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Abstract – Neural network architectures currently are only 

able to employ music generation tasks to similar levels of 

human composers when the music is at a basic compositional 

standard. Research has shown that various neural network 

models struggle with the complex motifs and harmonic 

structures of Western Classical Music. This study aims to 

determine if various data preprocessing and augmentation 

techniques can train a neural network model to generate pieces 

of piano music to a similar level of musicality and emotion as 

Romantic Period composer Johannes Brahms. Quantitative 

experimentation involving Music Information Retrieval was 

conducted as well as a quantitative survey with respondents 

consisting of only professional musicians, composers and 

conductors. Analysis of the results from the quantitative 

experiment demonstrated that the Transformer models using 

Self-Attention, Relative Self-Attention and Local Windowed 

Attention generated statistically indistinguishable results to the 

original piano works of Brahms in terms of duration 

distribution, pitch class distribution, rhythmic variation and 

pulse clarity. Analysis of the quantitative survey discovered 

that participants struggled to distinguish between the pieces 

generated by Brahms and the models, with two generated 

pieces being at majority mistaken as one of Brahms’ own 

works. The results indicate that various data preprocessing 

and augmentation methods do have an impact on model 

accuracy and for numerous musical characteristics, can be 

statistically indistinguishable to Brahms through quantitative 

experiment and survey. Further research is needed to identify 

other techniques to improve the musical characteristics of 

entropy and global energy in the generated pieces so that they 

are at a statistically comparable level to Brahms. The paper 

discovers that transformer models using varying attention 

mechanisms were able to generate longer sequences of music 

up to 2 minutes long which contained the composite motifs and 

harmonic structures of romantic period piano music. 

 

Keywords-artificial Intelligence; music generation; neural 

network architecture; Brahms.  

I.  INTRODUCTION 

The intention of this project is to generate piano music in 

the style of classical music composer Johannes Brahms by 

training a Recurrent Neural Network (RNN), a Long Short-

Term Memory (LSTM) based RNN, various Transformer 

models with different attention mechanisms, and a Perceiver 

AR model [1]. These models will be trained with a pre-

processed and augmented dataset containing MIDI files of 

Brahms’ piano works. To deem the success of the project, 

the best musical pieces generated from the neural network 

models must show statistical indistinguishability from the 

Brahms corpus in various musical variables using Music 

Information Retrieval (MIR). Along with this, the pieces 

must also be mistaken by professional musicians, 

composers, and conductors as one of Brahms’ own works 

through a quantitative survey. Although there have been 

many examples of AI models generating music in the style 

of particular composers, no models have been created to 

generate the work of Brahms. The lack of a detailed 

computational analysis of Brahms shows a gap in the study 

of romantic period composers, which Brahms was a key 

figure of [2]. According to studies taken, computer-

generated music has traditionally only sounded human-like 

when short excerpts were created and struggled with the 

complex motifs and harmonic cadences of romantic period 

piano music. This could be down to them being poor at 

handling higher-level musical structures due to the models 

only learning how to play the next note according to the 

previous. Zheng et al. (2022) stated that their model was 

limited due to it learning how to play the next note 

according to the previous ones however it did not have any 

knowledge on the structure of music [3]. In their paper, 

Child et al. developed a sparse transformer and stated that it 

was able to extract complex patterns from sequences up to 

30 times longer than possible previously [4]. Likewise, 

Hawthrone et al. developed a Perceiver AR model which 

had the ability to efferently handle longer sequences with an 

improved memory efficiency [5]. After listening to the 
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examples from the papers, the generated pieces still 

consisted of basic harmonic and rhythmic structures and 

struggled with the complex motifs and harmonic cadences 

of romantic period piano music. The most common 

quantitative experiment was surveys. It appears that simple 

questions were asked to a small group of test subjects who 

were mainly computer science students and participants who 

had little to no music compositional knowledge. A more 

realistic survey would involve professional musicians, 

composers and conductors who specialise in the subject and 

would give a critical and educated opinion on the generated 

pieces compared to the composers that they have great 

knowledge about. 

 The importance of the research problem not only 

addresses AI’s ability to generate music, but also highlights 

potential significance on how music could be composed in 

the future, particularly for those with no previous musical 

knowledge [6]. The research assumes that neural network 

models can already be trained to learn the general 

characteristics and patterns of various musical composers. 

To help with producing optimal results, the selected MIDI 

files for the dataset were exact replications of Brahms’ 

piano music without errors and inconsistencies. 

Based on the issues raised above, this study focused on 

understanding what configurations of the neural network 

models performed best when tasked with producing music 

in the style of Brahms. Therefore, the research question is: 

    To what extent can the accuracy of various Neural 

Network Models, trained with Long Short-Term Memory 

and numerous Attention mechanisms, be significantly 

improved by augmenting MIDI files containing the 

compositional works of Johannes Brahms with an 

augmentation pipeline to generate pieces of music that are 

mistaken by professional musicians, composers and 

conductors as one of Brahms’ own works? 

    Due to conclusions from studies taken and the general 

state of knowledge at the time of beginning the project, the 

null hypothesis for this research project is; 

    H0: Neural network models cannot generate piano works 

to the same level of musicality and emotion as Brahms. Due 

to this, generated pieces will not be statistically 

indistinguishable through music information retrieval or 

mistaken as a work of Brahms by professional musicians, 

composers and conductors through a quantitative survey 

using Likert Scales. 

    Through the utilisation of an augmentation pipeline to 

expand the MIDI dataset containing the compositional piano 

works of Johannes Brahms, more musical variations could 

be created including transposition, rhythmical and note 

durations. In addition to this, various preprocessing 

techniques including track splitting, quantisation and 

normalisation could help make the MIDI files more readable 

for the models. This provides an alternate hypothesis; 

    H1: If an augmentation pipeline is utilised to expand a 

MIDI dataset of pre-processed files containing the piano 

works of Johannes Brahms, then various neural network 

models trained with Long Short-Term Memory and 

numerous Attention mechanisms could generate pieces of 

music that is statistically indistinguishable from Brahms 

and could be mistaken as one of Brahms’ own piano works 

by professional musicians, composers and conductors 

through a quantitative survey using Likert Scales and 

various Independent-Samples T-Tests and Hotelling’s T2 

Tests being implemented to determine whether the p-value is 

> 0.05 to support the conclusion of statistical 

indistinguishability  

This paper contains a total of four sections. Section II 

describes the experiment design, methodology and how the 

dataset was prepared and pre-processed. Along with this, the 

neural network models obtained for the project and MIR 

functions will be explained as well as ethical considerations. 

Section III analyses and evaluates the results of the 

quantitative experiment and survey to determine if the 

experiments provide evidence that the null hypothesis is 

incorrect. Section IV summarises what has been learnt and 

proposes recommendations and adjustments for future 

studies. 

II. DESIGN AND METHODOLOGY 

The research project was carried out through three stages. 

Firstly, data was collected, pre-processed, and augmented. 

The dataset contained 67 MIDI files of Johannes Brahms’ 

piano works and was obtained for offline manipulation from 

Classical Archives and MIDIworld. MIDI (Musical 

Instrument Digital Interface) is seen as one of the most 

important tools for both musicians and producers as it 

represents a method to store and transmit musical data. They 

contain Note-on and Note-off messages to indicate the 

beginning and end of each note and delivers information 

about various musical characteristics in musical notes, 

including pitch, duration and dynamics.  

An augmentation pipeline was employed to create 

variations in melodies, tempo, rhythm, and transpositions. 

This was followed by obtaining and training various neural 

network models with the augmented dataset. The models 

were analysed for training accuracy and loss to determine 

the best configurations. After training, the best generated 

examples from each model were analysed through various 

MIR functions using MIDIToolbox and MIRToolbox to 

determine the best performing models [7][8]. Finally, the 

best models generated pieces of music that were evaluated 

against the pieces of Brahms’ repertoire for statistical 

equivalence. Along with this, the same generated pieces 

were used in a quantitative listener survey to test 

professional musicians, composers and conductors on 

whether they could differentiate between the generated 

pieces against the Brahms original. All quantitative 

experiments involved evaluation to test the research 

hypothesis through Independent-Samples T-Tests and 

Hotelling’s T2 Tests. 
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A. Preparation and Preprocessing of Dataset 

The preparation and preprocessing of the dataset 

involved numerous steps to optimise the potential of 

training the neural network models. Track splitting involved 

dividing the MIDI tracks into smaller segments of 30 

second clips to make the tracks more digestible for the 

models in training [9]. The conversion of multi-track MIDI 

files into a single monophonic track allowed for further 

simplicity in the files. Normalisation was performed to 

ensure that note velocities of the files were standard to 

provide consistent values for training and evaluation tasks. 

Finally, all the MIDI files were quantized to semiquavers to 

adjust the timings of notes and align them with the correct 

timing to ensure consistency in rhythm and therefore 

making it easier for the models to digest them [10]. Figure 1 

displays an example of Brahms’ Variations on a Hungarian 

Song in D major, Op.21, No. 11 being quantised to 

semiquavers, also known as sixteenth notes. 

    Depending on the model being used, there were several 

packages utilised to extract information from MIDI files: 

• Pyfluidsynth: Python package that enables audio 

playback of MIDI files in a Google Colab setting 

[11]. 

• pretty_midi: Package that contains various 

functions and classes for manipulating MIDI data 

so that it could be easily modified for information 

extraction. Figure 2 shows an example of 

pretty_midi extracting variables from each note 

[12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• NoteSequences: Numerical representations of 

music notes including pitch number representation, 

along with note start and end time [13]. 

 

An augmentation pipeline was utilised to create 

variations in melodies, tempo, rhythm and transpositions. 

Several techniques were used to increase the dataset size. 

Time-stretching was applied to make each MIDI file 5% 

faster or slower. Another method was to transpose each of 

the MIDI files so that the pitches would be raised or lowered 

by a third [9]. Doing these increased the dataset by 500% 

with a total of 445 tracks. The augmented dataset was 

divided into training and testing sets which were defined at 

an 90%/10% split with repeated Montecarlo sampling (100 

times). This same split was used for all the models to 

conduct a fair experiment. In comparison with prior studies, 

data preparation and preprocessing was influenced by 

previous research, which was collected, adapted and 

integrated into this paper.  

B. Neural Network Models 

Numerous Neural Network Architectures were obtained 

for offline manipulation and trained with the augmented 

Brahms MIDI dataset. A Recurrent Neural Network was 

acquired from TensorFlow [12]. A RNN was described by 

IBM as “a type of artificial neural network which used 

sequential data or time series data” [14]. Sequential data 

was utilised to predict the next output based off previous 

elements in the sequence. For this model, the training 

dataset was created through extraction of notes from the 

MIDI files with three values being taken from each note; 

pitch, step and duration. The model was trained on batches 

of note sequences with each example consisting of a 

sequence of notes as the input tokens and the subsequent 

notes served as the target output. This meant that the model 

was trained to predict the next note in the sequence 

containing 100 notes as the input, a common practice used 

in text classification. Similar to the training dataset, the 

model contained pitch, step and duration outputs. For the 

step and duration outputs, a loss function was constructed 

based on mean squared error equation to encourage the Figure 1. Example of Sixteenth note Quantisation 

Figure 2. Example of pretty_midi extracting variables from each note  
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model to output non-negative values. Equation (1) shows 

the formula were yi represents the nth token value and ŷi 

being the predicted value from the model. n represented the 

number of observations [15]. 
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Evaluating the model showed that pitch_loss was much 

greater that duration_loss and step_loss. This result 

indicated that predicting the next note had proven to be a 

more difficult task when compared to the other two. The 

model was trained with 22 epochs and testing recorded a 

training loss of 0.550 and accuracy of 0.628. RNNs suffer 

from vanishing gradient problem. With the neural network 

using the gradient decent algorithm to update the weight, the 

gradients therefore decreased in growth the further down the 

layers the network progressed.  

A solution to this problem is the use of LSTM which 

utilises gating mechanisms to control the movement of 

information and gradients to allow for the network to learn 

and maintain information over longer sequences. [16] An 

LSTM-based RNN was obtained from Huang et al. [17]. 

The RNN utilised event sequence encoding with the 

following representing the event types: 

• NOTE_ON: The start of a musical note 

• NOTE_OFF: The end of a musical note  

• TIME_SHIFT: Change of time (bpm) 

• VELOCITY: Change of attack on notes 

      The model supported expressive timing with time_shift 

events allowing it to control the tempo at increments 

between 10ms and 1 second. Velocity events allowed for a 

dynamic to be set at the current note_on event which helped 

build more natural tension and timing. For the model to be 

able to read the Brahms MIDI dataset, they were converted 

to NoteSequences, a numerical representation of musical 

notes including pitch number representation, along with the 

note start and end times [13]. The model was trained for a 

total of 10002 checkpoints accumulating to 17 hours of 

training. Although LSTM provides a solution to vanishing 

gradient problem. They still suffer from gradient explosion 

which occurs when gradients become too large, causing a 

model to become unstable and unable to learn from training 

data. LSTMs struggle to memorise earlier information when 

very long sequences were being processed due to its limited 

context window. As the forget gate became more prominent, 

older information was replaced by new data.  

Various Transformer models containing different 

attention mechanisms were obtained from Project Los 

Angeles [18]. Proposed by Google researchers Vaswani et 

al., transformer models do not rely on recurring processing 

of data. Instead, they operate on an attention mechanism 

[19]. Attention allows for neural networks to concentrate on 

particular parts of the input. Transformer models contain 

two main components, an encoder, which produces a 

sequence of hidden states from an input, and a decoder, 

which takes the hidden states from the encoder and 

generates an output. The attention mechanism enables the 

decoder to access the encoder’s hidden states meaning that 

the decoder can learn long-range dependencies in the input. 

This feature allows for the models to effectively handle 

larger amounts of data [20]. When compared to Simon & 

Oore’s (2017) Performance RNN model, Huang et al. 

(2018) stated that while the LSTM-based model was able to 

generate credible music for very short samples, there was an 

apparent lack of long-term structure. However, their model 

Music Transformer could generate music with a consistent 

style that created multiple phrases out of a single motif. The 

attention mechanisms obtained for the transformer models 

tested were: 

• Self-Attention – Processes inputs in the same 

sequence, enabling the model to capture 

dependencies within the input [21]. 

• Relative Attention – The relative position of 

tokens is considered based on similarity of other 

tokens in the sequence [22].  

• Local Windowed Attention – Restricts attention 

to a fixed window of tokens, enabling the model to 

focus on nearby information [23].  

• Relative Self-Attention – Combination of Self and 

Relative attention allowing the model to focus on 

relevant information based on the positional 

relationships of tokens [17]. 

• Sparse Attention – Attends to a subset of tokens 

instead of the entire sequence to improve efficiency 

while retaining information [24]. 

     Traditional transformers with self-attention grow 

quadratically with the sequence length. This form of scaling 

could restrict the model’s ability to work with longer 

sequences due to it requiring lots of memory and 

computational power. Sparse attention addresses this issue 

with the introduction of sparse factorisations of the attention 

matrix and therefore attending to a reduced subset of 

elements strategically chosen by the model. This enables the 

mechanism to still capture necessary information whilst the 

model performance is greatly increased [24]. Equation (2) 

displays the reformulation of the self-attention mechanism 

for sparse attention. 

 

 

 

(2) 

 

 

     To train the transformer models, the MIDI files had to be 

processed with the TMIDIX MIDI processor provided by 

Tegridy code which converted the MIDI files to a score 

representation so that it could be understood by the model 

[25].  
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     Pieces were generated in the style of OpenAI’s MuseNet 

workflow where a premier seed MIDI file would be input 

and treated as the beginning of the generated piece. Doing 

so gave information to the model of the tempo, style and 

dynamics of the piece. A continuation generator was then 

implemented to append a chosen number of tokens and the 

multiple generations were batched to append the best 

results. This provided a degree of outcomes and the model 

was tested with variations on temperature, generation tokens 

and memory tokens. According to Huang & Yang (2020), 

amongst the great number of deep learning-based models 

that had been proposed for automatic music composition, 

the Transformer “stood out as the prominent approach for 

generating expressive classical piano performance with a 

coherent structure of up to one minute” [26].  

A Perceiver Autoregressive (AR) model was also 

obtained from Project Los Angeles. Seen as an improvement 

to the Transformer model using latent array to distinguish 

the size of inputs and outputs, allowed for the model to 

efferently handle longer sequences with an improved 

memory efficiency [27]. Perceiver AR expands from the 

foundations of the original Perceiver Model with the 

addition of autoregressive capabilities, which was the ability 

to generate outputs sequentially based off previously 

generated outputs. This, along with the use of cross-

attention to encode inputs into latent space, gave it the 

ability to train up to 100,000 elements. Perceiver AR 

contains 1024 latents and 24 self-attention layers. Due to 

each new note being predicted based off the preceding full 

sequence, the model can generate pieces of music 

containing high levels of melodic, harmonic and rhythmic 

consistency. The processing of MIDI files and generation of 

music was done so in a similar style to that of the 

transformer models. 

C. Quantitative Experiment & Survey  

A quantitative experiment was conducted to evaluate 

and compare the generated pieces of music from each of the 

models using Music Information Retrieval (MIR). MIR is 

the extraction of significant audio features from music data 

to be analysed through various algorithms and techniques. 

Raw audio signals were extracted and analysed from 

Waveform Audio Files (.wav) including pitch, harmony, 

rhythm and timbre that acquired an expressive description 

that is machine processible. MIR was used to test the neural 

network model’s ability to replicate the musical 

characteristics and motifs of Brahms’ piano works. Various 

MIR variables were utilised to gather various quantitative 

data from the models to test against not only each other, but 

the original works of Brahms. These variables included: 

• Entropy – The measure of uncertainty or 

unpredictability 

• Duration Distribution – The statistical analysis of 

note durations as well as silence 

• Pitch Class Distribution – The evaluation of 

frequency of musical pitches  

• Mean Roughness – The measure of dissonance or 

clashing sounds 

• Global Energy – The total amount of energy held 

within a waveform. Calculated using the Root 

Mean Square (RMS) (3), each audio signal 

sample’s amplitude xi was squared with the mean 

of the square values being calculated to which the 

square root of that mean is taken. N represented 

the total number of samples in the signal [28]. 

• Normalised Pairwise Variability Index (nPVI) – 

The analysis of variability between successive 

durations to draw comparisons between rhythmic 

structures in music. Equation (4) shows the 

formula for nPVI, with dk representing the duration 

of the interval k. m represented the number of 

intervals. The use of the formula standardised the 

difference between successive intervals in relation 

to their average length [29]. 

• Pulsation Clarity – The strength of the rhythmic 

pulse in a piece of music  
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   A quantitative survey was also conducted and contained a 

total of 10 questions all containing the question “Rate the 

likelihood that this piece was composed by Johannes 

Brahms as opposed to being generated by AI” In random 

order, 5 pieces contained the works of Brahms and 5 were 

generated by the models. Answers consisted of a Likert 

Scale of 5 values ranging from Definitely generated by AI to 

Definitely generated by Brahms. Members of the Irish 

Defence Forces School of Music, RTÉ Concert Orchestra 

and National Symphony Orchestra were recruited for the 

survey to provide professional expertise in the subject. 

Participants were selected based on their extensive 

experience in classical music, including familiarity with 

Brahms’ works, having performed his pieces in the past. 

    Using IBM’s SPSS software, quantitative values from the 

MIR functions MIRToolbox and MIDIToolbox were tested 

to obtain p-values. Various Independent-Samples T-Tests 

and Hotelling’s T2 tests were implemented to evaluate 

musical variables to determine if there was statistical 

indistinguishability between Brahms’ piano works and the 

generated pieces from the AI models. 
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D. Ethical Considerations 

Several ethical considerations were adhered to in order to 

correctly conduct research including copyright issues and 

collection of data from survey participants A total of 67 

pieces of music were obtained for offline manipulation for 

the MIDI dataset. According to German Federal Law 

Gazette, copyright protection for musical and artistic works 

expired 70 years after the death of the creator. With Brahms 

passing away in 1897, his compositions therefore resided in 

the public domain. The use of MIDI files also prevented any 

issues with performers rights as recordings of Brahms’ 

works were not being used. All the neural network models 

obtained for testing were open-source and ran under the 

Apache 2.0 License. MIR tasks were performed using the 

MATLAB functions MIRToolbox and MIDIToolbox. To 

utilise the tools, MATLAB had to be downloaded free of 

charge under the GNU General Public License. Ethical 

considerations were vital when collecting data from 

personnel for the quantitative survey. Participation for the 

survey was voluntary and those who chose to partake were 

informed of the purpose of the study. No personal 

information was required from participants and the 

confidentiality of participants was guaranteed from the 

designer of the survey. The results of the survey were not 

tampered with and therefore were accurate. 

III. EVALUATION 

Overfitting issues were observed during training, with the 

LSTM and Perceiver AR models initially replicating the 

training material excessively instead of generating unique 

motifs. To mitigate this, the dataset was further augmented 

by transposing musical phrases and altering rhythms 

through quantisation to introduce additional variations in 

tempo and phrasing. Experimenting with different 

temperature values for each model allowed for control over 

the balance between simplicity and randomisation. With 

lower temperatures producing more basic outputs that 

resembled the training data, while higher temperatures 

encouraged greater diversity but could lead to compositions 

with less structure. Table 1 shows the model performance 

metrics stating that the transformer model with relative self-

attention scored the best training loss and accuracy with 

scores of 0.015 and 0.995 respectively. The recurrent neural 

network scored worst in terms of training accuracy with a 

score of 0.628.  

    Through quantitative experimentation and a survey, the 

neural network models utilised for the project were 

evaluated extensively in a numerical form and through 

professional human judgement in order to confirm or refute 

the research hypothesis that neural network models could 

generate pieces of music with statistically indistinguishable 

musical characteristics and emotion as Brahms. To conduct 

a fair experiment, each model had to generate a two-minute-

long piece which contained 300 prime tokens (30 seconds) 

from the beginning of six of Brahms’ piano works. These 

generated pieces were then compared with the first two  

 

 

 

 

 

 

 

 

 

 

 

 

minutes of the original Brahms piece to evaluate the 

evolution of the generated pieces and determine their ability 

to maintain the style and structure of Brahms. MIR 

evaluation concluded that the Transformer models with self-

attention, local windowed attention and relative global 

attention performed best in generating music most similar to 

the Brahms original.  

    Several statistical tests were conducted on the best 

performing models to obtain p-values to test the research 

hypothesis. The variables Entropy, nPVI, Global Energy, 

Mean Roughness and Pulsation Clarity were tested with an 

Independent-Samples t-test and the variables Duration 

Distribution and Pitch Class Distribution being tested with a 

Hotelling’s T2 test. Based on guidance from Leard Statistics, 

the choice of test for each variable depended on whether the 

variable required a joint test. The independent-samples t-test 

was not suitable in those cases, whereas Hotelling’s T2 test 

was. Testing concluded that no statistically significant 

difference was found with most of the variables therefore 

supporting the alternative hypothesis that neural network 

models can produce music that is indistinguishable from 

Brahms. However, the variables Entropy and Global Energy 

were deemed to contain statistical significance within them 

stating that further work must be done to improve 

complexity, uncertainty and energy to a similar level to 

Brahms. Using MIRToolbox, the waveforms of the 

generated pieces were evaluated. 

    The entropy of distributions was evaluated to measure 

uncertainty or unpredictability in succeeding phrases. Table 

2 shows how to models performed in terms of entropy from 

using 300 prime tokens of Brahms’ 2 Rhapsodies No.1 to 

determine which model scored most like the original piece. 

Results showed that the Transformer model with Local 

Windowed Attention scored most similar with a score of 

0.9214 compared to the original piece’s 0.9115. 

     The transformer model with Local Windowed Attention 

was then further tested against the other Brahms original 

tracks to obtain more Entropy values. Table 3 shows the 

comparison of values with each piece. 

    With all this data, an independent-samples t-test was 

performed to determine if there was statistical significance 

between the Brahms and Transformer model’s generated 

music. First, a Levene’s Test for Equality of Variances was 

conducted to determine if equal variances should be  

TABLE 1. TRAINING LOSS AND ACCURACY SCORES 
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assumed for the t-test. With a scored p-value of 0.401 being 

much greater than 0.05, equal variances were assumed. 

Since both groups containing Brahms’ original works and 

generated pieces from the transformer models were being 

evaluated, a two-sided p-value was observed. The 

independent-samples t-test stated a value of 0.012 indicating 

that there was statistical significance between the Brahms 

and AI generated music groups. The audio waveforms for 

the Brahms and AI generated pieces were analysed using 

MIRToolbox to discover the reason for the statistical 

significance. An onset curve depicted a greater variance in 

the detection of successive notes in the AI generated pieces 

therefore giving a higher entropy value. 

     Figure 3 shows the brightness curve of Brahms’ 2 

Rhapsodies No. 1 alongside the generated piece from the 

transformer model with local windowed attention. The 

generated piece again displays a greater variance of 

frequencies, resulting in a higher entropy score. The entropy 

results show that the generated pieces provided too much 

variation and complexity in succeeding phrases when 

compared to the Brahms originals. 

  Statistical significance was also recorded in Global Energy 

between the Brahms pieces and the best scoring model in 

this category, the Transformer model with Self-Attention. In 

this case, the Levene’s Test for Equality of Variances 

calculated a p-value of 0.0002 meaning that equal variances 

should not be assumed. Therefore, the two-sided p-value of 

0.035 was provided, indicating there was statistical 

significance between Brahms and AI.  

     The difference in global energy is depicted in Figure 4 

where the temporal evolution curve reveals a much greater 

variance in the generated piece compared to Brahms’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Brightness Curve between Brahms and AI 

TABLE 3. ENTROPY VALUES BETWEEN BRAHMS AND 

TRANSFORMER MODEL WITH LOCAL WINDOWED ATTENTION 

 

 Figure 4. Global Energy Between Brahms and AI 

TABLE 2. ENTROPY VALUES BETWEEN BRAHMS AND AI 

MODELS 
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original work. While Brahms’ piece maintains a steady flow 

of increase and decrease of tension, the generated piece has 

much greater variations in timbre and harmonics 

throughout. The evaluation of these waveforms determined 

that the entropy and global energy values may have been 

much higher than Brahms’ works due to the MuseNet 

inspired workflow the transformer models undertook 

causing the pieces to be generated in blocks and therefore 

sound unnatural.  

   Although there was statistical significance recognised for 

global energy, the independent-samples t-test did not 

recognise any difference in sensory dissonance. With 

Brahms being considered a more conservative composer 

who involved little dissonance, or clashing sounds, in his 

music, it was important to replicate this. Figure 5 shows that 

the generated piece composed the same methods as Brahms 

by answering to dissonance with a harmonic resolvement. 

This can be seen with the sudden peaks in the coefficient 

value being resolved to lower roughness values. 

   Figure 6 displays the Pitch Class Distribution in the form 

of a box plot for Brahms’ 3 Intermezzi No.1 and the 

generated piece from the transformer model with local  

windowed attention. With the piece being in the key of D# 

Major, which has an enharmonic equivalent of C minor, in 

order to stay within the key signature, the majority of the 

notes must be from the following triads: 

• D# Major – D#, G, A# 

• C Minor – C, D#, G 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The pitch class distribution showed that both the original 

Brahms piece and AI generated kept within these guidelines, 

with particular emphasis being placed on the notes D# and 

G, as they feature in the triads of both D# major and C 

minor. Although the transformer model focused on the notes 

within the two triads to ensure consistency in key signature, 

it was apparent that the model was reluctant to incorporate 

accidentals to further add colour to the piece. The use of 

extended chords was a key factor of the romantic period in 

which Brahms lived in and it was an era that bridged the gap 

between classical and modern music. MIRToolbox was able 

to identify both the Brahms and AI pieces to be in the key of 

D# major. And with the function mirmode, it identified that 

the generated piece scored a higher probability of being in a 

major key that the Brahms original. 

   The chromagram at Figure 7 visualises the pitch 

distribution throughout the generated piece, showing that 

the D# major triad was used frequently throughout, meaning 

that the AI piece kept firmly within the major key. Although 

it was a positive that the generated piece was able to keep 

within the key signature for longer generated sequences, it 

does show an inability to evolve melodically into different 

harmonics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

Figure 5. Sensory Dissonance between Brahms and AI 

 

 

 Figure 6. Pitch Class Distribution between Brahms and AI 

Brahms 

AI 



107International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 shows the Pulsation Clarity between Brahms and 

AI. The independent-samples t-test did not recognise any 

statistical difference between the two therefore the  

generated music from the transformer model with relative 

self-attention produced indistinguishable pulse clarity 

characteristics from Brahms. Pulse clarity did not 

necessarily mean that the piece must be perfectly in tempo. 

With the Romantic period being an expressive music era,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compositions often involved many tempo pushes and pulls, 

also known as rubato. Therefore, it was important for the AI 

model to generate the same pulsation characteristics as 

Brahms. 

    The figure shows how the transformer model generated 

similar pulsation and rhythmic characteristics to the original 

Brahms pieces with the higher values indicating a strong 

pulse followed by dips in coefficient value before regaining 

its original value. This could have been a sign of the music 

taking rubato into effect. 

    A quantitative survey was also conducted to obtain 

human evaluation on 30 second clips of generated pieces 

from the models against the original works of Brahms. A 

total of 56 participants featuring only professional 

musicians, composers and conductors, displayed difficulty 

in recognising distinction between the Brahms and 

generated pieces provided, with the majority incorrectly 

identifying two of the generated pieces as one of Brahms’ 

own works. 

   Table 4 shows the percentages for each of the questions 

alongside whether the track was that of Brahms or AI. The 

total score was also calculated with the number of responses 

per answer being multiplied dependant on how similar to 

Brahms it was scored with Definitely generated by AI 

scoring 1 and Definitely generated by Brahms scoring 5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Pulse Clarity between Brahms and AI 

TABLE 4. QUANTITATIVE SURVEY RESULTS 

Figure 7. Chromagram showing the pitch class frequency throughout the generated piece by transformer model with local windowed attention 
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This scoring design was intentional so that uncertainty was 

treated as a reward for the AI models as they still had not 

been identified as not Brahms by professionals. 

An Independent-Samples T-Test was conducted which 

stated that there was no statistically significant difference 

between the Brahms and generated pieces therefore 

supporting the alternative hypothesis by that neural network 

models trained with an augmented and pre-processed dataset 

could generate music at the level of musicality and emotion 

as of Brahms so much that through a quantitative survey the 

difference could not be identified by professional musicians, 

composers and conductors.  

IV. CONCLUSION AND FUTURE WORK 

The work conducted in this paper differed to previous 

studies as it trained various neural network models with a 

dataset containing the piano works of Brahms, an important 

figure of the Romantic Period in Classical Music. By doing 

this, a gap in the research was addressed by analysing a very 

important composer in an era of classical music were 

harmonic and rhythmic structures began to diverge from the 

traditional aspects of Renaissance and Classical Period 

music while also bridging the gap between traditionalism 

and modernism. While the literature review stated a gap in 

the research that previous models struggled with complex 

motifs and harmonic cadences of romantic period piano 

music. This paper found that statistical testing in various 

musical categories stated there was not statistical 

significance between the Brahms and AI generated pieces. 

A quantitative survey containing participants who were 

educated in the subject mistook two of the neural network 

models generated pieces as Brahms’ own works suggesting 

the model’s ability to generate pieces of music with the 

complexity in rhythmic and harmonic characteristics of 

Brahms. 

    The results from the research carried out suggest that 

transformer models with self-attention, relative self-

attention and local windowed attention were able to 

generate various characteristics to a statistically 

indistinguishable level from Brahms with a dataset of his 

piano works by utilising an augmentation pipeline and 

various preprocessing techniques. A couple of musical 

characteristics however proved to be statistically significant 

to Brahms, these being entropy and global energy. This 

concludes that while the transformer models are able to 

replicate a vast amount of Brahms’ compositional traits, it 

still falls behind in reproducing the rhythmical and 

harmonical complexities, uncertainties and global energy 

levels of Brahms’ works. The possibility of increasing the 

dataset to the orchestral, ensemble and choral works of 

Brahms could greatly increase the abilities of generated 

music from just solo piano works. This also could adhere to 

limitations regarding a small dataset and therefore improve 

accuracies in entropy and global energy from the generated 

pieces. 

    While participants noted difficulty in distinguishing 

between the Brahms and AI pieces, some commented that 

the use of MIDI files made all the music sound robotic and 

therefore made it even more challenging to differentiate 

between the two. Future work could focus on converting the 

generated pieces into musical notation and have a 

professional pianist perform them. This would enable an 

experiment to assess the generated music on an acoustic 

piano, the instrument it was originally intended for. The 

present study included generated music that used a short 

input sequence derived from the Brahms dataset. Future 

work will focus exclusively on cold-start generation to 

ensure all evaluated pieces represent novel compositional 

output. 
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