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Abstract—The rapid spread of misinformation on social media
platforms has heightened the need for effective rumor verification
models. Traditional approaches to rumor verification primarily
rely on textual content and transformer-based embeddings, but
they often fail to incorporate conversational dynamics and stance
evolution, limiting their effectiveness, necessitating the need for
robust and interpretable rumor verification systems. This study
introduces a novel framework that integrates semantic content,
structural dynamics, and stance distribution features into a
unified model for predicting rumor veracity. By employing hi-
erarchical sequencing strategies, including Breadth-First Search,
Depth-First Search, and temporal traversal, for structural dy-
namics, this work effectively captures both global and local
relationships within conversational threads. This work further
leverages an attention-based encoder to aggregate content embed-
dings, stance distributions, and reply-level features, overcoming
limitations of sequence truncation and underutilized conversa-
tional structures found in existing methods. Experimental results
on benchmark datasets, including SemEval-2017, RumorEval-
2019, and PHEME, demonstrate that our approach achieves
state-of-the-art performance, significantly improving Macro-F1
scores and accuracy over competing models. Ablation studies
confirm the critical contributions of hierarchical encoding, stance
aggregation, and attention mechanisms to the model’s success.
Thus, this work sets a new standard for efficient, interpretable,
and scalable rumor verification, offering promising directions for
mitigating misinformation on social media platforms.

Index Terms—Rumor verification; stance-conditioned modeling;
social media misinformation; early detection; embedding aggrega-
tion.

I. INTRODUCTION

This paper extends our previous work, stance-conditioned
modeling for rumor verification [1]. Specifically, the prior
work focused on integrating source and reply post embeddings
from Bidirectional Encoder Representations from Transform-
ers (BERT) [2] with stance labels, encoded through Bidirec-
tional Long Short Term Memory (BiLSTM) [3], for rumor
classification.

Social media platforms play an essential role in information
dissemination, news sharing, and communication in the mod-
ern Internet era [4][5], yet they also foster the proliferation of
misinformation, which poses a significant challenge to societal
trust, with far-reaching implications for public health, politics,
and safety [6][7]. Therefore, automated rumor verification sys-
tems have emerged as crucial tools to combat misinformation,
relying on machine learning and natural language processing

(NLP) techniques [8][9]. Despite progress, existing systems
face key limitations in effectively utilizing the entirety of
conversational threads, particularly in capturing both semantic
and structural dynamics.

For example, [8] segment lengthy threads into shorter sub-
threads and use BERT to individually encode each subthread.
A global model layer is then applied to integrate the repre-
sentations of all subthreads, with constraints on the maximum
number of posts per thread and the maximum number of sub-
threads per thread. While existing work predominantly utilize
pre-trained Large Language Models (LLMs) like BERT, these
methods face inherent limitations. One major challenge is the
sequence length constraint of LLMs, often used to encode
full conversational threads. LLMs truncate inputs or subdivide
threads into smaller chunks, resulting in the omission of
replies that contain critical semantic information. Moreover,
structural information, such as the hierarchy of replies, stance
distributions (e.g., Support, Deny, Query, Comment), and the
temporal sequencing of posts’ features, is either underutilized
or entirely neglected in a discourse. Such limitations hinder
the development of robust models that can comprehensively
analyze discourse for accurate rumor veracity prediction.

Recent advances in rumor verification, mostly breaking
event rumor detection, has shown that stance-separated mod-
els have improved veracity prediction by analyzing distinct
stance categories during breaking news events [10]. Further-
more, multi-task frameworks integrating stance classification
with rumor detection have shown improved performance by
leveraging shared features across tasks [11]. Additionally,
modern graph-based enhancements include stance distributions
as node-level features in graph attention mechanisms, under-
scoring its importance in contextualizing relationships within
threads [12].

We propose a novel approach that integrates content em-
beddings, stance aggregation, and structural information into
a unified model for rumor verification. By integrating hierar-
chical and temporal sequencing of discourse into a unified
framework, this research bridges the gap between content-
based and structure-aware rumor verification. We use stance-
based posts’ aggregation and graph-based traversal techniques
for post-level vector encoding to ensure a holistic represen-
tation of conversational threads, overcoming the limitations
of sequence truncation and incomplete conversational thread
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Rumor Label: False SL
¢: BREAKING: 148 passengers were on board #GermanWings Airbus S ;
A320 which has crashed in the southern French Alps http://t.co/ uppor
VxxvrU9XmV.
rl: BREAKING: 148 passengers were on board #GermanWings
Airbus A320 which has crashed in the southern French Alps - Comment
@AlArabiya Eng.
1 r2: @rConflictNews: BREAKING: 148 passengers were on
1 board #GermanWings Airbus A320, crashed in the southern Comment
French Alps - @AlArabiya Eng.
r3: UPDATE: Plane crash in south of France had 142
passengers, 2 pilots and 4 crew. Comment
r4: @rConflictNews @sahla_sing what happened. | Query
r5: @rConflictNews @AlArabiya Eng Prayers going up.
How sad. Comment
r6: @rConflictNews @AlArabiya Eng No crew???? Those
passengers were all on their own? Wtf! Query
4{ r7: @rConflictNews @AlArabiya_Eng 150 souls on board
they say now. RIP to all of them. Comment
—| r8: @AlArabiya Eng Terrible! | Comment
r9: @AlArabiya Eng: 148 passengers were on board
| #GermanWings Airbus A320 which has crashed in the southern Support
French Alps http:/t.co/VSqaycAsIG.

Fig. 1. A sample thread C' with a false veracity label. SL stands for Stance
Labels.

utilization. While methodologies such as GACN [13] and
SAMGAT [12] focus on graph-based models, our approach
departs from explicit graph neural networks and instead em-
ploys graph-inspired traversal strategies for sequencing. This
provides a lightweight yet effective way to capture structural
and temporal dynamics without the computational overhead of
full graph-based models.

Furthermore, this study explores the task of early rumor
detection, focusing on identifying and assessing the veracity
of emerging rumors in real-time as they propagate online.
By detecting rumors at an early stage, this approach aims to
mitigate the rapid spread of misinformation, enabling timely
interventions and fact-checking before false narratives gain
widespread traction. Figure 1 presents a sample discourse,
showcasing how stances evolve. Our work sets a new standard
for efficient and interpretable systems that leverage discourse
dynamics to combat misinformation.

The key contributions of this work are:

« Rich Feature Representation: Our framework integrates
embeddings of a source post and replies grouped by
stance type. Hierarchical reply levels and stance distri-
butions are explicitly modeled as input features, enabling
the model to learn from structural and temporal dynamics.

o Hierarchical Sequencing of Discourse Trees: This work
models each conversation thread as a discourse tree and
sequences posts using Breadth-First Search (BFS), Depth-
First Search (DFS) traversals, and temporal sequencing,
systematically organizing reply levels and robustly repre-
senting the hierarchical relationships within the discourse.

« Enhanced Model Architecture: We present an attention-
based encoder that processes posts’ embeddings, stance
distributions, and reply-level vectors derived from graph
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traversal strategies.

o Rigorous Experimental Validation: The approach is
evaluated on competitive and publicly available datasets,
demonstrating significant improvements over state-of-the-
art (SOTA) models in metrics such as Macro-F1 score and
accuracy. Furthermore, we evaluate the model’s ability
to detect rumors at an early stage of the conversation,
highlighting its real-world applicability for misinforma-
tion mitigation

The remainder of this paper unfolds as follows. Section II

reviews the existing literature on rumor verification, and
Section III delves into a comprehensive description of our
approach. Section IV demonstrates experiments and provides
a discussion of results. Finally, Section V concludes the paper.

II. RELATED WORK

A rumor is defined as a widely circulated piece of infor-
mation whose veracity is uncertain [14][15]. Rumours appear
credible but lack immediate verification and often provokes
skepticism, thus prompting users or automated systems to seek
confirmation of its truthfulness. The field of rumor verification
has witnessed significant advancements in recent years, driven
by the need to combat the spread of misinformation on social
media platforms. Most existing studies can be categorized
into content-based approaches, structure-aware models, and
methods integrating temporal and hierarchical features.

A. Content-Based Approaches

The early methods of rumor verification focused primarily
on textual content using traditional machine learning and
NLP techniques [16, 17, 18]. With the rise of deep learning,
numerous models have been applied to the task of rumor
verification. Early deep learning studies predominantly utilized
Recurrent Neural Networks (RNNs), such as Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU), to extract
information from rumor conversations. These approaches typ-
ically arrange tweets chronologically to represent the entire
conversation’s features [19, 20, 21]. However, such methods
face challenges in effectively capturing long-range depen-
dencies within sequences and rely on sequential processing.
Therefore, transformer-based pre-trained models like BERT
and its variants became the backbone of many rumor veri-
fication systems [9]. Nevertheless, these models suffer from
sequence length limitations, often truncating crucial replies or
ignoring their hierarchical relationships within threads.

B. Structure-Aware Models

Several studies have incorporated discourse structures into
their models, recognizing the importance of structural fea-
tures [22, 23, 24, 25]. For instance, [22] employed tree-
structured recursive neural networks to model hierarchical
reply relationships in Twitter (rebranded as X) threads. More
recently, graph-based approaches like SAMGAT [12] have
introduced multilevel graph attention networks to integrate the
semantic relationships between posts and their replies. In addi-
tion, a sequence graph network [26] has modeled conversations
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as graphs and utilized a graph attention mechanism to process
the interactions within them. While graph neural networks
provide a powerful tool for capturing structural and seman-
tic interactions, they often involve significant computational
overhead and lack explicit focus on hierarchical sequencing.

C. Temporal and Hierarchical Features

Temporal dynamics and reply hierarchies have also been ex-
plored to enhance rumor verification systems. [27] highlighted
the importance of temporal sequencing in understanding the
progression of online discussions. Similarly, methods like
DynamicGCN [28] use temporal information to model the
propagation of rumors. Still, these approaches typically focus
on global temporal patterns, overlooking the local reply-level
interactions and structural nuances

To this end, existing rumor verification work often adopts
flat sequence-based approaches or computationally intensive
graph-based models, leaving key gaps in their ability to capture
discourse dynamics holistically. Flat-sequence approaches fail
to represent hierarchical and temporal relationships, while
graph-based models focus on learning node and edge inter-
actions but come with significant computational overhead.
We further notice that many existing methods overlook the
integration of nuanced structural features, such as reply hier-
archies and stance distributions, alongside temporal patterns
of replies. This research bridges these gaps by employing
lightweight graph traversal strategies and temporal sequencing
to sequence hierarchical relationships in discourse trees. Using
these strategies, we create a solution that effectively encodes
hierarchical, temporal, and semantic features without relying
on computationally heavy graph-based neural networks, pro-
viding a scalable, interpretable, and comprehensive technique
for capturing the interplay between content and structure
within discourse.

III. METHODOLOGY

Our model consists of four main components: 1) Post
embedding representation: BERT extracts contextual embed-
dings for the source and reply posts. 2) Structural features
extraction: We encode hierarchical levels and stance distribu-
tion. 3) An attention-based encoder: The post embeddings
and structural features are integrated. 4) A decoder: used for
rumor prediction. Figure 2 illustrates our methodology. We
begin by formally defining the problem of rumor verification,
followed by a detailed explanation of the methodology.

A. Problem Definition

The dataset for rumor detection is defined as F =
{e1,ea,...,en}, where each e; corresponds to a unique rumor
event and n refers to the total number of rumor events.
Each event e; consists of (c,y, R, s), where ¢ represents the
claim, and y denotes the veracity label associated with c,
such that y € {true, false, unverified} rumor. The responses
in the discourse for claim c are arranged chronologically as
R(c) = {r1,72,...,7m}, where m indicates the number of
posts r responding to a particular claim c. s encapsulates
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the structural information of the discourse tree. To this end,
this task is formulated as a supervised classification problem,
where the goal is to learn a function f : £ — y that predicts
the veracity label of each event e;.
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Fig. 2. The model framework.

B. Post embedding representation

Each post x; (both ¢ and r;) in a conversational thread is
firstly tokenized and passed through a pre-trained language
model ( e.g., BERT). This produces contextual embeddings
for each token in the post. A pooling strategy is then applied
to aggregate these token embeddings into a single vector
representing the entire post as

T
1
e; = BERT(z;) = - Z Ry, (1)
t=1

where h; represents the hidden state at position ¢ of a given
post, and 7" is BERT input sequence length.

The stance of each reply plays a critical role in the dis-
course’s overall meaning. Following prior work on stance
aggregation [7][17][29], we categorize all replies in a thread
stance labels (Support, Deny, Query, Comment). For each
stance type, embeddings of all replies sharing that stance are
aggregated to create a single vector representing the semantic
contribution of that stance to the discourse. Let Vinee € V be
the set of nodes (replies) in the thread that share a particular
stance. The aggregated embedding for this stance is:
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If no replies belong to a particular stance, a zero vector
is used, following related practices in hierarchical discourse
modeling [17].

After aggregating embeddings for all four stances, these
vectors are concatenated with the embedding of the source
post to create a composite feature vector for a rumor event:

f = [687‘67 Esupport; Edeny, Equery; ecomment] (3)

In rumor verification tasks, aggregating embeddings ef-
ficiently and meaningfully is crucial to capturing both se-
mantic content and the structural dynamics of conversations.
Moreover, as illustrated in Figure 1, posts sharing the same
stance tend to convey similar semantic information. Thus, we
propose that aggregating these posts can provide a compre-
hensive representation of the semantic information within a
conversational thread. Additionally, stance aggregation ensures
dimensionality reduction, where aggregating embeddings by
stance reduces computational overhead while preserving es-
sential information [6], thereby overcoming the limitations of
thread sequence truncation. Finally, aggregation enforces scal-
ability, ensuring that the model handles long threads without
exceeding memory constraints [17][30].

f from (3) is then concatenated with hierarchical and
structural information to form the input features for the model.

C. Structural Features Extraction

Building on recent advances in discourse modeling [12][28],
structural and temporal features are incorporated to enhance
a composite representation. First, to capture the hierarchical
relationships within conversational threads, we represent the
discourse as a tree structure, where each node corresponds
to a post, and edges represent reply relationships. Second,
for traversal and sequencing, traversal techniques—BFS, DFS,
and temporal sequencing—are applied to sequence replies and
encode their hierarchical levels into a structured feature vector.
Finally, we integrate stance distribution information.

Let the discourse tree G = (V, E) represent a conversational
thread. V' is the set of nodes, where v; € V' corresponds to a
post. E is the set of directed edges, where e;; € F indicates
that v; is a reply to v;. The root node v, represents the source
post c; the other nodes v; are replies 7;.

1) Encoding hierarchical levels: The hierarchical level
¢(vi) of each node v; is defined recursively, ¢(vi) = £(v,)+1,
where v, is the parent of v;. Each node v; is assigned a reply-
level vector based on its position in the tree. The root node
is by default promoted to level 1. For a tree with maximum
depth D, the vector h(v;) is:

-, 0], “4)
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where the ¢(vi)-th position is set to 1, and all others are 0;
h(v;)’s dimension is D. Therefore, we sequence h(v;) vec-
tors by separately adopting the following three tree traversal
strategies.

1) Breadth-First Search: BFS sequences nodes level by
level, starting from the root node v,.. At each level, all
nodes are processed before moving to the next level.
This traversal preserves the hierarchy in a breadth-wise
manner when applying the hierarchical level ¢(v;). For
example, considering the discourse tree in Figure 1, the
breadth-first order of the propagation structure would be
[c,71,78,79,T2, T3, 75,76, 77, T4]-

2) Depth-First Search: DFS explores as far as possible
along each branch before backtracking. This traversal
preserves the depth-first order of replies and captures
long chains of interactions. This sequence highlights the
reply chains within a thread. Referring again to Figure 1,
the depth-first order of the propagation structure would
be [Cv T1,72,73,T4,75,T6, 77,18, rol.

3) Temporal sequencing: Reply timestamps are appended
to capture the evolution of discussions over time [28]. To
integrate the time dimension, each node v; is assigned
a timestamp ¢(v; ), representing the post’s creation time.
The replies are then sorted by ¢(vi) within each hierar-
chical level. Given two nodes (v;,v;),

1 if t(v;) < t(vy),

1 if t(’l)i) > t(vj). )

Order(v;,v;) = {
This ordering ensures that replies are chronologically
processed while maintaining their hierarchical structure.

Whether BFS, DFS, or temporal sequencing is used, it
results in a hierarchical vector hjppy.

2) Stance Distribution: We subsequently integrate a nor-
malized vector representing the proportion of replies associ-
ated with each stance category. This design is inspired by prior
work, such as SAMGAT [31], which employs graph-based
aggregation to capture reply distribution patterns. The resulting
feature serves as a global descriptor of the discourse’s stance
dynamics and is formally expressed as a normalized vector:

g = |‘/supp0rl|, I‘/:ieny‘7 |‘/query|’ “/Comment‘ , (6)
Vi i v Vi

where |Vitance| is the count for each stance and |V] is the total
number of replies. This augmented feature representation adds
three benefits to our rumor verification model. First, insight
into credibility, since replies with negative stances (e.g., Deny)
or critical engagement (e.g., Query) are often associated with
false rumors, while supportive replies may reinforce credibil-
ity [29][12]. Next, cross-feature interaction, combined with
hierarchical or temporal features, stance distribution amplifies
the model’s ability to learn patterns in rumor propagation [10].
Finally, signal amplification in sparse data, in threads with
limited replies, stance distribution provides aggregate signals
that are more robust than individual post features [11].
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The final harmonic unified input feature combines the
aforementioned components as:

F= [fa S, hinput] (7

D. An attention-based Encoder

The encoder in this work is designed to process and inte-
grate diverse features from conversational threads, including
f, s, and hiypy. It employs specialized fully connected layers
to encode each type of feature before combining them into
a unified representation for subsequent processing by an
attention layer.

1) Final Post Embedding Encoder: The input here is a
concatenated vector of the source post embedding and stance-
specific aggregated embeddings f from (3). A Fully-connected
Feed-forward Layer (FFL) with ReLU activation and dropout
regularization is used to process f as:

hpos[ = ReLU(Wpostf + bpost)a 3

where W o and by, are learnable parameters. The output is
a latent representation of stance embeddings with dimension
H.

2) Stance Distribution Encoder: Likewise, here the input is
a normalized stance distribution vector s from (6). We process
s with an FFL, which transforms the structural vector into a
latent representation:

hdist = ReLU(WdistS + bdist)a (9)

where Wi, and by are trainable weights and hgg, € R™ is
the encoded stance distribution output.

3) Final Hierarchical Level Encoder: This sub-encoder
uses the structural information h;,p,; encoded as one-hot or
positional vectors. An FFL transforms the structural vector
into a latent representation as:

hguet = ReLU(Wstructhinput + berucl)v (10)

where Wy and by are learnable parameters ans hgyye €
R™ encodes structural information.

4) Attention mechanism: Attention mechanisms enable
models to focus on pertinent parts of input sequences dynam-
ically, enhancing the capture of intricate dependencies and
relationships [32, 33, 34]. We extend this aspect to model
interactions among encoded features (hpos, hdist, Dstruct)s
leveraging a Multi-Head Attention (MHA) mechanism [35],
which allows parallel attention computations to capture diverse
relationships within the input feature space. Thus, it enhances
feature fusion, by attending across multiple features, aiding
the model to effectively integrate information from diverse
sources, ensuring that stance semantics, hierarchical levels,
and stance distributions are considered together for predicting
rumor veracity. Hence, the three latent representations are
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concatenated along a sequence dimension to form the input
for the MHA mechanism as:

Hinpul = Concat(hpostv hdista hstrucl)7 (11)

where Hippye € R"T™H  For each attention head i, the scaled
dot-product attention computes with ReLLU activation function:

KT
head; = ReLU (QZKZ ) Vi
Vdy

where Q);, K;, V; are the query, key, and value matrices derived
from input feature encodings through linear projections of
Hi,pu with the respective weight matrices as:

(12)

Qi = HinputWiQa Kz = HinputWiKy V; = Hinputwiv

13)

The outputs from all heads are concatenated and passed
through a final linear transformation:

MultiHead (Hinpy) = Concat(head,, ..., head,)W°, (14)

where n represents number of attention heads and W° is a
weight matrix. The attended features from MHA are then
aggregated using mean pooling to produce the final unified
representation:

1 & ,
hfina = Dropout (n Z} Mult1Head(Hinpm)> , (15)

where Dropout is used for regularization.

E. Decoder

The decoder aims to take the output (hgp,) from the MHA
as input and makes the rumor veracity prediction. It consists
of a single dense layer and a softmax activation function to
compute class probabilities for rumor veracity prediction. The
feed-forward layer is leveraged to map the high-dimensional
attended representation hgy,; to the output space corresponding
to the rumor classes (True, False, Unverified):

z = Dropout (W oyhfina + bout) (16)

where W, € RE*D is a learnable weight matrix that maps
the hidden representation hgp, to the output classes C, while
bou € R is the bias term. In this case, D is the dimensionality
of hghy and C = 3. The raw output z is passed through a
softmax function to convert it into probabilities for each class:

exp(z;)
S0 exp(z)]

where g; is the predicted probability for class <.

§; = softmax(z;) = i=1,...,C, A7)
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FE. Objective function

During training, the predicted probabilities y are compared
with the ground truth labels using the cross-entropy loss
function:

c

L=- yilog(i)), (18)
i=1

where y; is the one-hot encoded ground truth label.

The objective function for the rumor verification task is
designed to minimize the classification error £. That is, it
integrates the outputs from the attention mechanism, processed
by the decoder, and compares the predictions with the ground
truth labels. In detail, the objective function is expressed as

N C
N 1 N
I(y.y) = _szyi,cl()gyi,ca 19)
i=1 c=1
where N is the total number of rumor events in a training
batch.

IV. EXPERIMENTS

This section assesses the performance of our model in
comparison to SOTA baselines and conducts a comprehensive
analysis to gain deeper insights into the model’s effectiveness.

A. Datasets

Experiments are conducted on three widely used and
publicly available challenging benchmark datasets: SemEval-
2017 [14], RumorEval-2019 [36], and PHEME [37]. Among
these, RumorEval-2019 and PHEME extend the SemEval-
2017 task, which comprises 325 rumor-related events and
5,568 tweets collected from eight major breaking news events.

On the one hand, RumorEval-2019 extends SemEval-
2017 by incorporating additional test data and new Reddit-
based content while utilizing all SemEval-2017 rumor events
for training. It consists of 446 rumor-related conversational
threads and a total of 8,574 posts. The claims in both SemEval-
2017 and RumorEval-2019 are annotated with three veracity
labels: True, False, or Unverified. Each post within a thread is
assigned a stance label: Support, Deny, Query, or Comment.
On the other hand, PHEME enhances RumorEval-2017 by
incorporating additional rumor events and data from nine
major breaking news stories on Twitter. It contains 2,402
conversational threads and 105,354 tweets. Unlike RumorEval-
2019, the additional data in PHEME is annotated solely with
rumor veracity labels.

These datasets are widely recognized within the research
community. Employing the same datasets as previous studies
enables a fair and direct comparison between our approach
and SOTA techniques, ensuring consistency and reliability in
the experimental evaluation.

Tables I, II, and III provide detailed statistics of the datasets.
In the tables, (F, T, U) represent (False, True, Unverified), (S,
D, Q, C) represent (Support, Deny, Query, Comment), and
NS-M stands for Non-Stance Comments, respectively.
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B. Data Preprocessing

Alongside conventional data preprocessing techniques, like
removing null entries, we implement hashtag processing and
text normalization, adapting the approach outlined by [38].
We additionally substitute all hyperlinks in the text with $url$
and replace all @user mentions with $mention$, as these
transformations demonstrated effectiveness in prior work [9].

C. Experimental setup

Our model utilizes the uncased BERT base [2] to generate
word embeddings for both a claim ¢ and replies R within
a rumor event e;. We also tested alternative pre-trained lan-
guage models (PLMs), such as the Robustly Optimized BERT
Approach (RoBERTa) [39] and the Generative Pre-trained
Transformer (GPT) [40]. However, they yielded suboptimal
performance compared to BERT and were therefore dropped in
most of our experiments. During training, the model processes
16 rumor events per batch. The BERT tokenizer is configured
with a maximum sequence length of 128. Optimization is per-
formed using the Adam optimizer [41], with a learning rate of
0.0001. Other hyperparameters include a dropout probability
of 0.35 and four attention heads. For encoding hierarchical
levels and stance distributions, the embedding dimensions are
set to [18, 19, 20] for [SemEval-2017, PHEME, RumorEval-
2019], corresponding to the average thread lengths in these
datasets. We also experimented with various dimensions to
find optimal ones.

For SemEval-2017 and RumorEval-2019, we adhere to the
standard train/validation/test split as defined in the original
publications. Conversely, since PHEME does not provide an
official dataset split, a conventional evaluation protocol is
adopted, that follows a leave-one-out k-fold validation strategy,
where each event is used as a test set in turn.

To address class imbalance, class weights are dynamically
calculated based on label frequencies and incorporated into
the cross-entropy loss function £ during training. The model’s
performance is evaluated using the Macro-F1 score and accu-
racy metrics, with the best-performing model on the validation
Macro-F1 score saved for final testing. All hyperparameters
were meticulously fine-tuned using the development dataset.
The reported results are aggregated from ten experimental
runs. All experiments were conducted on two Quadro RTX
8000 GPUs, each equipped with 48 GB of VRAM, ensuring
sufficient computational resources for our tasks.

As the PHEME dataset includes only partial stance anno-
tations, we initially trained the model (omitting the stance-
based embedding aggregation and stance distribution modules
during this stage) using both the stance-labeled RumorEval-
2019 and SemEval-2017 datasets. Given that these datasets
exhibit a significant skew toward the Comment stance, we
applied the SMOTE [42] oversampling technique to balance
the stance distribution and improve the generalization of the
model. The best-performing model from this training was then
used to predict the stance labels for the PHEME dataset. On
the same note, SMOTE was not used for rumor verification to
ensure a fair comparison with baseline methods.
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TABLE I
DETAILED STATISTICS OF RUMEVAL2017

Split Rumor Statistics Stance Distribution
#Threads AvgDepth #F #T  #U #S #D #Q #C
Train set 272 32 50 127 95 841 333 330 2734
Development set 25 34 12 10 3 69 11 28 173
Test set 28 2.8 12 8 8 94 71 106 778
Total 325 3.2 74 145 106 1004 415 464 3685
TABLE II
DETAILED STATISTICS OF RUMEVAL2019
Split Rumor Statistics Stance Distribution
#Threads AvgDepth  #F #T  #U #S #D #Q #C
Twitter Train 325 2.2 74 145 106 1004 415 464 3685
Reddit Train 40 3.0 24 9 7 23 45 51 1025
Total Train 365 2.3 98 154 113 1027 460 515 4700
Twitter Test 56 0.9 30 22 4 141 92 62 771
Reddit Test 25 2.9 10 9 6 16 54 31 705
Total Test 81 1.7 40 31 10 157 146 93 1476
Total 446 23 138 185 123 1184 606 608 6176
TABLE III
DETAILED STATISTICS OF PHEME
Event Rumor Statistics Stance Distribution
#Threads AvgDepth #F #T #U #S #D  #Q #C #NS-Com
Charlie Hebdo 458 3.5 116 193 149 248 60 61 795 380
Sydney siege 522 3.3 86 382 54 225 90 110 769 448
Ferguson 284 52 8 10 266 191 95 116 784 234
Ottawa shooting 470 29 72 329 69 171 78 83 568 407
Germanwings-crash 238 3.1 111 94 33 80 16 43 244 209
Putin missing 126 2.2 9 0 117 18 6 5 33 117
Prince Toronto 229 2.3 222 0 7 21 7 11 64 217
Gurlitt 61 1.3 0 59 2 0 0 0 0 61
Ebola Essien 14 24 14 0 0 6 6 1 21 12
Total 2402 3.6 638 1067 697 960 358 430 3278 2085
D. Baseline Models based on the hierarchical structure of conversations.
We present our model in three variations (CoSDD-Depth, Each lgl‘.Olfl‘p N processzd ;11 sing BERT dt(.) fextract. con
CoSDD-Temp, and CoSDD-Breadth) each differentiated by textua mn ormation, and the aggregate mn or'mat1on 18
. . . fused using a Transformer for rumor verification.
the encoding strategy used for hierarchical levels. CoSDD- . ) .
. 4) Coupled Hierarchical Transformer (CHT) [8]: Build-
Depth and CoSDD-Breadth adopt DFS and BFS strategies, re- . . . :
. X e . ing on the MTL2-Hierarchical Transformer, this model
spectively, while CoSDD-Temp utilizes temporal sequencing. .
. . incorporates BERT to capture contextual nuances. It
These variations are evaluated against several SOTA rumor . . .
. . further enhances performance by integrating stance in-
detection models: .
. . o formation.

1) Stance-Conditioned Modellng (S-COM) [1] This is 5) SEMTEC [45] This method introduces SEMTEC, a
our prior work, that 18 extended in this paper. It ag- deep learning-based approach that combines emotion
gregates post embeddings and separately models stance features, sentiment attributes, and contextual text analy-
progression with a BiLSTM for rumor verification. sis to improve rumor detection.

2) eventAl [43]: This method, which secured the first 6) Joint Rumor and Stance Model (JRSM) [9]: This

3)

position in the RumorEval-2019 competition task [44],
leverages multidimensional information and employs an
ensemble strategy to enhance rumor verification.

MTL2-Hierarchical Transformer [8]: This approach
segments conversational threads into multiple groups

framework utilizes a graph transformer to encode input
data and a partition filter network to model explicitly
rumor-specific, stance-specific, and shared interactive
features. These features are subsequently employed for
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joint rumor and stance classification.

7) SAMGAT [31]: This model utilizes Graph Attention
Networks (GATs) to capture contextual relationships
between posts. While initially applied to the PHEME
dataset for binary classification (excluding the Unverified
class), we adapt and retrain SEMTEC and SAMGAT for
our experimental setup (three classes) across all relevant
datasets.

8) Knowledge Graphs (KGs) [46]: This study proposes a
knowledge graph-based methodology that automatically
retrieves evidence for rumor verification.

E. Results

1) Results and Discussion: Table IV provides a compara-
tive analysis of the performance of the models. The findings
demonstrate that our model significantly outperforms the best-
competing baselines, as validated by McNemar’s test with a p-
value < 0.05 [47], with the CoSDD-Breadth variant delivering
the best results. Furthermore, our results exhibit a standard
deviation in the range of 0.006—0.02 across all three datasets
over the 10 experimental runs, indicating robust and consistent
performance.

From the table, while eventAl uses multidimensional infor-
mation and ensemble learning to boost performance, it relies
heavily on pre-defined multidimensional features, which could
miss latent cues in data, and it does not account for the
hierarchical structure of conversations or the distribution of
stances, which are critical for understanding rumor propa-
gation dynamics. MTL2-Hierarchical Transformer processes
hierarchical conversational threads by segmenting them into
groups and using BERT to extract contextual features. It
further employs a Transformer to fuse group-level information.
Still, the hierarchical structure is only partially encoded,
and inter-group interactions may be underrepresented and
does not leverage stance distributions as part of its input
for understanding conversations in rumor detection and also
fails to emphasize temporal dependencies, which can provide
critical context for rumor dynamics. Coupled Hierarchical
Transformer introduces an attention mechanism to integrate
stance information, which adds contextual nuance but the
stance information is not as comprehensive or dynamically
aligned with structural and temporal features as in our model,
the model lacks a systematic representation of hierarchical
dependencies.

The Joint Rumor and Stance baseline model effectively
combines rumor and stance-specific features, but it also lacks
the temporal and structural encoding capabilities that our
model achieves via CoSDD-Breadth and CoSDD-Temp. SAM-
GAT’s reliance on localized graph attention limits its ability to
capture global relationships across threads, which our model
handles effectively through hierarchical encodings. Compared
to SAMGAT and SEMTEC, our model is more adaptable to
three-class classification, as demonstrated by the substantial
performance boost, since these two baselines were primarily
intended for binary rumor classification.

International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

The evidence-retrieval approach of Knowledge Graphs is
limited by the availability and quality of external evidence.
S-Com is close to our model’s performance, but it statically
models stance progression with BiLSTM without accounting
for dynamic stance sequencing strategies in a conversational
tree. Our models leverage hierarchical encoding to capture
the complex structural relationships in conversational threads
effectively. Including stance distributions as part of the input
features, concurrently applying graph traversal techniques to
hierarchical encoding, enables the model to align stance dy-
namics with rumor classification. This aligns with methods
like the Joint Rumor and Stance model but incorporates
richer attention mechanisms, providing a significant edge. The
MHA mechanism ensures that the model focuses on relevant
parts of the input (e.g., stance signals and structural levels).
Our models enhance this by modeling the entire structural
hierarchy effectively, compared to models like SAMGAT that
focus on localized graph attention. Our approach incorporates
embeddings aggregated from source posts, stance distribu-
tions, and structural hierarchies, allowing for nuanced feature
representations. This approach captures latent cues that other
baselines (e.g., eventAl and SEMTEC) might overlook due to
reliance on pre-determined features like sentiment or emotion.

It has been noticed from the table that the CoSDD-Breadth
variant of our model performs better than the CoSDD-Depth
and CoSDD-Temp variants, and we point out the following
factors. To begin with, CoSDD-Breadth processes nodes level
by level within the hierarchical structure of a conversation
thread. This allows the model to capture the broad, over-
all structure and relationships across different levels of the
hierarchy simultaneously. In contrast, CoSDD-Depth focuses
on deeper, more localized paths first, which might cause the
CoSDD-Depth model to miss or underrepresent cross-level
interactions that are critical for understanding the broader
context of rumor propagation. Secondly, rumors often involve
interactions across multiple users at the same hierarchical
level (e.g., multiple replies to a single source post or other
replies). CoSDD-Breadth captures these parallel interactions
effectively by processing all posts at the same level together.
CoSDD-Depth, on the other hand, focuses on specific threads
or chains of replies, which may lead to a narrow perspective
on the overall conversational dynamics and off-topic diver-
sions. Third, CoSDD-Breadth ensures that stance distributions
across the hierarchical levels are aggregated and attended to
in a balanced way, as the model processes the entire level
before moving to the next. This aligns well with our model’s
attention mechanism, which uses these distributions to refine
the representation of conversational threads. The CoSDD-
Depth variant, conversely, may prioritize deeper paths without
adequately integrating the stance dynamics across intermediate
hierarchical levels. Finally, the CoSDD-Temp variant primarily
relies on time-ordered posts, which may not always align with
the hierarchical structure. In cases where multiple posts are
created simultaneously or out of sequence, temporal encoding
can misrepresent the structural relationships. However, the
CoSDD-Breadth naturally respects the hierarchical structure
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TABLE IV
PERFORMANCE COMPARISON WITH BASELINE MODELS.
Model SemEval-2017 RumorEval-2019 PHEME
Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc

eventAl 0.618 0.629 0.577 0.591 0.342 0.357
MTL2-Hierarchical Transformer 0.657 0.643 0.568 0.572 0.375 0.454
Coupled Hierarchical Transformer 0.680 0.678 0.579 0.611 0.396 0.466
SAMGAT 0.702 0.709 0.542 0.562 0.409 0.418
SEMTEC 0.711 0.727 0.581 0.592 0.421 0.437
Joint Rumor and Stance Model 0.754 0.767 0.598 0.623 0.448 0.479
Knowledge Graphs 0.758 0.759 0.584 0.593 0.489 0.523
S-Com 0.774 0.781 0.636 0.648 0.641 0.643
CoSDD-Depth 0.775 0.767 0.712 0.724 0.591 0.622
CoSDD-Temp 0.776 0.789 0.728 0.731 0.595 0.659
CoSDD-Breadth 0.783 0.798 0.731 0.765 0.658 0.638

while maintaining a balance between temporal and structural
features. This makes it more robust for predicting rumors from
online discourse, where hierarchical relationships are crucial.

Although only Twitter and Reddit data are used in our
experiments, this work can be customized and extended to any
social media platform actively engaging in fact-checking and
where users participate in the subsequent conversations about
a source claim. Therefore, our stance-conditioned modeling
for rumor verification can also be generalized to Facebook,
Instagram, Threads, etc. This will be incorporated into future
work.

F. Ablation Study

The ablation study, as illustrated in Table V, provides
insights into the contributions of different modules within
our model. By systematically removing individual components
and observing the changes in Macro-F1 and accuracy on the
RumorEval-2019 and PHEME datasets, we can evaluate the
importance of each module. In the table, -structs & emb aggreg
indicates that our model relies solely on the claim post c,
omitting both the structural dynamics from replies R and
the embeddings aggregation €gnce- The -structs configuration
excludes the stance distribution hg;; and the hierarchical
levels encoding hgyye. In -emb aggreg, the embeddings ag-
gregation mechanism is removed; instead, the entire rumor
event is encoded as a single BERT embedding, constrained
by the maximum sequence length of the language model
(i.e., 512). The variant -hier levels excludes the hierarchical
levels encoding feature, while -stance distr removes only
the stance distribution module. The -MHA configuration does
not utilize the MHA mechanism; instead, it directly employs
the combined feature vector F' for predicting rumor veracity.
Lastly, CoSDD-Breadth represents our most comprehensive
model, incorporating all modules and employing BFS traversal
to encode hierarchical levels. Here is an analysis of the results:

1) Impact of Structural Dynamics and Embedding Aggre-
gation (-structs & emb aggreg): Removing both structural
dynamics and embedding aggregation mechanisms results in
the worst performance across both datasets (Macro-F1 drops
to 0.540 on RumorEval-2019 and 0.345 on PHEME). The

TABLE V
ABLATION STUDY OF OUR MODEL ON THE RUMOREVAL-2019 AND
PHEME DATASETS.

Model RumorEval-2019 PHEME
Macro-F1 Acc Macro-F1 Acc
-structs & emb aggreg 0.540 0.566 0.345 0.582
-structs 0.549 0.573 0.417 0.590
-emb aggreg 0.552 0.579 0.410 0.623
-hier levels 0.561 0.582 0.450 0.593
-stance distr 0.573 0.594 0.461 0.628
-MHA 0.595 0.642 0.474 0.631
CoSDD-Breadth 0.731 0.765 0.658 0.638

model, in this configuration, relies solely on the claim post
¢, completely ignoring the hierarchical structure and stance
information from the replies R. Additionally, excluding the
embedding aggregation only, meanwhile encoding the entire
rumor event as a single BERT embedding (-emb aggreg), fur-
ther limits the model’s ability to distinguish nuanced relation-
ships between posts. This confirms that capturing relationships
within conversation threads and integrating stance distributions
is essential for effective rumor verification.

2) Impact of Structural Dynamics (-structs, -hier levels, -
stance distr): Excluding both/either stance distribution and/or
hierarchical level encodings results in a significant perfor-
mance drop compared to the full model. The hierarchical struc-
ture of a conversation plays a critical role in understanding
rumor propagation. Without this structural context, the model
cannot effectively capture the interplay between a claim post ¢
and replies R, and the model cannot represent how information
propagates through different levels of the conversation. The
stance distribution is crucial for incorporating the stance
dynamics of replies into the rumor veracity decision. Without
it, the model loses critical features that differentiate between
supportive, commenting, denying, and querying stances. This
highlights the importance of structural dynamics (hgy,e and
hgii) in improving veracity prediction.

3) Impact of Multi-Head Attention (-MHA): Removing the
MHA mechanism equally reduces the performance of the
model. MHA enhances the model by allowing it to focus
on different aspects of the conversation, such as structural
relationships, stance, and temporal cues. Directly using the
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Fig. 3. Early Rumor Detection Performance on SemEval-2017.

combined feature vector reduces the model’s flexibility and
representational power.

The full model (CoSDD-Breadth) achieves the highest
performance on both datasets, with a Macro-F1 of 0.731
on RumorEval-2019 and 0.658 on PHEME. Combining all
modules ensures that the model captures both the global and
local dynamics of a discourse. The BFS traversal specifically
enhances the representation by effectively encoding hierarchi-
cal relationships across levels.

G. Early Rumor Detection

Timely detection of rumors can mitigate their widespread
dissemination. To assess early rumor detection capabilities,
we define detection checkpoints based on the elapsed time,
spanning 24 hours, since the initial post. At each checkpoint,
only replies accumulated up to that point are considered for
model evaluation, and performance is measured using the
Macro-F1 score at each detection interval.

Figure 3 illustrates Macro-F1 and accuracy scores over
time for early rumor detection on the SemEval-2017 dataset.
Our model consistently outperforms all baselines throughout
the 24-hour period, demonstrating superior effectiveness in
detecting rumors early. While all models improve as more
information becomes available, our model achieves signif-
icantly higher Macro-F1 scores early on, starting with an
advantage at 4 hours and maintaining superior performance
throughout. This suggests that our approach is more responsive
to limited initial data, making it highly effective for early-
stage rumor identification and particularly valuable in real-
world misinformation scenarios where timely intervention is
crucial.

H. Performance of different pre-trained language models

To identify the most effective pre-trained language model
for generating contextual embeddings of rumor events, we con-
ducted additional experiments comparing BERT, RoBERTa,
and GPT. These models were chosen due to their strong
presence and performance in the existing literature. For
each language model, we applied all three configurations of

our approach: Depth, Temporal, and Breadth. The perfor-
mance results for each configuration across the SemEval-2017,
RumorEval-2019, and PHEME datasets are summarized in
Table VI

The results indicate a clear performance advantage for
BERT-based configurations, which consistently outperform
both GPT and RoBERTa counterparts across all datasets and
metrics. Among the three configurations, CoSDD-Breadth-
BERT achieves the highest overall scores on the SemEval-
2017 dataset, with a Macro-F1 of 0.783 and an accu-
racy of 0.798, while also attaining top performance on
RumorEval-2019 (Macro-F1 = 0.731, Acc = 0.765). On
the PHEME dataset, BERT models also dominate, with
CoSDD-Temp-BERT achieving the best accuracy (0.659)
and CoSDD-Breadth-BERT obtaining the highest Macro-
F1 (0.658). In contrast, GPT-based models show relatively
lower performance, with Macro-F1 scores generally below
0.73 for SemEval-2017 and below 0.70 for RumorEval-2019.
RoBERTa models perform better than GPT but still fall short
of BERT, suggesting that BERT’s embedding representations
are more effective for this rumor verification task, particularly
when combined with the Breadth configuration.

V. CONCLUSION

This study presents a novel approach to rumor verifica-
tion that leverages hierarchical structural encoding, stance
distributions, and MHA mechanisms to capture the intricate
dynamics of rumor propagation in conversational threads.
Our model demonstrates SOTA performance across multiple
benchmark datasets, including SemEval-2017, RumorEval-
2019, and PHEME, outperforming existing approaches with
statistically significant improvements in Macro-F1 and ac-
curacy metrics. Our findings highlight several key insights:
the explicit incorporation of stance information significantly
improves rumor verification, demonstrating that user reactions
provide crucial contextual cues. Our experiments further show
that breadth-based graph traversal outperforms depth-based
and temporal-based sequencing strategies for hierarchical en-
codings. Early rumor detection analysis demonstrates that
our model achieves faster and more accurate misinformation
detection than competing methods, underscoring its practical
utility in real-world misinformation detection; meanwhile,
BERT indicated stronger performance over RoBERTa and
GPT when encoding discourse embeddings.

While the model has shown success, its limitations include a
heavy reliance on accurate stance annotations—which might
not be consistently available—and training on datasets that
may not fully represent real-world misinformation trends
across diverse social media platforms. Additionally, the focus
on textual content ignores the visual aspects (such as images,
memes, and videos) that often accompany online rumors.
Future work could reduce dependence on manually labeled
data through weakly supervised and self-supervised learning,
improve generalization via cross-platform adaptation, incor-
porate multi-modal data, and further explore extra structural
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TABLE VI
PERFORMANCE COMPARISON OF PRE-TRAINED LANGUAGE MODELS.
Model SemEval-2017 RumorEval-2019 PHEME
Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc

CosDD-Depth-GPT 0.709 0.719 0.682 0.687 0.522 0.551
CosDD-Temp-GPT 0.712 0.723 0.689 0.691 0.523 0.536
CosDD-Breadth-GPT 0.725 0.731 0.692 0.703 0.541 0.545
CosDD-Temp-RoBERTa 0.721 0.739 0.698 0.713 0.558 0.575
CosDD-Depth-RoBERTa 0.734 0.742 0.706 0.710 0.545 0.552
CosDD-Breadth-RoBERTa 0.748 0.761 0.712 0.715 0.557 0.601
CoSDD-Depth-BERT 0.775 0.767 0.712 0.724 0.591 0.622
CoSDD-Temp-BERT 0.776 0.789 0.728 0.731 0.595 0.659
CoSDD-Breadth-BERT 0.783 0.798 0.731 0.765 0.658 0.638

dynamics like stance distribution, hierarchical level encoding,
and attention mechanisms.

Finally, while the work has positive implications, ethical
challenges and risks persist. False negatives and false positives
could respectively suppress credible information or allow
misinformation to spread, so human validation of predictions
is recommended. The system’s success could also enable
misuse, such as censorship or targeting, requiring transparent
deployment and strict ethical guidelines. Additionally, training
data biases may lead to unfair outcomes; therefore, evaluating
and mitigating these biases is crucial.
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