
Distributed Emulator for Developing and
Optimizing a Pedestrian Tracking System Using

Active Tags
Junya NAKATA∗‡1 Razvan Beuran∗‡2 Tetsuya Kawakami†3 Takashi Okada‡∗4 Ken-ichi Chinen‡∗5 Yasuo Tan‡∗6 Yoichi Shinoda‡∗7

∗ Hokuriku Research Center, National Institute of Information and Communications Technology
2-12 Asahidai, Nomi, Ishikawa Japan

1jnakata@nict.go.jp2razvan@nict.go.jp
† Panasonic System Solutions Company, Panasonic Corporation.
4-3-1 Tsunashima-higashi, Kohoku, Yokohama, Kanagawa Japan

3kawakami.tetsu@jp.panasonic.com
‡ Internet Research Center, Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa Japan
4tk-okada@jaist.ac.jp5k-chinen@jaist.ac.jp6ytan@jaist.ac.jp7shinoda@jaist.ac.jp

Abstract—In this paper we introduce a distributed emulator
for a pedestrian tracking system using active tags that is
currently being developed by the authors. The emulator works
on StarBED, which is a network testbed consisting of hundreds
of PCs connected to each other by Ethernet. The three major
components of the emulator (the processor emulator of the active
tag micro-controller, RUNE, and QOMET) are all implemented
on StarBED. We present the structure of the emulator, how it
functions, and the results from the emulation of the pedestrian
tracking system. The emulator accomplished quite accurate
emulation of ubiquitous network systems with the techniqueof
emulation. We found several issues originated from active tag’s
firmware or protocol by applying the emulator to the emulation
of the tracking system. We confirmed the results obtained by
running tests corresponding to a real-world experiment.

Keywords—ubiquitous networks; distributed testbed; support-
ing software

I. I NTRODUCTION

As Panasonic Corporation. (hereafter referred to as Pana-
sonic) is developing a pedestrian tracking system using active
tags, one requirement is to carry out a large number of
trials. Real-world experiments with wireless network systems,
and active tags in particular, are difficult to perform when
the number of nodes involved is larger than a few devices.
Problems such as battery life or undesired interferences often
influence experimental results. We are currently implementing
a solution by developing an emulation system for active tag
applications that runs the real active tag firmware within a vir-
tual, emulated environment. Through emulation, much of the
uncertainties and irregularities of large real-world experiments
are placed under control. In the same time, using the real active
tag firmware in experiments enables us to evaluate exactly
the same program that will be deployed on the real active
tags; this is a significant advantage compared to simulation.
For performing the practical experiments we use StarBED, a
network experiment testbed.

StarBED consists of 920 PCs connected by two separated
networks, the management network and the experiment net-
work, as shown in Figure 1. StarBED provides a simulation
supporting software, SpringOS, to implement an easy-to-
use simulation environment with which the users can write
experiment scenarios in a specific scripting language that can
later be executed automatically. In order to be able to use
this testbed for active tag emulation we developed several
additional subsystems, and integrated them with the existing
testbed infrastructure [1]. These subsystems were developed
on the basis of existing tools that are already used on StarBED,
namely the wireless network emulator QOMET [2], and the
experiment support software RUNE [3].

Group A
208

Group B
 64

 32
Group C

Group D
144

Group E
 64

Group F
168

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

ATM
Switch

Management
Server

External
Network

Group H
240

Fig. 1. Conceptual topology of StarBED.

Active tags were so far mainly studied through simulation,
such as the work presented in [4]. Public domain wire-
less communication emulation research is currently mainly
done in relation to Wireless LANs (WLANs). One can use
real equipment, and hence be subject to potential undesired
interferences. Two examples from this class that allow a
controlled movement of wireless nodes are the dense-grid
approach of ORBIT [5], or the more realistic robot-based

152

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Mobile Emulab [6]. An alternative which avoids undesired
interferences and side effects is to use computer models for
real-time experiments. TWINE [7] is an example from this
class. TWINE is a wireless emulator that combines wireless
network emulation and simulation in one setup, but only
supports 802.11b WLAN so far. Our development started from
an existing wireless emulator, QOMET, which uses similar
concepts.

There are already a number of implementations of ex-
periment tools for ubiquitous systems that could be used
in conjunction with active tag devices. Some of these tools
focus on the operating system level, such as TOSSIM [8],
which is a TinyOS simulator aiming to simulate TinyOS
applications accurately in a virtual environment. ATEMU [9]
is able to emulate TinyOS applications at processor level;
its flexible architecture has support for other platforms too.
ATEMU is thus closer to our purpose, since our low-cost
active tags do not use any operating system. We aimed to
run in emulation experiments the same firmware with the
one used by the real devices. The manufacturer of the active
tag processor , Microchip, only provides two alternatives for
system development: real-time emulation in hardware using
either the MPLAB REAL ICE In- Circuit Emulator, or the
PICMASTER Emulator, or processor simulation using the
MPLAB-SIM Simulator [10]. However none of these solutions
are appropriate for our purpose; thus we developed our own
real-time processor emulator running on PCs.

The pedestrian tracking system developed by Panasonic.
makes use of active tags so as to provide to a central pedestrian
localization engine the information needed to automatically
calculate the trajectory to date and the current position of
the active tag wearer. In the prototype system, three kinds
of tags are used as shown in Figure 2. Mobile tags held by
pedestrians transmit periodically ID packets which includes
time information and sender’s node ID. Fixed tags also
transmit ID packets at certain intervals. Gateway tags have,
in addition, a wired network connection to backend servers
in which the data uploaded from mobile tags are sent. The
trajectories of the pedestrians are calculated based on thedata
gathered by the gateway tags. Using the prototype of the
pedestrian localization system, real-world experiments were
carried out in March 2007. The experiment consisted in the
orchestrated movement of 16 pedestrians both in indoor and
outdoor environments. A system overview and experimental
conditions will be presented later in this paper.

One of the important conclusions of the experiment was
that it is very difficult to organize a real-world experiment
for such applications of active tags. The number of people
involved, and the accuracy of their movement following the
predefined scenario, are only a few of the issues encountered.
Nevertheless, the results of the above-mentioned experiment
are currently being used as a basis for improving the prototype
of the pedestrian localization system and extending it for use
with very large groups of people, of the order of one thousand.
The active tag emulation system that we designed and imple-
mented plays an essential role at this point, since it makes it

Fig. 2. Overview of the pedestrian tracking system.

possible to continue the experiments in the development phase
with ease and in a wide range of controllable conditions.

The paper is organized as follows. Section II introduces our
general approach to active tag emulation. This is followed by
Sections III and IV, which describe the main components of
the active tag emulation system: the wireless communication
emulation, and the active tag processor emulation subsystems,
respectively. Section V presents the preliminary real-world
experiments carried out in order to validate the pedestrian
localization system prototype. Section VI is dedicated to
presenting experimental results obtained with the emulation
system in the attempt to reproduce and extend the preliminary
real-world experiments. The paper ends with sections on
conclusions and references.

II. SYSTEM DESCRIPTION

The technique of emulation implies creating a virtual en-
vironment in which the movement, the communication, and
the behavior of active tags are all reproduced. Emulation
has two main requirements in the case of our project: (i)
Emulate in real time the wireless communication of the active
tags; (ii) Emulate the active tag processor so that the same
firmware used by the real devices can be tested in emulation
experiments. The conclusions of the real-world experiment
using the pedestrian localization prototype system were used
as guidance during the design and implementation of the
emulation testbed. In addition, we used our previous experi-
ence with emulation systems, such as those presented in [11]
and [12], as we built the wireless communication emulation
implementation on QOMET, as discussed in Section III.

The experiment-support software RUNE (Real-time Ubiq-
uitous Network Emulation environment) is used to effectively
run and manage the experiment in real time, as it can be seen
in the overview given in Figure 3. RUNE Master and RUNE
Manager are modules used in all RUNE-based experiments for
controlling the experiment globally and locally, respectively.
The active tag module was specifically designed and imple-
mented for this application. This module includes: (i)Active

153

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Tag Communication and chanel spaces, used to calculate and
manage the communication conditions between active tags.
These functions will be discussed in Section III; (ii)Active Tag
Control space, which is powered by the active tag processor
(PIC) emulator, and runs the active tag firmware in real time
to reproduce the active tag behavior, as it will be discussedin
Section IV. The experiment itself is performed using standard
PCs (running the FreeBSD operating system) that are part of
the StarBED testbed. They are labeled as Execution Units in
Figure 3.

Fig. 3. Overview of the active tag emulation system.

The following RUNE configuration file is used for 16
pedestrian experiments:

#include "runebase.h"

BGNSPACELIST
SPACE(mtag0, xxx.yyy.zzz.2, mtag.so)
SPACE(mtag1, xxx.yyy.zzz.3, mtag.so)

...
SPACE(ftag0, xxx.yyy.zzz.18, ftag.so)
SPACE(ftag1, xxx.yyy.zzz.19, ftag.so)

...
SPACE(gtag0, xxx.yyy.zzz.22, gtag.so)
SPACE(gtag1, xxx.yyy.zzz.23, gtag.so)

...
SPACE(cspc0, xxx.yyy.zzz.2, cspc.so)
SPACE(cspc1, xxx.yyy.zzz.3, cspc.so)

...
ENDSPACELIST

BGNCONDUITLIST
/* mtag0 */
CONDUIT(mtag0, cspc0)
CONDUIT(cspc0, mtag1)
CONDUIT(cspc0, mtag2)

...
/* mtag1 */
CONDUIT(mtag1, cspc1)
CONDUIT(cspc1, mtag2)
CONDUIT(cspc1, mtag3)

...
ENDCONDUITLIST

III. QOMET

One of the most important elements when using emulation
for studying systems that use wireless communication is to
be able to recreate with sufficient realism the communication
between them. For the active tags used in our pedestrian track-
ing system this was accomplished by extending the WLAN
emulator QOMET to support the wireless transceiver used by
active tags.

QOMET uses a scenario-driven architecture that has two
stages. In the first stage, from a real-world scenario representa-
tion we create a network quality degradation (∆Q) description
which corresponds to the real-world events (see Figure 4).

Fig. 4. Active tag communication emulation.

The ∆Q description represents the varying effects of the
network on application traffic, and the wireless network emu-
lator’s function is to reproduce them.

The CHANel Emulation Library, chanel, is used to recreate
scenario-specific communication conditions based on the∆Q
description (FER probabilities) computed by QOMET. Given
that we emulate wireless networks, a second function of chanel
is to make sure the data is communicated to all the systems that
would receive it during the corresponding real-world scenario.

A. Active Tag Emulation

Our pedestrian tracking system uses the AYID32305 active
tags from Ymatic Corporation., also known under the name
S-NODE [13]. They were nicknamed communication tags or
c-tags in the framework of the current pedestrian localization
project. S-NODEs use as processing unit the PIC16LF627A
microcontroller. The wireless transceiver of the active tag op-
erates at 303.2MHz, and the data rate is 4800bps (Manchester
encoding), which results in an effective data rate of 2400bps.
The electric field emitted by active tags is 500µV/m; according
to the specification, this produces an error-free communication
range of 3-5m.

The active tag communication protocol was custom de-
signed as a simple protocol based on time-division multi-
plexing. Each tag will select at random one of the available
communication slots and advertise its identifier and the current
time. Currently the number of available communication slots
for advertisement messages is 9. There are additional commu-
nication slots that can be used on demand to transmit position
tracking records from mobile tags to gateways.

The active tag communication model we currently use estab-
lishes the relationship between the distance between two nodes
and the Frame Error Rate (FER, a data link layer parameter).
This conversion is done based on measurements we made in
an RF shielded room with the helicoidally shaped antenna,

154

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

also used in the practical experiment, and 4-byte frames. By
fitting a second degree equation on the measurement results
we obtained the following equation:

FER4 (d) = 0.1096d2 − 0.1758d + 0.0371 , (1)

whereFER4 is the frame error rate (the index shows it is
based on 4-byte frame measurements) andd is the distance
between the receiver and transmitter active tags. The above
equation gives a goodness-of-fit coefficient,R2, equal to
0.9588.

In order to extend the communication range we introduced
the constantC, the scaling factor, in equation III-A. Note
that equation one needs some small modifications in order
to represent accurately active tag communication range. The
extended equation is:

FER′

4 (d) = 0.1096
(d

C

)2

− 0.1758
d

C
+ 0.0371

FER4 (d) =











0, if
d

C
< 0.5m

1, if FER′

4 (d) > 1 .
FER′

4 (d) , otherwise
(2)

Since the measurements were done using 4 byte data frames,
the result of equation (III-A) must be scaled accordingly for
other frame sizes, as given by:

FER (d) = 1 −
(

1 − FER4 (d)
)

H+x

H+4 , (3)

whereFER represents the frame error rate for a data frame
of x bytes, andH is the frame header size in bytes. In our
pedestrian tracking system,x and H are constant, 7 and 6
respectively.

Slot collisions arising during the time-multiplexed commu-
nication are an additional and independent source of errors.
However they are handled in real time during the live experi-
ment in the receiving procedure of the processor emulator.

The frame error rate induced by slot collision,FERs, is
expressed by the equation below:

FERs =

n
∑

m=1

Cm
n /Nslots

m+1 , (4)

whereCm
n is the notation for combinations of a set of n objects

takenm at a time,Nslots represents the number of slots used
for communication (currently 9), andn is the number of c-
tags transmitters that are located in the reception range ofthe
current tag. For a sufficiently large number of slots, equation
(4) can be simplified by ignoring the terms withm > 2,
which become very small. In this case we obtain the following
simplified relation:

FERs =
n

Nslots
2

. (5)

Considering thatFERx is equal to 1 for out of range
transmitters, the numbern can be computed at each moment
of time as the cardinal of the set of c-tags,E, for which the

frame error probability due to distance when received by the
current tag is inferior to 1:

n = |E| , E = {e|FERx < 1} . (6)

Finally, the overall frame error rate,FER, can be computed
by taking into account the fact that the two error causes
discussed above are independent, as follows:

FER = FERx + FERs − FERx · FERs . (7)

A more realistic approach is to take into account the slot
collision in real time during the live experiment in the receiv-
ing procedure of the PIC emulator. This approach required
more computational power, and was used only selectively. If
live slot collision emulation is enabled, than the model above
needs to considerFERs equal to 0.

B. Communication channel emulation for non-IP applications

Given that the active tags we emulate do not generate IP
traffic, we could not use a wired-network emulator such as
dummynet for introducing network layer effects to traffic, as
previously done when using QOMET. As a consequence we
decided to implement our own communication channel em-
ulation system, named CHANEL (communication CHANnel
Emulation Library). This module is inserted between the space
emulating the c-tag (Active Tag Control Space in Figure 3) and
its connection to the other spaces using conduits. The advan-
tage of this integration is that it becomes transparent fromthe
point of view of emulation whether RUNE spaces are executed
on the same PC or on different PCs, since communication itself
is handled transparently by RUNE conduits.

The main role of CHANEL is to recreate scenario-specific
communication conditions based on the∆Q description (FER
probabilities) computed by QOMET. This function is similar
to that of any wired-network emulator, such as dummynet.
Given that we emulate wireless networks, a second function
of CHANEL is to make sure the data is communicated to all
the systems that would receive it during the corresponding
real-world scenario. This is done by using the∆Q description
to decide the conditions for the communication between the
current active tag and the other active tags in its transmission
range. Since unicast-like traffic coming from an active tag
needs to be sent to multiple destinations, there are concerns
regarding the performance of CHANEL when the number
of destinations increases. Note however that give the small
transmission range of active tags (4-5m), the number of
receivers that can be in the transmission range at one moment
of time is relatively small. We estimate that in general the
number will be of a couple of active tags, and may reach
about 10 active tags when emulating crowded areas.

The communication channel emulation library was opti-
mized to increase performance. In addition we now started
using a binary file (the output of QOMET) inside CHANEL
instead of the text file used so far. A main advantage is
that the reduced size of the file allows for faster reading,
and therefore improves CHANEL performance. Most delays
that we measure reach occasionally values around 250ms.

155

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Although we do not know exactly the source of these errors,
we believe they are related to kernel scheduling parametersin
FreeBSD. Note however that since we run the experiment ten
times slower than real time, a time slot of 500ms has a length
of 5s, therefore a 250ms configuration error only representsa
5% error.

As we want to be able to run multiple instances of CHANEL
on the same computer, as well as provide a thread-safe
environment, several mutex structures were added, and now
concurrent access to CHANEL data structures became possible
in a safe manner.

IV. PROCESSOREMULATOR

One advantage of network emulation is that already-existing
network applications can be studied through this approach
to evaluate their performance characteristics. Although this
is relatively easy for typical network applications that run
on PCs, the task is complex when the network application
runs on a special processor. In order to execute the active
tag application unmodified on our system, we emulate the
active tag processor so that the active tag firmware can be
run in our emulated environment without any modification or
recompilation.

Processor emulation in our system had to take into account
the following aspects that we implemented:

(i) Instruction execution emulation; all 35 PIC instruc-
tions are supported by our processor emulator.

(ii) Data I/O emulation; the only I/O access method used
by the active tag application is USART (Universal
Synchronous Asynchronous Receiver Transmitter).
The application uses USART to interface with the
active tag transceiver, and also with the back-end
system in the case of gateway tags.

(iii) Interrupt emulation; all interrupts necessary for the
active tag application, i.e., timer0, timer1, and timer2
are supported.

We used a pseudo-DMA data transfer technique which is not
implemented by the real device instead of emulating the active
tag transceiver. It makes easier to integrate the active tag
application and the peripheral components of the experiment
such as the chanel space etc. We also used random number
generation functionality to compensate the original active tag
software’s weakness in random number generation.

When emulating active tag applications such as ours it is
important to introduce cycle-accurate processor emulation. In
our case active tags use the time information contained in mes-
sages to synchronize with each others autonomously. Incorrect
time information may lead to artificial desynchronization prob-
lems and potentially communication errors, therefore it must
be avoided.

One of the main concerns regarding a processor emulator
is how well the execution speed is reproduced, especially in
the case when running multiple instances of the emulator. In
Figure 5 we show how emulation accuracy changes depending
on the operating frequency and the number of instances of the
PIC emulator that are run in parallel. We remind that frequency

used in the active tag application is 4MHz. The figure shows
that, good accuracy is obtained for up to about 40 instances
running in parallel when the operating frequency is 4MHz.
We tried some scheduling algorithms such as Round Robin,
EDF (Earliest Deadline First) etc. in order to obtain better
performance. But no significant difference could not be seen
because the scheduling of the processor instances takes place
always in synchronous manner unlike the process scheduling
of operating system.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

P
ro

ce
ss

or
 fr

eq
ue

nc
y

[M
H

z]

Number of processor instances

160 / f
1MHz
2MHz
4MHz
8MHz

16MHz

Fig. 5. Number of instances executed simultaneously at different frequencies
on single PC

In our emulation, the PIC Emulator works as a part of Active
Tag Control space as mentioned in Section 2. First of all, a
PIC Emulator instance is allocated and initialized by invoking
pic16f648Alloc(). The function allocates the data block for
holding all processor internal states, registers, and memory and
also launches the main emulation thread, which executes the
fetch-decode-execute cycle repetitively. The main emulation
thread controls the timing of progress of the emulation by us-
ing the RDTSC instruction of IA-32 architecture, which reads
the Time Stamp Counter (TSC) register implemented in Intel
IA-32 architecture processors. The advantage of this approach
is: (i) The accuracy obtained in this way is theoretically the
highest in a normal PC system, unless it has an external device
which aids obtaining extremely accurate time such as GPS.
(ii) It takes less time to execute the RDTSC instruction than
typical C functions used to get system time, since the RDTSC
instruction can be executed without the transition between
kernel mode and user mode. There is also a thread created
in the initialization process of the Active Tag Control space
which takes care of the Pseudo-DMA data transfer. During
emulation, both threads work together to accomplish real-time
emulation of PIC processor.

V. PRELIMINARY TRIAL

The real-world experiment was carried out in March 2007
by Panasonic. Each experiment participant was equipped with
an active tag based pedestrian localization system prototype
(c-tag).

156

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

A group of 16 participants were provided with instructions
regarding the path they should follow in the 100 x 300m
experiment area. An example of instructions, as received by
participant #1 is shown in Figure 6.

The real-world experiment also included a number of tags
with known position. These tags are divided into two classes:
fixed and gateway c-tags, denoted in Figure 6 by F0 to F3,
and GW0 to GW2, respectively. The role of fixed tags is to
provide specific information to the mobile ctags that come
in their vicinity to makes it possible to localize those tags.
Gateway c-tags, in addition to c-tag communication, also allow
information to be transferred between them and to the back end
system. The gateways are placed at 3 known outdoor locations
Gateways are also connected to the back-end servers; their data
is used by the localization engine to determine the trajectories
and positions of pedestrians.

Fig. 6. Pedestrian movement instructions as received by participant #1.

The real-world experiment was successful in the sense that
data collected from the active tags could be used to localize
the pedestrians in most cases with sufficient accuracy. The
active tag localization approach doesn’t use any GPS-like or
triangulation system. Instead the logs of each mobile tag,
as collected by gateways, are used. The c-tag logs contain
information regarding the time at which other mobile or
known-position c-tags were encountered, and their identifiers.
This information is used to predict the trajectory of c-tag
wearers and track their position. The basic equation used to
calculate the position Px of a pedestrian at moment of time tx
is:

Px = Pi + (Pj − Pi)
tx − ti
tj − ti

, (8)

wherePi andPj are the known positions of the pedestrian
(from ctag logs) at moments of timeti andtj , with ti ≤ tx ≤
tj . For more details about the experiment and the pedestrian
localization engine one may consult [14] (in Japanese).

VI. RESULTS

The emulation shown uses exactly the same conditions as
the real-world experiment described in Section V, and was
used to validate the emulation system. For simplicity each
active tag and the associated chanel component are run on one
PC. The emulational setup follows the overview presented in
Figure 3.

A. Emulation results (16 virtual pedestrians)

The initial position of the 16 virtual pedestrians, the loca-
tions of the 4 fixed c-tags and 3 gateway c-tags, the building
topology, and virtual pedestrian movement were all described
by converting the real-world experiment instructions to the
QOMET XML-based scenario description. Time granularity
used when computing communication conditions, as well as
during real-time execution was 0.5s. RUNE was used to
configure the host PCs according to the emulation description
and run the emulation.

We implemented a tool which converts the result of the
emulation into KML format [15]. Visualizing the result with
Google EarthTM [16] (Figure 7) 1 helps to figure out the
motion of the virtual pedestrians in time and to easily identify
localization problems.

In order to understand better the localization errors, it
is possible to draw for each virtual pedestrian its emulated
trajectory, and the trajectory localized by the system. By
comparing them, and seeing where differences occur, one can
determine where the algorithm needs to be improved.

Fig. 7. Visualization using Google EarthTM .

We have performed several series of emulations trying to
reproduce and extend the 16 virtual pedestrian experiment car-
ried out by Panasonic. The communication range of active tags
is one of the most important parameters, since it determines
the area in which communication is possible. Communication
range is given by transmitted power; therefore it is directly
related to power consumption. In a series of emulations,

1Google EarthTM mapping service is a trademark of Google Inc.

157

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

we tried to see what is the performance of the localization
algorithm for several communication ranges, as follows: 3m,
6m, 9m, 12m, 15m (see Figures 8 and 9). By looking at
the mean localization error versus range in Figure 9, one can
conclude that the range of 9 m seems to provide optimum
performance in this case.

Fig. 8. Mean localization error per virtual pedestrian for several communi-
cation ranges (3 emulations per range).

Fig. 9. Mean localization error versus communication range.

Emulation can be used to investigate a wide range of
controllable conditions. We decided to use this approach to
determine how localization performance changes when the
number of slots allocated to communication between tags
varies. For this purpose we performed several emulations, both
with the tags configured for 3m range, and 9m range. In each
series of emulation we varied the number of slots as follows:
3, 6, 9. Note that 9 slots is the value used by the real prototype.
The results are shown in Figures 10 and 11. Analyzing the

mean localization error versus the number of slots in Figure11,
we conclude that for 9 m range using 6 slots is enough, but
the 3 m range does require the use of 9 slots to provide best
performance.

Fig. 10. Mean error per virtual pedestrian when varying the communication
range and the number of communication slots used by each tag.

Fig. 11. The mean localization error per emulation versus the number of
communication slots.

In Figures 12 and 13 we show the results for another
emulation in which we configured the range of the active tags
to 5m, 10m and 15m. The purpose was to demonstrate how
our system could be used to determine the optimum range for
the active tags.

Figure 13 indicates that for a range of 10m, the optimum
performance is achieved. For 5m range, the variation of the
error is quite high, since in some case the short communication
range leads to the event that two tags may miss the chance to
communicate, therefore their trajectory may not be correctly
identified. On the other hand for communication range of 15m,
the localization error increases slightly. This is explained by
the fact that with a longer range the communication between
tags starts and lasts until a longer distance, therefore the
accuracy of localization decreases.

158

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Fig. 12. Mean error for each virtual pedestrian for several communication
ranges (3 emulations per range).

Fig. 13. Mean error for each transmission range.

In Figure 14, we show the visualization tool we use for the
communication protocol of the active tags. Such a graphical
representation gives an insight in the timing of the messages
sent and received by active tags, as well as other elements of
the communication protocol. This tool was successfully used
to identify some potential firmware implementation problems.
For instance, a weakness of the random number generator
implementation led to the choice of the same time slot for
communication in our emultaions. This fact produced an
unusually large number of collision effects, for which the
cause became obvious using the communication visualizer
tool. As mentioned in Section IV, we implemented an al-
ternative random number generator in the PIC emulator as a
temporary solution. The implementation of the random number
generation functionality is planned to be improved in the next
prototype localization system.

Another issue we were able to identify by emultaions is
related to time synchronization between active tags. At the
moment a mobile active tag synchronizes its clock based

Fig. 14. Active tag communication visualization tool.

on the time received from neighboring tags. Gateways and
fixed nodes do not synchronize their time. We observed in
our emulation system that the time accuracy without time
synchronization (e.g., for gateways) is better than with time
synchronization (i.e., for mobile tags). The time drift of two
or more mobile nodes that are not in the vicinity of a gateway
or fixed tag becomes quickly significant using the current
synchronization algorithm, while the gateways and fixed tags
themselves seem to be relatively stable, although not using
time synchronization. This issue had not been noticed in the
real-world experiment, but it is very important. A significant
time drift leads to localization inaccuracy and must be solved
in the next prototype. We circled in Figure 14 an example of
time drift for a pair of mobile tags (P10 and P11).

Figure 15 shows at where the #1 tag exchanged packets
that used for localization to other tags. As the figure shows,
enough number of packets necessary for localization were
exchanged in our emulation. All the result presented in this
section indicates the emulated tag software works properly
even though we, unfortunately, have no way to confirm if the
behavior of emulated tag software is correct by comparing
with the result obtained from the real-world experiment since
the real tags does not have any logging functions due to
memory and processing ability restrictions.

B. Emulation results (100 virtual pedestrians)

One of the purposes of developing emulation was running
large-scale emulation that cannot be executed very easily in
the real world. In this content we ran several emulations with
up to 100 virtual pedestrians. For the emulations, the motion of
virtual pedestrians is generated by a motion generator using the
real geographical information provided by GSI (Geographical
Survey Institute, a Japanese governmental organization) as the
constraint condition. Figure 16 shows an example of generated
trajectory of virtual pedestrians.

159

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

 0 200 400 600 800 1000

time[s]

Road

Packet exchanged
Motion of tag # 1

Fig. 15. Packet exchanged location and trajectory of the #1 tag.

Fig. 16. Generated topology of 100 virtual pedestrian emulation.

Although we performed several series of 100 virtual pedes-
trian emulations, due to some problems in the localization
engine we are not able to plot the localization results in the
same way we did for the other emulation. The problem was the
following: in the 100 virtual pedestrian emulation, the number
of tags that reaches the destinations at GW4 and GW5 is high,
therefore there are many collisions between the mobile tags
as they try to upload their information. In addition, due to
the relatively big size of the area, the number of encounters
between mobile tags is rather small. These two reasons lead
to the fact that not all the tags manage to upload information
to gateways. Table I illustrates how many mobile tags never
succeeded to upload information during the emulation. The
table shows that almost half of the mobile tags never succeeded

to upload any information although the rest of tags uploaded
hundreds of packets as Figure 17 shows. The current version
of the localization engine is not able to cope with the case
when incomplete information is given, and was not able to
produce any results. Panasonic is currently investigatingthis
issue so that the robustness of the localization engine can be
increased.

TABLE I
NUMBER OF TAGS SUCCEEDED TO UPLOAD INFORMATION.

Number of tags that Number of tags that
uploaded at least one record uploaded no record

55 45

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 p

ac
ke

ts

Mobile Tag ID

Fig. 17. Number of P records uploaded by each mobile tag.

Table II shows how many records are left in the memory
of each mobile tag at the end of emulation. According to
the table, over 90% of mobile tags had had information not
uploaded at the end of emulation. This happens if a mobile
tag lost the opportunity to upload information in the final
part of its trajectory for some reasons, mainly collision in
the emulation. So Panasonic is now designing a collision
avoidance protocol, since our emulations have shown that
without such an algorithm the active tag localization system
cannot function for relatively crowded areas. This is one of
the important findings of our emulations.

TABLE II
NUMBER OF TAGS HAVE INFORMATION LEFT IN MEMORY.

Number of tags have Number of tags have no
information left in memory information left in memory

91 9

VII. C ONCLUSION AND FUTURE WORK

In this paper we presented an emulation system that we
designed and developed for active tag applications. This emu-
lation system is currently employed for the development phase
emulations of a pedestrian localization system by Panasonic.

160

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

By using our system it was possible to simplify the develop-
ment and testing procedures of the localization engine, and
identify several firmware implementation issues.

In order to validate the emulation system we carried out
tests that reproduced a real-world 16 pedestrian experiment
that took place in March 2007 using the prototype of the
active tag based pedestrian localization system. The emulation
results show the good agreement that exists between the
virtual motion patterns of pedestrians, reproduced according
to the real-world scenario, and the actual conditions that were
recreated in our emulation.

Through emulations we found several issues originated from
active tag’s firmware or protocol. Some of the issues such as
those of time synchronization and random number generation
are already fixed by modifying firmware in emulation first
and then feeding it back to the real firmware. Some more
fundamental issues such as unreliable behavior in crowded
areas are under study by Panasonic and supposed to be
fixed in the next version of the firmware. In both cases,
our distributed emulation approach utilizing the real firmware
made it easy to find out problems and fix them. This fact tells
that the emulation environment implemented on distributed
environment is useful to validate systems especially which
consists of many small components such we targeted.

Our future work has several main directions: improve the
scalability of the system so as to enable emulations of pedes-
trian groups as large as 1000; improve the realism of the
wireless communication emulation by using more accurate 3D
models for topology and electromagnetic wave propagation;
combine the behavioral motion model with a GIS-based urban
area description to create a realistic pedestrian trajectory
generator for large-scale urban emulations.

REFERENCES

[1] Junya NAKATA, Razvan Beuran, Tetsuya Kawakami, Ken ichiChinen,
Yasuo Tan, and Yoichi Shinoda. Distributed emulator for a pedestrian
tracking system using active tags. InUBICOMM 2008: Proceedings
of the 2008 The Second International Conference on Mobile Ubiqui-
tous Computing, Systems, Services and Technologies, pages 219–224,
Washington, DC, USA, 2008. IEEE Computer Society.

[2] Razvan Beuran, Lan Tien Nguyen, Khin Thida Latt, Junya Nakata,
and Yoichi Shinoda. Qomet: A versatile wlan emulator. InAINA
’07: Proceedings of the 21st International Conference on Advanced
Networking and Applications, pages 348–353, Washington, DC, USA,
2007. IEEE Computer Society.

[3] J. NAKATA, T. Miyachi, R. Beuran, K. Chinen, S. Uda, K. Masui,
Y. Tan, and Y. Shinoda. Starbed2: Large-scale, realistic and real-time
testbed for ubiquitous networks. InThe 3rd International Conference on
Testbeds and Research Infrastructures for the Developmentof Networks
and Communities(TridentCom 2007), Orlando, Florida, U.S.A., 2007.

[4] A. Janek, C. Trummer, C. Steger, R. Weiss, J. Preishuber-Pfluegl, and
M. Pistauer. Simulation based verification of energy storage architectures
for higher class tags supported by energy harvesting devices. volume 32,
pages 330–339, Amsterdam, The Netherlands, The Netherlands, 2008.
Elsevier Science Publishers B. V.

[5] Rutgers University and Wireless Information Network Laboratory. OR-
BIT - Wireless Network Testbed. http://www.orbit-lab.org/ 15.05.2009.

[6] David Johnson, Tim Stack, Russ Fish, Daniel Montrallo Flickinger,
Leigh Stoller, Robert Ricci, and Jay Lepreau. Mobile emulab: A robotic
wireless and sensor network testbed. InINFOCOM. IEEE, 2006.

[7] Junlan Zhou, Zhengrong Ji, and Rajive Bagrodia. Twine: Ahybrid
emulation testbed for wireless networks and applications.In INFOCOM.
IEEE, 2006.

[8] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim:
accurate and scalable simulation of entire tinyos applications. InSenSys
’03: Proceedings of the 1st international conference on Embedded
networked sensor systems, pages 126–137, New York, NY, USA, 2003.
ACM.

[9] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras.Atemu: A
fine-grained sensor network simulator. InProc. of the First IEEE Com-
munications Society Conference on Sensor and Ad Hoc Communications
and Networks (SECON 2004), Santa Clara, California, U.S.A., 2004.

[10] Microchip Technology Inc. MPLAB. http://www.microchip.com/
15.05.2009.

[11] R. Beuran, J. NAKATA, T. Okada, T. Miyachi, K. Chinen, Y.Tan, and
Y. Shinoda. Performance assessment of ubiquitous networked systems.
In 5th International Conference on Smart Homes and Health Telematics
(ICOST2007), Nara, Japan, pages 19–26, 2007.

[12] Takahashi Okada, Razvan Beuran, Junya Nakata, Yasuo Tan, and Yoichi
Shinoda. Collaborative motion planning of autonomous robots. vol-
ume 0, pages 328–335, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[13] Ymatic Inc. S-NODE specification. http://www.ymatic.co.jp/
15.05.2009.

[14] Y. Suzuki, T. Kawakami, M. Yokobori, and K. Miyamoto. A real-
space network using bi-directional communication tags - pedestrian
localization technique and prototype evaluation. InIEICE Forum on
Ubiquitous and Sensor Networks, techni cal report, 2007.

[15] Open Geospatial Inc. KML Standard.
http://www.opengeospatial.org/standards/kml/ 15.05.2009.

[16] Google Inc.Google Earth. http://earth.google.com/ 15.05.2009.

161

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

