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Abstract—Equations Of Motion (EOM) can effectively describe
physical dynamics within a prescribed set of assumptions and
constraints. However, in many physical dynamic systems, perfor-
mance can alternate and deteriorate with age, use, or alterations
in operational points or environments. The culmination of these
factors will be denoted as a health change later in the text.
These physical changes can be characterized as alterations in
the constitutive constants, which are denoted as mass, stiffness,
and damping for a mechanical system, and internal interactions.
If these health changes are not taken into account in the modeled
EOM, discrepancies may emerge between the physical and model
responses. The paper investigates two scenarios: 1) both the
true plant and the input matrix experience a form of health
change, and 2) only the input matrix experiences a form of
health change. The control schemes depend on knowing the true
system’s input and output states. For case 1: Lyapunov stability
proof guarantees internal and external state error convergence
to zero asymptotically if the true system experiences health
changes within the assumptions and constraints of the proposed
control scheme. For case 2: the internal and external state
errors converge asymptotically to a neighborhood of zero rather
than to zero itself. This behavior results from the presence of
a feedback filter in the adaptive input matrix estimation law,
which restricts full convergence but enables faster state-error
convergence compared to the case without a feedback filter.
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I. INTRODUCTION

This article extends our original Adaptive 2025 conference
paper by considering feedback filters on the adaptive laws:
adaptive state and adaptive input matrix estimation laws [1].
In earlier work, a feedback filter was successfully applied
only to the adaptive state estimator law [2]. Initial attempts
to apply feedback filters to both adaptive laws simultane-
ously, or to apply a feedback filter to one while omitting it
from the other, did not yield promising simulation results.
This is likely due to the imbalance in managing plant and
input matrix uncertainty, while the feedback filter enables
accelerated convergence relative to the non-feedback filtered
case. Given the lack of favorable simulation outcomes, the
final implementation applied the feedback filter solely to the
adaptive input matrix estimator, while the adaptive state-
estimation law was omitted. This article presents two proofs:
1) adaptive state and adaptive input matrix estimation, and 2)
adaptive input matrix estimation using a feedback filter.

Before discussing the adaptive laws, it is import to un-
derstand their need. Equations Of Motion (EOM) can de-
scribe the dynamics of the true physical system within a set

of assumptions and constraints. The EOM cannot guarantee
anything beyond the prescribed conditions. With age, usage,
changes in operational points, or environmental elements, the
true physical system can undergo degradation. Failing to ac-
count for these degradations or health changes resulting from
changes in internal interactions or constitutive constants—such
as mass, stiffness, and damping in mechanical systems—can
lead to an inaccurate depiction of the true dynamics. Equally
important, but often overlooked is the potential decline of the
system’s actuator, which influences how inputs interact with
the physical system. A substantial portion of control problems
involves the regulation of output errors concerning a given
input. Ignoring the health status changes in system dynamics
or actuation can result in catastrophic failure if synthesized
inputs does not adequately address these changes.

For traditional Luenberger or Kalman-like estimators to be
practical, there has to be minimal uncertainty about the system
[3], [4]. Unlike Luenberger Estimators, Kalman-like filters are
renowned for their ability to account for noise and stochastic
variations resulting from sensor or process disturbances, under
the assumption that the noise follows a Gaussian distribution
centered around zero. However, neither type of estimator is
capable of accommodating changes in the health status of the
system dynamics or the input matrix.

The sensitivity of Luenberger and Kalman-like estimators
to minimal uncertainty regarding system dynamics motivates
the development of robustness techniques to address model
uncertainty [5], [6]. The control technique presented in this
text can manage both plant and input matrix uncertainties.
More importantly, it can also accommodate significant changes
in system health, as defined in the derivation. This work builds
upon our earlier findings, which indicated that only the true-
physical plant experiences a health status change, causing
changes in dynamics and constitutive constants [7]. In 2022,
Griffith developed a closed-loop approach for input matrix
estimation [8]. This paper explores the scenario in which the
plant and the input matrix experience a change in health and
is an extension of [1].

The implemented control architecture was designed for a
general system and can be applied to any system that meets the
assumptions and constraints outlined in the proof. The proof
relies on two primary Lyapunov system stability criteria: Strict
Positive Real (SPR) and Almost Strictly Dissipative (ASD).
For a more formal definition and detailed explanation of SPR
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and ASD in the context of stability, please refer to [7], [9].
Moreover, since none of the estimated states are fed back to
the true system, the estimator can operate without risking harm
to the true system. Additionally, the proposed control scheme
can be utilized offline and online. However, there can exist
practical and numerical limits.

Following the introduction, this paper is divided into ad-
ditional sections: III. Main Result - Theorem 1, IV. Main
Result - Theorem 2, V. Illustrative Example - Theorem 1, VL.
Iustrative Example - Theorem 2, and VII. Discussion. The
beginning of Section III offers a summary of the derivation
process for adaptive state and adaptive input matrix estimation,
presenting one of the paper’s theorem and control diagram.
Sub-sections III-A and III-B provide the assumptions and
constraints for both the true and reference systems while
laying the foundation for updating the reference model. Sub-
Section III-C defines the error states and their dynamics.
In the error dynamics, residual terms exist; therefore, error
states cannot be guaranteed to converge to zero. To address
this issue, the error dynamic states are treated as energy-like
terms. Then, an energy-like balance is constructed to remove
residual terms, guaranteeing the error state to converge to zero
globally as time approaches infinity. This process is detailed
in Section III-D and Section III-E. A similar procedure is
presented in Section IV for Theorem 2, adaptive input matrix
estimation using a feedback filter. Following the derivations,
Section V and Section VI present two Illustrative Examples
detailing the implementation of the derived control schemes.
These examples detail a scenario where the error state takes
a relatively long and short time to converge. In particular, the
interaction tuning terms {~,, "y, } were left unadjusted. These
terms can affect the time at which the error state converges.
Finally, the paper ends with two sections: VII. Discussion and
VIIIL. Conclusion.

II. NOMENCLATURE

A = True Plant

A,, = Model Plant

ASD = Almost Strictly Dissipative
B = Input Matrix

B,, = Input Matrix Model

€ = Belongs

C = Output Matrix

—

N2
—
I

Conjugate Transpose

€y = Internal State Error
€y = External State Error
= Estimate
N = For All
L., = Fixed Correction Matrix
v = Interaction Tuning Term
AL = Variance Matrix
PR = Positive Real
SPR = Strictly Positive Real
o = Set of Eigenvalues
e = Such that
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III. MAIN RESULT - THEOREM 1

Pertaining to the work being presented, the derived theorem
and control laws, shown in Theorem 1 and Fig. 1, are catered
to minimizing the internal state error (e,) to zero between the
true-physical system and reference model. This is achieved
by accounting for discrepancies in the model plant (A,,)
and input matrix (B,,), given a known input (u), output
matrix (C'), and external state (y). Uncertainty or variability
in the model plant and input matrix means the convergence
of the internal state error to zero cannot be guaranteed. As
detailed in the derivation, to mitigate any variability, the
error system is treated as an energy-like term. The aim
is to dissipate all the energy of the error system, thereby
ensuring the internal state error converges to zero as time
approaches infinity, e, —> 0. To ensure error energy-like
dissipation, the energy- hke time rate of change for the error
system is determined. Subsequently, residual energy-like time
rate of change terms from any uncertainty are identified and
countered. The remaining energy-like time rate of change term
and the use of stability lemma, Barbalat-Lyapunov Lemma,
ensures e, ———— 0 asymptotically.

Theorem 1: Output Feedback on Reference Model for
Adaptive Input Matrix, Plant, and State Estimation.

Consider the following state error system:

ér = (A, — KC)e, + By,
éy=Ce, =C(& —1x)
Ly = ALy + Ly,

(AL yu+ ALsy)

, (D
Ly = ALy + Lo,
= ALl = —éyuT'yu
= ALy = —é,y'y,

where e is the estimated internal state error, €, is the external
estimated state error, { L1, Lo, } are fixed-correction matrices,
{ALy, ALs} are the variability-uncertainty terms, K is a fixed
gain, and {~,, 7y} > 0 are the interaction tuning terms. Given:
1) The triples of (A, B,C) and (A,,, B, C) are ASD and
SPR respectively.
2) A model plant (A,,) must exist.
3) A model input matrix (B,,,) must exist.
4) Output matrix (C) is known.
5) Allow B € Sp{B,L1+} 2 B = B, L1+.
6) Allow A € Sp{A,,, BnL2.C} 3 A= A, + By La.C.
7) The set of eigenvalues (o) of the true and reference plant
are stable (i.e. Re(c(A)) < 0 & Re(o(A,)) < 0).
If conditions are met, then {e,, é,} = 0 asymptotically.

{AL;,AL,} are guaranteed to be bounded; however, no guar-
antee of {ALy, ALy} = 0.If {AL;, ALy} = 0, then
— 00 — 00
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the dynamics of the true system or some energy equivalence
have been numerically captured.

True System
Known Input .
X =Ax+ Bu
y=Cx

T

Adaptive State Estimator

%=Anx+ Bu(Liu+ Lyy)+ K(y— ) o
y=Cx

Adaptive Input Matrix Law

T [heein

Adaptive Estimator Law

’ J

Figure 1. Control diagram for adaptive plant, input matrix, and state
estimation given a known input (u), output matrix (C'), and external state

()

A. Defining True System Dynamics

Assume the dynamics of the true-physical system is linear
time-invariant and therefore can be expressed in state-space
form such that:

True System {x = Av+ Bu )

y = Cx.

Both the true system’s plant (A), assumed to be stable (i.e.
Re(c{A}) < 0), and the input matrix (B) experience a health
change caused by age or use, altering the constitutive constants
and system dynamics. Output matrix (C') and external (output)
state (y) are known. The input (u) can be any bounded-
continuous waveform the user provides, possibly a known
disturbance.

B. Overview of Updating the Reference Model

Subsequent sections will derive a control scheme and laws
to minimize the error between the true and reference systems,
Eq. (2) and Eq. (3), respectively. Note that both true and model
systems match in dimension size, but can differ in constitutive
constant values and internal interactions. Allow the reference
model to have the following state space characteristics:

Reference Model {zm = Am@m + Bpu 3)
Ym = Cop.
To update the input matrix model (B,,), assume that B,, can
be corrected via a input matrix fixed correction term (L1, )
such that:
B = B, L1.. (@)

The true plant is assumed to be decomposed into two compo-
nents: an initial plant model (A4,,,) and plant matrix correction
term (B, L2.C) such that:

A=A, + BnLaC. (5)
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Both Eq. (4) and Eq. (5) assumed decompositions are
structured such that they can be modified via an estimator.
In the estimator, the initial input matrix and plant are updated
via their respective correction term {Lq, Lo }:

L(t) = AL+ L. —— L(t) = Lu, ©6)

where AL is the variability-uncertainty term. If both variabil-
ity term converges to zero, {ALj, ALy} P 0, then the
input matrix and true plant (or energy equivalent) have been
numerically captured. For the control scheme to apply, the true
and reference systems must be ASD and SPR, respectively.

C. Estimated State Error

Given that the true plant (A) and input matrix (B) experi-
ences a health change caused by age or use, and the internal
state (z) is often blended into a linear combination or missing
from the external state (y), an estimator can be created using
the reference model:

t = A& + B (L L
Estimator {aj R v (Lyu+ Loy) @)
y=Cz.

To minimize the error between the true and estimated systems,
consider the following error state equations:

ex =2 —x
R ®)
ey =9—y="Ce,.
To capture the internal state of the true system, the internal
state error must converge to zero as time approaches infinity.

To investigate the internal state error dynamics, take the time
derivative of the internal state error and substitute Eq. (2) and

Eq. (7):
by =0 — @

= A&+ Bpn(Liu+ Lay) — (Ax + Bu). )

From Eq. (9), consider the difference between input matrices:
Bm(ALl + Ll*)u - Ble* u = Bm ALlu
———— ——r

=L =B (10)

=Wy,
= Bwy,.

Again, using Eq. (9) as a reference, consider the difference be-
tween the model and true plants, where A = A,,, + B,,, L2.C"

Am@ + B (ALg + Lo )y — Ax =Ape, + By ALoy
———

e —y (1)
=Ape; + Bprw,y.
Therefore, the error system can be written as:
éy = Cey.

Additionally, the estimator can be extended to use a fixed gain
(K):

1
7y =Cz. (13
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Resulting in the following error equation:

ér = (Am — KC)ey + B (wy, + wy)
—_———

—A,
éy = Ce,.

(14)

To use Eq. (14), find a fixed gain (K) > Re(c{4,,—KC}) <
0.
Regardless of the estimator selected, the internal state error

(e;) can not be guaranteed to converge such that e, =
hade el

0 due to the residual terms {w,,w,} existing in the error
equation. To adequately address these residual components,
additional considerations are needed.

D. Lyapunov Stability for the Estimated State Error

Lyapunov stability analysis represents dynamic systems in
terms of energy-like functions to describe the convergence of
a particular or a set of states. For this case study, Lyapunov
stability is used to guarantee the convergence of internal state
error (eg) 3 e, —— 0.

t—o00

Given the state error equation as described in Eq. (12),
consider the following energy-like Lyapunov equation with
assumed real scalars:

1

Ve=o
2

el Poey; Py > 0, (15)
where the (-) is the conjugate transpose and where P, >
0 represents a matrix P, that is symmetric (P, = PJ) and
positive-definite (Re(o{P,}) > 0).

To determine the energy-like time rate of change of V7, take
the time derivative of V. and substitute Eq. (12) for the error

dynamics:
2V, =éf Poe, + el Pyé,
=(Amey + Bm(wy + wy))TPze
=el (A6, Py + A Pp)es + 2 €l Po By (w,, +wy) .

(16)

:(er(wu“rwy))tpmem
Modifying the SPR stability condition for the reference model:

P,B,, = Cf 1@ > 0.

a7

From here, the SPR condition can be applied to Eq. (16),
resulting in:

2V,

—eleex +2 eLCT(wu + wy)
~——

1

Y

—elQmeI + Zéqu + ZéLwy
_eleem + 2 (é’tja U)u) +2 (éU7 wy) :
—— ——

=é

(18)

=(wu,éy) =(wy,éy)

By removing the residual terms {(é,.w.),(éy,w,)} in
Eq. (18), results in V., < 0.
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To counter the residual terms, consider the following
energy-like functions:

1 1
Vo+V, = 5tr(ALw;lAL{) T itr(ALgyglAL;), (19)

where {7,,7y} > 0. The energy-like time rate of change for
Vi + 'V, follows:

Vi + Vy = tr(ALyy, 'ALY) +tr(ALyy, ' ALY . (20)

=tUr(AL1ya 'AL])  =tr(ALayvy, *ALY)

A control law for the input matrix and plant variance time rate
of change {AL;, ALy} can be defined as the following:

{ALl = —éyuTvu

. A 21
ALy = —é,y',.

Substituting Eq. (21) into Eq. (20):
Vi 4V, =tr(—é,uty, v ALY
——
ALy
+tr(—éyyty, v, ALY
N—_——
ALy

=—tr(é, uTALI) —tr(é, yTALg)
gt I ()

For notation purposes, allow the following:

{Veuy =Ve+Vu+ ‘/y (23)

From here, the estimate state error closed-loop energy-like
function can be written as:

1 1
Veuy :feLPgDeI + ftr(AnglALJ{)
+ §tr(AL27y_1AL§).

Therefore, the estimated state error closed-loop energy-like
time rate of change can be written as:

. 1 . .
V;euy = - ieleez + (wuv ey) + (wya ey)
— (Wy, &y) — (wy, &)

1
=— ielQmem <0.

(25)

Having Veuy < 0 means that {e;, ALy, ALy} are guaranteed
to be bounded. Due to Veuy negative-semi-definite nature, no
additional information can be said about the error internal state
(e;) converging > e, —— 0.

t—00
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E. Applying Barbalat-Lyapunov Lemma on Veuy

To guarantee e, = 0, consider Barbalat-Lyapunov
Lemma - Given:

1) V is lower bounded.

2) V is negative-semi-definite.

3) Vis uniformly continuous in time.
If all conditions are met, then 1% —> 0 according to [10].

The first two conditions of the Barbalat Lyapunov Lemma
are satisfied with Eq. (24) and Eq. (25). The third condition,
Veuy being uniformly continuous in time, can be satisfied by
showing that"Veuy is bounded [10].

To prove Ve, is bounded, consider W,,,:

Taking the time derivative of W, results in the following:
Weuy :261629:61
=2e! Qu(Amesr + B (wy +wy))
:2€LQT (Amem + Bm(ALlu + AL2y))

From Eq. (25), {e,, ALy, ALy} are bounded. Input (u) can be
any bounded-continuous waveform. Following, the true plant
is assumed stable (i.e., Re(c{A}) < 0); therefore, a bounded
input will result in a bounded output (y) [11]. Combining all
bounded results yields: Wwy is indeed bounded. Making wa
bounded.

Given that all the conditions of Barbalat-Lyapunov are
satisfied, Veuy evolution in time can be expressed as:

27)

Veuwy —— 0. (28)
7 t—=o0

Therefore, proves e, —— 0 is asymptotically guaranteed.
However, regardless of_> ]%Oarbalat-Lyapunov being satisfied,
Lyapunov stability results only guarantees {AL;, ALy} to be
bounded. If {AL;, ALy} = 0 numerically, the true input
matrix and plant or an energy equivalence have been captured.
Additionally, without loss of generality, the derived Lyapunov
stability proof can be modified for the error system using fixed
gain, Eq. (12).

Altogether, assuming the reference (A,,, By, C) and true
(A, B,C) systems are SPR and ASD respectfully, such that
the decomposition of the true input matrix (B) and plant (A)
can be written as B = B,,L1. and A = A,, + B,,L2.C.
Then adaptive laws (Eq. (21)) and diagram (Fig. 1) can be
formulated such that the internal state error is guaranteed to
converge to zero asymptotically. Lyapunov stability proof only
guarantees that {AL;, ALy} will be bounded. However, if
{AL;, ALy} = 0, then the true input matrix and plant or

energy equivalent have been numerically captured.

IV. MAIN RESULT - THEOREM 2

An initial attempt was made to incorporate feedback filters
into Theorem 1, similar to those as described in [2]. How-
ever, numerical results were not fruitful. See Section VII for
additional details. This section further extends Griffith 2022
findings by incorporating the feedback filter into the input
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matrix estimation law [8]. The addition of the feedback filter
to the input matrix estimation law enables faster convergence
of the internal state error (e,) compared to the non-feedback
filter case numerically. The tradeoff of using the feedback
filter is that the internal state (e;) can only be guaranteed
to converge to a neighborhood about zero (e, m R.),
versus the internal error converging to zero (e, PR 0) in
the non-feedback filter case. =

A key difference between Theorem 1 and 2 is knowledge
of the true system’s plant (A). To apply Theorem 2, the true
system plant (A) must be known, while the input matrix
model (B,,) must remain. The introduction of the feedback
term in the input matrix estimator law disables the use of the
Barbalat-Lyapunov Lemma and increases the complexity of
the analysis. Much of the analysis consists of bounding terms
using a combination of algebraic manipulation, Sylvester’s
Inequality, and Cauchy-Schwarz inequality. Applying the feed-
back filter to the adaptive input matrix estimator is summarized
in Theorem 2 and Fig. 2.

Theorem 2: Output Feedback on Reference Model for Adap-
tive Input Matrix using a Feedback Filter and State Estimation.
Consider the following state error system:

¢y = (A— KC)ey + BpALju
éy=Ce, =C(&—1x)
Ly =ALi + Ly,

= AL, =

) (29)
—éyuT’yu —alq

where e is the estimated internal state error, €, is the external
estimated state error, L, is fixed-correction matrix, AL is
the variability-uncertainty terms, K is a fixed gain, and 7,, > 0
is the interaction tuning term. Given:

1) The triples of (A, B,C) and (A, B,,,C) are both SPR.

2) A true plant (A) must exist.

3) A model input matrix (B,,) must exist.

4) Output matrix (C) is known.

5) Allow B € Sp{B,L1+} > B = B, 1.

6) The set of eigenvalues (o) of the true plant are stable

(i.e. Re(c(A)) <0).

If conditions are met, then the internal error state converges
to a neighborhood about zero (e, —— R,) asymptotically.
AL, is guaranteed to be bounded; ﬁoowever no guarantee
of ALy —> 0. If AL, —> 0, then the true system
input matrlx or some energy equlvalence has been numerically
captured.

A. Defining the True and Reference System

The true system dynamics will follow all of the assump-
tions and constraints outlined in Section III-A. In contrast,
allow the reference model to have the following state space
characteristics:

= Az + Bu

. (30)

Reference Model {
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True System

Known Input .
X =Ax+ Bu

O >
: ;

y=Cx

Adaptive State Estimator

| X =A%+ B,Liu+ K(y-3)
2 y=Cx

Adaptive Input Matrix Law

L= —éyuTy,, —aLy |

Figure 2. Control diagram for adaptive input matrix with a feedback filter
and state estimation given a known input («), output matrix (C'), and external
state (y).

where the true plant (A) is assumed to be known. The input
matrix model (B,,) can be corrected using a fixed correction
term as outlined in Eq. (4) and Eq. (6). For the control scheme
to apply, the true and reference systems must be SPR.

B. Estimated State Error

Assuming that the input matrix (B) only experiences a form
of health change and the true internal states (x) are often
blended into some weighted linear combination of the external
state (y), an estimator can be formed using the reference
model:

Estimator { 31

Following a similar protocol as described in Section III-C,

error states are defined (Eq. (8)) and the error system dynamics
follow:

ér = Aey + By, (ALju)

—10n (32)

éy = Cey,.

The estimator defined in Eq. (31) can be extended to use a
fixed gain (K):

{x = A9:c+BmL1u+K(y—gj) a3
7= Cz.
Resulting in the following error equation:
ér = (A— KQ)e, + Bryw,
=A. (34)

éy = Cey.

Again, regardless of the estimator selected, the estimated
states cannot be guaranteed to converge to the true states
due to a residual term (w,) existing in the error equation.
To accommodate the residual term, additional constraints are
needed.

International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

C. Lyapunov Stability for the Estimated States

The initial Lyapunov Stability analysis will follow a similar
protocol as outlined in Section III-D. Using the same Lya-
punov function as shown in Eq. (15), the energy-like time
rate of change of V. follows:

2V, =él Pye, + el Pré,

—=(Ae, + Bw,) Pee + el Po(Ae, + Bpw,) 35)
:eL(ATPI + AP,)e, + 2 eleBmwu .
———
=(Bmwy) Prey

Moditying the SPR stability condition for the reference model:

AP, + P,A=—-Q,
1@z > 0. 36
{PzBm =Ct “ (0
Now, the SPR condition can be applied onto Eq. (35):
2V, = —eleeg; + 2 erC’T Wy,
~—~—
=&l

= —elQueq + 28] w, (37)

= —elQuep +2 (Ey,wy) .
——
=(wy,éy)

By removing the residual term ((w,, é,)) in Eq. 37, results in
V. <0.

To counter the residual term, consider the following energy-
like function:

1
V, = 5tr(ALW,;lAL}), (38)

where 7, > 0. The energy-like time rate of change for V,,
follows:

V, = (AL 'ALY) . (39)
—_————

=tr(AL~v; 'ALT)

A control law for the input matrix variance time rate of change
(AL;) can be defined as:

ALy = —éuty, —aly, (40)

where oL acts as a feedback filter. Additional constraints will

be added for « later in the derivation, but for now, allow « to

be a scalar with a value greater than zero (o > 0).
Substituting Eq. (40) into Eq. (39):

V, = tr((—éyuT'yu —aly) mleLI)

Al
= tr(féyuT'yufyglALTl — aLlfy;lALI)
= —tr(é, uT ALY — r(aLyv 'ALT)
T

=wy,

= —tr(é,wl) — tr(aLyy, 'ALD)
——

u

=wLéy

= —(wy, &) — tr(aLyy; 'ALD).
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Therefore, the closed-loop energy-like function can be written
as:

1 1
Veuw = Ve + Vo = gel Pres + gu(AL1y, ' ALY, (42)
While the closed-loop energy-like time rate of change follows:

. . 1 X )
Vew=Ve +V, =~ §6LQx6x + (wu7 ey) - (wm ey)

—tr(aLyy, 'ALY) (43)

1
=-— ie;fCQweJE —tr(aLyy, "ALY).

Due to a residual term existing Eq. (43) (—tr(anglALJ{))

Barabalat-Lyapunov methods, as implemented in Section III-E,

cannot be utilized. Therefore, e, t—> 0 cannot be guaran-
— 00

teed. However, an upper limit or radius of convergence (R,)
can be determined for the internal state error (e, ).

D. Determining the Radius of Convergence for the Internal
Error

The derivation to determine the radius of convergence (R.)
for the internal error (e,) follows a similar approach as de-
scribed in the Fuentes 2025 [2]. The approach requires bound-
ing each component of the right-hand side of Eq. (43), then
utilizing algebraic manipulation to find the limit-supremum of
the internal state error as time approaches infinity.

1) Bounding el Q.e,: Applying Sylvester’s Inequality to
Eq. (15) results in:

)\min Px 1
JH%HQ <V,= feLPxeT <

)\max(P:r) 2
B) B zCx S TH%” , (44)

where {Amin(Px), Amax(Py)} are the minimum and maximum
eigenvalues of matrix P,. Following, ||e;|| is the norm of the
internal error. The upper bound of V, is representative of the
right-hand side of Eq. (44). Therefore, the upper bound of

llex||? can be expressed as:

2Ve

e (P 43)

< [lea|*.

Applying Sylvester’s Inequality to f%eLQmez, the upper
bound can be determined as:

1 )\min T
_ieleez S —#HQIHQ. (46)
Substituting Eq. (45) into Eq. (46):
1 Amin(Qz) 2V,
_ = "' < _ min xT €
gCrlute < 2 Amax(D)
——
=[lex |2 A7
)\min(Qx)
< ———=V, = -2aV..
T Amax(Pr)
Due to both {P,,Q.} > 0, means both have sets of positive
eigenvalues and therefore require 2cv > :\\‘““7((%”; > 0 and be

of scalar value.
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2) Bounding —tr(aLyy;'AL): In order to bound
—tr(aLw;lALJ{) from Eq. (43), recall that L1 = AL+ Ly..
Therefore, the residual term can be updated as:

tr(aLlfy;lALD =atr((ALy + L14) %leLI)
—_——
=1,
=« tr(ALleALJ{)
—_——
=2V,
+ atr(Ly.y, 'ALY)
=2aV, + atr(Ll*%leLI).

Substituting both Eq. (47) and Eq. (48) into Eq. (43) results
in:

(48)

Veu = —2aV, — 2aV, —atr(Ly.y, 'ALD).  (49)
~—
=—2aVeqy
Therefore, Eq. (49) can alternatively be written as:
Veu 4 2V, = —atr(Ly,y; 'ALY). (50)

The right-hand side of Eq. (50) can be upper bounded by
taking the absolute value of terms:

Veu + 20V, < alte(Liy, 'ALY).

(5D

3) Upper Bounding |tr(L1*’y;1ALI)\: Applying the
Cauchy-Schwarz inequality on |tr(Ly,y,; *ALY)]:
(L1, AL <

tr(Lioyy LE,) 2 w(ALyy, LALT)E (52)

—(2V.) 2 <(2Veu) 2

Using the trace properties and Cauchy-Schwarz inequality,
1 . .
tr(L1.y; ' LT,)% can be alternatively written as:

tr(Lyoyy LY, < J(L], Ly ) 2|
< (LY, Ly,) 2 (Y3,

u

(53)

For notation purposes, allow the following assumptions:
My, > 05 tr(L],L1.)7 < My (54)

and

1 2
tr(y; 1) < . 55
i) < (37 ) 5

Substituting Eq. (54) and Eq. (55) into Eq. (53) results in:

tr(Lyyy 'LE,) 2 < (L], Li.) (v b)*

1
< M, (Osz>

<

(56)

QI

Thus, substituting Eq. (56) into Eq. (52) results in:
(e, ALY < tr(Lian, ' L1) 2 (2Ve) ?
—_—————

Q=

(67

< —(2Ve)?.

Q| =
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4) Combing Bounds to Determine Radius of Convergence
(R.): Combining the results in Eq. (57) into Eq. (51) results
in:

Veu + 20V, < a|tr(Ly,y, 'ALD)|
N——
:%(gveu)% (58)
< (2Veu) .
Thus, Eq. (58) can be rewritten as:
Veu + 20Veu
+71a <2,
Ve

Consider the following expression:

(59)

d 1 1 1. 1
%(2604‘/6%) - Q(Qth%% + eat§%u2 ‘/eu)
. 20&6atVeu + eatVeu
Ver
Veu + 2aVeu at
= e
Vei.

Therefore, Eq. (5§9) can be alternatively expressed as:

(60)

%(2€at‘/e%) S \/ieat.

Integrating and evaluating both sides of Eq. (61) from 0 to 7
results in:

(61)

2
267 Vo (1)% — 26V, (0)% < % (27 —e®0).  (62)
Solving for V. (7)2:
2
Vw(T)% < em Ve, (0) + %(1 —e 7). (63)

From Eq. (63), given that o > 0, then it can be shown that
Veu(7)? is bounded for all 7 > 0 and therefore bounding
Vew (1) for all 7 > 0. By V., (7) being bounded for all 7 > 0,
this also implies that both {e,, AL;} remain bounded as they
compose Veu.

Vei, can be further lower bounded by considering the
following inequality:

Amin (Pe)? 1 .
2 el < VAW SV 69
Solving for ||e;|| in Eq. (64) results in:
ﬁ —art

[[ex]] Sﬁe Veu(0)
mln( x) (65)

1 -

(1—e797).

+ -
a)\min(Pz)%

Taking the limit and supremum (upper bound) of |le,|| in
Eq. (65) results in the radius of confidence (R.) as the adaptive
input matrix estimator with feedback term is used:

1

—— = R,.
a)\min(Pr)

(66)

limsup |le,| =
T—00

N
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Recall |le,|| being bounded is based on the assumption of
both Eq. (54) and Eq. (55). Equation (55) can notably be upper
bounded by applying Sylvester’s Inequality, altering the radius
of confidence by a scaling factor.

Following, V,, can be bounded by applying the properties
of the trace and the Cauchy—Schwarz inequality:

1 1
Vi = gu(ALIALyy ) < S w(ALAL ) u(y, ), (67)
N

where ||[AL;|p is the Frobenius norm of AL;. Using the
1
assumption of Eq. (55), V.’ can be expressed as:

1 1 1
Vi = —|ALi||p [ —— ).

Using a similar procedure for deriving the limit and supremum
of ||e,||, this can be done to determine the limit and supremum
of HALI H F.

(63)

1 1 1 1 1
—||AL — ) SV + V2 < V(7). 69
\/EH 1||F (OéMk) S Ve + Vs < (T) (69)
Resulting in the following radius of confidence:
(70)

limsup [|AL;[| = My = R
T—00

E. Summarizing Results

Assuming that the true (A, B, C') and reference (A, B,,, C)
systems are SPR and the true input matrix satisfies B =
B,, L., then the adaptive input matrix estimation law using
the feedback filter (Eq. (40)) and diagram (Fig. 2) guarantees
|le |l P R, asymptotically. Following, Lyapunov Stability
Analysiso%nly guarantees that AL; will remain bounded.
Finally, the Lyapunov stability proof can also be applied to
the error system under the use of fixed gains in Eq. (34).

V. ILLUSTRATIVE EXAMPLE - THEOREM 1

The following is an illustrative example of applying Theo-
rem 1 and the control diagram (Fig. 1) on a general case study.
Numerical values for (A,,, By, C) and (A, B, C') are derived
and modified from [12].

A. State Space Representations for Reference and True Sys-
tems

Allow the reference model as defined in Eq. (3) have the
following properties:

-7 2 4
An=|-2 -1 2|;
-2 2 -1 71
[0
B, =|.7/;C=1[05 0 1];z(0)=0.
2

To apply the control scheme as defined in Theorem 1 and
show in Fig. 1, allow the true system as defined by Eq. (2)
have the following properties:

1) B e Sp{BmnLi.} > B = BL,.
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Figure 3. True (y) and reference model (yn,) output response given a unit
step input (u).

2) AeSp{An,B,L2.C} > A=A, + BLy.C.
Assume the health change for the input matrix and the plant
can be described by {L1., Lax} D L1, = 2 and Lg, = —5.
Therefore, the true system can be defined by the following:

-7 2 4
A=A, +BnLsC=|-37 -1 —-15]|;
-7 2 -1 2
0
B=B,Li,= |14 ;C=[05 0 1];z(0)=0.
4

Recall that the constitutive constants of the true plant (A) and
input matrix (B) are unknown. However, an initial estimate
of the plant (A,,) and input matrix (B,,) exists.

When both the reference and true systems, as defined in
Eq. (71) and Eq. (72), are given a unit step input, as shown
in Fig. 3, the differences in rise times and output response
become evident. These differences can be further explained
by examining the eigenvalues of the reference and true plants:

o(Ap) = {-1,-3,-5} )
o(A) ~ {—2.28, —8.36 & i5.05}.

B. Defining the Known Input (u)

To implement the control scheme, a bounded and continuous
input must be used. In practice, this input can be a known
disturbance. For this example, allow the input to be defined
as:

u = 2 + sin(2t). (74)

C. Adaptive State and Input Matrix Estimation

In this section, the presented control scheme, detailed in
Fig. 1, is implemented with two cases: with and without the
use of a fixed gain (K) term.

1) Adaptive Control Scheme without the use of Fixed Gain
(K = 0) : The control scheme detailed in Fig. 1 is im-
plemented without using the fixed gain term (K = 0) and
{Yu,7y} = I. As derived in the proof, Fig. 4 demonstrates
the convergence of the internal state, where e, oo 0. Given
that the internal state error converges to zero, equlvalently, the
external state error converges > €, o 0. Meaning that the

estimated output ({j) converges to the true output (y).
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Although the proof only guarantees that the adaptive vari-
ance will be bounded, numerically {AL;, ALy} P 0. For
this case study, the true input matrix and plant have been
numerically captured, Fig. 5 and Fig. 6.

_ 05
8 €1
\ 0
&
-0.5 : : :
0 1 2 3 4
Time, sec «10%
¢ 03
~ 0
| -0.2 ) ) )
0 1 2 3 4
Time, sec «10%
g 0.5 e
\ 0
& 0.5 ) ) ]
0 1 2 3 4
Time, sec «10%

Figure 4. Internal state error converging to zero without the use of the fixed
gain (K = 0).

3 2
o
= 15
&}
o 1
=
5 0.5 — L))
- = Ly

< 9 ‘ ;

0 1 2 3 4

Time, sec «10%

Figure 5. Input Matrix adaptive term Lq(t) converging to L1, without the

use of the fixed gain (K = 0).
g 0 —
= == L
o - L
3 2
[}
2
24
CG —————————
=
6 s s s
0 1 2 3 4
Time, sec «10%

Figure 6. Plant correction adaptive term L2 (t) converging to Lo, without
the use of the fixed gain (K = 0).

2) Adaptive Control Scheme with the use of Fixed Gain
(K # 0): The control scheme detailed in Fig. 1 is imple-
mented using the fixed gain term (K # 0) and {v,,7,} = 1.
The fixed gain term K was derived using a Linear Quadratic
Regulator (LQR) where (Q = I3 and R = 1. Similarly to the
result of Section V-CI, e, T 0, shown in Fig. 7. Again,
since the internal state error converges to zero, the external
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error will converge to zero for the true and estimator systems.
Moreover, as {AL;, ALy} ——— 0, the true input matrix and
—

plant are numerically capturedoicn Fig. 8 and Fig. 9.

5 0.2 €1
\ 0
& -0.2 ‘ ‘ ‘
0 1 2 3 4
Time, sec «10%
8 0.2 ez
[ 0
& .02 ‘
0 1 2 3 4
Time, sec «10%
. 05
8] €3
\ 0
.05 ‘ ‘ ‘ J
0 1 2 3 4
Time, sec «10%
Figure 7. Internal state error converging to zero with the use of the fixed
gain (K # 0).

g 2
o
=15
O
E
e
_§‘ 0.5 — L)
- = Lu

< 9 ‘ ‘

0 1 2 3 4

Time, sec «10%

Figure 8. Input Matrix adaptive term L () converging to L1, with the use
of the fixed gain (K # 0).

g0 — (1)
- - L
< - L
& 2
[}
2
£4)
<
R S ——
< ‘ ‘ ‘
0 1 2 3 4
Time, sec «10%

Figure 9. Plant correction adaptive term L2 (t) converging to Lo, with the
use of the fixed gain (K # 0).

There can be a benefit of using a fixed gain term in the
estimator, as the term can affect the time in which internal
states and adaptive terms converge, compare Fig. 5 and Fig.8.
More crucially, both adaptive tuning terms {~,,7,} can be
adjusted to amplify or dampen the effects of the adaptive
controller, directly impacting the convergence of the error
state. For this particular example, setting v, = 1.3 and
vy = 1.85 reduces the time in which e, o 0 and
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L P L, by order of magnitude faster than the depicted
ﬁgures in this text. However, there are numerical limits for
the tuning terms {~,,, }. Making the adaptive controller too
sensitive to changes may lead to divergent artifacts.

3) Kalman-Bucy Filter-Kalman Filter in Continuous Time:
The previous two sections, Sections V-C1 and V-C2, illustrate
an example that implements an adaptive estimator both with
and without a fixed gain (K') term. When the adaptive laws
are removed, and only the fixed gain estimator is used, the
reference model is no longer updated within the estimator. This
is evident in Fig. 10 and Fig. 11, where it can be seen that
both the internal and external errors reach a non-zero steady-
state value. The value of the fixed gain term (K) is derived
using LQR, where @ = I3 and R = 1. Although the observed
time window for the error dynamics response is limited, the
system response does not change as time approaches infinity.

15
'T? 10|
& 5 erl]
0
0 20 40 60 80 100
Time, sec
L 15
7107
& 0 e
0 20 40 60 80 100
Time, sec
- 15
107
& 5 es| |
0 . . . .
0 20 40 60 80 100
Time, sec

Figure 10. Internal state error (e;) not converging in the absence of the
adaptive estimator. Only the fixed gain (K) is used in the estimator.

0 20 40 60 80 100
Time, sec

Figure 11. External state error (é,) not converging in the absence of the
adaptive estimator.

VI. ILLUSTRATIVE EXAMPLE - THEOREM 2

The following is an illustrative example of applying The-
orem 2 and the control diagram (Fig. 2) on a general case
study. Numerical values for (4, B;,,, C), (A, B, C), and input
(u) are the same from Section V.
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A. Input Matrix Estimation with the Feedback Filter (o > 0
and K = 0)

In this section, the control scheme outlined in Fig. 2 is
implemented with only one case study, without the use of the
fixed gain (K = 0) term. The reason for this is that Section V
already considers the case where the adaptive laws are coupled
with and without fixed gain terms.

As derived in the proof, Fig. 12 shows that the internal
state error converges to a neighborhood of zero when the
adaptive input matrix law is coupled with the feedback term
(llez|l —— R.). As the internal-state error settles within
this neighborhood, the external-state error correspondingly
follows. In Fig. 13, we see that Ly approaches L., but does
not fully converge, consistent with the theoretical result, which
guarantees only that the adaptive variance (AL;) remains
bounded. Although, there exist variance in L, the updated
input matrix (B,,L1) more closely aligns with the true input
matrix (B = B,,L1.) than the nominal input matrix model
(Bym). Values used on the adaptive input matrix estimation law
follows: a = .05 and ~, = I.

- 0
702
- -04
= .06 ‘ ‘ —
0 5 10 15
Time, sec
a 0
" -0.2
~ -0.4
.06 ‘ —
0 5 10 15
Time, sec
» 0 izzeszza sz
702
- -0.4
“ 0.6 ‘ ‘ o
0 5 10 15
Time, sec
Figure 12. Internal state error converging to the neighborhood about zero

without the use of the fixed gain (K = 0) and using the feedback filter on
the adaptive input matrix law.

3 2 == s s s s s = == = === = =
215}
&}
N
5
205 — (%)
= o it 21
0 5 10 15

Time, sec

Figure 13. Input Matrix adaptive term L1 (t) approaching Li. without the
use of the fixed gain (KX = 0) and using the feedback filter on the adaptive
input matrix law.
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B. Input Matrix Estimation without the Feedback Filter (o =
0 and K = 0)

The control scheme detailed in Fig. 2 is implemented
without using a fixed gain term (K = 0) and without the
feedback filter (« = 0). After truncation, proof follows the
results presented in Griffith 2022 [8]. The adaptive input
matrix estimation law uses 7, = I. In the absence of the
feedback filter, ||e,|| ?) 0, as demonstrated in Fig. 14,
consistent with theoreticalooresults. As the internal state error
converges to zero, the external state error will follow. Lastly,
as AL; —— 0, the true input matrix is captured, as shown

t—00
in Fig. 15. Note that theoretical results only guarantee AL,
to remain bounded, whereas the numerical results exhibit full
convergence.

0 5 10 15
Time, sec

0 5 10 15

Time, sec
702
0.4
® 0.6

0 5 10 15
Time, sec

Figure 14. Internal state error converging to zero without the use of the fixed
gain (K = 0) and not using the feedback filter on the adaptive input matrix
law.

g 2r--==
£ 15
O
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i
05 — L)
= - = Ly
< 0 ‘
0 5 10 15

Time, sec

Figure 15. Input Matrix adaptive term L1 (t) converging to Li. without
the use of the fixed gain (KX = 0) and not using the feedback filter on the
adaptive input matrix law.

C. Kalman-Bucy Filter-Kalman Filter in Continuous Time

The previous two sections, Sections VI-A and VI-B, pre-
sented examples of implementing the adaptive input-matrix
estimator both with and without a feedback term, while not
using a fixed gain term (K = 0). When the adaptive laws are
removed, and only the fixed gain term is retained, the input
matrix model is no longer updated within the estimator. This
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lack of adaptation results in larger internal and external state
errors compared to the adaptive cases, as shown in Fig. 16 and
Fig. 17. The value for the fixed gain term is obtained using
LQR, where Q = I3 and R = 1.

—_c

0 5 10 15
Time, sec

—_—cy

0 5 10 15
Time, sec

—_c3

0 5 10 15
Time, sec

Figure 16. Internal state error (e, ) not converging to zero in the absence of
the adaptive input matrix estimator. Only fixed gain (K) used in the estimator.

0 5 10 15
Time, sec

Figure 17. External state error (é,) not converging to zero in the absence of
the adaptive input matrix estimator.

VII. DISCUSSION

The theorem presented in this text pertains to globally stable
LTI systems. By utilizing local linearization, the theorems
can be applied to both linear and non-linear systems that
exhibit stable behavior within certain neighborhoods. Local
linearization around these neighborhoods is a common practice
in engineering, particularly because many systems incorporate
non-linear elements.

Knowing the output matrix (C') is a common assumption
in control design. As the output matrix denotes which linear
combination of the internal state is being measured, typically
denoted as a sensor. These sensors can degrade and experience
health changes as well, but this variable is outside of the
specified presenting theorems.

There exist theoretical hard constraints such that the true
plant and input matrices must follow a specific decomposition;
however, these constraints are required for the proof. Future
work could explore methods to relax and bypass some of these
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constraints, as well as consider the influence of stochastic
processes.

The theorems presented do not require feedback from the
true system, allowing the estimation technique to be im-
plemented without jeopardizing the true system’s stability.
Consequently, these estimation schemes can run alongside
various input methods used to regulate the system’s output.
This parallel implementation enables continuous monitoring of
changes in the true system’s dynamics. If a significant health
change occurs, identified through decomposition, technicians
and operators can be alerted to inspect and replace affected
areas of the system.

Due to the coupled nature of the adaptive laws, adaptive
gains depend on one another to change. When combined with
asymptotic convergence requirements, the error states can take
orders of magnitude of time to converge, as demonstrated
in the illustrative example shown in Section V. Tuning the
adaptive gains and introducing a fixed gain can reduce the
time in which the error state converges to zero by orders of
magnitude; however, the amount of time for the error state
to converge is still a pressing issue. An attempt had been
made to introduce a feedback filter on the adaptive laws
as described in Fuentes’s 2025 robust study, as successful
implementation can further reduce the convergence time of
the error states [2]. However, numerical results were not
promising. This motivated the implementation of the feedback
filter only on the adaptive input-matrix estimation law. Com-
paring the illustrative examples in Section V and Section VI
reveals a clear difference in the time scales required for the
error states and adaptive gains to reach steady state. This
further highlights the challenge of incorporating two adaptive
mechanisms simultaneously to manage system uncertainty.

Future work will focus on decoupling the adaptive laws by
introducing an additional output matrix for the input matrix,
which will serve as an encoder for the input and input matrix
response. Nevertheless, this approach presents new challenges,
particularly concerning the observability conditions for the
input matrix. Considering the numerical results, the presented
Theorem 1 is likely the best fit for offline use or slow dynamic
systems such as structures, whereas Theorem 2 is better suited
for faster dynamic systems such as robotics.

VIII. CONCLUSION

The true system dynamics and input matrix can be in-
fluenced by a health status change, resulting in potential
changes in constitutive constants and internal interactions.
If these changes are not considered in the modeled EOM,
discrepancies will emerge between the system model and the
true system response. To address the impact of the health
status change of the true system’s plant and input matrix,
a set of coupled adaptive laws were derived. These laws
ensure that the error states between the model and the true
system converge to zero; however, their effectiveness depends
on a specific decomposition. Due to their coupled nature and
asymmetric convergence characteristics, the error states may
require a significant amount of time to converge. Consequently,
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these laws may not be practical for fast dynamics, such as in
robotics, when applied in real-time. Instead, they are more
suited for offline applications or for relatively slow dynamic
systems, like structures. In contrast, when using only a single
adaptive law in the estimator, convergence time can differ
by several orders of magnitude, making the approach more
suitable for online applications. Future work will focus on
relaxing some of the decomposition constraints and exploring
methods to decouple the adaptive laws.
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