
110International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Extending the Composable Architecture Framework
by Means of Normalized Systems Theory

Geert Haerens
Antwerp Management School, Belgium

Engie nv, Belgium
Email: geert.haerens@engie.com

Herwig Mannaert
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerpen.be

Abstract—In a fast-evolving world, companies require IT solu-
tions that allow them to adapt swiftly to changing conditions. In
2020, Gartner introduced the Composable Architecture Frame-
work as a guiding principle for creating application landscapes
that are easily composable and recomposable, thereby supporting
change. The Normalized Systems theory is about the creation
of evolvable modular software. The concepts presented in the
Composable Architecture Framework resonate with Normalized
Systems. A closer analysis of the framework through Normalized
Systems theory reveals that Gartner’s framework lacks precision.
As such, following the guidance of the framework will insuffi-
ciently protect companies from change, both outside and inside
the organization. By extending the Composable Architecture
Framework with Normalized Systems theory, a more evolvable
framework emerges.

Keywords—Normalized Systems Theory; Composable Architec-
ture; Packaged Business Capabilities.

I. INTRODUCTION

This paper is an extended version of [1]. We elaborate on
the concepts behind the Composable Architecture Framework
(CAF) and Normalized Systems (NS) theory and extend our
criticism of the original paper, providing guidance on how to
improve CAF.

For many years now, a death wish toward the monolithic
application has been declared. Monolithic applications are
difficult to change and unsuitable in our fast-moving world.
Many paradigms have been proposed over the years to split
applications into smaller, modular parts. With the rise of the
Internet and faster network speeds, the physical distribution
of those parts has become a reality. The Distributed Comput-
ing Environment (DCE) [2] proposed modules encapsulating
functionality that could be activated via Remote Procedure
Calls (RPC). An essential benefit to splitting applications into
smaller, independent callable modules is re-use. This resonates
with McIlroy’s dream, expressed during the 1968 NATO
conference on Software Engineering, where ” ... I expect
families of routines to be constructed on rational principles
so that families fit together as building blocks. In short, [the
user] should be able to regard components as black boxes
safely.”.

SAP ERP (Enterprise Resource Planning), for instance,
uses this approach to allow calling SAP functions from other
systems via Remote Function Calls (RFCs). SAP re-baptized
RFC to BAPI, Business Application Programming Interface,
to focus even more on encapsulated functionality. In the past

couple of years, we have seen a shift from encapsulated
functionality toward technology, meaning that today, the talk
of the town is about REST APIs, message queues, and event
systems as a means of implementing integration between
modules but without paying attention to the functionality.

In 2020, Gartner [3] introduced the notion of PBC to create
Composable Applications. They proposed the CAF [3] as
a guide for properly encapsulating functionality and using
technologies that enable recomposition and evolution. Their
approach connects the previous focus on functionality with
today’s emphasis on technology.

Normalized System theory (NS) [4], originating in software
development, put forward the necessary conditions for the
evolvability of modular structures.

When analyzing the CAF with NS, one starts noticing that
CAF lacks precision. Following the guidance outlined by CAF
will not be sufficient to protect a company’s IT systems from
change. This brings us to the problem statement we aim
to address: How can NS help extend CAF to address the
identified weaknesses?

The paper is structured as follows: In Section II, we will
introduce Gartner’s Reference Architecture for Composable
Business Technology, followed by Section III, that introduces
NS. In Section IV, we refer to related work, and in Section V,
we analyze and criticize the framework through NS. In Sec-
tion VI we have our findings validated by a focus group and
in Section VII we will propose extensions to CAF to improve
the overall robustness against change. The paper is wrapped
up in Section VIII.

II. GARTNER’S REFERENCE ARCHITECTURE FOR
COMPOSABLE BUSINESS TECHNOLOGY

In 2020, the world was struck by COVID. In addition to
human loss and suffering, businesses were severely disrupted
by this crisis. Gartner noticed that companies with a modular
application approach could adjust swiftly to external condi-
tions by quickly and safely assembling, disassembling and
reassembling applications as the world required. In Novem-
ber 2020, Gartner published their Reference Architecture for
Composable Business Technology [3], that investigates the
conditions required for a platform to facilitate the composition
and re-composition of applications. The necessary ingredients
for such a platform are PBCs as the essential modules, an ap-
plication composition experience that allows custom assembly



111International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Overview of the CAF [5].

of PBCs via low-code and no-code, an application composition
platform that enables development and deployment of the
newly composed applications, and a data fabric that provides
easy access to data and analytics.

The PBCs are modules that encapsulate a well-defined
business capability (BC) - recognized by the intended business
users - and must adhere to the following conditions:

• They are modular and cohesive.
• They are autonomous (can run independently) and have

minimal dependencies with external components.
• They allow orchestration as they can realize a process

flow across PBCs (via APIs, events, etc.).
• They are discoverable and easily accessible and recog-

nizable by those who require them.

The above definition of a PBC is heavily focused on the ”P”
— how it should be packaged — and less on the ”BC” — the
business capability. In Section V, we will see that the defining
BCs is not straightforward and that the lack of definitions and
guidance from Gartner is a weakness of the PBC concept.

Defining the right level of business capability granularity is
challenging (too large = monolith, too small = more complex
to identify).

Gartner provides further guidance on the PBC definitions
by defining PBC types.

There is the Application Type PBC that encapsulates both
data and functions related to a well-defined business capability.
Application Type PBC can be used to create fully expressed
(=autonomous and encapsulating a full context) PBCs or basis
business function PBC (= not autonomous and encapsulating
a part of a context). Application Type PBC can create pseudo-
PBCs that act as APIs to existing monolithic applications.
They encapsulate the legacy application, allowing them to
participate in PBC composition, but they lack some of the
flexibility in true PBCs regarding evolvability.

Reference-type PBCs allow encapsulated access to data in
the data fabric. They can access master data, metadata, or any
data instance that represents a business object or a physical
data container.

The Insight Type PBC allows the encapsulation of data
analytics processes. It can perform analytic operations or apply
AI models (ML, Deep learning, etc.) to data in the data fabric.

The Thing Type PBC encapsulates physical-world entities.
It can be used to access and manipulate data from the real
world (IoT).

There is the Flow Type PBC, that combines different PBC



112International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in a specific order. Flow Type PBCs facilitate the creation of
orchestrated PBCs that encapsulate a process.

The PBCs are activated via event channels and called via
APIs. They can also provide different optional user interfaces
(web, mobile, etc.).

In Table I, Gartner contrasts the organization of an appli-
cation landscape in PBCs (combined with a composition and
deployment platform) with traditional application landscapes.
Figure 1 provides an overview of the CAF.

Gartner analyzed the main change drivers in their papers:
adding new business capabilities and their associated PBCs.
Gartner further emphasizes that a platform that conforms to the
above specifications is insufficient. Business and IT must work
closely together to define and implement the required business
capabilities, requiring what Gartner calls fusion teams. These
teams are essential in creating business-IT alignment and, thus,
value creation.

To start with a composable architecture strategy, one must
first know what PBCs are already in the company. They may
already be present as fine-grained PBCs, or via applications
that aggregate PBCs and are accessible via APIs. It is vital
that investments in future technologies that can be used for
PBCs can be used for that purpose. The individual PBCs must
be accessible via APIs, not aggregated. For example, a SaaS
solution integrating multiple PBCs should allow the specific
use of platform PBCs without depending on the other PBCs.

New applications are composed of assembled PBCs, al-
lowing faster delivery and updating. Updating a PBC in the
catalogue should update all applications with that PBC as an
active module.

In summary, the Gartner CAF “presents the reference
model for developing business applications that are modular,
composable, easily adapted and ready for change.” [3].

III. FUNDAMENTALS OF NS THEORY

Software should be able to evolve as business requirements
change over time. In NS theory [6], the lack of Combinatorial
Effects measures evolvability. When the impact of a change
depends not only on the type of the change but also on the
size of the system it affects, we talk about a Combinatorial
Effect. The NS theory assumes that software grows indefinitely
and undergoes unlimited changes over time. Under those
conditions Combinatorial Effects harm software evolvability.

NS theory is built on the principles of classical system
engineering and statistical entropy. In classic system engineer-
ing, a system is stable if it has bounded input and bounded
output (BIBO). NS theory applies this idea to software design,
as a limited change in functionality should cause a limited
change in the software. In classic system engineering, stability
is measured at infinity. NS theory considers infinitely large
systems that undergo infinitely many changes. A system is
stable for NS if it does not have Combinatorial Effects,
meaning that the effect of change only depends on the kind
of change and not on the system size.

In the context of composable architecture, NS theory pro-
vides a lens for evaluating whether PBC-based systems will

remain stable as they evolve. As Gartner claims, the CAF
should result in more evolvable and thus easier to change
systems; compliance with NS seems necessary.

NS theory proposes four theorems and five extendable
elements as the basis for creating evolvable software through
the pattern expansion of these elements. The theorems are
proven formally, giving a set of required conditions to follow
strictly to avoid Combinatorial Effects. The NS theorems have
been applied in NS elements. These elements offer a set
of predefined higher-level structures, patterns, or “building
blocks” that provide a clear blueprint for implementing the
core functionalities of realistic information systems, following
the four theorems.

The NS elements are the building blocks needed for any
modular architecture, and thus also for the CAF.

A. NS Theorems

NS theory [6] is based on four theorems that dictate the
necessary conditions for software to be free of Combinatorial
Effects.

• Separation of Concerns
• Data Version Transparency
• Action Version Transparency
• Separation of States

Violating any of these four theorems will lead to Combinato-
rial Effects and, thus, non-evolvable software under change.

B. NS Elements

Consistently adhering to the four NS theorems is challeng-
ing for developers. First, following the NS theorems leads
to a fine-grained software structure, that introduces some
development overhead and may slow the development process.
Second, the rules must be followed constantly and robotically,
as a violation will introduce Combinatorial Effects. Humans
are not well-suited for this kind of work. Third, the accidental
introduction of Combinatorial Effects results in an exponential
increase in rework.

Five expandable elements [7] [8] were proposed, that make
the realization of NS applications more feasible. These ele-
ments are carefully engineered patterns that comply with the
four NS theorems and that can be used as essential building
blocks for various applications: data element, action element,
workflow element, connector element, and trigger element.

• Data Element: the structured composition of software
constructs to encapsulate a data construct into an isolated
module (including get- and set methods, persistency,
exhibiting version transparency, etc.).

• Action Elements: the structured composition of software
constructs to encapsulate an action construct into an
isolated module.

• Workflow Element: the structured composition of soft-
ware constructs describing the sequence action elements
should be performed to fulfil a flow into an isolated
module.

• Connector Element: the structured composition of soft-
ware constructs into an isolated module, allowing external



113International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
CONTRASTING TRADITIONAL WITH PBC APPLICATION LANDSCAPES (FROM [3])

Criteria Traditional Applications PBCs
Primary value Business capability Business capability
Primary access User Interface (UI) Programmatic Interface (API, event)
Scope Many business objects One business object
Internal architecture monolith or modular monolith or modular
Designed for Business Business and IT
Design priority Stability Agility
Delivered value Business solutions Recomposable business solutions
Production style Project Product
Essential tools Customization included Composition, added cost
Required IT skills Customization, low Composition, high
Cost Bulk, some ”shelfware” Componentized, tracks value
Governance Sample Complex
Internal data ”Owned” ”Owned”
Open for integration/composition Partially, a secondary priority Fully, primary design objective

systems to interact with the NS system without calling
components statelessly.

• Trigger Element: the structured composition of software
constructs into an isolated module that controls the sys-
tem states and checks whether any action element should
be triggered accordingly.

The element provides core functionalities (data, actions,
etc.) and addresses the Cross-Cutting Concerns (CCCs) that
each of these core functionalities requires to function correctly.
CCCs cut through every element, requiring careful implemen-
tation to avoid introducing Combinatorial Effects.

C. Element Expansion

An application comprises data, action, workflow, connector,
and trigger elements that define its requirements. The NS
expander is a technology that generates code instances of high-
level patterns for a specific application. The expanded code
will provide generic functionalities specified in the application
definition and will be a fine-grained modular structure that
follows the NS theorems (see Figure 2).

The application’s business logic is now manually pro-
grammed inside the expanded modules at pre-defined loca-
tions. The result is an application that implements the required
business logic and has a fine-grained, modular structure. As
the code’s generated structure is NS-compliant, we know it
is evolvable for all anticipated change drivers corresponding
to the underlying NS elements. The only location where
Combinatorial Effects can be introduced is in the customized
code.

D. Harvesting and Software Rejuvenation

The expanded code includes predefined areas where changes
can be made. To keep these changes from being lost when the
application is expanded again, the expander can gather them
and re-inject them when re-expanded. Gathering and putting
back the changes is called harvesting and injection.

The application can be re-expanded for various reasons. For
example, the code templates of the elements can be improved
(fix bugs, make faster, etc.), new CCCs (add a new logging

Fig. 2. Requirements expressed in an XML description file, used as input for
element expansion.

feature) can be included, or a technology change (use a new
persistence framework) can be supported.

Software rejuvenation aims to routinely perform harvesting
and injection to ensure that constant enhancements to the
element code templates are incorporated into the application.

Code expansion accounts for more than 80% of the applica-
tion’s code. The expanded code can be called boilerplate code,
but it is more complex than what is usually meant by that term
because it deals with CCCs. Manually producing this code
takes a lot of time. Using NS expansion, this time can now be
spent on constantly improving the code templates, developing
new templates that make the elements compatible with the
latest technologies, and meticulously coding the business logic.
Changes to the elements can be applied to all expanded
applications, giving the concept of code reuse a new meaning.
All developers can apply a modification to a code template
by one developer across all their applications with minimal
impact, thanks to the rejuvenation process (see Figure 3).

IV. RELATED WORK

While searching for relevant literature, we found some
papers discussing Composable Architecture. The most relevant
publications are, on the one hand, a paper about a possible



114International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. NS development and rejuvenation.

methodology and demonstration by use case for implementing
Composable Architecture, and on the other hand, the book of
AW Sheers, ”The Composable Enterprise” [9]. While Scheer
[9] tried to rearchitect a complete organization, Ivas [10]
provides a methodology to introduce Composable Architecture
and demonstrates it with a use case. The paper also provides a
good literature review, noting that only a few academic papers
discuss Composable architecture (searches on Google Scholar,
Web of Science, and Resource Gate). At the same time,
thousands of papers are found in the professional literature
(via Google), pointing out the need for academic attention to
the subject. The paper proposes a methodology consisting of
6 steps (from [10]):

• Understand business drivers and objectives. The first
step is to understand the business background of the
initiatives, i.e., the rationale, purpose, and scope from the
business point of view.

• Understand the holistic scope of the initiative. The second
step is to understand what value stream steps and business
capabilities from Holistic value delivery are affected by
the initiative and how.

• Understand the current situation. Understand and sketch
the scope of the current solution (architecture).

• Understand the situation and needs at the enterprise level.
Identify if any components can be reused or optimised by
this solution at the enterprise level or if there are other
future initiatives with the same need.

• Design as API -first Headless PBC (preferably according
to MACH [11]). If you need to implement a new service,
you should preferably design it according to MACH
principles. Otherwise, deliver business change by creating
new or optimising existing monolith modules by API-first
and Headless MACH principles.

• Implement business-IT aligned PBC solution and con-
solidate. Implement the agreed business-IT solution and
consolidate any old solutions into the new solution that
implements the same functionality (business capability).

For an Enterprise Architect, those steps are logical and provide
excellent guidance. We argue that, next to the need for
academic attention to applying Composable Architecture for
(re)introducing functional re-uses, there is a need as well for
academic attention to properly operationalizing/implementing
Composable Architecture to make the dream of McIllroy a

reality and not a nightmare.
For this extended paper, we sought additional work on the

CAF. We knew that since the publication of the original paper,
there were some conferences, mainly non-academic, that had
the topic of CAF on the agenda. We can start by stating
that, to the best of our knowledge, we have not found any
additional academic research on CAF. We have found a lot
of gray literature on the subject, indicating that the concept is
gaining traction with practitioners and is becoming part of the
heuristic body of knowledge of Enterprise Architecture.

For starters, we looked again at Gartner. In 2025 Gartner
starts to associate the topic of composability with Digital
Experience Platform (DXP), that focuses on the constant need
to adjust to new user journeys to keep and attract customers.
The link to the need to constantly adapt, change, and evolve
is all variations on the same theme: you need a CAF. In
the 2025 Magic Quadrant for DXP [12], Gartner states that
by 2026, 70% of organizations will be required to adopt
composable DXP technology (as opposed to monolithic suites)
and explicitly defines that vendors must offer “modular, API-
first approaches, with a set of discrete, task-oriented and
independently deployable PBCs.

Secondly, we refer to the Mach Alliance, a consortium
advocating Microservices, API-first, Cloud-native, Headless
(MACH) architectures, heavily featured composability in
2025. They hosted “The Composable Conference 2025” (April
2025, Chicago) with hundreds of tech leaders, focusing on
composable approaches and real-world MACH case studies.
The alliance’s insight articles note that composability has
“come of age” – e.g., pointing out that “in 2025, composability
has become a mandatory requirement” for DXPs and high-
lighting that many new DXP entrants adopt the PBC approach.
The MACH Alliance also offers whitepapers on evaluating
and integrating composable solutions, indicating an increasing
level of practical guidance available in the industry [13].

Thirdly, we refer to SAP. In early 2025, SAP introduced
the concept of Composable ERP, reframing its traditionally
monolithic ERP suites into modular components. At the ES-
ICONF 2025 conference [14], SAP’s approach was detailed:
they identify PBCs within ERP (e.g., Finance, Inventory, and
Logistics as separate capabilities) and allow customers to
implement them independently and integrate them as needed.
SAP even defined composability similarly to Gartner, as “the
ability to select, assemble, and rearrange components to adapt
to specific and evolving requirements”. What’s significant is
SAP’s explicit breakdown of a PBC’s internal architecture
into three layers – User Interface, Application/Process Logic,
and Unified Domain Data Model. This provides a more
formal metamodel for PBCs in an ERP context, essentially
an extension of CAF: it suggests that each PBC should
include its own UI and business logic, and should share
a standard data model where appropriate. SAP’s messaging
around Composable ERP positions it as the next evolution
beyond post-modern ERP, aiming for flexibility and the ability
to mix and match modules. This can be seen as an “alternative
framework” in that it applies composability within a specific



115International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enterprise context (ERP) rather than the general application
composition of Gartner’s CAF. But it’s clearly inspired by
the same principles and brings them to life in a real product
strategy. For practitioners, the SAP case is a strong validation
that composable architecture is not just for greenfield digital
projects – it’s influencing core enterprise systems now. (Other
major software providers like Salesforce have similarly started
promoting modular, “API-based” architectures in their ecosys-
tems, effectively encouraging composable thinking within their
product lines.)

We finish by mentioning that most of the ambiguities that
will be discussed in the next section, also pop up in the
gray literature (examples: [15], [16], [17], [18], [19]) and that
there are ample posts to be found on the web that discuss
the issues of defining PBCs, finding the right granularity and
using the proper technologies. These topics will be addressed
in Section V and will be shortly revisited in Section VI as
well.

V. CRITICAL ANALYZIS OF GARTNER’S REFERENCE
ARCHITECTURE FOR COMPOSABLE BUSINESS

TECHNOLOGY

In this section, we will take the components of the CAF
(see Figure 1) and critically analyze them. We start by looking
closely at business capabilities and how they should help align
business and IT. We continue by discussing the modularity of
PBCs and the different types defined by the CAF. We end this
section by examining PBCs and CCCs and by delving into the
requirements for a PBC platform.

A. Defining Business Capabilities

The concept of business capabilities originates in the
resource-based view of companies [20], where it is considered
vital to identify resources and capabilities that provide a
competitive advantage [21]. This evolved into the idea that
companies need to know ”what” kind of activities they are
undertaking, and gave rise to using the term business capa-
bilities. Although decades have passed since the first mention
of capabilities, there is no agreed-upon definition of business
capabilities, nor is there consensus on how they should be
defined, named, and used.

Table II gives an overview of 4 existing definitions of
business capabilities. The first three are from industry sources,
while the last is an academic source. There is some overlap,
but each has specificities, as outlined in the key differentiators
in the table. It is beyond the scope of this paper to provide
an overarching definition of a business capability. We refer to
[21] for a comprehensive literature overview on the subject.
However, it does point to a weakness in the CAF — how to
define something that lacks consensus?

Another fundamental issue with business capabilities is that
they focus on the ”what” rather than the ”how”. Formulated
otherwise, they provide a black-box or a functional view.
Traditional/heuristic functional design pays little attention to
the fact that moving from function to construction (and vice
versa) is not a straightforward, one-to-one mapping. It is

an m-to-n mapping and requires a creative process that is
not easily caught in an algorithm and requires architectural
guidance. This has implications when a company wants to
create its business capabilities map, starting from its current
structure (how the company is organized). As there is no
one-to-one mapping between functions and constructions (and
vice versa), one ends up with multiple functions linked to a
single construction, and vice versa. To make matters even more
complicated, the TAO theory [22] argues that functionality is
relative. An object, that is part of the construction, does not
have functionality as a property. It only acquires functionality
when a subject intends to use an object for a particular
purpose. Functionality is thus a relation between subject and
object. This implies that when different subjects (persons)
build a functional architecture (using business capabilities),
they are unlikely to arrive at the same result.

The cornerstone of Gartner’s CAF is PBCs. However, as
argued above, the definition of business capabilities can be
problematic. If the definitions are unclear, then the imple-
mentation into PBC is suspect. For some industries, there
are business capabilities frameworks such as BIAN [23] for
the banking industry or NBility for energy transmission and
distribution in the Netherlands [24]. There are companies
like Leading Practice [25] that offer capability frameworks
for some industries at a price. Still, many sectors lack such
frameworks (openly or for pay).

As such, a necessary condition for using the CAF, being
well-defined business capabilities, is already a tough nut to
crack, and scientific guidance on how to do it is lacking. Some
heuristic guidance will be provided in Section VII.

B. Business IT Alignment using PBCs

Gartner considered the business capabilities to be well-
defined, shared between business and IT, and as an accurate
alignment tool between the two. They refer to ”Fusion Teams”
as the secret formula to create this shared understanding.
Fusion teams are teams that include both business and IT
people. Close collaboration between the two will lead to a
shared understanding and better solutions. This idea is also
present in Agile Frameworks such as SAFe [26], where agile
teams are considered multi-functional (mix of business and
IT) and have people who know the job best close together,
resulting in better designs than those imposed by intentional
architecture. Or, stated otherwise, the PBCs are to be built
bottom-up rather than defined top-down.

Existing heuristics for developing your business capabilities
(see Section VII) treat them as part of the realm of strategy.
They are to be aligned with the mission, vision, and strategic
objectives. This implies that PBCs are to be built top-down.
Such an approach will typically result in a set of business ca-
pabilities that are sufficiently understood by IT. The alignment
between business and IT is at risk.

From NS, we know the importance of having an anthropo-
morphic design. This means that module names should reflect
something that exists in the real world, as this increases under-
standing of the module’s (intended) function. The same holds



116International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
COMPARISON OF BUSINESS CAPABILITY DEFINITIONS

Source Definition Summary Focus Abstraction Level Key Differentiator
OMG
[27]

Ability or capacity a business possesses or ex-
changes to achieve a purpose or outcome.

Purpose-driven, exchange of
capabilities

High-level, conceptual Emphasizes
exchange and
specific purpose.

TOGAF
[28]

Ability an organization, person, or system pos-
sesses; describes what can be done, not how.

Generic ability, independent
of implementation

Very high-level, abstract Stresses
agnosticism to
process or structure.

BIZBOK
[29]

Ability needed to perform to achieve mission;
expressed in terms of outcomes, independent of
structure/process.

Mission alignment, outcome
orientation

High-level, linked to mission Highlights mission-
critical nature and
outcome focus.

Academic
[21]

Capabilities link strategy (why) and implemen-
tation (how); describe what activities must be
performed to achieve objectives, independent of
processes or structure.

Strategic alignment, activity-
based view

High-level, bridging strategy
and execution

Connects strategy to
execution explicitly.

for business capabilities. If they are insufficiently fine-grained
and abstract, they no longer represent business reality. Still,
if they are too detailed, the number of business capabilities is
considered too large and thus complex.

C. PBCs and Modularity

Gartner’s PBCs are modular, where modularity is defined
as ”partitioned” into a cohesive set of components [3]. Garter
further adds that ”The granularity of PBCs, as with all
modular systems, is a common design challenge. Modular
components that are too large may be easier to manage,
but they are harder to change are use in new compositions.
Components that are too small may be easier to assemble but
harder to isolate, identify, find or change.” [3]. This statement
is vague. What are the objective criteria for being too large
and too small? Secondly, as neither is considered a good
modular design, what are the requirements for a sound module
size? Some of the gray literature mentioned in Section IV
considers the PBC to be the optimal size, positioned between
the monolith and the microservice. We could dedicate a paper
to the discussion of microservice size, but the issue is that an
objective criterion is missing.

NS theory explicitly defines the optimal module size to
facilitate anticipated changes. A module must be split into
smaller modules until each complies with the four NS theo-
rems: SoC, AvT, DvT, and SoS. When all the theorems are
met, the optimal size is reached. As these are the necessary
conditions for system stability under change, violating them
will introduce Combinatorial Effects (CE).

Separation of Concern (SoC) teaches that each PBC
should encapsulate a separate change driver. PBCs must be
defined as fine-grained and very specific. For example, a possi-
ble PBC is Asset Monitoring. The asset could be an IT system
(servers, databases) or an OT system (Operational Technology
as SCADAs, Turbines, etc.). Although both are assets, secure
monitoring for both requires different implementations. This
would mean that if we used only one PBC for this, we would
need two versions: one for IT and one for OT. It suffices to
extend this way of thinking and conclude that insufficiently
fine-grained PBCs would lead to multiple versions of the
PBC and break the anthropomorphic relation between what
something is (a PBC) and how something is done. Such an

anthropomorphic relation is a required condition for a PBC
platform as PBCs must be easily discoverable (see Section II)

Action version Transparency (AvT) enforces interface
stability when the implementation changes. The CAF does not
explicitly mention interface stability when the PBC implemen-
tation changes. However, it does note the need for technologies
that result in loosely coupled systems, such as providing
interfaces via APIs and event buses, and using technologies
promoted by the MACH Alliance [11]. We will return to
this point when discussing the PBC platform. However, AvT
should not be limited to technical protocols and implemen-
tations. PBC definitions should also address semantic issues
related to version transparency. In case a business capability
introduces a new feature, a default behavior needs to be
defined in case the new feature is not specified.

Data version Transparency (DvT) ensures that changes
to data attributes do not affect processing functions that do
not use those new attributes. The CAF does not mention this
concept; it is left to the data fabric. This paper will not discuss
the vagueness or evolvability of concepts such as data fabric.

Separation of State (SoS) required all modules to maintain
state and make it externally visible. The CAF does not mention
the need to state-keep the PBCs. Similar to AvT, MACH
technologies are cited for promoting the use of process Chore-
ography over process orchestration for evolvability. Indepen-
dent of whether this is valid, choreography (and orchestration)
requires state-keeping and exposition to trace process issues
back to the failure location. Similar to AvT, statekeeping
should also be looked at semantically, i.e., what is the actual
business state at specific points in the process flows.

D. PBC Types

Garter introduces PBC Types, such as application PBC, data
entry PBC, analytics PBC, Digital Twin, and Process. What
is missing is the relation between a PBC and a PBC Type.
Is a PBC comprised of multiple PBC types, or do they have
a one-to-one relationship? The latter would be strange as to
do something, a ”what” or a capability, you require things to
make it happen, ”hows”, and the PBC Types are pointing more
into the direction of a ”how” than in the direction of a ”what”.
The PBC Types have similarities with NS elements.

• Application PBC Type (action) versus the Task Element



117International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Data Entity PBC Type (reference) versus Data Element
• Process PBC Type (flow) vs Flow Element

For NS, an Analytics PBC would be an Application PBC,
where the action/task is to perform some analytic operation.
A similar reasoning applies to the Digital Twin (thing) PBC,
where this would combine data and task elements in NS.
We notice Garter’s difficulty in addressing concepts at their
suitable granularity and abstraction level.

E. PBCs and CCCs

NS recognize that CCCs must be treated as any other change
driver and require splitting into different modules and proper
encapsulation. PBC focus on business, not technology. The
technologies used to implement, run, and deploy the PBC are
abstracted, and the only type of guidance regarding technology
is to use MARCH-compliant technologies. As stated in the
previous subsection, we notice an analogy between PBC Types
and NS Elements. NS Elements are there to allow proper
encapsulation and separation of CCCs. One would expect
something similar in PBCs, but this is not the case. This
represents a lack of design criteria for the PBC and could
result in proper SoC regarding capabilities/functionalities but
zero evolvability for the cross-cutting concern and associated
technologies. If CCCs aren’t modularized, a PBC might be
internally entangled with specific technologies or policies,
making it non-evolvable when those concerns change. For
example, if every PBC implements its own logging or security,
a change in security policy would require modifying many
PBCs (a combinatorial effect). As new technological imple-
mentations change faster and faster, ignoring these change
drivers will introduce CEs. Gartner implies leaving this to the
PBC Platform.

F. PBC Platform

Much of the PBC implementation magic is left over to
the PBC Platform. It must facilitate the discovery of the
available PBC, the composition of PBCs and the deployment
of PBCs. We already argued that proper discovery requires
anthropomorphising the PBC namespace and its associated
granularity to avoid PBC versioning without meaning. In the
previous subsection, we argued that Gartner seems to push the
treatment of the CCCs toward the PBC Platform. Instead of
addressing CCCs at the PBC level, they need to be discussed
at the PBC Platform level. This would be a possibility were it
not for the fact that, as a selection criterion for a PBC platform,
it is currently not mentioned in the CAF

Another crucial aspect of the PBC platform is the design,
deployment and running of the PBCs. Gartner sees that a
change in a PBC Type would yield an update of all composed
applications that use such PBC Type. In NS, updates to the
templates that make up the elements are handled through
expansion and rejuvenation. The new version of the element
template triggers a rejuvenation cycle, updating all instances
where it is used. The final step is to deploy the application.

Gartner simplifies this concept with an example of Planning
PBC used in two compositions [5]. The update to that Planning

PBC would trigger updates to both compositions. The question
is, what is being updated? Is it a PBC Type that underlies
the Planning PBC? Is it the Planning PBC template, or the
code that makes up the PBC? Does this update result in one
deployment of the Planning PBC shared by two compositions,
or are there two deployments of the Planning PBC? In the
former case, it would mean that the Planning PBC has zero
customisations (even in terms of low and no-code). Otherwise,
it cannot be used in two different composite applications
without putting extra differentiation logic into the Planning
PBC or the composite applications. In the latter case, it
would mean that running instances of Planning PBCs are not
identical, and the difference must be managed on the Platform,
resulting in different PBC versions. We already discussed the
issues related to that topic.

The problem is that there is no clear guidance on how the
PBC platform should handle this. The PBC Platform must
also conform to the four NS principles, or it will not allow
the evolvability Gartner portrayed in its CAF.

VI. VALIDATION BY FOCUS GROUP

The previous section looked at the components of the
CAF and tried to point out possible operationalization issues
employing NS and business capabilities theories. To avoid our
findings being perceived as overly opinionated, we conducted
a small experiment with students at the Antwerp Management
School who had just been exposed to NS. The idea was to
investigate how they view a concept such as Composable
Architecture after learning about NS.

Between September 2024 and November 2024, the Mas-
ter in Enterprise IT Architecture (MEITA) students of the
Antwerp Management School were exposed to NS theory for
sixteen hours. The MEITA is an executive master, and students
in the program already have many years of practical experience
in IT Architecture. At the end of this period, they were given
the Gartner paper on the CAF and asked to read it using their
newly acquired knowledge of NS. All students received the
reading material beforehand, were asked to read it, discuss it
in groups for 30 minutes, and then provide a summary of their
findings in 5 minutes. In total, 18 students participated, split
into four groups.

The first group had difficulty understanding the meaning of
PBCs. They realized that the approach can only succeed if
business and IT people define the PBCs. They expected more
guidance on how to do this and foresaw evolvability issues,
as no mechanisms were foreseen to adequately address SoC
beyond business changes (what about technological changes?).

The second group tried to list the pros and cons of the
framework. They found the use of no- or low-code with a
marketplace of PBCs to be powerful. They considered the
recommended use of headless promotion technologies to be
a good way to decouple UI and logic, while adhering to SoC
at least for those two concerns. Group one also struggled with
understanding PBCs and claimed they had never observed it
in their practices. They see the framework’s application more
in classifying your existing applications according to business



118International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

capabilities, and then use the Composable Architecture Inte-
gration platform to recombine existing applications.

The third group also struggled to understand PBCs. They
compared the main characteristics of PBCs with the NS
theorems. Modularity resonates with NS, but the framework
struggles to describe the level of granularity. They see SoC
applied to some extent but insufficient to be NS compliant.
They saw that the second characteristic, autonomy, would
require SoS, but this is not mentioned. They make a similar
remark about PBC orchestration. They conclude that the fourth
characteristic, discoverability, fails to account for the need for
AvT and DvT.

The fourth group noticed that while NS is about change over
time and minimizing ripple effects, PBC is about building fast.
The characteristics of PBC are such that nobody in their right
mind would want them, but the framework is insufficiently
explained on how to do it. On the other hand, NS tells you how
to do it, and doing it the NS way requires significant effort.
The group also identifies the PBC granularity uncertainty as
a source of future issues. For instance, the sales business
capability, packaged in a PBC, may or may not answer to the
different sales business capabilities needs in large and complex
organizations, opening the door for violation of the four NS
principles quicker than expected.

The different groups struggle with similar issues. Once
exposed to NS, one can ask more profound questions about
how implementation should occur and whether a proposed
solution has the characteristics it claims to have. It is important
to note that this does not necessarily mean that NS is the
optimal solution to operationalize the concept of PBC, as
only a single methodology was evaluated in the focus group.
Nevertheless, it does seem to validate that there is a need for
a strategy to operationalize a PBC architecture through more
concrete guidance, such as provided to a certain extent by NS.

The focus group reports align with our findings from the
additional literature review, as discussed in Section IV. As
CAF becomes more widely known, practitioners start to notice
the gray areas and try to fill them with heuristic knowledge
that often is a practical application of the NS concepts. NS
never claimed to have found something new, but it does claim
to have a theoretical and scientific method for unifying and
grounding existing heuristic knowledge.

The same experiment was conducted in November 2025
with the new MEITA student cohort. Three groups of three
students were formed and were asked to analyse CAF with
NS. The reported issues are similar to those found by the
previous cohort.

VII. EXTENDING THE CAF

In the previous section, we pointed out several shortcomings
of the CAF. We will now try to guide you on how to
overcome these shortcomings. Wherever possible, we will
provide direction supported by science, though this will not
always be possible. We will start with guidance on the
definition of business capabilities, followed by the size of
PBC modules. We continue with PBC Types guidance, address

CCCs, governance of the PBC platform, and end with an
overview of our advice.

A. Defining PBCs

Before we can package the business capabilities, we need
to define them. In Section V-A, we have seen that a common
understanding of what a business capability is and how it
should be mapped remains lacking.

Innocom, an enterprise architecture consultancy and educa-
tion institution, offers a two-day seminar on PBCs. In their
approach, participants are asked to identify the essential tasks
in a given context — the top tasks. They refer to the book
”Top Tasks: A how-to guide” by G. McGovern [30], that helps
distinguish top tasks from small ones. Those top tasks are
good candidates for being packaged. If those top tasks are
considered your top required business capabilities, listing them
will provide you with the required PBCs.

We have seen in Section V-A that THE functional view, and
thus the capabilities view, of an enterprise does not exist. As
such, we might as well try to find one that is as close to reality
as possible using the top tasks method. The results of such
a bottom-up approach may be validated/adjusted/augmented
by top-down approaches. There may exist a publicly/privately
available business capabilities map that can serve as validation
or a challenging framework for your top tasks. The company
may have a strategic map linking mission, vision, strategy, and
required capabilities. Both types of business capability maps
risk being abstract and disconnected from the nomenclature
used by business people in their day-to-day work. Abstraction
is suitable for general usability and re-use, but it can hamper
adoption and buy-in. We recommend finding a middle ground
that connects the abstract and the concrete, and using anthro-
pomorphic naming for the identified business capabilities to
ensure maximum unambiguous understanding.

One could use an advanced enterprise engineering method,
such as DEMO [22], that is backed by science, to construct
the enterprise ontology and, from there, enforce a one-to-one
mapping to a set of enterprise functions/capabilities provided
by the identified ontological transactions. The ontological
transactions could be used as a business capability model
because they are outcome-focused (a key feature according to
some definitions of business capabilities (see Section V-A)).

Gartner recommends forming fusion teams to ensure both
business and IT are at the table and to foster a common
understanding. This is good advice. We recommend adding
people with a strong methodological background who can
distinguish and steer discussions away from technological
implementation, and who can reformulate and generalize
concepts raised during the interactive workshops among all
relevant parties. Such profiles will help in the convergence
between bottom-up and top-down approaches.

B. PBCs modularity and granularity

PBCs are considered modules. The raison d’être of PBC
is to have a composable architecture that allows combining,



119International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recombining, and changing PBC to create new applications.
The PBCs must favour evolvability.

As NS is a theory of modularity, it provides guidance on
how to create and size your modules to enable evolvability.
Recall that a system is considered evolvable if it is free of
combinatorial effects. A combinatorial effect (CE) occurs
when a bounded functional change results in a mount of work
that is proportional to the size of the system. The necessary
condition for a modular structure to be free of CE is given in
the 4 NS theorems. In what follows, we will translate NS into
the PBC context and demonstrate the need for compliance
through an example.

1) Separation of Concern: The first NS theo-
rem—Separation of Concerns (SoC)—states that a module
should encapsulate only one concern, where a concern is
defined as a change driver. As such, a PBC should encapsulate
only one concern. If multiple concerns are combined in a PBC,
than those concerns would need to change all together as a
group and not individually, and that would basically mean that
the change driver can only exist at the PBC level, not in its
components. Our advice is two-fold: either you create PBCs
that respect SoC, or you do not allow variations in a PBC.

Let us elaborate by means of an example. The ”invoicing”
business capability is part of every company. It makes sense
to create a PBC for invoicing that is used across the company
to receive payment for delivered services. But what do we
mean by invoicing? Is it only the creation of the invoice in
electronic format that states the amount to be paid, or do we
also include sending the invoice via e-mail, an e-invoicing
system, or physical printing and sending? Invoicing risks
to contain multiple concerns. NS tells us to split the PBC
into smaller PBCs: invoice calculation, invoice e-sending,
invoice e-mailing, invoice printing, invoice physical-sending.
If the PBC is not divided into these smaller modules, CE
will be introduced in the landscape. Let us assume that a
company offer five services, each delivered by a separate
branch. Suppose they all use the PBC ”invoicing”. One of
the branches uses the PBC invoicing to calculate and e-send
the invoice, another only to calculate and print. Different
branches use different concerns packed in the same PBC.
Suppose now that a new version of e-sending is required
(that may be country-specific). But not all branches require
this latest version, and by introducing a bounded functional
change, we impact all parts of the organization that use the
PBC, meaning we introduce a CE. One could argue that
this could be solved by integrating into the PBC the two
different versions of e-sending, where the original one stays
untouched, and the new one is added, thus being compliant
with the Open/Close principle of Robert Martin: modules are
open for extension, closed for modification [31]. Suppose now
that the company acquires another company to be integrated
as a sixth branch, and it needs to set up its invoicing with the
invoicing PBC. As the PBC is a package that hides its insides,
how will it know which e-invoicing procedure to use? The
insides of the PBC need to be known to allow implementation.

This contradicts the idea of a module acting as a black box
and the concepts of packaging. Combining multiple concerns
into the invoicing PBC would mean that all branches need to
use the ”invoicing” PBC and will use it in the same way: first
calculate, then e-mail, then e-invoice, then print, and finally
physically send. You use the full functionality of what is
defined as invoicing, or you cannot use it. The moment there
is a need for a different use of that PBC, there are various
change drivers, and they must be split off. By splitting, we
really mean the creation of a PBC to address that concern (like
PBC ”e-sending europe and ”e-sending india”), not create a
new version of the original PBC ”Invoicing V2” that will
include the new version of e-sending for India.

2) Separation of State: The second NS theorem is Sepa-
ration of State (SoS). It postulates that each module should
maintain its own state and expose it. As PBCs are modules,
they should also preserve and expose their state. Fine-grained
PBCs enable more detailed state tracking and actions based on
those states. While coarse-grained PBCs hide the orchestration
of their inner workings from the external world, fine-grained
PBCs require an externally visible orchestration PBC to allow
partial execution of the smaller PBCs.

Besides the default requirement that a PBC maintain state,
we advise treating the PBC as an atomic transaction and asking
whether it can be treated that way. If not, splitting the PBC
becomes a necessity.

We would also like to warn of potential Babylonia confusion
of the word ”state”. At the technology level, the default
standard is stateless APIs. PBCs will be accessible via APIs.
As such, some may think that the need for stateful PBCs is
opposed to the usage of stateless APIs. The meaning of ”state”
is different and has little to do with the other. When working
with fusion teams, it might be necessary to skip the discussion
of the significance of the word ”state” asap to avoid further
misalignment.

In our invoicing PBC example, the module should have
states as ”invoice being calculated”, ”invoice calculation error
- error description: xxx”. In the previous subsection, we
advised either using a single PBC or splitting it into fine-
grained PBCs. When the PBC is kept as a whole, a grouping
of tasks and data, it should expose state about that whole rather
than its inner workings. Issues about the inner workings should
be part of logging, of course, for troubleshooting purposes,
but as the inner tasks of the PBC are not allowed to be used,
they cannot be re-called or acted upon. If the coarse-grained
invoicing PBC had a state of ”error sending e-invoice”, the
entire ”invoicing” transaction must be rolled back. If we had
fine-grained PBCs, the invoice calculation, invoice e-mailing,
invoice printing and invoicing physical-sending could be ok,
but the invoice e-sending could have failed, only requiring
a rollback of that transaction. This should make it clear that
going for the coarse-grained PBC, if SoC is ignored, SoS
gives you an additional sanity check - are you really sure you
want to do this, because you will now have to solve rollback
issues, complexifying the PBC.



120International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Action Version Transparency: The third NS theorem
is Action version Transparency (AvT). It postulates that an
internal change to the implementation of a module, assuming
iso functionality, should not impact the calling module.

Applying this theorem to PBC is straightforward: all avail-
able interfaces to the PBC must remain the same when
internal upgrades to the PBC are performed. Examples of
internal upgrades that should not affect the interface include
performance improvements, bug fixes, and changes in the
underlying technology. To be even more precise, the API
URLs should not change.

Changes in functionality can break the interface. If this is
the case, the PBC should no longer remain the same PBC; a
new one must be created. The new PBC should have a different
anthropomorphic name that reflects its new function and exist
alongside the previous PBC. Users of the old functionality
are not affected, and those requiring the new functionality
connect to the new PBC. Suppose the first functionality is to
be replaced over time. In that case, an orchestrated transition
from the old to the new can occur—a gradual migration to the
new URL, potentially facilitated by a platform rejuvenation
facility (see further).

Our advice regarding AvT is to adopt a clear version-
ing strategy that distinguishes between internal and external
versioning. Internal versioning should not impact the PBC;
external versioning is subject to migration effort that can be
proportional to the system’s size, but this can be resolved
through automation (see further).

Let’s apply this to our Invoice PBC example. Changes to
a new mailing system, a more efficient invoice calculation
method, a new printing system, or a new e-invoice system
should not affect the functioning of the PBC, nor do they
justify a new version (with a new name). Only the internal
versioning is updated. Suppose a new e-invoicing system has
a different interface from the current one, and that this change
breaks the interface. The internal change ripples through
to the PBC. At this point, we have identified a change
driver, and Soc tells us we should split off this module.
Maintaining AvT also pushed toward finer granularity. If
we do not want to create a new separate PBC dedicated
to e-invoicing, then we must create a new version of the
invoicing PBC. That new version should have a new name, like
”invoicing with new e-invoicing,” to indicate the functionality
difference from the original. Note that such a solution will
require maintaining two PBC that share the same code for
invoicing calculate, invoicing print, invoicing e-mail, and
invoice physical-sending. At this point, we start introducing
the ripple effect and even CE when future changes to
those PBC internals are required. Unless the PBCs are an
aggregation of more fine-grained PBCs that the business
cannot access (see further).

4) Data Version Transparency: The fourth and last NS
theorem is Data version Transparency (DvT). It postulates that

adding information to the data structure passed to a processing
function should not affect the processing function.

PBCs will perform actions on data (see Section VII-C)
that will be passed to them via APIs or messages. The data
transmission architecture or directive must favour DvT. This
means that in a distributed environment, we favour sending
entire objects (packed in JSON or XML, for instance) (aka
stamp coupling) rather than passing individual attributes (aka
data coupling). In an in-memory setup, this means objects
are passed by reference, not by value. Security professionals
will typically oppose this, as disclosing too much information
may lead to misuse or leakage. However, if the PBC are
adequately implemented, with security as being part of their
design, then this should not be a problem as there are sufficient
methods available to shield, anonymize and validate data
access authorization. This does imply that security must be
set at a fine-grained level. It is beyond the scope of this paper
to discuss data security, but from an evolvability perspective,
pass-by-reference is superior to pass-by-value.

Our advice regarding DvT is to ensure a data transmission
architecture is put in place that supports secure stamp coupling
for PBC-to-PBC communication.

C. PBC Types

According to the CAF, PBCs are of a specific type. Gartner
is unclear whether they mean there should be a one-to-one
mapping between a PBC and a PBC type, or whether they
suggest that a PBC should be built with sub-modules of a
specific type. Those sub-modules are no longer PBCs, they
do not address a business capability but rather a generic task
or thing.

NS introduces the notion of elements, the elementary build-
ing blocks an application is made off. Whether an application
represents the implementation of a single business capability
or a collection of business capabilities working together, it will
be built using elements. Elements define the basic operations
performed by an IT system: represent data, perform tasks on
data, execute tasks in a specified order (orchestration/chore-
ography), connect to other elements, and trigger the actions
an element is supposed to perform. In our opinion, Gartner
makes the PBC approach overly complicated by introducing
PBC types. It suffices to say that PBC should be made out of
smaller modules of a specific type/pattern/element. As those
types/patterns/elements are generic by nature, they no longer
represent a particular business capability.

Our advice is to drop the PBC Types and to see PBCs
as a composition of generic data, action, flow, trigger and
connection patterns/elements. Those patterns/elements should
be highly standardised and also be compliant with the NS
principles. We will return to this point in the section on PBC
platform governance.

In our example, what type of PBC should we assign to
our invoice PBC? The PBC will contain data and the actions
taken on it. If the PBC then Data PBC Type or an Application
Action PBC Type? And if it is the combination of the two,
does that then mean that the invoice PBC is a combination of



121International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an invoice Data PBC type and a calculate invoice Application
Action PBC Type, etc.? These questions move us away from
what is essential (the functionality of the PBC). They can be
shortcut by treating all PBC as composed of data, action, flow,
trigger, and connection patterns/elements.

D. PBC and CCCCs

In the previous section, we considered PBCs as composed
of elementary patterns implemented in technology. To protect
against technological evolution, that cuts across all imple-
mentations, we need to ensure that technological concerns or
change drivers are adequately separated from the core elemen-
tary functionality. Elementary patterns need to be carefully
designed for this. If not, technological changes will impact all
patterns, PBCs and PBC instantiations.

There can also be CCC at the PBC level. A classic example
is security. Our invoicing PBC needs, by design, to include
security. Only those authorized to use the PBC should be
allowed to do so. All PBCs must incorporate this concern by
design. This will result in each PBC having some elementary
patterns associated with it to take care of authorization. And
those elementary patterns must have the technological aspect
of authorization properly separated.

Our advice is to look for CCC at the PBC level, and security
must be there by default. If not, the security-by-design or zero-
trust principle erodes from the top.

E. PBC Platform Governance

According to Gartner’s CAF, the PBC platform should
handle discovery, composition (via low-code/no-code), and
deployment of PBC. We will handle them one by one.

1) Discovery: In previous sections, we motivated the usage
of anthropomorphic naming for the PBCs. Next to naming the
PBCs, there should also be a hierarchy of PBCs that allow
the creation of a name space. From public and privately avail-
able business capability frameworks, we know that business
capabilities are organized in a hierarchy. We advise using an
anthropomorphic hierarchical name space to classify business
capabilities and PBCs.

Returning to our invoicing example. Within the company
of one of the authors, invoicing is present across multiple
business capabilities - see Figure 4. There are three invoicing
business capabilities: one for certificates, one for commodities
and one for services. Note that those BCs aggregate billing and
invoicing. Although related, they differ in the actions required.
If we follow our own recommendations, billing and invoicing
should be split at the second level of the Sales Management
BC into ”Billing Management” and ”Invoice Management”,
and level three should be split accordingly (see Figure 5).
We could now have three PBCs: one for certificate invoicing,
one for commodity invoicing, and one for service invoicing,
or we could assign to those three BCs, only one PBC, being
our invoicing PBC. From a Business Capabilities Framework
perspective, it makes sense to state that we bill for three
reasons clearly. Still, at the implementation level, a single set
of tasks must be performed. This leads us to the advice that

the Business Capabilities Framework must be part of the PBC
platform and should serve as a path toward a PBC, but not as
the list of PBCs themselves. Some BCs might not even require
a PBC.

Fig. 4. Business Capabilities Framework - invoicing

Fig. 5. Linking the Business Capabilities Framework to PBCs

2) Composition: To facilitate the reconstruction of PBCs
in Composed Applications (CA), Gartners proposes a low-
code/no-code platform. Although low-code/No-code is in line
with McIllroys dream, we warn for the vendor/technology
lock-in they represent. Migrating from one low-no-code plat-
form to another will be a combinatorial effect. As those
platforms are not open source, it isn’t easy to assess whether
they respect NS principles. We advise looking for and select-
ing low-code/no-code platform constructs that allow breaking
PBCs into elements (data, task, trigger, flow, and connect),
make PBCs with them, combine the PBCs into CAs and
governing the platform accordingly. The platform may offer
you appealing packaged features, but these may introduce CEs.
Technological features often lure you into using them. It’s not
because something is technically possible or the technology
is available to do so that one must do it. We are even
more in favour of working according to the NS development



122International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fi
g.

6.
Pr

op
os

ed
PB

C
pl

at
fo

rm
.



123International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III
RECOMMENDATIONS TO IMPROVE GARTNER’S CAF

Area of Improvement Recommendation Summary Key Actions / Guidance
Defining Business Capabilities Use a combination of bottom-up (top tasks)

and top-down (strategic maps, frameworks) ap-
proaches. Employ anthropomorphic naming for
clarity and adoption.

• Identify essential tasks (“top tasks”) as candidate
business capabilities.

• Validate/augment with strategic maps or industry
frameworks.

• Use DEMO to identify essential transactions and
capabilities.

• Use names that reflect real-world business language
for better understanding.

Granularity of the Modular
PBCs

Use NS evolvability theorems
• Apply SoC, SoS, AvT and Dvt

Separation of Convern (SoC) Ensure each Packaged Business Capability
(PBC) encapsulates only one concern (change
driver). Split PBCs as needed to avoid combina-
torial effects.

• Split PBCs until each addresses a single concern.
• Avoid variations within a PBC; create new PBCs

for different usages.
• Treat PBCs as atomic transactions when possible.

Separation of State (5oS) Each PBC should maintain and expose its own
state. Fine-grained PBCs enable better state
tracking and rollback.

• Design PBCs to track and expose relevant states.
• Prefer fine-grained PBCs for detailed state man-

agement.
• Clarify “state” meaning to avoid confusion between

business and technical contexts.
Action Version Transparency
(AvT)

Internal changes to a PBC should not affect its
interface. Use clear versioning strategies. • Maintain stable APIs for PBCs.

• Distinguish between internal and external version-
ing.

• Create new PBCs (with new names) for breaking
changes, enabling gradual migration.

Data Version Transparency
(DvT)

Data transmission between PBCs should favor
“stamp coupling” (passing whole objects) for
evolvability.

• Implement secure, object-based data exchange
(e.g., JSON/XML).

• Ensure security at a fine-grained level.
• Prefer pass-by-reference over pass-by-value for

evolvability.
PBC Types Drop rigid PBC types; instead, compose PBCs

from standardized, generic elements (data, ac-
tion, flow, trigger, connector) compliant with NS
principles.

• Build PBCs from NS-compliant elements.
• Avoid unnecessary complexity from PBC type dis-

tinctions.
• Standardize patterns/elements for reusability.

CCCs Identify and modularize CCCs (e.g., security)
at both the PBC and element level. Ensure
technological concerns are separated from core
functionality.

• Integrate CCCs (like security) by design in every
PBC.

• Separate technological aspects from business logic.
• Use elementary patterns for CCCs.

PBC Platform Governance Enhance platform features for discovery, compo-
sition, deployment, and data integration. Apply
NS principles to platform design.

• Use hierarchical, anthropomorphic naming for
PBCs.

• Link business capability frameworks to PBCs.
• Select low-code/no-code platforms that support NS

elements.
• Apply NS principles to deployment and data inte-

gration.
• Avoid vendor lock-in and ensure platform evolv-

ability.

methodology. The basis for this are the NS elements, that
are made up of code templates that can be instantiated into
boilerplate code via expansion. To decide what data, task, flow,
trigger, and connection elements you require, we recommend
starting by creating a data model tailored to the PBC building
blocks you need. This does not differ from Evans’ advice
in Domain-Driven Design (DDD) [32]: start by creating a
bounded context. Next to the data, the task that will work on
that data and the orchestration of those tasks. For this, state-
machine models are recommended. The boilerplate code can
now be customised, and those customisations can be separated

from the boilerplate using harvesting, allowing them to be
reinjected when the templates are updated—the rejuvenation
process. The resulting library of PBCs is to be linked to the
discovery features — the list of BCs and their corresponding
PBCs. To create CAs, a set of PBCs and elements that facilitate
integration and orchestration will need to be expanded and
packaged. Again, a data model and a state machine can be
used to represent the CA’s logic. We propose a CA-expander
that integrates, orchestrates (flows), and connects to PBCs.

3) Deployment: Thanks to build frameworks, the cloud,
and Infrastructure as Code, deployment has become a less



124International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

painful process than in the past. The application of deployment
pipelines and the organisation of teams according to the
DevOps philosophy [33] is now a standard in the organisation
and implementation of IT Operations. We want to point out
that, of course, building your own deployment infrastructure
or using a platform for it is, in itself, a vital change driver, and
again, NS principles should be applied to facilitate deployment
evolvability. We refer to [34] for more information on the
subject.

4) Data Fabric: Regarding the Data Fabric component of
the CAF, we give the same advice as for the PBC Types:
ignore it. When the PBC needs data it can tap into that
data via data elements. The data elements ensure proper
encapsulation. Any data-providing platform, be it a simple DB
or an advanced/abstract data Fabric/Lake/Lakehouse (whatever
term is used), should respect the NS principles so that changes
do not ripple through to the PBCs. If this cannot be guaranteed
by the data provided, the data should not be integrated in the
PBC, as they will hinder evolvability

F. Overview

Table III provides an overview of the recommendations we
have put forward in the previous sections. Figure 6 gives a
graphical overview of our proposed enhanced CAF. On the left
side of Figure 6 you will notice the ”Development Platform”. It
contains the different ”Element Templates” (data, task, flow,
trigger, connection, and other template types can be added)
and the ”Element Definitions for a PBC”, containing the
parameterization of the element templates. The combination of
both goes into the ”Element Expander” and results in the code
structures (the boilerplate) code of a PBC. These code struc-
tures are customized and all customizations are harvested and
put in the ”Customizations” repository. During rejuventation
(updates of the ”Element templates”), the ”Element Expander”
will inject the customizations in the boilerplate code. The
result is the PBC code. CAs are a combination of PBCs and
some glue or custom coding. This is shown at the bottom
left, where the ”CA Expander” combines extra elements and
existing PBC code into CAs. Again, all customizations are
harvested, and reinjection can happen during rejuvenation. To
the right, you will note the ”Discovery Platform”, that will link
the available PBCs to the BC framework. At the bottom right,
the ”Deployment Platform” is shown. It contains the tooling
to package the PBCs and CAs code into deployable units that
end up in the cloud, where they can interact with all other
applications (PBCs, CAs, and legacy).

VIII. CONCLUSION

Application re-use is not just a long-forgotten dream of
McIllroy, but a focus of many companies. The ability to reuse
and recombine applications to support the changing business
conditions is an expectation many CEOs have of their CIOs.
In recent years, the focus on functional reuse has been pushed
aside by technology-focused integration patterns. Gartner puts
functional re-use back on the map with its CAF, where PBCs
are the essential building blocks of application landscapes. By

using NS as an instrument of design and evaluation method
for evolvable systems, we pointed out operationalization issues
one might face when trying to implement the CAF, or one
might use it to evaluate providers of solutions based on it
critically. A focus group was used to validate and balance our
findings. In this extended edition of our original paper, we
convert our criticism into recommendations and improvements
to the CAF, combining knowledge of NS and some heuristics,
to arrive at a proven CAF for evolvable PBCs.

ACKNOWLEDGMENT

The authors thank Rudy Claes of Innocom for introducing
them to Gartner’s Composable Architecture Framework and
conducting a brainstorming session about the framework and
its evolvability. We also thank the Master in Enterprise IT Ar-
chitecture (MEITA) students at Antwerp Management School
(AMS - cohort 2024 and 2025) for their contribution as focus
group.

REFERENCES

[1] G. Haerens and H. Mannaert, ”On the operationalization of composable
architecture by means of NS theory,” In PATTERNS 2025: The Seven-
teenth International Conference on Pervasive Patterns and Applications,
pp 23-30, 2025.

[2] G. Coulouris, J. Dollimore, and T. Kindberg, ”Distributed Systems:
Concepts and Design Edition 3,” ISBN:978-0-201-61918-8, 2001.

[3] J. Sun and Y. Natis. ”Use Gartner’s Reference Model to Deliver
Intelligent Composable Business Applications,” Gartner, ID G00720701,
2020 - refresh 2022.

[4] H. Mannaert, P. De Bruyn, and J. Verelst, “On the interconnection of
cross-cutting concerns within hierarchical modular architectures,” IEEE
Transactions on Engineering Management, Vol. 69, pp. 3276-3291 2020.

[5] Y. Natis and G. Alvarez, ”How to Implement Composable Technology
with PBCs,” Gartner, ID G00751018, 2021.

[6] H. Mannaert, J. Verelst, and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design,” ISBN 978-90-77160-09-1, Koppa, 2016.

[7] H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability,” Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011.

[8] P. Huysmans, J. Verelst, H. Mannaert, and A. Oost, ”Integrating infor-
mation systems using normalized systems theory: four case studies,” In
IEEE 17th Conference on Business Informatics, Volume 1, pp. 173-180,
2015.

[9] A.W. Scheer, ”The Composable Enterprise: Agile, Flexible, Innovative:
A Gamechanger for Organisations, Digitisation and Business Software,”
ISBN:978-3-658-42482-4, Springer, 2024.

[10] I. Ivas, ”Implementation of Composable Enterprise in an Evolutionary
Way through Holistic Business-IT Delivery of Business Initiatives,”
In Proceedings of the 26th International Conference on Enterprise
Information Systems, Volume 1, ISBN: 978-989-758-692-7, pp. 397-
408, 2024.

[11] MACH Alliance, [Online], Available: h t tps : / /macha l l i ance .org,
[retrieved: November, 2025].

[12] Gartner DXP Magic Quadrant, Available:https://www.gartner.com/
reviews/market/digital- experience-platforms, [Online], [retrieved:
November, 2025].

[13] MACH Alliance, [Online], Available: https://machalliance.org/insights-
hub/composable-comes-of-age-in-the-gartner-dxp-magic-quadrant,
[retrieved: November, 2025].

[14] ESICONF2025, [Online], Available: https://www.peernetwork.it/en/esic
onf2025-agenda/, [retrieved: November, 2025].

[15] Global Logic Practitioner Perspective, Available: https://www.globallo
gic.com/wp-content/uploads/2023/04/Composable-Enterprise-PBC.pdf,
[Online], [retrieved: November, 2025].



125International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] Forbes, Available: https://www.forbes.com/councils/forbestechcoun
cil/2025/07/22/20-hidden-benefits-of-composable-architecture- in-
enterprise-tech/, [Online], [retrieved: November, 2025].

[17] Contentstack, Available: https://www.contentstack.com/blog/compos
able/why-your-business-needs-a-packaged-business-capability-now,
[Online], [retrieved: November, 2025].

[18] Value Innovation Labs, Available: https://valueinnovationlabs.com/blog
/digital-transformation/why-composable-architecture-will-lead-digital-
transformation-in-2025/, [Online], [retrieved: November, 2025].

[19] HCLSoftware, Available: https://www.hcl-software.com/blog/comm
erce/embracing-packaged-business-capabilities-pbcs-a- superior-
middle-alternative-to-microservices-vs-monoliths, [Online], [retrieved:
November, 2025].

[20] J. Barney, ”Firm resources and sustained competitive advantage,” In
Journal of Management, Volume 17, Issue 1, pp 99-120, 1991.

[21] T. Offerman, C.J. Stettina, and A. Plaat, ”Business capabilities: A
systematic literature review and a research agenda,” In International
Conference on Engineering, Technology and Innovation (ICE/ITMC),
pp. 383-393, 2017.

[22] J.L.G Dietz and H.B.F. Mulder, ”Enterprise ontology: A human-centric
approach to understanding the essence of organisation”, ISBN:978-3-
031-53361-7, Heidelberg: Springer, 2024.

[23] BIAN, [Online], Available: https://bian.org, [retrieved: November, 2025].
[24] NBility, [Online], Available: https://www.edsn.nl/nbility- model,

[retrieved: November, 2025].
[25] LeadingPractise, [Online], Available: https://www.leadingpractice.com,

[retrieved: November, 2025].
[26] SAFe Framework, [Online], Available: www.scaledagileframework.com,

[retrieved: November, 2025].
[27] Object Management Group (OMG), [Online], Available: https://www.

objectmanagementgroup.org/, [retrieved: November, 2025].
[28] The Open Group Architecture Framework (TOGAF), [Online], Avail-

able: https://www.opengroup.org/togaf, [retrieved: November, 2025].
[29] BIZBOK, [Online], Available: https://www.businessarchitectureguild.or

g, [retrieved: November, 2025].
[30] G. McGovern, ”Top Tasks – A how-to guide”, ISBN: 978-1-9164446-

1-4, Silver Beach, 2018.
[31] R.C. Martin, ”Clean architecture: a craftsman’s guide to software

structure and design”, ISBN-13: 978-0-13-449416-6, Prentice Hall Press,
2017.

[32] E. Evans, ”Domain-driven design: tackling complexity in the heart of
software”, ISBN-10: 0321125215, Addison-Wesley Professional, 2004.

[33] K. Gene, et al, ”The DevOps handbook: How to create world-class
agility, reliability, & security in technology organizations”, ISBN: 978-
1942788003, IT Revolution, 2016

[34] H. Mannaert, T. Van Waes, and F. Hannes, ”Toward a rejuvenation fac-
tory for software landscapes”, Patterns 2024: The Sixteenth International
Conference on Pervasive Patterns and Applications, April 14-18, 2024,
Venice, Italy, 2024.


