
126International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enabling Kubernetes Workload Execution on Rootless HPC Systems with KSI: A Slurm
Integration Framework

Jonathan Decker∗ , Mojtaba Akbari†, Ali Doosthosseini∗,
Sören Metje∗, Aasish Kumar Sharma† and Julian Kunkel∗

∗Institute for Computer Science, University of Göttingen,
Goldschmidtstraße 7, 37077 Göttingen, Germany

e-mail: jonathan.decker@uni-goettingen.de|adoosth@gwdg.de
soerenmetje@yahoo.de|julian.kunkel@gwdg.de

†Working Group Computing, GWDG,
Burckhardtweg 4, 37077 Göttingen, Germany

e-mail: mojtaba.akbari@gwdg.de|aasish.sharma@uni-goettingen.de

Abstract—Kubernetes has become a widespread orchestrator
for cloud workloads but with increasing demand for compute the
need arises to also access HPC environments that are operated
via batch schedulers such as Slurm. A number of solutions for
combining Slurm and Kubernetes are available, which can be
categorized further based on the interaction between Slurm and
Kubernetes that they provide. We consider the use case of utilizing
an existing Slurm cluster to run Kubernetes workloads. In a
previous publication we had introduced Kind Slurm Integration
(KSI) based on Kind and rootless Podman and compared its
performance, usability and maintainability to the existing solutions
Bridge Operator and High-Performance Kubernetes (HPK). We
found that Bridge Operator provides native performance as it
effectively submits Slurm jobs through a Kubernetes interface and
that HPK provides good performance by creating almost feature
complete Kubernetes clusters on top of Apptainer. KSI on the
other hand was able to provide fully functional Kubernetes clusters
inside Slurm jobs but lacked behind in network performance and
did not support multi-node clusters. In this work we present a
new version of KSI with improved network performance through
bypass4netns and support for multi-node clusters via Liqo. Overall,
we conclude that running Kubernetes workloads under Slurm is
possible with acceptable overhead in terms of performance and
without missing out on features.

Keywords-Kubernetes; HPC; Container; Slurm; Cloud.

I. INTRODUCTION

This work discusses an extension of our previous publica-
tion [1], which had introduced the first version of KSI. We have
since then improved on it and addressed several shortcomings.
The motivation for the development of the first version and
the improved version of KSI are the same and are given in the
following.

Kubernetes has established itself as a widespread solution for
orchestration of cloud workloads [2][3] and is used for various
workloads including service computing, running large amounts
of micro services, as well as batch jobs, such as data analytics
or machine learning. However, batch jobs would fit better into
HPC environments where powerful high-performance compute
and networking resources are available. HPC workloads are
commonly scheduled using a batch scheduler such as Slurm [4]
but Kubernetes itself can also be used for scheduling HPC jobs
using a batch scheduler such as Volcano [5] and have already
been scaled to large clusters using appropriate workarounds [6].

Nevertheless, while Kubernetes brings a large array of features,
its virtualization layers incur a performance overhead compared
to the bare metal performance [7] that could be achieved with
Slurm.

Users might want to bring their Kubernetes workloads into
Slurm-based HPC environments to benefit from the reduced
overhead compared to a regular Kubernetes cluster or to
gain access to additional compute hardware, which could
also include specialized hardware only available in HPC
environments. However, rewriting Kubernetes workloads to
be executable in Slurm might require significant effort and
expertise with the scheduling systems. Nevertheless, various
approaches and implementations exist for combining Slurm
and Kubernetes enabling users to dynamically move workloads
between cloud and HPC environments.

SlurmSlurm Kubernetes

Over

Compute
Nodes

Distant

Under Adjacent

Compute
NodesKubernetes 

Kubernetes 

Slurm

Slurm Kubernetes
Compute
Nodes

Figure 1. Overview of the four integration models based on the definition by
Wickberg [8]. In the Distant model, the arrows represent a possible system

for negotiating resources between Slurm and Kubernetes such that nodes
could be moved as needed. In the Adjacent model, the arrows represent

bridging tools that enable the execution of workloads under the other
scheduling system, respectively.

As there have been various efforts to combine Kubernetes and
Slurm, we consider the definition by Wickberg of Schedmd [8]
who defines four categories from the perspective of Slurm for
such approaches.

• Over: The entire Kubernetes environment exists within a
Slurm job and is therefore temporary as it is fully removed
once the job completes.



127International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Distant: Compute nodes are part of either a Kubernetes or
a Slurm cluster and may be moved between the clusters.

• Adjacent: Slurm and Kubernetes utilize some form of
plugins or bridging tools to cooperate but can still be used
individually.

• Under: Kubernetes runs a Slurm cluster within its own
environment across one or more pods.

These four models are visualized in Figure 1.
Given the above use case of running Kubernetes jobs

in an existing Slurm environment, this fits the Over or
Adjacent model. We have investigated existing solutions
that implement either of these models and found various
approaches that provide the Adjacent model but no system
for having a Kubernetes cluster running within a Slurm job
as described in the Over model. Therefore, we present Kind
Slurm Integration (KSI) [9], an implementation of the Over
model based on Kubernetes in Docker (Kind) [10]. We have
systematically evaluated and compared KSI to existing solutions
including Bridge Operator by IBM [11], WLM-Operator by
Sylabs [12], kube-slurm by Kalen Peterson [13] and High-
Performance Kubernetes (HPK) [14].

Our evaluation consists of a review of the state of the
respective projects with regard to features and maintainability
as well as a performance analysis to determine the overhead
incurred by the respective approach. For this purpose, we
benchmarked the solutions based on workload startup time,
CPU compute performance, memory throughput, storage
throughput, network latency as well as network throughput,
and compared the results to bare metal. We found that not
all of the implementations listed above were able to pass a
minimal functionality test. For those that passed, no significant
differences in CPU compute performance, memory throughput
and storage throughput were found. However, our original
implementation of KSI, as presented in [1], was outperformed
in terms of startup time and network performance.

Furthermore, we had investigated whether a given approach
supports all Kubernetes features including controlling work-
loads through kubectl and providing Kubernetes network
abstractions such as services. We found that KSI provided the
most complete support for Kubernetes features compared to
the others. Bridge Operator, for instance, submits Slurm jobs
through Kubernetes such that workloads are executed as scripts
outside of Kubernetes. In the case of HPK, it treats Slurm
worker nodes as part of its Kubernetes cluster but does not
support kubectl exec and Kubernetes services.

In this paper we present an improved version of KSI with
two additions that enable it to overcome its most significant
shortcomings. To ensure it is clear what version of KSI we
are referring to, we will note the original version of KSI as
introduced in [1] as KSI 1 and the new version presented in
this work as KSI 2 for the rest of the paper. If we refer to
KSI without specifying which version, then a given statement
applies to both versions of KSI unless specified otherwise in
the direct context.

KSI 1 presented in [1] did not support multi-node clusters
and fell behind in network performance. KSI 2 utilizes by-

pass4netns [15][16] instead of slirp4netns for rootless container
networking, which significantly improves the network perfor-
mance. Moreover, we have also integrated Liqo [17] such that
KSI 2 can now be deployed across all nodes in a given Slurm
job and assemble itself into a single Kubernetes cluster. Both
versions of KSI implement the Over model of combining
Slurm and Kubernetes such that it can be executed in a Slurm
job without requiring an existing control plane.

Overall, this paper contributes a systematic evaluation of
existing approaches that implement the Adjacent or Over
model to combine Slurm and Kubernetes as well as the
design and implementation of KSI. We cover both the original
implementation in KSI 1 as given in [1] and the improvements
introduced in this work for KSI 2. Finally, we provide an
overview of the features and limitations of the evaluated
approaches. It should be noted that KSI 1 is based on the
master’s thesis of one of the authors [18].

The remainder of the paper is organized as follows: In
Section II, the various implementations for integrating Slurm
and Kubernetes are discussed. The methods for benchmarking
and comparing the solutions as well as the design of KSI are
presented in Section III. The results of the evaluation are given
in Section IV. Finally, Section V provides the conclusion and
outlook for future work.

II. RELATED WORK

To properly distinguish various approaches for combining
Slurm and Kubernetes, we discuss the four models along with
notable examples. We also cover related approaches that do
not use either Slurm or Kubernetes and then provide a more
in-depth look at the implementations, which we evaluated in
this paper.

A. Models for Integrating Slurm and Kubernetes

The four categories for combining Slurm and Kubernetes
defined by Wickberg of Schedmd [8] are Over, Distant,
Adjacent and Under as defined in Section I.

a) Distant model: Notable implementations include [19]
and [20], which both implement systems for dynamically
changing the partitioning of a node pool between a Kubernetes
and Slurm cluster.

b) Under model: Contributions have been made in
[21], [22] and [23], in which Slurm is being run as a set
of Kubernetes pods. A significant project in this category is
Slinky [24] by Schedmd who had created a Slurm Kubernetes
bridge implementation as a proof-of-concept before creating
Slinky. The proof-of-concept implementation followed the
Adjacent model, was not fully functional and has since then
been removed from public access.

c) Adjacent model: Approaches in this category are rela-
tively diverse in their methods including Bridge Operator [11],
WLM-Operator [12] and HPK [14]. Each of these approaches
is discussed in more detail in Subsection II-C.

d) Over model: There are no notable implementations
of this model except for KSI 1 [25] and KSI 2 [9], which are
presented in detail in Subsection III-B.



128International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Other Approaches for Integrating HPC and Cloud

While this work focuses on combining Slurm and Kubernetes,
it should be noted that there are alternative approaches to
running HPC workloads through a cloud interface. For example,
as mentioned in Section I, Volcano [5] is an extension for
the Kubernetes scheduler, which implements features such as
batch and gang scheduling. This enables the execution of batch
workloads through Kubernetes without Slurm as shown in
[26][27].

Another notable approach is hpc-connector [28] presented in
[20], which enables the submission of jobs through an arbitrary
cloud interface to be executed via Slurm. This approach can
be considered similar to Bridge Operator but is not bound to
Kubernetes but also lacks deeper integration with any specific
cloud platform to enable advanced features.

Finally, there is [29], which introduces an integration of
TORQUE [30], another HPC batch scheduler, with Kubernetes.
This enabled scheduling of HPC workloads through Kubernetes
to TORQUE similar to Bridge Operator, which would therefore
match the Adjacent model.

C. Implementations for Adjacent Slurm and Kubernetes

1) WLM-Operator: Sylabs Inc. had developed the WLM-
Operator [31] and Singularity-CRI [32] with Singularity-CRI
providing a Kubernetes-compatible implementation of the
Container Runtime Interface (CRI) for Singularity [12]. The
WLM-Operator implements a Kubernetes operator that is able
to interface with Slurm such that Slurm nodes become visible
in Kubernetes as virtual nodes.

Moreover, it provides a Custom Resource Definition (CRD)
in Kubernetes called SlurmJob, which enables the submission of
Slurm jobs through Kubernetes. When submitting a SlurmJob,
a dummy pod is created in Kubernetes and the actual job is
submitted to Slurm to be run in a Singularity container. The
results are then collected through another pod via a shared
storage before closing the dummy pod once the job completes.

However, on December 30th 2020, both WLM-Operator and
Singularity-CRI projects have been archived on Github with
no further development planned.

2) Bridge Operator: IBM had developed Bridge Opera-
tor [33] for a Kubernetes cluster to be able to access exter-
nal compute resources including Slurm clusters [11]. Bridge
Operator implements a Kubernetes operator and provides the
BridgeJob CRD, which accepts all the details required to launch
a Slurm job including the remote URL of a Slurm cluster, what
resources to request and a remote storage configuration.

For each BridgeJob, the Bridge Operator starts a monitoring
pod and submits the job to Slurm. The monitoring pod regularly
updates a Kubernetes ConfigMap with the current status and
fetches the job output. The creators of Bridge Operator have
also demonstrated how to run Kubeflow workloads through
BridgeJobs [34], however, as these jobs are converted to Slurm
jobs, no Kubernetes pods are directly being run in Slurm.

3) HPK: HPK [35] is presented in [14] and [36] as a way
to run Kubernetes workloads on Slurm through Apptainer [37].
It is deployed as a single Apptainer container that runs the

Kubernetes control plane and a custom implementation of
virtual Kubelet [38], which presents an entire Slurm cluster as
a single node in the cluster. Every time a new pod is to be
scheduled, it submits a job through Slurm for the pod to be
started as a container using Apptainer.

For the container networking to function, it relies on Flanneld
service [39] to be installed on the nodes and the Flannel-
CNI plugin [40] to be installed for Apptainer. However, only
headless services without cluster IPs are supported as the
additional layer of load balancing is not possible with the
employed networking stack. Moreover, the command kubectl
exec, which serves to execute commands inside Kubernetes
pods, is not supported.

4) Kube-Slurm: The kube-slurm project [13] provides a tool
for controlling Kubernetes resources using Slurm jobs. When
deploying, Slurm and Kubernetes must both be installed on the
same set of nodes with kubectl available on all nodes. Once
deployed, users can submit Slurm jobs, which get scheduled
by the tool as Kubernetes pods onto the nodes selected by the
Slurm scheduler.

The deployment can also be completed with the Under
model by having Slurm run within Kubernetes but still using
Slurm to schedule the pods. Nevertheless, due to the way the
access is provided to the Slurm scheduler, all users receive the
same access to the Kubernetes cluster making this approach
unfit for multi-user setups with potentially malicious users.

III. METHODOLOGY

This work focuses on approaches for combining Kubernetes
and Slurm that allow for running workloads on an existing
Slurm cluster following the Over or Adjacent model and
investigates the suitability of the existing solutions. For that
purpose we define the following research questions:

RQ1 Can workloads be submitted using Kubernetes tooling,
e.g., kubectl?

RQ2 Can workloads be scheduled and executed on machines
managed by an existing Slurm cluster without root access?

RQ3 Can workloads be executed across multiple machines in
parallel?

RQ4 What is the performance overhead imposed by the tool?
RQ5 Is the tool easy to operate for the end user?
RQ6 Is the tool well maintained?
RQ1, RQ2 and RQ3 define the functional requirements. For
a solution to be a valid approach for utilizing a Slurm cluster
through Kubernetes, it should answer yes to at least RQ1
and RQ2 with a yes to RQ3 being desirable but not strictly
required. Notably, these requirements do not include whether
a solution must be able to run Kubernetes workloads or if
it may run Slurm workloads through a Kubernetes interface.
For example, Bridge Operator accepts Slurm workloads sub-
mitted through Kubernetes while HPK processes Kubernetes
workloads submitted through a Kubernetes interface. Still, both
solutions execute the workloads on a Slurm cluster.

Moreover, the distinction between the Over and Adjacent
model breaks down to whether the deployment requires an
existing component, such as a Kubernetes control plane. For



129International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example, Bridge Operator and HPK, which both follow the
Adjacent model, require a running Kubernetes control plane,
to which a user submits their workloads. The respective tool
then submits the workload to Slurm. KSI, on the other hand,
implements the Over model such that a user would instead
submit their workload by calling Slurm.

RQ4 is concerned with the performance cost of a given
solution. Depending on the architecture and optimization of a
given implementation, it may cost additional compute power
or delay the start of workloads, which should be minimal for
an application to fully harvest the power of HPC machines.

RQ5 and RQ6 cover the usability and maintainability of
a given software providing an indication for the viability in
productive use.

While RQ1, RQ2 and RQ3 can be answered as yes or
no questions, RQ4, RQ5 and RQ6 require a graded answer.
We use a three point scoring from + (good) over o (fair) to
- (bad) to be able to quickly compare the results for multiple
implementations. + is the best score, which is given if the
implementation fulfills the requirements without any significant
drawbacks. o is the middle score, which indicates that some
limitations apply and - is the lowest score, which applies if
significant shortcomings exist.

A. Selection of Implementations to Evaluate

In Section II-C, we had introduced the WLM-Operator,
Bridge Operator, HPK and Kube-Slurm. Before starting our
evaluation we performed a minimal functionality test and
found that the latest version of WLM-Operator is no longer
functional on recent operating systems. Despite our best efforts
and reaching out to Sylabs, we were unable to reproduce the
minimal examples in the repository. Therefore, WLM-Operator
can be considered retired and we will not further consider it.

Kube-Slurm requires the installation of a Kubernetes cluster
on all nodes as part of its deployment, which violates RQ2
that it must be able to operate without root access. Therefore,
we will not further consider Kube-Slurm.

This only leaves HPK and Bridge Operator as viable targets
for further evaluation along with KSI, which is introduced in
the next section. However, when testing Bridge Operator we
ran into a number of issues, which we reported on Github and
created a pull request [41] with our code adjustments.

B. Kind Slurm Integration (KSI) Design

Our main objectives of designing another approach for
combining Slurm and Kubernetes were that it should follow
the Over model and support all Kubernetes features. Following
the Over model, KSI can be run strictly inside Slurm jobs
without relying on external components. This was important to
us, as our use case involved a multi-user HPC system in which
the users of KSI would not be able to deploy a control plane
outside of their Slurm jobs as it is required by Bridge Operator
or HPK. Moreover, as we could not find any existing projects
employing the Over model, we consider this a research gap.

We utilized rootless Kind [10] to create a script that receives
a Kubernetes workload, initializes a cluster inside a Slurm job,

executes the workload and then closes the cluster as the Slurm
job ends. Before settling on rootless Kind, we also considered
Minikube [42], K3D [43] and Usernetes [44] but found rootless
Kind to be the most suitable.

Kind [45] was developed with local development and au-
tomatic testing of Kubernetes in mind. It can deploy a fully
functional Kubernetes cluster on a single node by deploying a
"node" image, which internally runs all containers belonging
to the cluster as nested containers. From the perspective of
the host system, only a single container is running for the
control plane node of the cluster. Moreover, by deploying
multiple "node" images on the same host, Kind can simulate a
multi-node cluster.

For operating KSI inside of Slurm jobs without access to root
permissions, which are required for regular container operation,
we employ rootless Kind [10]. Rootless Kind relies on a
container runtime that supports rootless container deployment,
which typically relies on Cgroups v2 features in the Linux
kernel. In KSI 1 [1] we relied on rootless Podman, which in
turn relies on the shadow-utils package to provide subuids and
subgids for user namespaces. Since then we have switched to
rootless Containerd for KSI 2 as it has better support for rootless
container networking. Nevertheless, the dependencies employed
by Podman and Containerd to enable rootless mode, are similar
if not identical. For example, a central component for both
versions of KSI is RootlessKit [46], a fakeroot implementation
specifically for rootless containers.

In order to deploy KSI, the nodes must provide a recent Linux
operating system with support for Cgroups v2. Rootless Podman
or rootless Containerd must be set up as well as slirp4netns [47],
to provide networking for rootless containers. Slirp4netns is
the default network driver for rootless Containerd and used to
be the default for rootless Podman until Podman 5.0 [48] was
released, which uses pasta [49].

However, the Podman documentation [50] states that employ-
ing slirp4netns can lead to degraded network performance. We
confirmed this in our publication [1] and noted it as a significant
shortcoming of KSI 1. In order to overcome this shortcoming
we replaced slirp4netns with bypass4netns [15][16] for KSI 2.

Bypass4netns is an experimental project that employs
SECCOMP_IOCTL_NOTIF_ADDFD, a Seccomp filter intro-
duced into the Linux kernel with version 5.9. It builds on top of
slirp4netns by capturing socket syscalls made by slirp4netns and
executing them in the host network namespace. By doing so, the
authors of bypass4netns effectively achieved the same network
throughput for rootless containers as for rootful containers
that set the --net=host flag. This enables the deployment
of rootless containers with the same network performance
as rootful containers without compromising on security by
exposing the host network.

Bypass4netns can be used with rootless Docker, Podman and
Nerdctl, which is the Containerd CLI. It has been integrated
with rootless Containerd and Nerdctl such that it can be utilized
together more easily compared to Podman and Docker. Due
to this integration we have switched from rootless Podman
to rootless Containerd as noted previously. It should also be



130International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

noted that Usernetes [44] also added support for bypass4netns.
When employing bypass4netns via Nerdctl, bypass4netns

expects an annotation to be set via Nerdctl, which is checked
by the bypass4netns daemon. When the daemon finds that
annotation on a container, it enables accelerated networking
via bypass4netns. In KSI 2, Kind is responsible for calling
Nerdctl to deploy containers, however, Kind does not support
passing through annotations. We therefore had to employ a
workaround by wrapping the Nerdctl binary on the nodes with
a script that injects the annotations.

Kind

Slurm

(Rootless)
Kubernetes

Slirp4netnsBypass4netns

Usernetes

Resource
Scheduler

Installation
Tool

Orchestrator

CLI and
Container
Runtime

Rootless
Container
Network
Driver

Pasta

(Rootless)
Containerd

Nerdctl Docker
CLI

(Rootless)
Docker

Podman
CLI

(Rootless)
Podman

Figure 2. Overview of software options for setting up rootless Kubernetes on
Slurm. From each row one option has to be used to assemble a viable

software stack.

Figure 2 provides an overview of the components and
alternatives in the software stack that can be employed for
running rootless Kubernetes in Slurm jobs. Slurm is shown
at the top as for the Over model the entire deployment is
encapsulated in Slurm jobs. To deploy rootless Kubernetes,
KSI employs Kind but we mentioned alternatives that also
support rootless Kubernetes such as Usernetes, as shown in
the figure, as well as K3D. In both cases, the goal of the tool
is to deploy a rootless Kubernetes cluster.

The next layer in Figure 2 is the container runtime where
the options are Containerd, Podman and Docker as each of
them supports rootless containers. For Podman and Docker
both the container runtime as well as the CLI tool share the
same name, for Containerd, the associated CLI tool is called
Nerdctl. KSI 1 utilized Podman but as discussed above, we
switched to Containerd and Nerdctl for KSI 2. To complete the
software stack a rootless container network driver is required,
here the default in many cases is slirp4netns with bypass4netns
being an experimental alternative.

Kind itself is not designed for multi-node clusters across
multiple physical machines or VMs. Therefore, KSI 1 [1] was
not able to achieve RQ3. However, in [1] we noted that a
tool such as Kilo [51] or Liqo [17] could be used to enable
mutli-node support. We have since then added Liqo to KSI 2
and enabled multi-node clusters such that RQ3 can be satisfied.

Liqo operates by aggregating multiple Kubernetes clusters
into a single cluster by representing each cluster as a virtual
Kubelet in the main cluster. With this KSI 2 can be deployed
across a number of nodes in a multi-node Slurm job and all
the worker nodes each deploy a single node cluster. Then Liqo
is installed and configured such that all single node clusters
register themselves as virtual Kubelets on the main node. Liqo
deploys a gateway pod in each cluster, which in our case means
on each node that enables the clusters to automatically peer
between each other. This allows for pod-to-pod communication
between any of the nodes. Once the deployment and registration
of all nodes through the main node has been completed, the
main node is also no longer a single-point-of-failure for the
cluster.

However, it should be noted that with this setup, every worker
node runs a Kubernetes control plane instead of only Kubelet,
as would be the case in a regular Kubernetes cluster. This adds
overhead in terms of CPU and memory consumption on every
node for running the Kubernetes control plane components.

The interface to run a Kubernetes workload via KSI is to
submit it via Slurm, for example via srun in the following
form:
srun -NX /bin/bash run-workload.sh
example-workload.sh /path/to/shared/folder
X in -NX specifies the number of nodes that should be requested
from Slurm and used by the cluster. run-workload.sh
is the main KSI script, which handles the provisioning of
the rootless Kubernetes clusters via Kind and connecting
them via Liqo. In order for Liqo to set up the multi-node
cluster, it requires a shared folder across all nodes, for
example an NFS share, which should be specified in place of
/path/to/shared/folder. Finally, the actual workload
should be specified in place of example-workload.sh.
The workload script should use kubectl to create all
components in Kubernetes that are needed and then wait
for the workload to finish. Once the workload script returns,
run-workload.sh will close the Kubernetes cluster and
perform cleanup before stopping, which also ends the Slurm
job.

The code for the KSI 1 implementation along with its
documentation was released under the GPL-3.0 license on
Github [25]. The code for KSI 2 with Liqo and bypass4netns
integration was released under the same license on Github [9].

C. Performance Evaluation

To assess the performance overhead to answer RQ4 we have
broken down our benchmarking into the following factors:

• Startup time: Measured with a dummy workload
• CPU compute performance: Measured with Sysbench [52]
• Memory throughput: Measured with Stream [53]
• Storage throughput: Measured with Fio [54]
• Network latency: Measured with Netperf [55]
• Network bandwidth: Measured with iPerf3 [56]

We consider these as representative factors for user workloads
that might be run through any of the tools under study.



131International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We performed two rounds of benchmarks. First, the compar-
ative study of the combinations of Kubernetes and Slurm fol-
lowing the Adjacent model against our KSI 1 implementation.
Second, the comparison of network drivers for the improved
implementation of KSI 2. In both cases we measured bare metal
baselines by running the benchmarks without Kubernetes.

The first set of benchmarks were run on two machines with
hardware specifications as shown in Table I.

TABLE I. HARDWARE SPECIFICATIONS OF THE MACHINES IN THE FIRST
SET OF BENCHMARKS.

CPU Intel(R) Xeon(R) CPU E5-2695 v3
CPU Sockets 2
Cores per socket 14
Threads per core 2
Total threads 56
RAM 24 DIMMs DDR4 16 GB 1866 MHz
Total RAM 384.00 GB
Storage 1 Verbatim Vi550 S3 SATA Revision 3.2 SSD
Total storage 128.00 GB
Network interface QLogic BRCM 10G/GbE 2+2P 57800-t rNDC

On these nodes we used software versions as shown in Table II.
The Kubernetes version v1.27.3 was the most recent version
at the time of the experiments and was used for the external
cluster for the Bridge Operator as well as by KSI 1. HPK,
however, is pinned to v1.25.0 in its code base. Furthermore,
we disabled SELinux, swap and write caching to measure the
respective factors more clearly.

TABLE II. SOFTWARE VERSIONS OF THE MACHINES IN THE FIRST SET OF
BENCHMARKS.

Linux OS CentOS Stream 9
Slurm 23.02.5
Podman 4.6.1
slirp4netns 1.2.2-1
Kind 0.20.0
Kubectl v1.28.2
Kubernetes v1.27.3
HPK Kubernetes v1.25.0
shadow-utils 2:4.9-8

For the second benchmark to validate the improved net-
work performance of bypass4netns for KSI 2 compared to
other network drivers, we used two machines with hardware
specifications as shown in Table III.

TABLE III. HARDWARE SPECIFICATIONS OF THE MACHINES IN THE
SECOND SET OF BENCHMARKS.

CPU Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
CPU Sockets 2
Cores per socket 20
Threads per core 2
Total threads 80
RAM DIMM DDR4 Synchronous 2666 MHz
Total RAM 192 GB
Storage Served from RAM due to Warewulf
Total storage 94 GB
Network interface Intel 82599ES 10-Gigabit SFI/SFP+

On these we used software versions as listed in Table IV.
Most significantly we switched to Rocky Linux from CentOS,
replaced Podman with Nerdctl and Containerd and added

bypass4netns. Also we used newer versions of Kind and
Kubernetes.

TABLE IV. SOFTWARE VERSIONS OF THE MACHINES IN THE SECOND SET
OF BENCHMARKS.

Linux OS Rocky Linux 9 (Kernel 5.14)
Slurm 23.02.5
Nerdctl v2.1.3
Containerd v1.7.27
RootlessKit v2.3.5
slirp4netns v1.3.2
bypass4netns v0.4.2
Kind 0.29.0
Kubectl Client Version: v1.33.2
Kubernetes Server Version: v1.33.2
Libseccomp 2.5.2
Liqoctl v1.0.1

D. Project State Evaluation

Evaluating the maintainability and usability of software has
been studied extensively [57][58] with many tools and methods
having been proposed. For this work, in order to answer RQ5
and RQ6, we have to consider what methods to employ.

In order to grade usability we consider the state of the
available documentation as well as the difficulty of setting up
and operating the respective tools for an assumed non-expert
user based on our own experience of working with the tools
during this study. For grading maintainability we reviewed
the state of the code repositories based on their complexity,
whether they have been kept up-to-date and how well issues
had been addressed. Moreover, we consider that a code base
that does a comparatively simple job while relying on more
well maintained dependencies is itself more maintainable than
a larger code that has more moving parts that may require
maintenance.

We acknowledge that more sophisticated methods are avail-
able but consider our approach sufficient to compare the three
projects under study on a three point grading schema.

IV. RESULTS

The commit hashes of the implementation versions used in
our tests are as follows:

• Bridge Operator: 56334fa57caf2de28df6ff76df8a6e6232021421
• HPK: a902acbf2436e8a85a4620fddfa5745523f443d4

• KSI 1: 780ef3a0562ad4bb12611f9ef43fa743fe0277d0 [25]
• KSI 2: ea0457a97d056d32947d6e99538aac6e174e9213 [9]

A. Functional Requirements

For Bridge Operator and HPK the answer to RQ1, RQ2
and RQ3 is yes. For KSI 1 as well except for RQ3. This is
solved in KSI 2 via the integration with Liqo.

B. Project State

a) Bridge Operator: When submitting a workload through
Bridge Operator, it requires the user to create an instance of
the CRD BridgeJob. With that no understanding of Slurm by
the user is required. However, the available documentation for
Bridge Operator is limited with some examples not working



132International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such that a patch was required to make it work [41]. While the
project depends only on the Slurm REST API, giving it a stable
foundation, the project itself seems abandoned with no activity
after late 2022. Due to this, we rate it o in both usability and
maintainability. We would have rated + for usability if the
examples were all functional and for maintainability if the
project was actively being maintained.

b) HPK: Similar to Bridge Operator, HPK can be
controlled directly through kubectl without additional un-
derstanding of Slurm by the user. Nevertheless, while its
documentation is also limited, after we had completed our
experiments [35] was released along with v0.1.2 of HPK
containing a number of bug fixes. This shows that the project
is being actively developed, moreover, when we ran into issues,
we quickly received community support from the maintainers.
With this we rate the maintainability as + and the usability
as o because in addition to the points mentioned above, HPK
does not support certain Kubernetes features, most notably
kubectl exec and services, such that users need to work
around these limitations.

c) KSI: Unlike the other two tools, KSI is started via
Slurm as it has no active component outside of the Slurm job.
Its usage is documented with several examples and it depends
on Kind and either Podman for the original implementation
and Containerd and Nerdctl for the improved version. Kind,
Podman, Containerd and Nerdctl are well maintained projects.
However, KSI 2 also depends on experimental features of
Nerdctl as well as bypass4netns, which is also not in a
stable state yet. Nevertheless, KSI delivers a feature complete
Kubernetes cluster via a set of scripts making it both usable
and maintainable so we rate KSI + for both factors. However,
as KSI is our own creation, we cannot claim that this evaluation
is unbiased and should be regarded as such.

C. Performance

The benchmarking scripts, as well as the raw test data, are
available on Github [59]. Each benchmark was repeated 10
times to minimize random error with the standard deviation
shown in the graphs. All benchmarks, except for those covered
in Section IV-C6, were done as part of the first set of
benchmarks with the implementation of KSI 1. Section IV-C6
covers the investigation of the network performance of KSI 2
with bypass4netns compared to slirp4netns, which KSI 1 used,
and forms the second set of benchmarks.

TABLE V. WORKLOAD STARTUP TIME, LOWER IS BETTER.

Integration Approach Startup Time in s
Bare Metal 0.141
Bridge Operator 2.725
HPK 2.497
KSI 1 53.921

1) Startup Time: The startup delays given in Table V have
negligible standard deviation and show that Bridge Operator
and HPK start a workload in 2 to 3 seconds while KSI 1 requires
almost one minute. This result is as expected since Bridge
Operator and HPK already have an active Kubernetes cluster

running before they submit their Slurm job while KSI has to
set up a Kubernetes cluster from scratch. Considering that HPC
workloads often run for multiple hours, one minute extra start
up time is not great but acceptable. Due to this we rate Bridge
Operator and HPK with + and KSI with o.

Figure 3. CPU compute perfor-
mance results using Sysbench.
Data was collected with KSI 1.

Figure 4. Memory throughput results
using Stream. Data was collected with

KSI 1.

2) Compute Performance: Figure 3 shows that Bridge Op-
erator and bare metal are effectively on the same performance
level while HPK and KSI 1 are slightly lower than bare metal
(2.7% and 3.4%, respectively). The difference arises due to
the virtualization overhead and additional active components
running for HPK and KSI but is overall negligible so we rate
all approaches with +.

3) Memory Performance: Figure 4 shows similar to Figure 3
only minor differences for HPK and KSI 1 due to the additional
active components and virtualization such that we also rate all
with + here.

Figure 5. Storage throughput results using Fio and sequential operations. Data
was collected with KSI 1.

4) Storage Performance: The sequential read and write
shown in Figure 5 shows a similar pattern as the random read
and write shown in Figure 6 with Bridge Operator being on the
same level as bare metal and HPK and KSI 1 lacking behind.
More specifically HPK is about 11% slower in sequential and
5% slower in random reading and KSI 1 is overall 17% slower
in reading and 13% slower in writing than bare metal. These
differences can also be attributed to the additional virtualization
and overall resource consumption. While 17% slower reading
is not good we rate it still as acceptable so HPK and KSI are
rated as o and Bridge Operator as +.

5) Network Performance: For these benchmarks, the re-
spective tool executed a workload containing a test client that



133International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Storage throughput results using Fio and randomized operations.
Data was collected with KSI 1.

Figure 7. Network latency results using Netperf for the Kubernetes-Slurm
integration solutions under study. Data was collected with KSI 1, which used

slirp4netns.

Figure 8. Network bandwidth results using iPerf3 for the Kubernetes-Slurm
integration solutions under study. Data was collected with KSI 1, which used

slirp4netns.

executed the network benchmark against a server running on
the other of the two nodes in our test setup. What is shown as
the bare metal latency and throughput are therefore the latency
and peak throughput between the two nodes. Figure 7 shows
network latency with all solutions on the same level except for

KSI 1, which is 42% slower than bare metal. In Figure 8 the
network throughput is even worse for KSI 1 with HPK already
being 21% slower than bare metal, KSI 1 is 93.5% slower. As
KSI 1 operates via rootlesss Podman, it uses slirp4netns as
its driver, which according to the Podman documentation [50]
results in degraded performance compared to rootful Podman
networking.

Since our experiments concluded, pasta had replaced
slirp4netns as the default network driver for rootless Podman,
which promises better performance but initial tests could not
show a significant overall improvement [60]. Our ratings are +
for Bridge Operator, o for HPK and - for KSI 1.

Figure 9. Network latency results using Netperf for KSI 2 using various
rootless container network drivers. All variants were tested with Nerdctl

except for pasta, which was tested with Podman 5.x.

Figure 10. Network bandwidth results using iPerf3 for KSI 2 using various
rootless container network drivers. All variants were tested with Nerdctl

except for Pasta, which was tested with Podman 5.x.

6) Network Performance with Bypass4netns: In order to
evaluate whether adding bypass4netns to KSI 2 improved
the network performance, we compared its performance to
slirp4netns and no containerization as a baseline. For all of
these we used Nerdctl with rootless Containerd. Moreover, we
also investigated pasta with Podman as pasta had replaced



134International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

slirp4netns in Podman 5.0 in order to improve network
performance of rootless containers. These measurements were
conducted in the second set of benchmarks utilizing the
hardware and software as listed in Tables III and IV.

The network latency shown in Figure 9 closely mirrors the
results from the first round of benchmarks in Figure 7. Most
notably, bypass4netns achieves effectively identical latency to
the baseline. Pasta on the other hand shows slight improvements
over slirp4netns but does not provide a silver bullet solution.

For network throughput Figure 10 also closely mirrors
Figure 8 from the first round of benchmarks. Bypass4netns
has also in this area caught up to the baseline, which shows
that by employing bypass4netns, the network limitations of the
KSI 1 implementation can be overcome.

However, as the hardware used in our experiments was
limited to 10 Gbps, it is possible that bypass4netns would not
be able to keep up with the baseline on more powerful network
hardware. Nevertheless, based on the benchmarks done by the
authors of bypass4netns [16], we can estimate that bypass4netns
will be close to the baseline within a few percentage points
even when using more powerful hardware. Our rating for the
network performance of KSI 2 is +.

D. Evaluation

TABLE VI. PROJECT ASSESSMENT REGARDING QUALITY REQUIREMENTS.
KSI 1 REPRESENTS THE ORIGINAL KSI IMPLEMENTATION AND KSI 2 THE

IMPROVED KSI IMPLEMENTATION WITH LIQO AND BYPASS4NETNS. *
SELF-EVALUATION OF KSI IS NOT UNBIASED.

Project RQ4 RQ4 RQ4 RQ4 RQ5 RQ6
Startup Comp. Storage Net. Usab. Maintainab.

B-O + + + + o o
HPK + + o o o +
KSI 1 o + o - +∗ +∗

KSI 2 o + o + +∗ +∗

Table VI summarizes the ratings we have assigned through-
out this section with Startup, Compute, Storage and Network
performance all aiming at RQ4 and Usability and Maintain-
ability aiming at RQ5 and RQ6, respectively.

Bridge Operator has shown performance close or identical
to bare metal, which is as expected since it effectively submits
a Slurm job through Kubernetes and does not start additional
software in that Slurm job. This brings some limitations as
it is not actually running a given workload using Kubernetes.
Nevertheless, it has presented itself as a valid approach for
extending a Kubernetes cluster via access to a Slurm cluster.

HPK provides a good middle ground for running Kubernetes
jobs on Slurm with some performance deficiencies compared
to bare metal. If WLM-Operator would be functional, we
would have probably seen similar performance to HPK as
WLM-Operator is based on Singularity and HPK is based on
Apptainer and both projects still share the majority of their
implementation. While HPK does not support all Kubernetes
features, e.g., services and kubectl exec are not supported,
it provides a solid choice for natively running Kubernetes
workloads through Slurm.

KSI is functionally the most complete Kubernetes environ-
ment within a Slurm job and requires no external parts to be
started and kept running outside of it. For the implementation
of KSI 1 this comes with performance costs, as KSI 1 shows the
weakest performance in all benchmarks, especially in startup
time and networking. The slow startup time is understandable
as KSI 1 has to bootstrap the Kubernetes control plane and
cannot rely on an existing Kubernetes cluster. For network
performance, KSI 1 relies on slirp4netns, which is known for
causing performance degradation [50].

The KSI 2 implementation utilizes bypass4netns, which
overcame the limited network performance of the original
implementation. This puts the KSI 2 implementation on the
same level as Bridge Operator as both were effectively on the
same level as the baseline or bare metal measurements.

Nevertheless, in order for our KSI 2 implementation to
achieve these performance levels, bypass4netns must be set
up on each node. Bypass4netns requires access to features
only available on Linux kernel version 5.9 and newer, which
might not be available in all HPC environments. For instance,
only RHEL-like 9 and newer operating systems, such as
Rocky Linux 9, include a recent enough kernel version for
bypass4netns. Moreover, security consideration as mentioned
by the authors of bypass4netns [16] apply.

All the projects suffer from being either only proof-of-
concept implementations, not being maintained or not being
properly documented such that none of them provide a
production ready solution for running Kubernetes inside of
Slurm jobs.

V. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the state of solutions for
combining Slurm and Kubernetes with the goal to enable
dynamic computation between either environment. We focused
on a subset of the available solutions to support our use case
of running Kubernetes workloads on an existing Slurm cluster.

For this purpose, we improved upon our own solution KSI 1,
which was originally based on Kind and rootless Podman and
was able to deploy a fully functional Kubernetes cluster inside
a Slurm job. We improved KSI 1 by switching from rootless
Podman to rootless Nerdctl and employing bypass4netns for
container networking instead of Podman’s default network
driver slirp4netns. Moreover, we added Liqo to enable multi-
node clusters for KSI 2.

From the available solutions we took a closer look at Bridge
Operator, HPK and our own solution, KSI, and found that they
fulfill our functional requirements, except for KSI 1, for which
multi-node support had not been implemented yet. KSI 2, our
improved implementation, supports multi-node clusters. We
further evaluated the performance of each solution and reviewed
the state of their respective implementations.

We found that Bridge Operator delivers effectively bare
metal performance equal to directly running a job through
Slurm as this is effectively what Bridge Operator does. HPK
established itself as a middle ground solution, providing an
almost fully functional Kubernetes cluster inside a Slurm job



135International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with minor performance overhead. Our solution, KSI 1, showed
slightly higher overhead compared to HPK and significantly
less network throughput in its original implementation. Via the
improvements presented in this work, we were able to achieve
the same level of network performance as Bridge Operator.
KSI 2 provides the most feature complete Kubernetes clusters
compared to the other solutions. However, to achieve its fast
network throughput it relies on recent Linux kernel features
that might not be available in every HPC center. Moreover,
it requires carefully preparing the system environments on
every node that should run KSI 2 by setting up the respective
software stack.

We conclude that by overcoming the two significant short-
comings of KSI 1, it is now able to deliver both feature complete
Kubernetes environments as well as excellent performance. The
next steps for KSI 2 include improving its overall usability and
stability as well as comparing it to other solutions such as
Usernetes.

ACKNOWLEDGMENTS

This work was supported by the Federal Ministry of Edu-
cation and Research (BMBF), Germany under the AI service
center KISSKI (grant no. 01IS22093A and 01IS22093B).
Moreover, additional work was funded by the European Union
under the Horizon Europe initiative via grant no. 101092582
for the DECICE project.

REFERENCES

[1] J. Decker, S. Metje, and J. Kunkel, “Running Kubernetes
Workloads on Rootless HPC Systems using Slurm”, presented
at the CLOUD COMPUTING 2025, The Sixteenth International
Conference on Cloud Computing, GRIDs, and Virtualization,
Apr. 6, 2025, pp. 100–107, ISBN: 978-1-68558-258-6.

[2] “CNCF Annual Survey 2023”, CNCF, Apr. 9, 2024, [Online].
Available: https://www.cncf.io/reports/cncf-annual- survey-
2023/ (visited on 2024.12.30).

[3] “9 Insights on Real-World Container Use | Datadog”, [Online].
Available: https://web.archive.org/web/20230318234844/https://
www.datadoghq.com/container-report/ (visited on 2024.12.30).

[4] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple
Linux Utility for Resource Management”, in Job Scheduling
Strategies for Parallel Processing, D. Feitelson, L. Rudolph,
and U. Schwiegelshohn, Eds., Berlin, Heidelberg: Springer,
2003, pp. 44–60, ISBN: 978-3-540-39727-4. DOI: 10.1007/
10968987_3.

[5] “Volcano-sh/volcano”, Volcano, Dec. 30, 2024, [Online].
Available: https : / /github.com/volcano- sh /volcano (visited
on 2024.12.30).

[6] “Scaling Kubernetes to 7,500 Nodes”, Jan. 2021, [Online].
Available: https://openai.com/blog/scaling-kubernetes-to-7500-
nodes/ (visited on 2021.02.12).

[7] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and
R. E. Grant, “Enabling hpc workloads on cloud infrastructure
using kubernetes container orchestration mechanisms”, in 2019
IEEE/ACM International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), Nov. 2019, pp. 11–20. DOI: 10 . 1109 /
CANOPIE-HPC49598.2019.00007.

[8] T. Wickberg, “Slurm and/or/vs Kubernetes”, Schedmd, [Online].
Available: https://slurm.schedmd.com/SC23/Slurm-and-or-vs-
Kubernetes.pdf (visited on 2025.08.06).

[9] “Gwdg/pub-2025-ksi”, Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen, Aug. 1, 2025, [Online].
Available: https://github.com/gwdg/pub-2025-ksi (visited on
2025.08.01).

[10] “Kind – Rootless”, [Online]. Available: https://kind.sigs.k8s.
io/docs/user/rootless/ (visited on 2024.12.30).

[11] B. Lublinsky, E. Jennings, and V. Spišaková, “A kubernetes
‘bridge’ operator between cloud and external resources”, in
2023 8th International Conference on Cloud Computing and
Big Data Analytics (ICCCBDA), 2023, pp. 263–269. DOI: 10.
1109/ICCCBDA56900.2023.10154770.

[12] Staff, “Introducing HPC Affinities to the Enterprise: A New
Open Source Project Integrates Singularity and Slurm via
Kubernetes”, Sylabs, May 7, 2019, [Online]. Available: https://
sylabs.io/2019/05/introducing-hpc-affinities-to-the-enterprise-
a-new-open-source-project-integrates-singularity-and-slurm-
via-kubernetes/ (visited on 2024.12.30).

[13] K. Peterson, “Kalenpeterson/kube-slurm”, Aug. 17, 2024,
[Online]. Available: https://github.com/kalenpeterson/kube-
slurm (visited on 2024.12.30).

[14] A. Chazapis, F. Nikolaidis, M. Marazakis, and A. Bilas,
“Running kubernetes workloads on HPC”, in High Performance
Computing, A. Bienz, M. Weiland, M. Baboulin, and C. Kruse,
Eds., ser. Lecture Notes in Computer Science, Cham: Springer
Nature Switzerland, 2023, pp. 181–192, ISBN: 978-3-031-
40843-4. DOI: 10.1007/978-3-031-40843-4_14.

[15] N. Matsumoto and A. Suda, “Accelerating TCP/IP Communi-
cations in Rootless Containers by Socket Switching”, 2022.

[16] N. Matsumoto and A. Suda, “Bypass4netns: Accelerating
TCP/IP Communications in Rootless Containers”, Feb. 1, 2024.
DOI: 10.48550/arXiv.2402.00365. arXiv: 2402.00365 [cs],
pre-published.

[17] “Liqotech/liqo”, LiqoTech, Jul. 22, 2025, [Online]. Available:
https://github.com/liqotech/liqo (visited on 2025.07.24).

[18] S. Metje, Running Kubernetes Workloads on Rootless HPC
Systems using Slurm, GRO.data, Jan. 9, 2024. DOI: 10.25625/
GDFCFP.

[19] F. Liu, K. Keahey, P. Riteau, and J. Weissman, “Dynamically
negotiating capacity between on-demand and batch clusters”,
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis,
ser. SC ’18, Dallas, Texas: IEEE Press, Nov. 11, 2018, pp. 1–11.

[20] B. Wu, M. Hu, S. Qin, and J. Jiang, “Research on fusion
scheduling based on Slurm and Kubernetes”, in International
Conference on Algorithms, High Performance Computing,
and Artificial Intelligence (AHPCAI 2024), vol. 13403, SPIE,
Nov. 18, 2024, pp. 476–485. DOI: 10.1117/12.3051639.

[21] G. Zervas, A. Chazapis, Y. Sfakianakis, C. Kozanitis, and A. Bi-
las, “Virtual clusters: Isolated, containerized HPC environments
in kubernetes”, in High Performance Computing. ISC High
Performance 2022 International Workshops, H. Anzt, A. Bienz,
P. Luszczek, and M. Baboulin, Eds., ser. Lecture Notes in
Computer Science, Cham: Springer International Publishing,
2022, pp. 347–357, ISBN: 978-3-031-23220-6. DOI: 10.1007/
978-3-031-23220-6_24.

[22] T. Menouer, N. Greneche, C. Cérin, and P. Darmon, “Towards
an Optimized Containerization of HPC Job Schedulers Based
on Namespaces”, in Network and Parallel Computing, C. Cérin,
D. Qian, J.-L. Gaudiot, G. Tan, and S. Zuckerman, Eds., Cham:
Springer International Publishing, 2022, pp. 144–156, ISBN:
978-3-030-93571-9. DOI: 10.1007/978-3-030-93571-9_12.

[23] C. Cérin, N. Greneche, and T. Menouer, “Towards Pervasive
Containerization of HPC Job Schedulers”, in 2020 IEEE 32nd
International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sep. 2020, pp. 281–288.
DOI: 10.1109/SBAC-PAD49847.2020.00046.



136International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[24] “SlinkyProject/slurm-operator”, SlinkyProject, Dec. 26, 2024,
[Online]. Available: https://github.com/SlinkyProject/slurm-
operator (visited on 2024.12.30).

[25] S. Metje, “Kubernetes Slurm Integration based on Kind”, 2023,
[Online]. Available: https://github.com/soerenmetje/kind-slurm-
integration.

[26] P. Liu and J. Guitart, Fine-grained scheduling for containerized
HPC workloads in kubernetes clusters, Nov. 21, 2022. DOI:
10.48550/arXiv.2211.11487. arXiv: 2211.11487[cs].

[27] D. Medeiros, J. Wahlgren, G. Schieffer, and I. Peng, “Kub: En-
abling elastic HPC workloads on containerized environments”,
in 2023 IEEE 35th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD),
ISSN: 2643-3001, Oct. 2023, pp. 219–229. DOI: 10 .1109/
SBAC-PAD59825.2023.00031.

[28] “PRIMAGE / hpc-connector · GitLab”, GitLab, Feb. 22, 2023,
[Online]. Available: https://gitlab.com/primageproject/hpc-
connector (visited on 2025.01.02).

[29] N. Zhou et al., “Container orchestration on HPC systems
through Kubernetes”, Journal of Cloud Computing, vol. 10,
no. 1, p. 16, Feb. 22, 2021, ISSN: 2192-113X. DOI: 10.1186/
s13677-021-00231-z.

[30] G. Staples, “TORQUE resource manager”, in Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, ser. SC ’06,
New York, NY, USA: Association for Computing Machinery,
Nov. 11, 2006, 8–es, ISBN: 978-0-7695-2700-0. DOI: 10.1145/
1188455.1188464.

[31] “Sylabs/wlm-operator”, Sylabs Inc., Nov. 5, 2024, [Online].
Available: https://github.com/sylabs/wlm-operator (visited on
2025.01.02).

[32] “Sylabs/singularity-cri”, Sylabs Inc., Mar. 1, 2024, [Online].
Available: https://github.com/sylabs/singularity-cri (visited on
2025.01.02).

[33] B. Lublinsky, E. Jennings, and V. Spišaková, “A Kubernetes
’Bridge’ operator between cloud and external resources”, Jul. 6,
2022. DOI: 10.48550/arXiv.2207.02531. arXiv: 2207.02531
[cs], pre-published.

[34] “Bridge-Operator/kubeflow at main · IBM/Bridge-Operator”,
[Online]. Available: https://github.com/IBM/Bridge-Operator/
tree/main/kubeflow (visited on 2025.01.02).

[35] “CARV-ICS-FORTH/HPK”, Computer Architecture and VLSI
Systems (CARV) Laboratory, Dec. 26, 2024, [Online]. Avail-
able: https://github.com/CARV-ICS-FORTH/HPK (visited on
2025.01.02).

[36] A. Chazapis, E. Maliaroudakis, F. Nikolaidis, M. Marazakis,
and A. Bilas, “Running Cloud-native Workloads on HPC with
High-Performance Kubernetes”, Sep. 25, 2024. DOI: 10.48550/
arXiv.2409.16919. arXiv: 2409.16919 [cs], pre-published.

[37] “Apptainer/apptainer”, The Apptainer Container Project,
Dec. 30, 2024, [Online]. Available: https://github.com/apptainer/
apptainer (visited on 2025.01.02).

[38] “Virtual-kubelet/virtual-kubelet”, virtual kubelet, Feb. 24, 2025,
[Online]. Available: https://github.com/virtual-kubelet/virtual-
kubelet (visited on 2025.02.24).

[39] “Flannel-io/flannel”, flannel-io, Feb. 25, 2025, [Online].
Available: https://github.com/flannel- io/flannel (visited on
2025.02.25).

[40] “Flannel-io/cni-plugin”, flannel-io, Jan. 31, 2025, [Online].
Available: https://github.com/flannel-io/cni-plugin (visited on
2025.02.25).

[41] “Fix #2 #3 #6 by soerenmetje · Pull Request #4 · IBM/Bridge-
Operator”, [Online]. Available: https://github.com/IBM/Bridge-
Operator/pull/4 (visited on 2025.01.02).

[42] “Kubernetes/minikube”, Kubernetes, Jan. 2, 2025, [Online].
Available: https://github.com/kubernetes/minikube (visited on
2025.01.02).

[43] “K3d-io/k3d”, k3d, Jan. 2, 2025, [Online]. Available: https:
//github.com/k3d-io/k3d (visited on 2025.01.02).

[44] “Rootless-containers/usernetes”, rootless-containers, Dec. 30,
2024, [Online]. Available: https : / / github . com / rootless -
containers/usernetes (visited on 2025.01.02).

[45] “Kind”, [Online]. Available: https://kind.sigs.k8s.io/ (visited
on 2025.02.21).

[46] “Rootless-containers/rootlesskit”, rootless-containers, Jul. 25,
2025, [Online]. Available: https : / / github . com / rootless -
containers/rootlesskit (visited on 2025.07.25).

[47] “Rootless-containers/slirp4netns”, rootless-containers, Feb. 23,
2025, [Online]. Available: https : / / github . com / rootless -
containers/slirp4netns (visited on 2025.02.25).

[48] “Releases · containers/podman”, GitHub, [Online]. Available:
https : / /github.com/containers /podman/releases (visited on
2025.02.25).

[49] “Passt - Plug A Simple Socket Transport”, [Online]. Available:
https://passt.top/passt/about/ (visited on 2025.02.25).

[50] “Podman/docs/tutorials/rootless_tutorial.md at main · contain-
ers/podman”, GitHub, [Online]. Available: https://github.com/
containers/podman/blob/main/docs/tutorials/rootless_tutorial.
md (visited on 2025.02.21).

[51] L. S. Marín, “Squat/kilo”, Dec. 24, 2024, [Online]. Available:
https://github.com/squat/kilo (visited on 2025.01.02).

[52] A. Kopytov, “Akopytov/sysbench”, Jan. 2, 2025, [Online].
Available: https : / / github . com / akopytov / sysbench (visited
on 2025.01.02).

[53] J. Hammond, “Jeffhammond/STREAM”, Dec. 24, 2024, [On-
line]. Available: https://github.com/jeffhammond/STREAM
(visited on 2025.01.02).

[54] J. Axboe, “Flexible I/O Tester”, 2022, [Online]. Available:
https://github.com/axboe/fio (visited on 2025.01.02).

[55] “HewlettPackard/netperf”, Hewlett Packard Enterprise, Dec. 10,
2024, [Online]. Available: https://github.com/HewlettPackard/
netperf (visited on 2025.01.02).

[56] “Esnet/iperf”, ESnet: Energy Sciences Network, Jan. 2, 2025,
[Online]. Available: https://github.com/esnet/iperf (visited on
2025.01.02).

[57] L. Ardito, R. Coppola, L. Barbato, and D. Verga, “A Tool-
Based Perspective on Software Code Maintainability Metrics:
A Systematic Literature Review”, Scientific Programming,
vol. 2020, no. 1, p. 8 840 389, 2020, ISSN: 1875-919X. DOI:
10.1155/2020/8840389.

[58] K. A. Dawood et al., “Towards a unified criteria model for
usability evaluation in the context of open source software
based on a fuzzy Delphi method”, Information and Software
Technology, vol. 130, p. 106 453, Feb. 1, 2021, ISSN: 0950-5849.
DOI: 10.1016/j.infsof.2020.106453.

[59] “Gwdg/pub-2025-ksi-evaluation”, Gesellschaft für wis-
senschaftliche Datenverarbeitung mbH Göttingen, Aug. 1, 2025,
[Online]. Available: https://github.com/gwdg/pub-2025-ksi-
evaluation (visited on 2025.08.01).

[60] “Rootless network performance (pasta vs slirp4netns) ·
containers/podman · Discussion #22559”, GitHub, [Online].
Available: https://github.com/containers/podman/discussions/
22559 (visited on 2025.01.03).


