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Abstract — Neural network architectures currently are only
able to employ music generation tasks to similar levels of
human composers when the music is at a basic compositional
standard. Research has shown that various neural network
models struggle with the complex motifs and harmonic
structures of Western Classical Music. This study aims to
determine if various data preprocessing and augmentation
techniques can train a neural network model to generate pieces
of piano music to a similar level of musicality and emotion as
Romantic Period composer Johannes Brahms. Quantitative
experimentation involving Music Information Retrieval was
conducted as well as a quantitative survey with respondents
consisting of only professional musicians, composers and
conductors. Analysis of the results from the quantitative
experiment demonstrated that the Transformer models using
Self-Attention, Relative Self-Attention and Local Windowed
Attention generated statistically indistinguishable results to the
original piano works of Brahms in terms of duration
distribution, pitch class distribution, rhythmic variation and
pulse clarity. Analysis of the quantitative survey discovered
that participants struggled to distinguish between the pieces
generated by Brahms and the models, with two generated
pieces being at majority mistaken as one of Brahms’ own
works. The results indicate that various data preprocessing
and augmentation methods do have an impact on model
accuracy and for numerous musical characteristics, can be
statistically indistinguishable to Brahms through quantitative
experiment and survey. Further research is needed to identify
other techniques to improve the musical characteristics of
entropy and global energy in the generated pieces so that they
are at a statistically comparable level to Brahms. The paper
discovers that transformer models using varying attention
mechanisms were able to generate longer sequences of music
up to 2 minutes long which contained the composite motifs and
harmonic structures of romantic period piano music.
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1. INTRODUCTION

The intention of this project is to generate piano music in
the style of classical music composer Johannes Brahms by
training a Recurrent Neural Network (RNN), a Long Short-
Term Memory (LSTM) based RNN, various Transformer
models with different attention mechanisms, and a Perceiver
AR model [1]. These models will be trained with a pre-
processed and augmented dataset containing MIDI files of
Brahms’ piano works. To deem the success of the project,
the best musical pieces generated from the neural network
models must show statistical indistinguishability from the
Brahms corpus in various musical variables using Music
Information Retrieval (MIR). Along with this, the pieces
must also be mistaken by professional musicians,
composers, and conductors as one of Brahms’ own works
through a quantitative survey. Although there have been
many examples of Al models generating music in the style
of particular composers, no models have been created to
generate the work of Brahms. The lack of a detailed
computational analysis of Brahms shows a gap in the study
of romantic period composers, which Brahms was a key
figure of [2]. According to studies taken, computer-
generated music has traditionally only sounded human-like
when short excerpts were created and struggled with the
complex motifs and harmonic cadences of romantic period
piano music. This could be down to them being poor at
handling higher-level musical structures due to the models
only learning how to play the next note according to the
previous. Zheng et al. (2022) stated that their model was
limited due to it learning how to play the next note
according to the previous ones however it did not have any
knowledge on the structure of music [3]. In their paper,
Child et al. developed a sparse transformer and stated that it
was able to extract complex patterns from sequences up to
30 times longer than possible previously [4]. Likewise,
Hawthrone et al. developed a Perceiver AR model which
had the ability to efferently handle longer sequences with an
improved memory efficiency [5]. After listening to the
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examples from the papers, the generated pieces still
consisted of basic harmonic and rhythmic structures and
struggled with the complex motifs and harmonic cadences
of romantic period piano music. The most common
quantitative experiment was surveys. It appears that simple
questions were asked to a small group of test subjects who
were mainly computer science students and participants who
had little to no music compositional knowledge. A more
realistic survey would involve professional musicians,
composers and conductors who specialise in the subject and
would give a critical and educated opinion on the generated
pieces compared to the composers that they have great
knowledge about.

The importance of the research problem not only
addresses Al’s ability to generate music, but also highlights
potential significance on how music could be composed in
the future, particularly for those with no previous musical
knowledge [6]. The research assumes that neural network
models can already be trained to learn the general
characteristics and patterns of various musical composers.
To help with producing optimal results, the selected MIDI
files for the dataset were exact replications of Brahms’
piano music without errors and inconsistencies.

Based on the issues raised above, this study focused on
understanding what configurations of the neural network
models performed best when tasked with producing music
in the style of Brahms. Therefore, the research question is:

To what extent can the accuracy of various Neural
Network Models, trained with Long Short-Term Memory
and numerous Attention mechanisms, be significantly
improved by augmenting MIDI files containing the
compositional works of Johannes Brahms with an
augmentation pipeline to generate pieces of music that are
mistaken by professional musicians, composers and
conductors as one of Brahms’ own works?

Due to conclusions from studies taken and the general
state of knowledge at the time of beginning the project, the
null hypothesis for this research project is;

HO: Neural network models cannot generate piano works
to the same level of musicality and emotion as Brahms. Due
to this, generated pieces will not be statistically
indistinguishable through music information retrieval or
mistaken as a work of Brahms by professional musicians,
composers and conductors through a quantitative survey
using Likert Scales.

Through the utilisation of an augmentation pipeline to
expand the MIDI dataset containing the compositional piano
works of Johannes Brahms, more musical variations could
be created including transposition, rhythmical and note
durations. In addition to this, various preprocessing
techniques including track splitting, quantisation and
normalisation could help make the MIDI files more readable
for the models. This provides an alternate hypothesis;

HI: If an augmentation pipeline is utilised to expand a
MIDI dataset of pre-processed files containing the piano
works of Johannes Brahms, then various neural network
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models trained with Long Short-Term Memory and
numerous Attention mechanisms could generate pieces of
music that is statistically indistinguishable from Brahms
and could be mistaken as one of Brahms’ own piano works
by professional musicians, composers and conductors
through a quantitative survey using Likert Scales and
various Independent-Samples T-Tests and Hotelling’s T*
Tests being implemented to determine whether the p-value is
> 0.05 to support the conclusion of statistical
indistinguishability

This paper contains a total of four sections. Section II
describes the experiment design, methodology and how the
dataset was prepared and pre-processed. Along with this, the
neural network models obtained for the project and MIR
functions will be explained as well as ethical considerations.
Section III analyses and evaluates the results of the
quantitative experiment and survey to determine if the
experiments provide evidence that the null hypothesis is
incorrect. Section IV summarises what has been learnt and
proposes recommendations and adjustments for future
studies.

II.  DESIGN AND METHODOLOGY

The research project was carried out through three stages.
Firstly, data was collected, pre-processed, and augmented.
The dataset contained 67 MIDI files of Johannes Brahms’
piano works and was obtained for offline manipulation from
Classical Archives and MIDIworld. MIDI (Musical
Instrument Digital Interface) is seen as one of the most
important tools for both musicians and producers as it
represents a method to store and transmit musical data. They
contain Nofe-on and Note-off messages to indicate the
beginning and end of each note and delivers information
about various musical characteristics in musical notes,
including pitch, duration and dynamics.

An augmentation pipeline was employed to create
variations in melodies, tempo, rhythm, and transpositions.
This was followed by obtaining and training various neural
network models with the augmented dataset. The models
were analysed for training accuracy and loss to determine
the best configurations. After training, the best generated
examples from each model were analysed through various
MIR functions using MIDIToolbox and MIRToolbox to
determine the best performing models [7][8]. Finally, the
best models generated pieces of music that were evaluated
against the pieces of Brahms’ repertoire for statistical
equivalence. Along with this, the same generated pieces
were used in a quantitative listener survey to test
professional musicians, composers and conductors on
whether they could differentiate between the generated
pieces against the Brahms original. All quantitative
experiments involved evaluation to test the research
hypothesis through Independent-Samples T-Tests and
Hotelling’s T? Tests.
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A. Preparation and Preprocessing of Dataset

The preparation and preprocessing of the dataset
involved numerous steps to optimise the potential of
training the neural network models. Track splitting involved
dividing the MIDI tracks into smaller segments of 30
second clips to make the tracks more digestible for the
models in training [9]. The conversion of multi-track MIDI
files into a single monophonic track allowed for further
simplicity in the files. Normalisation was performed to
ensure that note velocities of the files were standard to
provide consistent values for training and evaluation tasks.
Finally, all the MIDI files were quantized to semiquavers to
adjust the timings of notes and align them with the correct
timing to ensure consistency in rhythm and therefore
making it easier for the models to digest them [10]. Figure 1
displays an example of Brahms’ Variations on a Hungarian
Song in D major, Op.21, No. 1l being quantised to
semiquavers, also known as sixteenth notes.

Depending on the model being used, there were several
packages utilised to extract information from MIDI files:

e Pyfluidsynth: Python package that enables audio
playback of MIDI files in a Google Colab setting

[11].
e pretty midi: Package that contains various
functions and classes for manipulating MIDI data
so that it could be easily modified for information

extraction. Figure 2 shows an example of
pretty midi extracting variables from each note
[12].

[l
Il

Figure 1. Example of Sixteenth note Quantisation
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for i, note in enumerate(instrument.notes[:18]):
note_name = pretty_midi.note_number_to_name(note.pitch)
duration = note.end - note.start
print(f°{i}: pitch={note.pitch}, note_name={note_name}, "
f' duration={duration:.4f}")

: pitch=79,
: pitch=67,
: pitch=67,
: pitch=79,
: pitch=67,
: pitch=79,
: pitch=64,
: pitch=67,
: pitch=79,
: pitch=72,

[T B . ST RSV Ry, 1

note_name=G5,
note_name=G4,
note_name=G4,
note_name=G5,
note_name=G4,
note_name=G5,
note_name=E4,
note_name=64,
note_name=G5,
note_name=C5,

duration=8.
duration=8.
duration=8.
duration=8.
duration=8.
duration=8.
duration=8.
duration=0.
duration=8.
duration=0.

2487
2708
1589
lece
2201
3346
8a77
2043
3058
2885

Figure 2. Example of pretty_midi extracting variables from each note

e NoteSequences: Numerical representations of
music notes including pitch number representation,
along with note start and end time [13].

An augmentation pipeline was utilised to create
variations in melodies, tempo, rhythm and transpositions.
Several techniques were used to increase the dataset size.
Time-stretching was applied to make each MIDI file 5%
faster or slower. Another method was to transpose each of
the MIDI files so that the pitches would be raised or lowered
by a third [9]. Doing these increased the dataset by 500%
with a total of 445 tracks. The augmented dataset was
divided into training and testing sets which were defined at
an 90%/10% split with repeated Montecarlo sampling (100
times). This same split was used for all the models to
conduct a fair experiment. In comparison with prior studies,
data preparation and preprocessing was influenced by
previous research, which was collected, adapted and
integrated into this paper.

B. Neural Network Models

Numerous Neural Network Architectures were obtained
for offline manipulation and trained with the augmented
Brahms MIDI dataset. A Recurrent Neural Network was
acquired from TensorFlow [12]. A RNN was described by
IBM as “a type of artificial neural network which used
sequential data or time series data” [14]. Sequential data
was utilised to predict the next output based off previous
elements in the sequence. For this model, the training
dataset was created through extraction of notes from the
MIDI files with three values being taken from each note;
pitch, step and duration. The model was trained on batches
of note sequences with each example consisting of a
sequence of notes as the input tokens and the subsequent
notes served as the target output. This meant that the model
was trained to predict the next note in the sequence
containing 100 notes as the input, a common practice used
in text classification. Similar to the training dataset, the
model contained pitch, step and duration outputs. For the
step and duration outputs, a loss function was constructed
based on mean squared error equation to encourage the
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model to output non-negative values. Equation (1) shows
the formula were y; represents the n token value and ¥
being the predicted value from the model. n represented the
number of observations [15].

2(yi — 37:')2 (1)
n

MSE =

Evaluating the model showed that pitch loss was much
greater that duration loss and step loss. This result
indicated that predicting the next note had proven to be a
more difficult task when compared to the other two. The
model was trained with 22 epochs and testing recorded a
training loss of 0.550 and accuracy of 0.628. RNNs suffer
from vanishing gradient problem. With the neural network
using the gradient decent algorithm to update the weight, the
gradients therefore decreased in growth the further down the
layers the network progressed.

A solution to this problem is the use of LSTM which
utilises gating mechanisms to control the movement of
information and gradients to allow for the network to learn
and maintain information over longer sequences. [16] An
LSTM-based RNN was obtained from Huang et al. [17].
The RNN utilised event sequence encoding with the
following representing the event types:

e NOTE_ON: The start of a musical note
e NOTE_OFF: The end of a musical note
e TIME_SHIFT: Change of time (bpm)

e VELOCITY: Change of attack on notes

The model supported expressive timing with time shift
events allowing it to control the tempo at increments
between 10ms and 1 second. Velocity events allowed for a
dynamic to be set at the current note_on event which helped
build more natural tension and timing. For the model to be
able to read the Brahms MIDI dataset, they were converted
to NoteSequences, a numerical representation of musical
notes including pitch number representation, along with the
note start and end times [13]. The model was trained for a
total of 10002 checkpoints accumulating to 17 hours of
training. Although LSTM provides a solution to vanishing
gradient problem. They still suffer from gradient explosion
which occurs when gradients become too large, causing a
model to become unstable and unable to learn from training
data. LSTMs struggle to memorise earlier information when
very long sequences were being processed due to its limited
context window. As the forget gate became more prominent,
older information was replaced by new data.

Various Transformer models containing different
attention mechanisms were obtained from Project Los
Angeles [18]. Proposed by Google researchers Vaswani et
al., transformer models do not rely on recurring processing
of data. Instead, they operate on an attention mechanism
[19]. Attention allows for neural networks to concentrate on
particular parts of the input. Transformer models contain
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two main components, an encoder, which produces a
sequence of hidden states from an input, and a decoder,
which takes the hidden states from the encoder and
generates an output. The attention mechanism enables the
decoder to access the encoder’s hidden states meaning that
the decoder can learn long-range dependencies in the input.
This feature allows for the models to effectively handle
larger amounts of data [20]. When compared to Simon &
Oore’s (2017) Performance RNN model, Huang et al.
(2018) stated that while the LSTM-based model was able to
generate credible music for very short samples, there was an
apparent lack of long-term structure. However, their model
Music Transformer could generate music with a consistent
style that created multiple phrases out of a single motif. The
attention mechanisms obtained for the transformer models
tested were:

o Self-Attention — Processes inputs in the same
sequence, enabling the model to capture
dependencies within the input [21].

e Relative Attention — The relative position of
tokens is considered based on similarity of other
tokens in the sequence [22].

e Local Windowed Attention — Restricts attention
to a fixed window of tokens, enabling the model to
focus on nearby information [23].

e Relative Self-Attention — Combination of Self and
Relative attention allowing the model to focus on
relevant information based on the positional
relationships of tokens [17].

e Sparse Attention — Attends to a subset of tokens
instead of the entire sequence to improve efficiency
while retaining information [24].

Traditional transformers with self-attention grow
quadratically with the sequence length. This form of scaling
could restrict the model’s ability to work with longer
sequences due to it requiring lots of memory and
computational power. Sparse attention addresses this issue
with the introduction of sparse factorisations of the attention
matrix and therefore attending to a reduced subset of
elements strategically chosen by the model. This enables the
mechanism to still capture necessary information whilst the
model performance is greatly increased [24]. Equation (2)
displays the reformulation of the self-attention mechanism
for sparse attention.

O(n?)—— O(ny/n) )

To train the transformer models, the MIDI files had to be
processed with the TMIDIX MIDI processor provided by
Tegridy code which converted the MIDI files to a score
representation so that it could be understood by the model
[25].
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Pieces were generated in the style of OpenAl’s MuseNet
workflow where a premier seed MIDI file would be input
and treated as the beginning of the generated piece. Doing
so gave information to the model of the tempo, style and
dynamics of the piece. A continuation generator was then
implemented to append a chosen number of tokens and the
multiple generations were batched to append the best
results. This provided a degree of outcomes and the model
was tested with variations on temperature, generation tokens
and memory tokens. According to Huang & Yang (2020),
amongst the great number of deep learning-based models
that had been proposed for automatic music composition,
the Transformer “stood out as the prominent approach for
generating expressive classical piano performance with a
coherent structure of up to one minute” [26].

A Perceiver Autoregressive (AR) model was also
obtained from Project Los Angeles. Seen as an improvement
to the Transformer model using latent array to distinguish
the size of inputs and outputs, allowed for the model to
efferently handle longer sequences with an improved
memory efficiency [27]. Perceiver AR expands from the
foundations of the original Perceiver Model with the
addition of autoregressive capabilities, which was the ability
to generate outputs sequentially based off previously
generated outputs. This, along with the use of cross-
attention to encode inputs into latent space, gave it the
ability to train up to 100,000 elements. Perceiver AR
contains 1024 latents and 24 self-attention layers. Due to
each new note being predicted based off the preceding full
sequence, the model can generate pieces of music
containing high levels of melodic, harmonic and rhythmic
consistency. The processing of MIDI files and generation of
music was done so in a similar style to that of the
transformer models.

C. Quantitative Experiment & Survey

A quantitative experiment was conducted to evaluate
and compare the generated pieces of music from each of the
models using Music Information Retrieval (MIR). MIR is
the extraction of significant audio features from music data
to be analysed through various algorithms and techniques.
Raw audio signals were extracted and analysed from
Waveform Audio Files (.wav) including pitch, harmony,
rhythm and timbre that acquired an expressive description
that is machine processible. MIR was used to test the neural
network model’s ability to replicate the musical
characteristics and motifs of Brahms’ piano works. Various
MIR variables were utilised to gather various quantitative
data from the models to test against not only each other, but
the original works of Brahms. These variables included:

e Entropy — The measure of uncertainty or
unpredictability

e Duration Distribution — The statistical analysis of
note durations as well as silence

e Pitch Class Distribution — The evaluation of
frequency of musical pitches
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e Mean Roughness — The measure of dissonance or
clashing sounds

e Global Energy — The total amount of energy held
within a waveform. Calculated using the Root
Mean Square (RMS) (3), each audio signal
sample’s amplitude x; was squared with the mean
of the square values being calculated to which the
square root of that mean is taken. N represented
the total number of samples in the signal [28].

e Normalised Pairwise Variability Index (nPVI) —
The analysis of variability between successive
durations to draw comparisons between rhythmic
structures in music. Equation (4) shows the
formula for nPVI, with d*representing the duration
of the interval k. m represented the number of
intervals. The use of the formula standardised the
difference between successive intervals in relation
to their average length [29].

e Pulsation Clarity — The strength of the rhythmic
pulse in a piece of music

RMS = V 1 Z:il x? 3)

N i

100 "M dy —disy
nPVI = = X ; 4, 7 d., @)
2

A quantitative survey was also conducted and contained a
total of 10 questions all containing the question “Rate the
likelihood that this piece was composed by Johannes
Brahms as opposed to being generated by AI” In random
order, 5 pieces contained the works of Brahms and 5 were
generated by the models. Answers consisted of a Likert
Scale of 5 values ranging from Definitely generated by Al to
Definitely generated by Brahms. Members of the Irish
Defence Forces School of Music, RTE Concert Orchestra
and National Symphony Orchestra were recruited for the
survey to provide professional expertise in the subject.
Participants were selected based on their extensive
experience in classical music, including familiarity with
Brahms’ works, having performed his pieces in the past.

Using IBM’s SPSS software, quantitative values from the
MIR functions MIRToolbox and MIDIToolbox were tested
to obtain p-values. Various Independent-Samples T-Tests
and Hotelling’s T? tests were implemented to evaluate
musical variables to determine if there was statistical
indistinguishability between Brahms’ piano works and the
generated pieces from the Al models.
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D. Ethical Considerations

Several ethical considerations were adhered to in order to
correctly conduct research including copyright issues and
collection of data from survey participants A total of 67
pieces of music were obtained for offline manipulation for
the MIDI dataset. According to German Federal Law
Gazette, copyright protection for musical and artistic works
expired 70 years after the death of the creator. With Brahms
passing away in 1897, his compositions therefore resided in
the public domain. The use of MIDI files also prevented any
issues with performers rights as recordings of Brahms’
works were not being used. All the neural network models
obtained for testing were open-source and ran under the
Apache 2.0 License. MIR tasks were performed using the
MATLAB functions MIRToolbox and MIDIToolbox. To
utilise the tools, MATLAB had to be downloaded free of
charge under the GNU General Public License. Ethical
considerations were vital when collecting data from
personnel for the quantitative survey. Participation for the
survey was voluntary and those who chose to partake were
informed of the purpose of the study. No personal
information was required from participants and the
confidentiality of participants was guaranteed from the
designer of the survey. The results of the survey were not
tampered with and therefore were accurate.

III. EVALUATION

Overfitting issues were observed during training, with the
LSTM and Perceiver AR models initially replicating the
training material excessively instead of generating unique
motifs. To mitigate this, the dataset was further augmented
by transposing musical phrases and altering rhythms
through quantisation to introduce additional variations in
tempo and phrasing. Experimenting with different
temperature values for each model allowed for control over
the balance between simplicity and randomisation. With
lower temperatures producing more basic outputs that
resembled the training data, while higher temperatures
encouraged greater diversity but could lead to compositions
with less structure. Table 1 shows the model performance
metrics stating that the transformer model with relative self-
attention scored the best training loss and accuracy with
scores of 0.015 and 0.995 respectively. The recurrent neural
network scored worst in terms of training accuracy with a
score of 0.628.

Through quantitative experimentation and a survey, the
neural network models utilised for the project were
evaluated extensively in a numerical form and through
professional human judgement in order to confirm or refute
the research hypothesis that neural network models could
generate pieces of music with statistically indistinguishable
musical characteristics and emotion as Brahms. To conduct
a fair experiment, each model had to generate a two-minute-
long piece which contained 300 prime tokens (30 seconds)
from the beginning of six of Brahms’ piano works. These
generated pieces were then compared with the first two
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TABLE 1. TRAINING LOSS AND ACCURACY SCORES

Model Training Loss Training Accuracy
Recurrent Neural Network 0.550 0.628
RNN with Long Short-Term Memory 0.154 0.983
Transformer w/ Self-Attention 0.737 0.939
Transformer w/ Relative Attention 0.447 0.985
Transformer w/ Relative Self-Attention 0.015 0.995
Transformer w/ Local Windowed Attention | 0.015 0.993
Sparse Transformer 0.612 0.803
Perceiver AR 0.825 0.774

minutes of the original Brahms piece to evaluate the
evolution of the generated pieces and determine their ability
to maintain the style and structure of Brahms. MIR
evaluation concluded that the Transformer models with self-
attention, local windowed attention and relative global
attention performed best in generating music most similar to
the Brahms original.

Several statistical tests were conducted on the best
performing models to obtain p-values to test the research
hypothesis. The variables Entropy, nPVI, Global Energy,
Mean Roughness and Pulsation Clarity were tested with an
Independent-Samples t-test and the wvariables Duration
Distribution and Pitch Class Distribution being tested with a
Hotelling’s T? test. Based on guidance from Leard Statistics,
the choice of test for each variable depended on whether the
variable required a joint test. The independent-samples t-test
was not suitable in those cases, whereas Hotelling’s T? test
was. Testing concluded that no statistically significant
difference was found with most of the variables therefore
supporting the alternative hypothesis that neural network
models can produce music that is indistinguishable from
Brahms. However, the variables Entropy and Global Energy
were deemed to contain statistical significance within them
stating that further work must be done to improve
complexity, uncertainty and energy to a similar level to
Brahms. Using MIRToolbox, the waveforms of the
generated pieces were evaluated.

The entropy of distributions was evaluated to measure
uncertainty or unpredictability in succeeding phrases. Table
2 shows how to models performed in terms of entropy from
using 300 prime tokens of Brahms’ 2 Rhapsodies No.l to
determine which model scored most like the original piece.
Results showed that the Transformer model with Local
Windowed Attention scored most similar with a score of
0.9214 compared to the original piece’s 0.9115.

The transformer model with Local Windowed Attention
was then further tested against the other Brahms original
tracks to obtain more Entropy values. Table 3 shows the
comparison of values with each piece.

With all this data, an independent-samples t-test was
performed to determine if there was statistical significance
between the Brahms and Transformer model’s generated
music. First, a Levene’s Test for Equality of Variances was
conducted to determine if equal variances should be
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TABLE 2. ENTROPY VALUES BETWEEN BRAHMS AND Al this category, the Transformer model with Self-Attention. In
MODELS this case, the Levene’s Test for Equality of Variances
Model Entropy | Difference calculated a p-value of 0.0002 meaning that equal variances
Bralims 2 Rhapsodies No. 1~ Original 9105 y should not be assumed. T.her.efo?e, the two-sided p-Va.1u§ of
0.035 was provided, indicating there was statistical
RNN 08802 0.0313 significance between Brahms and Al
LSTM 0.8899 0.0216 The difference in global energy is depicted in Figure 4
Transformer w/ Self-Attention 0.9247 0.0132 where the temporal evolution curve reveals a much greater
Transformer w/ Relative Attention 0.0007 0.0108 variance in the generated piece compared to Brahms’
Transformer w/ Local Windowed Attention | 0.9214 0.0099 Brahms
2 i 1B
Transformer w/ Relative Global Attention 0.9241 0.0126 o
Sparse Transformer 0.9310 0.0195
Perceiver Transformer 0.9241 0.0126 -

coefficent value

o
w

TABLE 3. ENTROPY VALUES BETWEEN BRAHMS AND
TRANSFORMER MODEL WITH LOCAL WINDOWED ATTENTION

o
N

o

Piece of Music Type of output Entropy

2 Rhapsodies No. 1 Brahms 0.9115 %o = T::'“Dwal e e Iir‘"’:_] 120 =
Transformer w/ Local Windowed Attention | 0.9214 Al

2 Rhapsodies No. 2 Brahms 0.9140 Brightness, 2rhapsodies01LOS.wav
Transformer w/ Local Windowed Attention | 0.9214 06

3 Intermezzi No.1 Brahms 0.9135

Transformer w/ Local Windowed Attention | 0.9168

4 Ballads No. 4 Brahms 0.9094

coefficient value

Transformer w/ Local Windowed Attention | 0.9167

7 Fantasias No. 7 Brahms 0.9135

Transformer w/ Local Windowed Attention | 0.9192

Hungarian Dances No. 2 | Brahms 0.9163 = o £y = 100 12t

Temporal location of events (in s.)

Transformer w/ Local Windowed Attention | 0.9133

Figure 3. Brightness Curve between Brahms and Al

assumed for the t-test. With a scored p-value of 0.401 being Brahms

much greater than 0.05, equal variances were assumed. aprot RS onerey hapsodusnIBRAS v
Since both groups containing Brahms’ original works and ss

generated pieces from the transformer models were being 3

evaluated, a two-sided p-value was observed. The
independent-samples t-test stated a value of 0.012 indicating
that there was statistical significance between the Brahms
and Al generated music groups. The audio waveforms for
the Brahms and Al generated pieces were analysed using \
MIRToolbox to discover the reason for the statistical
significance. An onset curve depicted a greater variance in Toomoe e e e
the detection of successive notes in the Al generated pieces —
therefore giving a higher entropy value.

Figure 3 shows the brightness curve of Brahms’ 2
Rhapsodies No. I alongside the generated piece from the
transformer model with local windowed attention. The
generated piece again displays a greater variance of
frequencies, resulting in a higher entropy score. The entropy
results show that the generated pieces provided too much
variation and complexity in succeeding phrases when
compared to the Brahms originals.

Statistical significance was also recorded in Global Energy
between the Brahms pieces and the best scoring model in

coefficient value
o

coefficient value

Figure 4. Global Energy Between Brahms and Al
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original work. While Brahms’ piece maintains a steady flow
of increase and decrease of tension, the generated piece has
much greater variations in timbre and harmonics
throughout. The evaluation of these waveforms determined
that the entropy and global energy values may have been
much higher than Brahms’ works due to the MuseNet
inspired workflow the transformer models undertook
causing the pieces to be generated in blocks and therefore
sound unnatural.

Although there was statistical significance recognised for
global energy, the independent-samples t-test did not
recognise any difference in sensory dissonance. With
Brahms being considered a more conservative composer
who involved little dissonance, or clashing sounds, in his
music, it was important to replicate this. Figure 5 shows that
the generated piece composed the same methods as Brahms
by answering to dissonance with a harmonic resolvement.
This can be seen with the sudden peaks in the coefficient
value being resolved to lower roughness values.

Figure 6 displays the Pitch Class Distribution in the form
of a box plot for Brahms’ 3 Intermezzi No.l and the
generated piece from the transformer model with local
windowed attention. With the piece being in the key of D#
Major, which has an enharmonic equivalent of C minor, in
order to stay within the key signature, the majority of the
notes must be from the following triads:

e D# Major — D#, G, A#
e CMinor-C,D#, G

Brahms

Roughness (Sethares), 2rhapsodies03BRAHMS wav

=)
®

coefficient value
o
o

o 20 40 60 80 100 120 140
Temporal location of events (in s.)

Al

R hu OS. wav

coefficient value
]
3

o 20 40 60 80 100 120
Temporal location of events (in s.)

Figure 5. Sensory Dissonance between Brahms and Al
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The pitch class distribution showed that both the original
Brahms piece and Al generated kept within these guidelines,
with particular emphasis being placed on the notes D# and
G, as they feature in the triads of both D# major and C
minor. Although the transformer model focused on the notes
within the two triads to ensure consistency in key signature,
it was apparent that the model was reluctant to incorporate
accidentals to further add colour to the piece. The use of
extended chords was a key factor of the romantic period in
which Brahms lived in and it was an era that bridged the gap
between classical and modern music. MIRToolbox was able
to identify both the Brahms and Al pieces to be in the key of
D# major. And with the function mirmode, it identified that
the generated piece scored a higher probability of being in a
major key that the Brahms original.

The chromagram at Figure 7 visualises the pitch
distribution throughout the generated piece, showing that
the D# major triad was used frequently throughout, meaning
that the Al piece kept firmly within the major key. Although
it was a positive that the generated piece was able to keep
within the key signature for longer generated sequences, it
does show an inability to evolve melodically into different
harmonics.
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Figure 6. Pitch Class Distribution between Brahms and Al
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Figure 7. Chromagram showing the pitch class frequency throughout the generated piece by transformer model with local windowed attention

Figure 8 shows the Pulsation Clarity between Brahms and
Al The independent-samples t-test did not recognise any
statistical difference between the two therefore the
generated music from the transformer model with relative
self-attention produced indistinguishable pulse clarity
characteristics from Brahms. Pulse clarity did not
necessarily mean that the piece must be perfectly in tempo.
With the Romantic period being an expressive music era,
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Figure 8. Pulse Clarity between Brahms and Al

compositions often involved many tempo pushes and pulls,
also known as rubato. Therefore, it was important for the Al
model to generate the same pulsation characteristics as
Brahms.

The figure shows how the transformer model generated
similar pulsation and rhythmic characteristics to the original
Brahms pieces with the higher values indicating a strong
pulse followed by dips in coefficient value before regaining
its original value. This could have been a sign of the music
taking rubato into effect.

A quantitative survey was also conducted to obtain
human evaluation on 30 second clips of generated pieces
from the models against the original works of Brahms. A
total of 56 participants featuring only professional
musicians, composers and conductors, displayed difficulty
in recognising distinction between the Brahms and
generated pieces provided, with the majority incorrectly
identifying two of the generated pieces as one of Brahms’
own works.

Table 4 shows the percentages for each of the questions
alongside whether the track was that of Brahms or Al. The
total score was also calculated with the number of responses
per answer being multiplied dependant on how similar to
Brahms it was scored with Definitely generated by Al
scoring 1 and Definitely generated by Brahms scoring 5.

TABLE 4. QUANTITATIVE SURVEY RESULTS

Al ProbablyAI | Unsure | Probably Brahms | Brahms | Total Score
Brahms 3.64% 545% 3.64% 36.36% 50.91% 237
Brahms 12.50% 25.00% 3.57% 37.50% 21.43% 185
Brahms 0% 2321% 7.14% 39.29% 30.36% 1
Brahms 17.86% H4.64% 357% 28.57% 5.36% 145
Brahms 7.27% 727% 18.18% 41.82% 2545% 207
Al 2321% 32.14% 12.50% 2321% 8.93% 147
Al 10.71% 19.64% 19.64% 28.57% 21.43% 185
Al 5.36% 41.07% 14.29% 32.14% 7.14% 165
Al 14.55% 34.55% 5.45% 32.73% 12.73% 165
Al 7.27% 3091% 1.27% 36.36% 18.18% 183
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This scoring design was intentional so that uncertainty was
treated as a reward for the Al models as they still had not
been identified as not Brahms by professionals.

An Independent-Samples T-Test was conducted which
stated that there was no statistically significant difference
between the Brahms and generated pieces therefore
supporting the alternative hypothesis by that neural network
models trained with an augmented and pre-processed dataset
could generate music at the level of musicality and emotion
as of Brahms so much that through a quantitative survey the
difference could not be identified by professional musicians,
composers and conductors.

IV. CONCLUSION AND FUTURE WORK

The work conducted in this paper differed to previous
studies as it trained various neural network models with a
dataset containing the piano works of Brahms, an important
figure of the Romantic Period in Classical Music. By doing
this, a gap in the research was addressed by analysing a very
important composer in an era of classical music were
harmonic and rhythmic structures began to diverge from the
traditional aspects of Renaissance and Classical Period
music while also bridging the gap between traditionalism
and modernism. While the literature review stated a gap in
the research that previous models struggled with complex
motifs and harmonic cadences of romantic period piano
music. This paper found that statistical testing in various
musical categories stated there was not statistical
significance between the Brahms and Al generated pieces.
A quantitative survey containing participants who were
educated in the subject mistook two of the neural network
models generated pieces as Brahms’ own works suggesting
the model’s ability to generate pieces of music with the
complexity in rhythmic and harmonic characteristics of
Brahms.

The results from the research carried out suggest that
transformer models with self-attention, relative self-
attention and local windowed attention were able to
generate  various characteristics to a statistically
indistinguishable level from Brahms with a dataset of his
piano works by utilising an augmentation pipeline and
various preprocessing techniques. A couple of musical
characteristics however proved to be statistically significant
to Brahms, these being entropy and global energy. This
concludes that while the transformer models are able to
replicate a vast amount of Brahms’ compositional traits, it
still falls behind in reproducing the rhythmical and
harmonical complexities, uncertainties and global energy
levels of Brahms’ works. The possibility of increasing the
dataset to the orchestral, ensemble and choral works of
Brahms could greatly increase the abilities of generated
music from just solo piano works. This also could adhere to
limitations regarding a small dataset and therefore improve
accuracies in entropy and global energy from the generated
pieces.
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While participants noted difficulty in distinguishing
between the Brahms and Al pieces, some commented that
the use of MIDI files made all the music sound robotic and
therefore made it even more challenging to differentiate
between the two. Future work could focus on converting the
generated pieces into musical notation and have a
professional pianist perform them. This would enable an
experiment to assess the generated music on an acoustic
piano, the instrument it was originally intended for. The
present study included generated music that used a short
input sequence derived from the Brahms dataset. Future
work will focus exclusively on cold-start generation to
ensure all evaluated pieces represent novel compositional
output.
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