactions between different
service components, from a choreographic point of view.
This approach handles every business service component
as a black box, and focuses on the role inside the global
business process. To model the virtual infrastructure, we
use the System Description Language [3] based on DMTF’s
CIM[24]. This model is based on a multi-layered graph of
physical and software elements in the network (nodes), and
their structural and logical dependencies (edges). All our
models have an XML serialisation. These models are then
represented as ontology, to be read by the generation pro-
cess.

The configuration generation process produces a set of
alternative virtual network topologies (composed by vir-
tual machines and virtual networks) driven by templates
plus corresponding per-device abstract configurations. Ev-
ery configuration provides the business services with vary-
ing degrees of compliance with the given dependability con-
straints. We perform two main refinement steps in cascade:
(1) generate the virtual machines to host and protect the
business service components, considering the required ca-
pabilities; (2) permit and protect interactions among service
components, generating an abstract configuration for every
involved network node (e.g. firewalls, load balancers). The
tool is designed as an ontology-based model transformation
engine. Transformation rules are written using XSL and ex-
ecuted by a standard XSL engine. This technological choice
has been taken because XSL allows writing rules using set
operation discouraging the usage of internal models: since
its support to procedural programming approach is minimal.
In this manner, rules are naturally forced to be simple and
have to exploit ontology models as intermediate data repos-
itory, by adding artifacts instance to be used by the rule ex-

2

459

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

ecuted after. Finally, the integration that we did within an
XML database permits a distributed approach with few ef-
forts. The engine retrieves the model processed by the pre-
vious steps from the XML database and executes the set of
transformations for the current level extending the internal
model. In this paper, we analyse the main changes required
to make the configuration rules virtualisation aware.

3 Dependability Techniques in virtualisation
environment

3.1 Service provisioning

This section describes how virtualisation technology im-
pacts the dependability techniques used for configuring
servers and technical services to maintain business service
continuity.

Our tool originally computed allocation of services on
physical machines. When migrating to the virtualisation
world, we calculate the allocation of virtual machines while
considering the security requirements determined by the
hosted services. In other words, the maximum of the hosted
service for every dependability requirements is considered,
in order to guarantee the correct level of support for all
them. This choice must consider that, for example, inter-
nal resources are scarce (few machines available) and less
efficient (provider is supposed to have a better connection
to the Internet), but grant higher trust levels. Outsourcing
VMs instead of services implies that the configuration of
VMs’ internals is not delegated to the hosting provider. Our
tool computes such configurations, allowing stronger con-
trol on the system.

Depending on the service allocated, we classify VMs
in two classes: working machines, performing operations
on external data (e.g. application servers), and storing ma-
chines, saving data on their own disk images e.g. DBMS. In
accordance to this classification, the configurations also de-
scribe whether each VM should be spawned in ’persistent’
(their disk images are modified) or ’non-persistent’ mode
(when we shut down and restart the VM all the modification
on disk images are lost). As detailed in the next sections,
this approach reduces the impact in case of vulnerability,
and helps in backup strategies.

Service isolation and packaging The configuration rules
first isolate different classes of services to limit fault prop-
agation, including exploitation of vulnerabilities. In tradi-
tional systems, isolation implies different servers, generat-
ing big additional costs. When our tool produces plans for
virtual environment, it enforces isolation more aggressively
due to reduced costs of VMs. Nevertheless, it considers the
different strength between such logical isolation and a tra-
ditional physical isolation.

Splitting a service onto different machines allows min-
imising permissions. Imagine to have two services differen-
tiated either by roles (one for restricted users, one for pub-
lic), permissions (one just reading some contents, the other
modifying them), or resources (one accessing the stock, the
other using customer data). With no alternative allocation,
we must expose both services to each other, delegate isola-
tion to the operating system, and increase risks of violations
of the more restricted service. In similar cases, our tool
spawns two different machines: a machine accessible from
the public, the other implementing session-level access con-
trol (TLS or VPN); a machine accessing read-only data, the
other with read-write access to data. Similarly, imagine al-
locating two web applications on the only available Apache
web server, one requiring a module that presents a well-
known vulnerability. Our tool generates two different VMs,
each one with the proper set of software dependencies.

In traditional systems, our tool considers service isola-
tion costly from the communication performance point of
view, due to the additional network interactions. When
adopting VMs, the tool decreases this cost, since the in-
teractions between VMs on the same physical device are
generally faster than network communications. Naturally,
to exploit this feature our tool calculates the VM groups, in
order to minimise the communication delay w.r.t the busi-
ness service model. As result, typically, these groups collect
service components belonging to the same business service
[13].

Some services reside on isolated hosts by design (e.g. ,
firewalls of different brands, front-ends and application
servers). Our planner seeks server consolidation, imple-
menting them as different VMs on the same physical ma-
chine, to speed up network communications, while preserv-
ing most of the security advantages deriving from isolation.

Virtual machine replication Replication of resources,
typically with the aid of a central manager (e.g. load bal-
ancer), is a pillar of dependable configuration. Our plan-
ning tool exploits the chance to spawn dynamically virtual
machines to implement countermeasures and mitigations
to problems like vulnerability exploitations, denial of ser-
vice attacks, failures and QoS degradation due to misuse or
spikes in demand.

Menaces deriving from possible vulnerabilities are quite
common in information systems. Typically, there are three
different approaches to such problems: change the soft-
ware implementation with an immune one, apply a security
patch, or take the risk of a possible exploitation. We model
software packages with their dependences and we can tag
whether a software package is vulnerable or not. Thanks to
this model, the planner mitigates the impact of vulnerabil-
ities affecting service availability exploiting “diversity im-
plementation” concepts [18]. In other words, our tools plan

3

460

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

a replication of critical service components, using differ-
ent operating systems, with different software implementa-
tions, and subject to different vulnerabilities. Since in many
cases the vulnerability affects a library imported and not di-
rectly the software package, this approach is effective when
the two implementations do not share any library. Actually,
this approach is most effective when service availability is
crucial, but problematic for confidentiality requirements. In
fact, the chance to get confidential data increases, due to
the possibility that at least one replica has unknown vul-
nerabilities. In this case, the planner considers a solution
based on cold/hot standby as more effective: the spare sys-
tem with the alternative implementation is exposed only in
case the standard one has become vulnerable. In particu-
lar, the tool prescribes the storage of disk images of VMs
with alternative implementations (e.g. a Linux firewall and
an OpenBSD one, a Linux web server and a Windows one).

Data management In a standard system, DBMS servers
provide persistent data services to applications. In virtual
environment, our tool determines at configuration time how
many DBMS virtual machines are needed and why. In fact,
since our models manage also the nature of the data of the
applications, our tool plans to spawn different DBMS in-
stances and split data belonging to different applications.
This isolation allows enforcing access control also at net-
work level by selectively authorising service component in-
teractions. For example, we can suppose that applications
X and Y need two different data sets, L and K. Instead of
allowing X and Y to communicate with the same DBMS
(that contains L and K), our tools spawn two different
DBMS, hosting L and K respectively. Our tool will then
compute the network configuration rules allowing interac-
tions X < − > L and Y < − > K (see 3.2). This
’defence in depth’ mechanism can be expensive, but, if cor-
rectly balanced (e.g. right grouping of data applications),
impacts positively on the overall system security.

Unfortunately, virtual machine technologies do not solve
the problem of data loss. On the contrary, due to increased
data splitting, we need to perform more backup operations.
For this problem, our planning tool exploits the same ap-
proach of non-virtual environment. It assumes the use of
separated or external file systems (e.g. NFS, SAN), stor-
ing data in dependable way (e.g. RAID), and performing
replication/backup services. We classify virtual machines
in working machines (e.g. application servers, web servers)
that offer an execution environment and operate on remote
data, and storage machines that use their disk image as per-
manent storage (e.g. DBMS, file servers). We spawn only
the storage virtual machines in persistent mode, whereas
working machines are spawned in non persistent mode.
Therefore, the planner applies backup services only for stor-
age virtual machines, spawned in persistent mode. When

critical information is not easily separable from the other, it
is less expensive than a full backup.

3.2 Enabling and protecting communica-
tions

For authorising service interactions in non-virtualised
environment, we base on network topology and equipment
capabilities; e.g. we look for packet filters placed between
two interacting applications and select appropriate filtering
rules to permit their traffic. Virtualisation adds more flexi-
bility in redesigning network topology (at least internally to
physical hosts), and in spawning capabilities where needed
(e.g. displace a virtual firewall in front of a service). A ba-
sic security advantage of virtualisation is ameliorating ser-
vice interaction protection in respect of traditional local net-
works. Integrity and confidentiality of internal traffic are of-
ten neglected and, as a result, the local network is exposed
to several security risks: unauthorised network attachment
or host compromise easily lead to jeopardise interactions
(traffic sniffing, ARP poisoning, host impersonation, ses-
sion hijacking etc.) and services (vulnerabilities, poor con-
trols etc.). If we deploy two interacting services in two
virtual machines on the same host connected by a dedicated
virtual link, their traffic is no more exposed to external at-
tacks. Actually, in virtualised environment, most of the se-
curity guarantees fall if the hypervisor misbehave (e.g. be-
cause of unintended design or tampering). In the following
we basically assume the hypervisor as trustworthy.

Filtering, proxing, balancing In local area networks, we
configure Virtual LANs (VLANs) to achieve host/service
separation. This solution has some issues: (1) it requires
VLAN aware switches, not always available in local net-
works (hosts connected to the same VLAN unaware switch
are necessarily part of the same VLANs); (2) it specifies
which hosts are part of the same virtual network but does
not control which services are reachable from whom. Us-
ing local firewalls, i.e. firewalls collocated with server
equipment, has several drawbacks too: (1) decreased per-
formances due to hardware resource sharing with the appli-
cation processes; (2) software dependencies problems and
incompatibility with other installed software; (3) imperfect
security due to application vulnerabilities and their propaga-
tion (if one of provided services is vulnerable, and privilege
escalation is possible, the attacker could easily circumvent
the local firewall). For virtualised environments, our tool
designs alternative ad-hoc virtual networking to enforce
host isolation. It creates dedicated virtual links for interact-
ing virtual machines, it spawns separate virtual machines
to host filtering and proxy services when needed, and uses
VPNs to protect traffic flowing in/out a physical host (VPN
configuration is discussed in the next section). The sim-

4

461

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

plest configuration template contains two virtual machines
within a physical host: one for the application service and
another for firewall services. Adding a separate virtual ma-
chine for firewall services solves problems related to depen-
dencies and vulnerabilities, because application and firewall
are now isolated. On the other side, performance prob-
lems do not increase significantly thanks to the efficiency
of modern virtualisation technologies. The firewall perfor-
mance depends on hardware capabilities (CPU and mem-
ory), operating system, network stack, and filtering mech-
anism implementation. Several improvements have been
proposed to enhance virtualised networking performances
[16]. The hypervisor analyses each data packet that arrive
on the network interface and transfers it to the proper vir-
tual domain. The packet transfer operation is quite com-
plex and requires several memory operations (data alloca-
tion/deallocation). The [16] work improves this process
modifying packet transmission and reception path. For high
assurance, a common practice is using two or more fire-
wall devices in cascade: if their platforms and operating
systems are different, it is reasonable to assume that they
have different vulnerabilities. However, this configuration
increases service latency, energy consumption, and costs.
For external network attachment, our tool deploys and con-
figures two firewall virtual machines with different OS and
filtering software on the same physical host, reducing en-
ergy consumption and saving costs. However, two physical
hosts are still required for achieving resiliency against hard-
ware failures. More complex virtual networking is needed
when placing several application virtual machines on the
same physical host. Virtual traffic filtering can be enforced
either at the hypervisor or by spawning dedicated firewall
virtual machines. Hypervisor has privileged access to net-
work traffic, does not depend on virtual network configura-
tion, and is much more efficient. However, as the hypervi-
sor is the single point of failure it should be kept as simple
as possible: e.g. packet-filtering rules can be enforced, but
extended firewalling through reverse proxies does not fit.
Our tool adopts the dedicated firewall virtual machine tech-
nique. First, the tool computes the feasible configurations
(e.g. single or cascade virtual firewalls) in respect of secu-
rity requirements. It then performs a trade-off reusing the
same firewall virtual machines for several service interac-
tions (resources optimization). Finally, firewall virtual ma-
chines are configured with a virtual network interface per
each application machine that should be filtered. This ap-
proach requires configuring a specific IP subnet for each
application virtual machine, but allows defining more spe-
cific packet filtering policies (per interfaces). The increased
configuration complexity is masked by the planning capa-
bilities of our tool, that computes the virtual interfaces to
adopt, and generates the filtering rules for each of those in-
terfaces. This task is achieved by extending the communi-

cation authorisation module and the reachability algorithm
described in [6] to manage virtualised networks. Practically,
the reachability algorithm finds the firewall interfaces inter-
ested by each communication between network nodes by
traversing the network topology graph. Then the communi-
cation authorisation module selects and generates filtering
rules for each virtual interface.

The strategies applied for firewalling can be extended to
balance load among service replicas. In fact, common load-
balancing techniques use a mix of routing, network address
translation, reverse proxing, and name services. All but the
last one works at the same level and uses mechanisms close
to the firewall services. In the last case, DNS services are
configured to use a pool of IP addresses, which correspond
to the replicated services. Name resolutions have a valid-
ity that can be configured to implement rude load-balancing
mechanisms. With a long validity, clients keep sending re-
quests to the same server and the load-balancing is ineffec-
tive. However, if the validity period is too short, every client
request may hit a different replica making session handling
trickier. To achieve load-balancing via DNS (reverse-proxy)
mechanisms our tool first deploys a DNS (reverse-proxy)
virtual machine associated to a set of service replicas vir-
tual machines; then it configures the virtual interfaces and
virtual machines’ IP addresses, and generates the appropri-
ate DNS address pool (proxy rules). The DNS approach
is also more flexible and scalable when the load-balancing
task should be performed by two or more data centres. The
primary DNS could balance the request addressing the data
centre site and a secondary DNS service, located into se-
lected data centre, could address the request to the available
virtual machine. We are most interested in how balancing
strategies interact with security mechanisms such as TLS
and VPN channels, as discussed in next paragraph.

Channel protection and Virtual Private Networks A
common solution to protect the confidentiality and integrity
of interactions across trust boundaries is authenticating and
ciphering data using TLS or IPSec technology. Both so-
lutions require more computational resources, increase en-
ergy consumption, and introduce traffic overhead. In virtu-
alised environments, we can allocate services that require
channel protection in distinct virtual machines on the same
physical host: as already explained in the previous para-
graph, traffic isolation can be granted without traffic en-
cryption. However, when one of the endpoints is outside the
administrative domain (e.g. customers, 3rd party services),
or when the endpoints could not be aggregated on a single
host (e.g. for resource consumption), their traffic should be
ciphered. To protect this traffic, our best practice is per-
forming aggressive service isolation and creating a sepa-
rate logical ciphered channel for each interaction. Our tool
proposes a set of alternative configurations with different

5

462

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

trade-offs between level of isolation and resource optimiza-
tion. Consider a three-tier web application interacting with
two user categories, for example gold and platinum users.
To address availability requirements and cost savings the
presentation and application servers have to be outsourced
to a 3rd hosting service. Instead, to meet stringent secu-
rity requirements, the database should be kept internally to
the company. The most common solution for protecting the
data flow between application and database across the In-
ternet (or Intranet) is to configure a Virtual Private Network
(VPN). Often, in non-virtualised environments, IPSec is
configured to tunnel the traffic between two gateways. The
first problem is that the traffic between hosts and gateways
is not protected and might be attacked. In addition, IPSec
may be difficult to configure, especially key exchange ser-
vices that may collide with firewall and address translation
policies. Another solution is to configure a TLS based VPN,
e.g. using OpenVPN1, that is more flexible than IPSec and
easier to configure. However, as for IPSec, the TLS VPN
is often configured between two concentrators. Following
the rules described in Sec. 3.1, in similar cases, our tool
first provides users role isolation by splitting both the appli-
cation and the database in a pair of virtual machines: one
for gold users and another for platinum ones. The tool then
computes two alternative solutions that rely on TLS VPN
concentrator virtual machines. The first adds two TLS VPN
concentrator VMs per each application-database pair. This
configuration performs strong interaction separation, allows
configuring a different IP subnet for every TLS VPN, and
provides IP reachability only between interacting endpoints.
In fact, if a VPN is compromised, only its traffic can be at-
tacked, while other interactions are not affected. The sec-
ond solution provides resource optimization by adding only
two VPN concentrator VMs shared by both the application-
database pairs. The VPN machines are always placed on
the same physical host of the VMs originating the traffic to
protect. As already discussed for local firewalls, isolating
the concentrator in a separate virtual machine, limits attack
propagation. To implement the configuration rules above,
we extended our previous algorithms, originally described
in [6], for the configuration of end-to-end TLS VPNs. In
practice the tool: (1) computes the required VPN concen-
trator VMs; (2) computes the virtual interfaces to adopt; (3)
generates VPN configuration rules for each of those inter-
faces. Finally, we reuse the communication authorisation
module to permit TLS VPN communications generating the
proper filtering rules. Note that, in non-virtualised environ-
ments, the proposed solution and security level would have
unreasonable costs as we need to configure a host for each
virtual machine and two TLS VPN concentrators for each
interaction. Our tool can also configure balancing services
for increasing dependability of the VPN concentrators. To

1http://openvpn.net

achieve this, we can configure DNS to resolve the VPN ser-
vice to the address pool of the available concentrators. In
a more complex configuration, we also add an additional
layer of reverse-proxy services acting as NAT-level load bal-
ancers and forwarding client requests to one of the available
concentrators. In both cases, we assume that the load shar-
ing mechanism is performed rarely: once an endpoint has
joined the VPN, the concentrator does not change. If the
current VPN concentrator fails, the client should rejoin, and
the DNS (and reverse-proxy) resolves to another concentra-
tor. At last, to better secure traffic between the company and
the provider’s data centre (e.g. prevent traffic analysis), our
tool suggests encapsulating the TLS VPNs into an IPSec
tunnel. This step uses the same configuration rules origi-
nally described in [6].

We now focus on how managing secure connections
(e.g. HTTPs) in case of virtual service replicas. As pre-
sented in 3.2, our strategies for placing virtual firewalls offer
reverse-proxy and balancing capabilities. In fact, the use of
a TLS capable reverse-proxy is the simplest solution. Every
client contacts the reverse proxy that forwards the client re-
quest to one of the application virtual machines configured
in the pool. Our tool generates a set of alternative config-
urations using a TLS reverse-proxy virtual machine. One
of the simplest configurations is to displace, on the same
physical host, the reverse-proxy machine and two or more
application virtual machines. In this case, only the traffic
between the proxy and the external world is ciphered. The
interactions between the proxy and the replicas are config-
ured as logical links using virtual interfaces as described
for firewalls. When replicas are allocated to multiple phys-
ical hosts, the traffic between proxy and remote replicas is
ciphered via the VPN techniques described above. Unfortu-
nately, the reverse-proxy solution does not scale to large in-
stallations and multiple systems. We must introduce DNS-
based load sharing mechanisms that requires additional is-
sues to be solved. Even if the DNS resolution validity pe-
riod is correctly configured, when it expires, a new TLS
negotiation may be required. Most notably, this happens
with HTTPs sessions and the use of TLS session ID. To ef-
ficiently solve the TLS balancing problem we must address
two phases: negotiating a new TLS session, and resum-
ing pre-negotiated sessions through the session ID mech-
anism. The straightforward solution is using a backend en-
gine that performs TLS negotiation and/or caches session
data. For example, a relay like [20] allows a server to re-
sume a TLS session negotiated by any other one. A sim-
ilar solution that implements a centralised session cache
is the “distcache project”2, supported for example by the
Apache web server. This tool can be installed directly on
application server replicas (e.g. distcache is supported by
the Apache web server), or on reverse-proxies / TLS relays

2http://distcache.sourceforge.net

6

463

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

to load-balance TLS interactions. We also consider more
distributed solutions like the TLS session tickets specified
in [21]. They provide a mechanism to store session data on
the client side, in the way web cookies work. Basically, the
server seals the session state into an encrypted ticket and
forwards it to the client, which uses this information to re-
sume the session against any server in the pool. Similarly
to the previous solutions, session tickets are directly sup-
ported by some application servers (e.g. Apache), and can
be exploited at TLS proxies to enable distributed session re-
sumption. When selecting a server-side approach, our tool
allocates replicated virtual machines for DNS services, and
one or more VMs for TLS engine. Instead, for the client-
side approach, the tool configures the shared keys, to protect
the TLS session ticket, on each virtualised replicas.

Monitoring and logging Monitoring and logging are rel-
evant tasks to trace system behaviour and to highlight prob-
lems. For security purposes, they are useful to check host
and service availability, to detect network attacks, to ensure
non repudiation. In non-virtualised environments, monitor-
ing tasks often rely on dedicated hosts and networks for bet-
ter performance of application services and better isolation
of monitor ones. However, to report host/service status,
monitoring systems also install agents on each monitored
host (e.g. Nagios3). To contain costs and management ac-
tivities, every agent or network probe collect and sends a
subset of information to a centralised host, the aggregation
point that analyses the reported data. This approach has
its dependability and scalability limits in the aggregation
point. In virtualised environments, the monitor and logging
tasks can be distributed more accurately to achieve a multi-
level and dependable architecture with reduced costs. Best
practice for securing monitoring and logging tasks is using
stealth components, to hide the presence of agents and net-
work probes and preserve them from security attacks. In
virtualised systems, placing monitoring functions at the hy-
pervisor can hide and protect monitoring services. On the
other side, as already discussed for firewalls, the trade-off is
the increased complexity of the hypervisor.

Our strategy is to install an agent on every virtual ma-
chine in order to collect information like network reacha-
bility, received network packets, and service status. A set
of virtual machines able to collect reported data, are located
on different physical hosts and configured in load-balancing
mode to achieve high availability. These virtual machines,
to better address administrator objectives, are configured to
perform all monitoring/logging tasks or a specific task: for
example, collecting only network reachability data. We can
deploy another set of virtual machines (in load-balancing
configuration) able to analyse the reported data, in order to

3http://www.nagios.org

build the network model, trace network behaviour, and eval-
uate security risks.

4 Configuration Algorithms

4.1 Configuration and Re-configuration

The configuration generation process is based on the re-
quirements (functional and non-functional) of the service(s)
to be hosted by the information system. It refines these re-
quirements, exploring the alternatives exploitation of avail-
able resources. These computations originate a Directed
Acyclic Graph (DAG), where every node represents a par-
tially refined configuration. Every step of the process, per-
forms the refinement for every partial configuration, read-
ing all the information generated by previous phases. Some
steps generate directly element to be used for the final con-
figuration, whereas others compute artefacts that are use-
ful only for the steps executed after. When all the refine-
ment steps are completed, the final leaves of the configura-
tion DAG represents the final configurations to be enforced
while configuring the information system. Some configura-
tion will presents different level of residual requirement to
be managed by the actual devices. If the requirements are
high, the system recommends the usage of high availability
devices; ignoring these recommendations causes a configu-
ration with lower dependability of the system.

In order to react to emergency states, some rules per-
form a linkage between configurations. In other words, on a
configuration, if occurs an event that could compromise the
achievement of the requirements. Reaction consists in per-
forming a configuration switch to alternative refinements,
where such risky events do not occur or their effects are
negligible or tolerable. In fact, faults or vulnerability ex-
ploitation make affected components unusable. Such links
are named “Reaction” and links the problem in a configu-
ration to the novel configuration to be adopted. The target
(emergency) configuration is chosen among alternatives as
the one with less differences compared with the current one,
to minimise the reaction time. This retrieval is performed,
searching the configuration that is not excluded by the fault,
with the maximum number of choice of refinements in com-
mon: this operation is simple since the configuration DAG
maintains tracks of every choice.

The class diagram in Fig. 1 represents the data used in
the process. The dashed boxes discriminates the different
supplier of such data.

Administrators supply as input the list of the service
components, “Service” in the diagram, and, for each of
them, the different implementations of the service, “Imple-
mentation”. Every implementation is composed by one or
more software packages, with their dependencies. We re-
fer to functional requirements to indicate the implementa-

7

464

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

tion together with the Service Access Point and the need
to permanently store data or not. Furthermore, administra-
tors assign values to non functional (dependability) require-
ments, classified on a scale of LOW, MEDIUM and HIGH:
availability (how much is important that a service is avail-
able?), confidentiality (does the service manage classified
data? How much it is important to preserve their confiden-
tiality?) integrity (how much is serious if the service or the
service data are tampered?). Other requirements could be
added, but the extension must supply also additional rules
to the process to refine them. Since the requirements are
assigned to all the elements, we created an abstract class
that is extended by every object subject to requirement. The
adoption of a coarser scale for such requirements is sup-
ported and possible, if the rules are changed to understand
it. Our concern is the benefit of a more detailed scale would
not confuse the network administrator, without an actual
gain in terms of more precise configurations.

The process exploits also the SoftwareDatabase that con-
tains the data on the dependencies and conflicts among soft-
ware packages. It is built on the base of package managers’
repository, like RPM.

Finally, the box Refinements collects the elements gen-
erated during the process, described in the following sec-
tions. During the description of the process the meaning
and the usage of the classes will be clarified. Such ele-
ments are grouped together to create different configuration
(in the diagram we connected only the superclass Compo-
nent for readability purposes). Furthermore, some compo-
nents are subject to event that causes a reconfiguration tasks
(a change from a configuration to another).

4.1.1 Service provisioning

The purpose of this step consists in defining the compatible
software group, using the implementation of the different
service components. Each of them presents ore or more
implementation whose software requirements are solved by
means of the software database.

First, the algorithm generates different software pack-
ages groups (containing the application software and its de-
pendencies) for every service. If the dependency can be
satisfied in different manners, alternative groups are gener-
ated. They derive the software requirements of the services
implementation. Then, additional groups are added merg-
ing such basic groups, if the software packages compos-
ing them, including the dependencies are is compatible, i.e.
there are not packages in conflict. Actually, if the confiden-
tiality or integrity is HIGH or they have a different value, or
if their availability is HIGH, groups are not merged, other-
wise the group takes the maximum for every dependability
requirement.

Moreover, requirements are inter-related. The tool prop-

agates the requirements of availability to the software im-
plementation (and, of course, its dependencies) into require-
ments of confidentiality and integrity. We propagate the
requirement of integrity as confidentiality, and vice-versa.
Such requirements are propagated with a level lower that the
originating one, for example an availability=HIGH will be-
come a confidentiality=MEDIUM and integrity=MEDIUM,
since they are derived requirements.

Listing 1 presents the implementation of the task that is
composed by three main parts. In group initialisation, a dif-
ferent group for each implementation is created. In depen-
dency retrieval the tool completes the dependency by means
of software database, and in case of different alternatives to
satisfy, it creates different groups, without conflicting soft-
ware packages. In merging groups, if compatible originates
additional composed groups.

Listing 1. Allocation computation
//Group initialization
foreach service in Service.getInst()
foreach impl in service.impl()
Group g = new Group(service, impl)
foreach sw in impl.getSw()
g.add(sw);

//Dependency retrieval
foreach g in Group.getInst()
foreach sw in g.getSoftwares()
Impl alternativeDeps = SoftwareDB.getDeps(sw);
foreach alternativeDep in alternativeDeps
// if the software to add do not presents any

conflict ...

SoftwareDB.getConflicts(alternativeDep.getSoftwares()).
intersect(g.getSoftwares)

==null
Group gNew = g.clone();
gNew.addAll(alternativeDep.getSoftwares);

//Merging groups
foreach g1 in Groups.getInstances()
foreach g2 in Groups.getInstances()
if (g1 != g2)
if (g1.isCompatible(g2))
Group g = Group.merge(g1,g2);

The generated groups of software packages are aggre-
gated together to compose different solutions at application
level, with at least one group for every service. If the service
requires MEDIUM or HIGH availability, it is possible get
more groups, with a lower level of availability, implement-
ing a redundant solutions or maintaining only one group that
will be than achieved or with a VM duplication or with HA
devices.

In this phase, also groups with different implementation
or dependencies for the same service are generated, to im-
plement a diversity design strategy. In this case, the prop-
agation from the availability to the other requirements is
computed subtracting two levels, since to definitely com-
promise the availability of the service, it is needed to find a
way to compromise every implementation. On the contrary,

8

465

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

Figure 1. Class Diagram for the refinement algorithms

confidentiality requirement is augmented of one level, since
the violation of single software is sufficient to access to crit-
ical condition.

A more complex analysis is necessary for integrity is-
sues, in fact, a different implementation may help in recog-
nising when integrity is violated (same service returning
different results) but for understand the correct results it
is necessary having at least three implementation, to mas-
querading an integrity violation on one group, as explained
in [14]. Actually, to implement this measure, it neces-
sary having ad-hoc modules to implement a voting system.
Since such modules are not common, integrity requirement
propagation is not modified by diversity implementation.

Additional configurations are generated, to be used in
emergency conditions. Our tool generates configurations
with only the service with availability=HIGH, configura-
tion with all the service with availability=HIGH and some
or all service with availability=MEDIUM and configuration
with the entire MEDIUM and HIGH availability service and
some low availability. Indeed, when a configuration is cho-
sen, the best choice is the one that offers as more service as
possible, but the reactions could use also others to maintain
at least the critical service available.

Listing 2 brings the results of Listing 1. It performs the
configuration generation, providing every possible combi-
nation of the group, collecting in conf instances.

Listing 2. Configuration generation
// Configurations Initialisation
if (Configuration.getInst()==null)
foreach service in Service.getInst()
foreach impl in service.getImpl()
foreach g in impl.getGroup()
Configuration conf = new Configuration(g)

//Configurations generation
foreach service in Service.getInst()
foreach conf in Configurations.getInst()
foreach impl in service.getImpl()
foreach g in impl.getGroup()
Configuration conf1 = conf.clone()
conf1.add(impl);
//supposes that conf is inserted into the

Configuration register only if no other conf with the
same impls is already

available

9

466

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

4.1.2 React to new vulnerabilities discovered

It is common that new vulnerabilities are discovered when
the system is already online. Typically, such vulnerabilities
are available on vulnerability databases like National Vul-
nerability Database [4]. The tool matches the vulnerability
with the software available in every system and, on the base
of the impact they have, plans reactions. In fact, vulnerabil-
ities entries present also a Common Vulnerability Scoring
System [5] evaluation of the impact in term of confidential-
ity, integrity and availability.

In practice, the configuration generator retrieves all the
vulnerabilities affecting every software package in the sys-
tem and crosses the menaces of exploitation with the de-
pendability requirements. Even if, it is generally a good
practice having as few open vulnerability as possible in
the system, the tool is concentrated to maintain satisfied
dependability requirements. In other words, if a software
package presents a vulnerability affecting its integrity, and
the requirements for the group of software packages are for
availability it does not consider vulnerability exploitation
a problem. A natural objection to this method is: “What?
Such requirements are linked. Integrity gives confidential-
ity, integrity and confidentiality gives availability...”. We
agree with this assertion, in fact we consider these issues
in the propagation of the requirements throughout the con-
figuration phases, and, they are already evaluated w.r.t. the
interdependency among them.

Typical reaction to vulnerability consists in switching
(when possible) to an alternative implementation, updat-
ing/patching menaced software packages, or turn off the
dangerous application. If there is an alternative configu-
ration that is not affected by the vulnerability in object, the
reaction implies a configuration change. Unfortunately, in
many cases, such solution is not feasible and we have not
any alternative implementation. Consequently, the model
of software and software dependencies needs to be updated
with the last version of the products, which hopefully will
be not affected to this. Then, the tool generates additional
configurations, which are added to the configuration tree.
At this point, we plan a configuration swap to one of the
new configuration generated. In case of none of the previ-
ous solution is possible, it remains or tolerating the situation
(if the availability of the service is crucial) or switching to
a configuration that does not use to software, even if some
service are not available. This last approach is to be con-
sidered transitional, and the update of the software model
is performed regularly, in order to generate a configuration
with all the services available again as soon as possible.

Listing 3 computes the reaction in case of vulnerability
discover. For each requirements associated to a software,
an event of type VULNERABILITY is set. If there is a
different implementation of sw, the reaction performs the
configuration swap to the corresponding configuration; oth-

erwise, it excludes the sw from the usage (again as config-
uration change) or tolerates the vulnerability on the base of
the availability requirement.

Listing 3. Reaction to vulnerability discover

//Reaction to vulns
foreach conf in Configuration.getInst()
foreach impl in service.getImpl()
foreach g in impl.getGroup()
foreach sw in g.getSoftware()
reqs = sw.getReqs()
foreach req in reqs
if (req.getValue() == HIGH

||req.getValue() == MEDIUM)
Event vt = new Event(sw, VULNERABILITY

,req);
//finds an alternative configuration, with the

service implemented by the sw available, but without the
sw vulnerable
alternativeConfs =

ConfigurationDag.filter(!contains(sw)).filter(!contains(
service)).getCloser(conf

);
if (alternativeConfs!=null)
Reaction r = new Reaction (vt,

alternativeConf);
else
// if the requirement availability is not HIGH,

whereas the others are HIGH or MEDIUM, or the
availability is HIGH, while the

it is we plan to switch off the service
if (reqs.getAvailability().getValue !=

HIGH || (reqs.getAvailability().getValue != MEDIUM &&
req.getValue()== MEDIUM))

//finds an alternative configuration,
but without the sw vulnerable (but this will not have

the service availabel)
alternativeConfs =

Configurations.getInst().filter(!contains(sw).filter()))
;

Reaction r = new Reaction (vt,
alternativeConf);

4.1.3 Virtual machine architecture

VM generation considers the groups of software of every
configuration generated by the previous step, together with
their dependability requirements. First, for every group is
created a separated VM. Second, if a group presents a high
level of availability, more than one VM can be assigned,
with a lower availability requirement. Depending by the
service, it is indicated if the machine needs to store perma-
nently on its own file system or not, to discriminate between
working machines and storage machines.

The dependability requirements of the VM are used to
eventually choose among different VM templates. If the
availability requirement is high, the performance of the VM
must be coherent. If the confidentiality is high, it will re-
quire VM templates with additional protection, like per-
sonal firewalls or disk-image encryption. VM integrity will
imply, again, protection from network, like personal fire-
walls, but also digital signature of disk-images. The adop-
tion of trusted computing techniques will be also useful to

10

467

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

satisfy such requirements.

The VM resulting from this computation derives the re-
quirements from the software packages of the correspond-
ing group, which are used to plan the deployment of the
machine on virtualisation environment. Also VM configu-
rations for emergency conditions are generated, to be linked
by reactions, as we see in the following sections.

For this work, we consider having different templates of
virtual machines, classified on the base of their capability to
satisfy non-functional requirements. First, the machine can
present a classification on the base of their performances,
to answer to availability requirements. Then, they can have
an operating system implementing Mandatory Access Con-
trol (MAC) that benefits confidentiality and integrity. They
can offer the chance to spawn only digitally signed disk im-
ages. They can have one or more personal filtering software
packages (e.g. proxy, firewall) to limit the access from ex-
ternal. They can offer cryptographic primitives to stores
only ciphered data that increase the confidentiality, but de-
crease the availability. Unfortunately, the match between
these capabilities and the dependability requirements is not
one-to-one, and, furthermore, some mechanisms useful for
requirements are counter-productive for others. For this rea-
son, over dimensioned configurations are generated, and,
only after considering all mechanisms, the configuration are
chosen.

Actually, the configurations candidates to be applied are
the ones with the lower requirements remaining. In fact,
machines with higher specifications cost more. Another im-
portant factor is the number of machines, the lower it is, and
the cheaper is the solution. More expensive, but promising,
configurations are kept into account to perform reactions in
case of problem.

Listing 4 presents the generation of VM starting from
groups. In this part is crucial the match between the depend-
ability requirements of the groups and the service offered by
the VM. In the first part, generation of vm , the availability
is mitigated generating different configurations with a vary-
ing number of VM assigned. Availability requirements are
coherently adjusted, to consider the redundancy. In the sec-
ond part, mitigation of requirement thought VM capabili-
ties, creates different configuration, for every VM, adopting
a different technical solution. Note that, since this process
is executed more times, also combinations of different solu-
tions are possible. MAC means mandatory access control,
TC trusted computing techniques, CRYPTO cryptographic
primitives, FILTERING a personal firewall system.

Typically, the best configurations are the one whose re-
quirements on VMs are lower, since it implies

Listing 4. VM generation
//Generation of vm
foreach conf in Configuration.getInst()
foreach impl in service.getImpl()
foreach g in impl.getGroup()
//Maximum number of machines to be created
if (g.getReqs.getAvailability().getValue == HIGH)

limit
= 4;

else if (g.getReqs.getAvailability().getValue ==
MEDIUM)

limit = 3;
else limit =2;

for (n_machines=1; n_machines++; n_machines<=limit)
conf_new = conf.clone();
for (i=1; i++; i<=n_machines)
//get the correct VM template
vm = new VM (group, conf_new);
vm.setReqs (group.getReqs());
// decreases the availability, one level

every additional virtual machine
vm.decreaseAvailability(n_machines)

//Mitigation of requirement thought VM capabilities

foreach vm in VM.getInstances();
conf = vm.getConf();
if (group.getReqs().getIntegrity = HIGH)
vmt = vm.clone();
vmt.add(MAC);
vmt.getReqs().decrease(INTEGRITY);

if (group.getReqs().getIntegrity = HIGH)
vmt = vm.clone();
vmt = vm.clone();
vmt.add(TC);
vmt.getReqs().decrease(INTEGRITY);

if (group.getReqs().getConfidentiality = HIGH)
vmt = vm.clone();
vmt.add(CRYPTO);
// increases the integrity, since the requirement of

confidentiality is
mitigated if the VM is integer
vmt.getReqs().increase(INTEGRITY);
// increases the availability requirements, since

cryptography decreases
performance
vmt.getReqs().increase(AVAILABILITY);
vmt.getReqs().decrease(CONFIDENTIALITY);

if (group.getReqs().getIntegrity > MEDIUM or group.
getReqs().getConfidentiality

> MEDIUM)
vmt.add(FILTERING);

if (vmt.is(CRYPTO))
avail = vmt.getAvailability ();

if (avail == MEDIUM)
vmt.setAvailability (HIGH);

if (avail == LOW)
vmt.setAvailability (MEDIUM);

4.1.4 React to service performance degradation

When performance for a service is not satisfactory, due to
peaks in workload or a Denial of Service Attack, the re-
action consists in adding computational resources to the
stressed service. Another solution consists in using VM
with higher performance, instead of the original ones.
Alarms derive from sensor put on the VM, and could, for ex-
ample, high CPU or memory consumption. Another alarm
is typically required, to advertise that the solution is over-
sized (for example low CPU load) to react back to normal

11

468

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

usage conditions.
To generate this reaction plan, the tool generated addi-

tional configuration for virtual machines that uses a higher
number of VMs then in normal condition, or VM with more
computational resources, also for the configuration that do
not have all the service active. At this point, depending by
the availability needs of the VM, we generate a reaction
to the proper configuration: if availability needs is set to
HIGH tools prefer a configuration with an additional VM,
also if this implies losing some service (with an availabil-
ity less than high); if availability is MEDIUM it generates a
configuration switch to use an additional VM only if it has
the same available services of the starting one, otherwise
it plans the usage of a more powerful machine; if the avail-
ability is LOW, it plans the usage of a more powerful virtual
machine, if available, otherwise it performs no reactions.

Listing 5 presents the computation of reaction to low per-
formance on a virtual machine. If the availability is HIGH,
we switch to another configuration with a higher number
of machines, also decreasing the number of machines with-
out considering other machines. When the availability is
MEDIUM, it switches only to configuration with the same
number of service available.

Listing 5. reaction to VM performance degra-
dation

// React to performance degradation
foreach vm in VM.getInstances()
g = vm.getGroup();
impl = g.getImpl();
// for each configuration in which the vm is involved
foreach conf in vm.getConfs()
/// in case of performance low, pass to a

configuration
with an higher number of machines

if (vm.getReqs().getAvailability == HIGH)
Event e = new Event(PERFORMANCE_LOW, vm);
alternativeConf =

ConfigurationDag.filter(.getImpl().getGroup().getVM().
count >

.getVM().count()).getCloser(conf);
Reaction r = new Reaction (e, alternativeConf);

if (vm.getReqs().getAvailability == MEDIUM)
Event e = new Event(PERFORMANCE_LOW, vm);
alternativeConf =

ConfigurationDag.filter(conf.getImpl() ==
.getImpl()).filter(.getImpl().getGroup().getVM().count >
.getVM().count()).getCloser(conf);

Reaction r = new Reaction (e, alternativeConf);

4.1.5 React to VM integrity violation

As already said, integrity violation implies more complex
reactions, but virtualisation environment helps.

First, the tool distinguishes in storing and working ma-
chines. For working machines that are spawned in non-
persistent mode, a first measure consists in rebooting the
machine.

On the contrary, for storing machines, we can react
swapping to a configuration in which the violated machine
is not longer used. If this violation is caused by vulnerabil-
ity exploitation, and the integrity is high, the system could
also consider switching off the machines affected, until a re-
action for the vulnerability is not put in act. Another option
offered by the tool consists in changing the configuration
to another one with a stronger integrity protection for the
machine.

Listing 6 pseudo-code shows the implementation of this
step. It creates an event of type INTEGRITY VIOLATION
for every VM with an integrity grater or equal to MEDIUM,
and attaches to it a reaction to configuration where the in-
tegrity requirement is lower. In case of lack of proper alter-
natives, if the requirement of availability is lower than the
integrity one it react passing to a configuration that does not
use the tampered machine, otherwise it tolerates the viola-
tion, without any change to configuration.

Listing 6. reaction to VM integrity violation
foreach vm in VM.getInstances()
g = vm.getGroup();
impl = g.getImpl();
foreach conf in vm.getConfs();
if (vm.getReqs().getIntegrity() > MEDIUM)
/// in case of integrity violation, search a vm,

with
the same group but with a lower integrity requirements,

Event e = new Event(INTEGRITY_VIOLATION, vm);
alternativeConf =

ConfigurationDag.filter(vm.getGroup().getVM().
getIntegrity() <

group.getVM().getIntegrity()).getCloser(conf);
if (altenativeConf!=null)
Reaction r = new Reaction (e, alternativeConf);

else if (vm.getIntegrity()>vm.getAvailability)
// if not available and integrity is greater

than availability, switch to a configuration that does
not use the vm (switch

off the vm)
alternativeConf =

ConfigurationDag.filter(!.contains(vm)).getCloser(conf);

4.2 Enforcing security controls

The refinement process, as defined previously, is repre-
sented as a directed acyclic graph. The general workflow
to enforce security controls is composed by the following
steps: (1) evaluation of the suitable and available technolo-
gies; (2) refinement of directly and indirectly security con-
trols; (3) generation of alternative configurations. Each step
refines the information provided by the previous ones and
populates the graph adding a new level for each step. Each
path between the root and a leaf represents an enforceable
solution. Alternative configurations are represented as dif-
ferent nodes of the same level.

The first step analyses the security requirements to derive
the suitable technologies to protect communication traffic.

12

469

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

Our model associates CIA properties (confidentiality, in-
tegrity and availability), expressed as LOW, MEDIUM or
HIGH to a set of suitable technologies and related modes.
For example, if confidentiality and integrity are set to
MEDIUM the model suggests that the available technolo-
gies are TLS, IPSec and TLS VPN. Otherwise, if confiden-
tiality and integrity are set to HIGH, the model suggests
adopting IPSec or TLS VPN. On the contrary, the availabil-
ity property identifies when a service has to be replicated
adopting load-balancing techniques. The association be-
tween security properties and technologies is defined into
technology templates, expressed using an XML based lan-
guage. Such templates also contain technology-specific
modes to support alternative configuration. For example,
the IPSec technology-specific template contains three dif-
ferent configurations: tunnel, transport and remote access.

After analysing suitable technologies, the tool analyses
network components capabilities to evaluate which tech-
nologies can be directly or indirectly enforced. A tech-
nology is directly enforceable if exist a set of services or
devices which support the related capability (e.g. IPSec,
TLS, filtering). Otherwise, if no service or device is able to
support the technology we should enforce it indirectly in-
stalling a new feature or adopting virtualisation techniques.
Our choice consisting providing a virtual machine with the
required features in order to make this process more flex-
ible, secure and feasible. The benefits derived from this
strategy are described in details in the next sections. Our
tool supports filtering and channel protection security con-
trols which can be both directly or indirectly enforceable.
This process is divided into two sub-steps: network com-
ponent analysis and communication policy analysis. The
first step takes in input the network description and classi-
fies hosts, routers, firewalls and services information to dis-
cover network components features and capabilities. The
second step analyses communication components to iden-
tify network components involved in the policy. More pre-
cisely the algorithm transforms the network in a graph, finds
all paths between policy elements (source and destination)
and identifies the security components (which have secu-
rity capabilities, e.g. filtering, channel protection) involved
in the communication. When filtering or channel protection
capabilities are not available, our tool adopts a set of virtual
machines with configurable security controls to enforce the
policy. Such VMs have to be added to the output VM archi-
tecture for deployment on virtualised providers.

The adoption of virtual machines allows enforcing a se-
curity control on demand, satisfying policy requirements.
First of all it is necessary understanding which security
controls should be enforced using the virtualisation tech-
nology. For example, considering the objective to enforce
IPSec in tunnel mode for protecting traffic between two
servers. The tunnel mode requires the adoption of two

IPSec gateways to enforce the tunnel (as defined in the
IPSec technology-specific template). Evaluating security
components involved in the policy the algorithm find only
one suitable gateway. To enforce the policy two general so-
lutions are available: (a) deploy a virtual machine as IPSec
gateway; (b) deploy two virtual machines, one for each
server. However the problem is quite complex. When an
administrator configures IPSec in tunnel mode, the traffic
that belongs on untrusted network (e.g. Internet) must be ci-
phered. This simple consideration entails that each gateway
is displaced internally to a trusted network or at its border.
Therefore, the use of a gateway displaced in untrusted net-
work partially invalidates the benefit of ciphered channel.
However, if an IPSec gateway is displaced in untrusted net-
work, a possible solution is to deploy two virtual machines
(in the trusted networks) and not configure the other gate-
way. The deployment of a virtual machine requires a host
able to support virtualisation. To identify in the network
which are the available hosts we define the virtualisation
feature as a capability. Therefore, when the algorithm per-
forms network description analysis identify the hosts which
support virtualisation. At previous step the algorithm de-
cides which virtual machines are necessary then it evalu-
ates, using a set of strategies, which hosts are selected to
guest VMs.

This approach requires to analysing allocations finding
which hosts guest allocated VMs. To maximize perfor-
mance a physical host supports a limited set of virtual ma-
chines depending on its hardware features. Hence if the host
supports the required VMs to enforce security controls the
algorithm plan to add the new VMs. Otherwise our strategy
is to find the nearest suitable host.

Once the tool decides which security controls should be
adopted to protect communication traffic it is necessary to
identify their displacement. Our approach is to group to-
gether services and security controls as indivisible block
using a predefined template. Practically a template con-
tains a set of predefined VMs to perform security controls
which can be enabled or disabled depending on require-
ments (e.g. TLS VPN VM and firewall VM). In addition
this strategy allows configuring the related virtual network
in more simple way.

4.2.1 Security controls templates

Once the tool derives the required security controls, the re-
lated VMs templates (depicted in Fig. 2) are used to gen-
erate alternative configurations which should be finally de-
ployed on virtualisation platforms. The simplest template
is ServiceTemplate that contains three virtual machines:
VM Service, VM FW and VM VPN. The first virtual ma-
chine is adopted to host the service and it is mandatory. The
VM VPN instead can be activated on demand to protect ser-

13

470

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

Figure 2. Security controls VMs templates

vice traffic. It can be implemented using IPSec or TLS VPN
technologies as alternative solutions. The VM FW is also
mandatory and it is responsible to filter traffic among ser-
vice, VPN and external network. As depicted in Fig. 2 this
virtual machine is connected in bridged mode to the exter-
nal network (ExtNet1), the local sub-network of the host,
and to other VMs using two virtualised networks (VNet1
and VNet2). This logical configuration allows separating
and masquerading external and internal (virtualised) net-
works. For example, to allow traffic between the external
network and the service, on the filtering virtual machine we
can add a port forwarding rule, masquerading internal net-
work. In addition, when VM VPN is active, it is possible
to derive a set of rules to: (a) allow only ciphered traffic
between external and VM VPN; (b) allow unprotected traf-
fic only between VM VPN and VM Service. The security
requirements, defined as input are refined using templates.
For example, if the confidentiality requirement of service is
set to HIGH, in the resulting template the VM Service and
VM VPN are set to MEDIUM.

The BalancedServiceTemplate introduces the load-

balancing functionality adopting the VM LB. This, often
implemented as a reverse-proxy, is in charge to dispatch
traffic (protected or not protected) among replicas to en-
hance service availability. The application of this template
is mandatory when in the configuration there are more soft-
ware package groups for one implementation. In that case
the availability requirement on VM LB is set to HIGH. An
interesting extension to ameliorate service availability is
to add another load-balancer VM. This can be placed in
standby and resumed as soon as the first load-balancer fails.
In order to decrease the number of virtual machines and
to aggregate functionalities the filtering and reverse-proxy
could be grouped together as a VM PRX-FW. An interest-
ing extension of this template is to introduce load-balancing
feature for VPN traffic. In a simple scenario we can substi-
tute the service replicas with VPN virtual machine replicas
enhancing VPN service availability. In more complex sce-
nario the objective could be to improve availability of ap-
plication and VPN services. In that case, we can modify
the template to insert two different load-balancers: one for
application and another for VPN replicas.

14

471

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

Finally the last template MultipleServiceTemplate is suit-
able to displace different service virtual machines on the
same physical host. In this configuration each service is
directly linked to the VM FW using a virtual sub-network
with specific network address and the VPN gateway is
shared to different services. However it is possible config-
ure the virtual machines to belong to the same sub-network.
Grouping together the service VMs allows optimizing their
allocation enhancing general performance introducing a se-
curity drawback. In fact, each service is protected using
the same VPN channel and if the VPN is compromised, all
traffic could be jeopardized. To reduce the related risk the
template could be modified to support different VPN gate-
ways. Practically we can displace a shared VPN gateway
for non critical service and a specific VPN VM for each
critical service.

4.2.2 Security controls transformations

Once the tool selects the set of templates to adopt, it per-
forms a set of transformations to refine the provided in-
formation. A transformation T is an operation that takes
as input a set of services, a template and security require-
ments and produces a set of alternative configurations. A
subset of security controls transformations is depicted in
Fig. 3. A configuration is expressed using an XML based
language and contains: (a) the VM components; (b) the vir-
tualised and physical network description; (c) the policies
to enforce. The VM components and the virtual network
links are derived from the set of services and template, then
the virtual and physical network configuration are computed
consequently. The firewall virtual machine is directly con-
nected using a bridge to the physical network. The related
external IP should be assigned accordingly to physical host
subnet evaluating network description. The algorithm, after
a network analysis, proposes to the administrator a set of
available IPs. For each virtual links the algorithm computes
the network configuration for each virtual machine. In prac-
tice it selects the addresses range from a table that contains
the allocations for private networks (populated considering
the [1]) and generates other network information (gateway,
DNS). Finally, the tool generates the related policies for the
provided solution. This process is composed by two steps:
(1) generation of channel protection policies; (2) genera-
tion of filtering policies. Considering the selected security
technology and the service description, the algorithm gen-
erates the related properties for each virtual machine related
to a protected communication. For example, if the selected
technology is HTTP over TLS, the TLS properties (e.g. ci-
pher suite, server authentication or mutual authentication,
etc.) are attached to the service virtual machine component
configuration. In similar manner, when the tool selects TLS
VPN or IPSec, the algorithm attaches the related proper-

ties to the VPN component. Finally the algorithm evaluates
the components security properties and virtual network con-
figuration generates the filtering policies. In practice, the
firewall VM is configured to forward traffic between exter-
nal world and internal services according to security prop-
erties. For example, if the internal service is protected using
HTTP over TLS, the firewall policy forwards only HTTPS
traffic between external and internal networks. To clarify

Listing 7. Network configuration and policies
for (a)

<VM id=’VM_Service’>
<network-interface value=’eth0’>
<addr type=’IPv4’ value=’10.10.10.2’ />
<netmask value=’255.255.255.0’ />
<gateway value=’10.10.10.1’ />
<dns value=’ask to admin’ />

</network-interface>
</VM>

<VM id=’VM_FW’>
//bridged interface
<network-interface value=’eth0’>
<addr type=’IPv4’ value=’ask to admin’ />
<netmask value=’ask to admin’ />
<gateway value=’ask to admin’ />
<dns value=’ask to admin’ />

</network-interface>
//VNet1
<network-interface value=’eth1’>
<addr type=’IPv4’ value=’10.10.10.1’ />
<netmask value=’255.255.255.0’ />
<gateway value=’ask to admin’ />
<dns value=’ask to admin’ />

</network-interface>
<policies>
<filtering-policy id=’1’>
<type=’forwarding’ />
<src ip=’*’ proto=’tcp’ port=’80’ />
<dst ip=’10.10.10.2’ proto=’tcp’ port=’80’ />
<action value=’allow’ />

</filtering-policy>
</policies>

</VM>

the security controls refinement we discuss the transforma-
tions of Fig. 3. The most simple transformation is iden-
tified by (a) and generates a configuration that contains a
service and a firewall virtual machines. The tool (1) de-
fines the properties of the virtual network that links service
to the firewall; (2) generates a port forwarding policy to al-
low external traffic reaching internal service using specific
protocol and port. The algorithm analyses the table of pri-
vate addresses and provides the network configurations for
the virtual machines shown in listing 7. For example, let
us consider that the service is a web server that uses HTTP
protocol on port 80: the firewall (VM FW) is configured to
forward traffic from external network to the internal service
as described in listing 7.

The (b) example demonstrates service load-balancing.
In this case the tool generates network configurations for:
(1) the sub-network VNet2 that contains the load-balancer

15

472

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

s1

External

Network

T(s1, ServiceTemplate, secReq)

VM_FW

VM_s1

External

Network

SecReq:

CIA=(LOW,

LOW, LOW)

s1R1

External

Network

SecReq:

CIA=(HIGH,

HIGH, HIGH)

T((s1R1,s2R2), BalancedServiceTemplate,

secReq)

s1R2

VM_FW

External

Network

ExtNet1

VM_VPN

s1

External

Network

SecReq:

CIA=(HIGH,

HIGH, LOW)

s2

VM_FW

VM_s1

VM_VPN

External

Network

VM_s2

T((s1, s2), MultipleServiceTemplate,

secReq)

T((s1, s2), ServiceTemplate,

secReq)

VM_FWs1

VM_s1 VM_VPNs1

VM_FWs2

VM_s2

VM_VPNs2

External

Network

(a) (b)

(c)

VM_s1R1

VM_LB

VM_s1R2

VNet2VNet1

ExtNet1
VNet1

ExtNet1

VNet1

VNet2 VNet3

ExtNet1

VNet1s1VNet2s1

VNet1s2

VNet2s2

(c1) (c2)

Figure 3. Security controls transformations

(VM LB) and the replicas (VM s1R1 and VM s1R2); (2)
the sub-network VNet1 that contains the VPN gateway
(VM VPN). The virtual firewall (VM FW) policies are: (1)
port forwarding for load-balanced services; (2) port for-
warding for VPN service (if the gateway is based on TLS
VPN technology). In addition, the tool configures the
VM LB to balance traffic among replicas and the VM VPN
to protect communications. The load-balancer configura-

tion depends on mechanism selected to implement its func-
tionality. The VPN gateway, often implemented as TLS
VPN (for flexibility purposes), can be configured as client
or server. For example, it is often configured as server on
the service side and in client mode on external clients (any-
to-one interaction model). In other cases, VPN gateways
could be configured as one-to-one, i.e. to tunnel traffic be-
tween two different services or any-to-any, i.e. to tunnel

16

473

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

Listing 8. VPN and balancer network configu-
ration and policies for (b)

<VM id=’VM_VPN’>
<network-interface value=’eth0’>
<addr type=’IPv4’ value=’10.10.10.2’ />
<netmask value=’255.255.255.0’ />
<gateway value=’10.10.10.1’ /> <!-- to VM_FW -->
<dns value=’ask to admin’ />

</network-interface>
<vpn-network-conf>
<vpn-pool type=’IPv4’ lowValue=’10.10.10.5’

highValue=’10.10.10.10’/>
<vpn-service-addr type=’IPv4’ value=’10.10.10.2’ />
<vpn-service-interface type=’tap’ value=’tap0’/>
<vpn-service-protocol type=’tcp’ port=’1194’/>

</vpn-network-conf>
</VM>
<VM id=’VM_LB’>
<network-interface value=’eth0’>
<addr type=’IPv4’ value=’10.10.20.2’ />
<netmask value=’255.255.255.0’ />
<gateway value=’10.10.20.1’ /> <!-- to VM_FW -->
<dns value=’ask to admin’ />

</network-interface>
<balancer-conf>
<balancer id=’balancer-VM_LB’>
<addr type=’IPv4’ value=’10.10.20.2’ />
<proto type=’tcp’ port=’80’ />

</balancer>
<replicas>
<replica id=’replica-VM_s1R1’>
<addr type=’IPv4’ value=’10.10.20.3’ />
<proto type=’tcp’ port=’80’ />

</replica>
<replica id=’replica-VM_s1R2’>
<addr type=’IPv4’ value=’10.10.20.4’ />
<proto type=’tcp’ port=’80’ />

</replica>
</replicas>

</balancer-conf>
<balancer-policies>
<balancer-policy id=’1’>
<balancer-fronted value=’balancer-VM_LB’/>
<balancer-replica value=’replica-VM_s1R1’/>
<balancer-replica value=’replica-VM_s1R2’/>

</balancer-policy>
</balancer-policies>

</VM>
<VM id=’VM_s1R1’>
<network-interface value=’eth0’>
<addr type=’IPv4’ value=’10.10.20.3’ />
<netmask value=’255.255.255.0’ />
<gateway value=’10.10.20.1’ />
<dns value=’ask to admin’ />

</network-interface>
</VM>
<VM id=’VM_s1R2’>
<network-interface value=’eth0’>
<addr type=’IPv4’ value=’10.10.20.4’ />
<netmask value=’255.255.255.0’ />
<gateway value=’10.10.20.1’ />
<dns value=’ask to admin’ />

</network-interface>
</VM>

traffic among different services. In listings 8, 9 we propose
a configuration to balance VM s1R1 and VM s1R2 replicas.
In this case, we adopt the TLS VPN approach and the listing
8 contains useful information for VM VPN configuration.
First of all, the definition of the network addresses which

belong to the VPN and assigned to clients, in that case, the
tool allocates 5 IPs from 10.10.10.5 to 10.10.10.10. In ad-
dition, the tool generates, using the specific TLS VPN tem-
plate, the virtual interface (tap0) and the protocol and port
of the VPN service (tcp/1194). To allow external clients ac-
cessing the internal services (VM s1R1 and VM s1R2) they
must join to the VPN. For that purpose, the virtualised fire-
wall is configured to forward ciphered traffic (using TCP
protocol) to the virtual host 10.10.10.2 on port 1194. The
load balancer configuration is quite simple and contains the
description of adopted replicas and a set of policies to bal-
ance traffic. In practice for each replica the tool defines an
IP address that belongs to the VNet2 and adds VM s1R1 and
VM s1R2 as members of balancing pool.

Listing 9. Firewall network configuration and
policies for (c)

<VM id=’VM_FW’>
//bridged interface
<network-interface value=’eth0’>
<addr type=’IPv4’ value=’ask to admin’ />
<netmask value=’ask to admin’ />
<gateway value=’ask to admin’ />
<dns value=’ask to admin’ />

</network-interface>
//VNet1
<network-interface value=’eth1’>
<addr type=’IPv4’ value=’10.10.10.1’ />
<netmask value=’255.255.255.0’ />
<gateway value=’ask to admin’ />
<dns value=’ask to admin’ />

</network-interface>
//VNet2
<network-interface value=’eth2’>
<addr type=’IPv4’ value=’10.10.20.1’ />
<netmask value=’255.255.255.0’ />
<gateway value=’ask to admin’ />
<dns value=’ask to admin’ />

</network-interface>
<policies>
//allow access to VPN
<filtering-policy id=’1’>
<type=’forwarding’ />
<src ip=’*’ proto=’tcp’ port=’1194’ />
<dst ip=’10.10.10.2’ proto=’tcp’ port=’1194’ />
<action value=’allow’ />

</filtering-policy>
//allow access to balancer
<filtering-policy id=’2’>
<type=’forwarding’ />
<src ip=’10.10.10.*’ proto=’tcp’ port=’80’ />
<dst ip=’10.10.20.2’ proto=’tcp’ port=’80’ />
<action value=’allow’ />

</filtering-policy>
</policies>

</VM>

The last example (Listing 9) describes the alternative so-
lutions (c1 and c2) to configure a set that aggregates two or
more services. The major difference between the provided
solutions is that in (c1) each service is protected by a ded-
icated firewall and VPN gateway, on the contrary, the (c2)
adopts shared firewall and VPN virtual machines. The dif-
ferent approaches have pros and cons. The dedicated fire-

17

474

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

wall and VPN allow protecting the services in more fine
grained way. For example, if a VPN channel is compro-
mised, the other services are not involved. On the contrary,
if we adopt a shared VPN gateway, in case of attacks, each
service could be compromised. However the use of shared
resources enhances the entire system performance. In addi-
tion, the configuration of dedicated firewall and VPN, often
requires assigning an external IP address for each firewall
(VM FWs1 and VM FWs2) to correctly perform the port
forwarding. Consider for example that VM s1 and VM s2
are web servers hosting s1 and s2 applications and each
one communicates with external world using tcp protocol
on port 80. In this situation we need to assign an external IP
address for each firewall to distinguish s1 and s2 requests.

5 Virtual machines generation and manage-
ment

Once the VM configurations are generated, it is neces-
sary create and configure the related VMs to implement a
solution. This goal requires the creation of the software en-
vironment that hosts the services, the configuration of net-
works, services, policies and the deployment of the VM to a
physical host. In addition, to react on fault events, it is also
important monitor VM services, manage startup, shutdown
and migration of the virtual machines.

5.1 Building software environment and
specific configurations

Several approaches could be followed to build the soft-
ware environment, for example it is possible create manu-
ally a base system template, building a VM from a com-
mon GNU/Linux distribution. Then, the base system tem-
plate could be modified in automatic way, generating a set
of specific templates, adding the required software pack-
ages to implement services. For example, the base sys-
tem could be transformed into a VPN VM template adding
IPSec or OpenVPN software packages. Similarly adding
the Apache Tomcat package we can implement a web server
VM template. The next step requires translating the ser-
vices, network configuration and policies from a technology
specific and device/service independent language (previous
described models) to the device/service specific language
(e.g. network configuration for a GNU/Linux system, rules
for a netfilter firewall). This task can be performed using
a set of adapters, one for each device/service category. For
example, an adapter for VPN should be able to translate an
IPSec configuration into the racoon specific language and a
TLS VPN into the OpenVPN language. Similarly, for filter-
ing, the adapter should translate the device/service indepen-
dent configuration into a set of netfilter or PF (OpenBSD

Packet Filter) rules. The adapter output is a device/service
specific configuration that must be deployed into the VM.

5.2 Deploying and Managing VMs

Finally, the configured VMs should be deployed into the
physical machine that will host the services. This task re-
quires to: (1) identify which physical machine are able to
host the VMs; (2) define a set of mechanisms to transfer
the VMs to physical hosts. Parsing the system description
model allow to identify which physical hosts support vir-
tualisation and which are their performance. This informa-
tion is useful to know how many virtual machines can be
deployed on a particular host. The deployment process, or
in other words the task that transfers the VM to a physi-
cal host, is quite simple but it depends on the virtualisa-
tion technology adopted (e.g. Xen, KVM, VMware, etc.).
On the contrary the VM managing tasks (startup, shutdown,
migration, network and disk management) are not simple to
address. To handle these tasks and reducing the problem
complexity a possible solution is to adopt a toolkit, like lib-
virt [15], able to deal with different virtualisation technolo-
gies, hiding details. The libvirt toolkit offers a set of API to
interact with the virtualisation capabilities of physical hosts
to deploy and manage VMs.

5.3 Our approach

In this section we describe our approach to generate and
manage the virtual machines accordingly to the previous de-
fined models.

5.3.1 Architecture layers

To perform the tasks described before we introduce in our
architecture three different layers: VM software, VM config-
uration, VM management. The VM software layer contains
the activities to build a specific VM template like VM FW,
VM VPN, VM LB and VM for specific services, for exam-
ple to host Apache Tomcat web application. More prac-
tically we start from a common GNU/Linux distribution,
built manually, to derive automatically a set of predefined
templates, adding the required packages, e.g. OpenVPN for
VM VPN. To perform this process automatically we adopt
a tool (ubuntu-vm-builder [27]) able to add new software
packages to a virtual machine. The predefined templates
could be generated only once, when the tool is run for the
first time. On the contrary, a specific template that hosts
a particular service must be generated when needed. The
build process is performed on a particular physical host,
the builder machine that is also used to deploy and manage
VMs. The VM configuration layer performs the following
tasks: (1) VM internal network configuration; (2) service

18

475

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

configuration; (3) policy configuration; (4) VM configura-
tion. The VM internal network configuration is generated
accordingly to the security controls transformation, starting
from network configuration and policies model, defined be-
fore. The information is translated using a specific adapter
that transforms the model to a specific network configura-
tion language. For example, considering the listing 7 and
suppose that the VM is implemented using an Ubuntu Linux
operating system, each VM network configuration is trans-
lated into ’/etc/network/interfaces’ language. For bridging
interfaces, the tool asks to admin the IP address that should
be defined accordingly to physical host and external net-
work. The service configuration, for example an Apache
Tomcat web application, is translated using a specific tem-
plate and a service dependant adapter. The policies, simi-
larly to network configuration are translated from network
configuration and policies model to a specific security con-
trol language, e.g. netfilter, using a specific adapter. Finally
it is necessary to build the configuration of the virtual ma-
chine as XML model. To perform this step the tool takes as
inputs (a) the VM template generated before (e.g. VM FW);
(b) network configuration and policies model. Considering
the listing 10, the template is used to define every properties
of the XML model except for the network interface tags,
that are generated using network configuration and policy
model. In addition, this model is used to create the virtual
network properties, as shown for VNet1 in listing 11. The
specific configurations, except for virtual network proper-
ties, derived from previous tasks, are deployed into the VM.
More practically, the VM disk is mounted on local file sys-
tem of the builder machine, and specific configuration are
copied accordingly. On the contrary the virtual network
properties are used in the next step to configure the virtu-
alisation environment.

The VM management layer is able to setup the virtuali-
sation environment, deploy, migrate, start and stop a virtual
machine. In order to create and deploy a VM on the physi-
cal host, the first activity is setup the virtualisation environ-
ment. In practice, our tool, using the libvirt-java API, cre-
ates the network environment on the remote host, accord-
ingly to the network properties described in listing 11. In
the next step, the tool takes as input the VM configuration
model of 10 and using the API creates the new domain on
remote physical host. Finally, the last step copies the VM
disk on the remote host, and the VM is ready to start.

6 Conclusion

We have analysed how the best practices for service and
network dependability change when exploiting modern vir-
tualisation technologies. Based on the results of this study,
we have updated the process and tools we had developed
for semi-automatic dependability planning of information

Listing 10. libvirt VM configuration model
<domain type=’kvm’>
<name>vm-fw1</name>
<uuid>0cc4736f-2568-241d-c610-2e7ba90002f5</uuid>
<memory>262144</memory>
<currentMemory>262144</currentMemory>
<vcpu>1</vcpu>
<os>
<type arch=’i686’ machine=’pc-0.11’>hvm</type>
<boot dev=’hd’/>

</os>
<features>
<acpi/>
<apic/>
<pae/>

</features>
<clock offset=’utc’/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<devices>
<emulator>/usr/bin/kvm</emulator>
<disk type=’file’ device=’disk’>
<source file=’/home/vm-deployment/vm-fw1-disk.img’

/>
<target dev=’hda’ bus=’ide’/>

</disk>
<disk type=’file’ device=’cdrom’>
<target dev=’hdc’ bus=’ide’/>
<readonly/>

</disk>
<interface type=’network’>
<mac address=’54:52:00:60:ef:e5’/>
<source network=’VNet1’/>

</interface>
<interface type=’bridge’>
<mac address=’54:52:00:04:3b:c0’/>
<source bridge=’br0’/>

</interface>
<serial type=’pty’>
<target port=’0’/>

</serial>
<console type=’pty’>
<target port=’0’/>

</console>
<input type=’mouse’ bus=’ps2’/>
<graphics type=’vnc’ port=’-1’ autoport=’yes’ keymap=

’it’/>
<video>
<model type=’cirrus’ vram=’9216’ heads=’1’/>

</video>
</devices>

</domain>

Listing 11. libvirt virtual network properties
for VNet1

<network>
<name>VNet1</name>
<uuid>3e3fce45-4f53-4fa7-bb32-11f34168b82b</uuid>
<bridge name=’virbr1’ stp=’on’ forwardDelay=’0’ />
<ip address="10.10.10.254" netmask="255.255.255.0">
<dhcp>
<range start="10.10.10.100" end="10.10.10.200" />
<host mac="54:52:00:60:ef:e5" name="VM_FW" ip="

10.10.10.1" />
</dhcp>

</ip>
</network>

systems.

19

476

International Journal on Advances in Intelligent Systems, vol 2 no 4, year 2009, http://www.iariajournals.org/intelligent_systems/

In particular, this paper has detailed the algorithms that
our tools exploit to automatically compute allocation and
reaction plans for virtualised information systems. Each al-
gorithm is defined in terms of the relevant modelling on-
tology and the pool of transformation rules working on this
ontology. The actual implementation exploits XML repre-
sentations and transformation languages. We have also de-
veloped prototype integration of our tools with popular vir-
tual machine management software, which is an essential
step towards automatic deployment of the generated plans.

During the selection of the relevant configuration strate-
gies, we have focused on the point of view of the virtual
data center customer: our approach can, and should be, ex-
tended taking in further consideration the point of view of
the hosting provider, which may partially conflict with the
customer’s one.

Acknowledgment

This work was developed in the framework of IST-
026600 DESEREC, “Dependability and Security by En-
hanced Reconfigurability”, an Integrated Project partially
funded by the E.C. under the Framework Program 6, IST
priority.

References

[1] Network Working Group, Address Allocation for Private In-
ternets. IETF RFC 1918, February 1996.

[2] W3C Consortium, Web Services Choreography Description
Language. http://www.w3.org/TR/ws-cdl-10/,
2005.

[3] POSITIF Consortium, The POSITIF System Description
Language (P-SDL). http://www.positif.org/,
2007.

[4] National Vulnerability Database. http://nvd.nist.
gov/, 2008.

[5] Common Vulnerability Scoring System. http://www.
first.org/cvss/, 2009.

[6] M. D. Aime, P. C. Pomi, and M. Vallini. Policy-driven
system configuration for dependability. Emerging Security
Information, Systems, and Technologies, The International
Conference on, 0:420–425, 2008.

[7] M. D. Aime, P. C. Pomi, and M. Vallini. Planning depend-
ability of virtualised networks. Dependability, International
Conference on, 0:46–51, 2009.

[8] Amazon. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems princi-
ples, pages 164–177, 2003.

[10] N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman. Pon-
der: a language for specifying security and management

policies for distributed systems. Imperial College Research
Report DoC 2000/1, 2000.

[11] T. Eilam, M. Kalantar, A. Konstantinou, G. Pacifici, J. Per-
shing, and A. Agrawal. Managing the configuration com-
plexity of distributed applications in internet data centers.
Communications Magazine, IEEE, 44(3):166–177, March
2006.

[12] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.
Requirements engineering meets trust management - model,
methodology, and reasoning. In In Proc. of iTrust ’04, LNCS
2995, pages 176–190. Springer-Verlag, 2004.

[13] M. Israel, J. Borgel, and A. Cotton. Heuristics to perform
molecular decomposition of large mission-critical informa-
tion systems. In SECURWARE ’08: Proceedings of the 2008
Second International Conference on Emerging Security In-
formation, Systems and Technologies, pages 338–343, 2008.

[14] L. Lamport, R. Shostak, and M. Pease. The byzantine gen-
erals problem. ACM Transactions on Programming Lan-
guages and Systems, 4:382–401, 1982.

[15] libvirt. http://libvirt.org/.
[16] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing Net-

work Virtualization in Xen. Proceedings of the USENIX
Annual Technical Conference, 2006.

[17] Microsoft Corporation. Azure Service Platform. http:
//www.microsoft.com/azure/.

[18] D. M. Nicol, W. H. Sanders, and K. S. Trivedi. Model-based
evaluation: From dependability to security. IEEE Trans-
actions on Dependable and Secure Computing, 1(1):48–65,
2004.

[19] J. Oberheide, E. Cooke, and F. Jahanian. Empirical exploita-
tion of live virtual machine migration. In In Proceedings of
the BlackHat DC convention, 2008.

[20] E. Rescorla, A. Cain, and B. Korver. SSLACC: A Clustered
SSL Accelerator. In Proceedings of the 11th USENIX Secu-
rity Symposium, pages 229–246, Berkeley, CA, USA, 2002.
USENIX Association.

[21] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Trans-
port Layer Security (TLS) Session Resumption without
Server-Side State. IETF RFC 5077, January 2008.

[22] F. Satoh, Y. Nakamura, N. K. Mukhi, M. Tatsubori, and
K. Ono. Methodology and tools for end-to-end soa secu-
rity configurations. In SERVICES ’08: Proceedings of the
2008 IEEE Congress on Services - Part I, pages 307–314,
Washington, DC, USA, 2008. IEEE Computer Society.

[23] J. Strassner. Policy-Based Network Management: Solutions
for the Next Generation (The Morgan Kaufmann Series in
Networking). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2003.

[24] The DMTF Technical Committee. The Common In-
formation Model (CIM). http://www.dmtf.org/
standards/cim, 2008.

[25] Trusted Computing Group. https://www.trustedcomputing
group.org, 2009.

[26] Ubuntu. Ubuntu Enterprise Cloud. http://www.
ubuntu.com/cloud/private.

[27] Ubuntu. ubuntu-vm-builder. https://
help.ubuntu.com/8.04/serverguide/C/
ubuntu-vm-builder.html.

[28] VMware. http://www.vmware.com.

20

