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Abstract—The leveraging of an Interstitial b-SHAP-Owen
Amalgam (IbSOA) is the focus of this paper; interestingly, the
amalgam can potentially lend towards the enhancement of
Artificial Intelligence (AI) System (AIS)-Centric multi-stage
Sequential Decision-Making (DM) (SDM) amidst Ambiguity
and Uncertainty (A/U) by leveraging certain previously peer-
reviewed preset modules — Lower Ambiguity, Higher
Uncertainty (LAHU) and Higher Ambiguity, Lower
Uncertainty (HALU) Module (LHM) — and certain
subordinate modules — LHM’s Isomorphic Paradigm (IsoP)
Comparator Similarity Measure Module (ICSM2) and LHM’s
Metaheuristic Algorithm Module (MAM) — as well as a new
module in the form of a Conversational AI Robustness (CAIR)
Accelerant (CAIR-A) Module (as a proxy case study example);
CAIR-A addresses the challenge of Robust Dialogue
Management (RDM) with the objective of sufficiently
supporting a Conversational Al Agent (CAA) so as to be able
to maintain consistency, coherency, and validity throughout an
ongoing dialogue. To achieve this, the involved Reasoning
Mechanisms (RMs) — Monotonic Reasoning (MR) and Non-
Monotonic Reasoning (NMR) — need to be well counterpoised;
the apropos harmonizing of MR/NMR can help ensure the
RDM’s plasticity for enhanced conversational coherence. In
turn, the successful counterpoising of MR/NMR is predicated
upon insights into the Monotonic/Non-Monotonic Transition
Zones (MNTZs); after all, shifts from a monotonic to a non-
monotonic paradigm and vice versa in the MNTZs can occur at
a higher than anticipated rate. IbSOA-related insights into the
myriads of interplays among local, glocal, and global facets can
better contextualize the behavior within the MNTZs and better
support the CAA’s SDM amidst A/U. As previously noted, the
CAA is simply a proxy application, and the implications of the
referenced counterpoising have broader implications for AIS
SDM.
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1. INTRODUCTION

Conversational Al Agents (CAA) endeavor to emulate
natural human conversation through, among other modes,
text and/or voice (CAA capability has also been extended to
include holographic form, such as offered by Holoconnects,
Ravatar, Proto, and others). Other companies focus on
certain realism aspects, and offerings include those by
Hume  (https://www.hume.ai/?tab=evi), ElevenLabs
(https://elevenlabs.io/conversational-ai), etc. Conventional

CAA leverages an amalgam of constituent technologies,
such as Automatic Speech Recognition (ASR), Natural
Language  Processing (NLP), Natural Language
Understanding (NLU), Natural Language Generation
(NLG), Large Language Models (LLMs), and Machine
Learning (ML), among others, so as to engage in
meaningful dialogue and provide robust “human-like
responses.” In contrast to prototypical chatbots, which are
underpinned by “rule-based” prescribed scripts, CAA can
engage in unscripted dialogues, learn/tune from each and
every engagement, as well as leverage external
sources/systems. In terms of realism, CAA should be able to
perform in real-time without any awkward delays. This
paper builds upon [1], which was submitted to Future
Computing 2025 on March 1, 2025 (now published), as well
as touches upon certain elements of [2], which was
submitted to Al-based Systems and Services (AISyS) 2025
on June 10, 2025 (accepted; in press), and fundamentally,
this paper, which was substantially completed in April 2025
(following the journal invitation), underscores the notion
that CAA responses need to remain consistent, coherent,
and valid. This is non-trivial to achieve, and a number of
technical challenges exist within this ecosystem. Among
other challenges, first, the CAA must contend with the SDM
challenge; in essence, the series of decisions that the CAA
makes will have a cumulative effect as to how robust the
overall conversation (which may ensue across multiple
interactions) will be. Second, the CAA needs to undertake
SDM amidst varying degrees of A/U, whose definitions are
provided in Table I below.

TABLE L. AMBIGUITY (A) VERSUS UNCERTAINTY (U)
DM Notions | Definitions
Ambiguity Ambiguity is prevalent when the involved
(A) circumstance(s) and/or the involved information can
be construed in varying ways (including
contradictory).
Uncertainty Uncertainty is prevalent when the outcome of the

V) involved circumstance(s) is unknown/unpredictable,
and there exists a lack of knowledge (wherein
information pertains to recitals of fact and/or
descriptors  while knowledge pertains to the
comprehension and operationalization of that
information).

Interestingly, the issue of SDM extends far beyond the
CAA case study, as will be delineated in Section IA.
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A. The SDM Challenge

Autonomous Systems (AS), such as in the form of
Autonomous Artificial Intelligence Systems (AIS), may
include Autonomous Underwater Vehicles (AUVs),
Unmanned Surface Vehicles (USVs), Unmanned Aerial
Vehicles (UAVs), unmanned spacecraft, etc. A more
commonly recognized manifestation might be in the form of
self-driving cars. Some of the involved companies are quite
well-known in the marketplace: Amazon’s Zoox, General
Motors’ Cruise, Tesla, and Waymo, with the latter two, in
particular, asserting their desire to achieve the Society of
Automotive Engineers’ (SAE) sixth level of driving-related
automation — “5 (full automation),” which is contrasted to
“0 (no automation).” This type of sixth level autonomous
Al-centric vehicle, as well as certain “near-to-this-level”
paradigms — as pertains to the other referenced drones —
are necessarily reliant upon robust Sequential Decision-
Making (DM) (SDM), which is often referred to as multi-
stage DM since the SDM challenge itself resides in the fact
that multiple DM points — over an elongated temporal span
(i.e., a longer time horizon) — are interrelated. Each
decision made at a DM point potentially constitutes a DM
Inflection Point (DMIP) and impacts the ensuing
prospective possible courses of action and their outcomes,
such as described by Wanke, for which an abridged version
is shown in Figure 1 below [3].

DMIP #1 DMIP #3

DMIP #2

/ 9—‘ Predicted Issue

t-90 min  t-60 min t-30 min

Figure 1. Various DM points comprising an exemplar SDM problem

Utilizing Wanke’s presented case, 1.0 equates to “no
resolution actions will be taken,” 0.5 equates to “resolve the
anticipated issue,” 0.6 equates to a “partial resolution,” Jj
equates to “resolution cost distribution at decision point i of
option j,” and the mean cost for the indicated path in purple
of 0.6-1.0-0.5 is expressed in (1) [3].

E(W)=J1:+E(J21J12)+E(J311J211J12) (1)

It should be clear from Figure 1 and (1) that SDM stands in
stark contrast to single-stage DM, wherein downstream
consequences are not necessarily considered. After all, a
core challenge of SDM is to optimize the cumulative
outcome over the various multi-stage DM points. Practically
speaking, Real-World Scenarios (RWS) typically involve
SDM amidst ever-evolving environs; along this vein, RWS
SDM often occurs amidst varying degrees of A/U, whose
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proposed handling, among other approaches, is discussed in
the following Section IB.

B.  Tackling SDM Amidst A/U

At the core, RWS AIS SDM A/U (AIS-SDM-A/U)
tends to involve several steps/DM points/DMIPs amidst a
complex and dynamic ecosystem. Apart from the
transportation-related venues previously described in
Section IA, AIS-SDM-A/U has also become more prevalent
in the energy sector (e.g., for the positing of energy demand
over a certain period of time and optimizing the involved
power grid to handle the associated consumption), the
financial sector (e.g., for the determination of the allocation
and re-allocation of financial assets to optimize Return on
Investment or ROI), the healthcare sector with regards to
patient monitoring, diagnosis, and treatment planning (e.g.,
for the selection of a series of treatments to attain,
ultimately, a more optimal outcome), etc. Apart from these
referenced sectors, AIS-SDM-A/U is becoming prevalent in
other sectors as well. Yet, at its core, SDM is a formidable
area to tackle with the well-known Bellman notion of the
“curse of dimensionality” (wherein contending with an
increasing number of features can segue to an exponential
increase in computational cost and/or a prospective marked
decline in performance), and the question of how to handle
A/U remains an ongoing challenge [4]; along this vein,
features, dimensions, and criteria should be differentiated.
Features typically equate to what the involved entity “is” or
“does”  (i.e.,  property/characteristic,  functionality),
dimensions relate to how the entity can be delineated or
classified/categorized, and criteria include the standards
and/or benchmarks utilized to assess the entity. Given these
distinctions and the associated backdrop, certain preset
approaches, such as that of a Lower Ambiguity, Higher
Uncertainty (LAHU) and Higher Ambiguity, Lower
Uncertainty (HALU) Module (LHM), have been advanced
in an effort to tackle the AIS-SDM-A/U challenge. The
functions of the LAHU and HALU LHM components are
described in Table II.

TABLE II. LAHU/HALU MODULE (LHM)
LHM Definitions
Components
Lower “Under a Compressed Decision Cycles (CDC) ‘paradigm
Ambiguity, or tight time constraints,” the LHM ‘accepts higher
Higher uncertainty (i.e., sparse data) given the condition of lower
Uncertainty ambiguity’ (i.e., Lower Ambiguity, Higher Uncertainty
(LAHU) or LAHU),” “and this roughly translates to the
consideration that an isomorphic scenario has manifested
previously within the available historical data” [5], [6],
and those Digital Object Identifiers (DOIs) of Table IV.
Higher Under a paradigm of Uncompressed Decision Cycles
Ambiguity, (UDC), meaning, “if there exists a condition of Higher
Lower Ambiguity” conjoined with Lower Uncertainty (i.e.,
Uncertainty HALU), “wherein the isomorphic scenario is nonexistent
(HALU) within the historical data, there will be a proactive
seeking of more data ‘to lower uncertainty’ so as to move
towards a more acceptable state” [5], [6], and those DOIs
of Table IV.
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With regards to the LHM’s repertoire of experience, this
can include the various data categories of Table III: Non-
Operational Data, Situational Awareness Data, and
Operational Data, among others. These comprise, among
other facets, the “repertoire of experience” (e.g., the
encountering of similar scenarios) of the LHM.

TABLE III. LHM DATA CATEGORIES

Data Categories

Definitions

Non-Operational

“historical and forensic data that has been ingested,
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1) LHM’s ICSM?2

The ICSM’s decided actions may be predicated upon
whether the compared paradigm actually needs to undergo a
computationally more extensive IsoP examination. For
example, in some cases, such as for unordered sets, the
ordering of the edges (and their weights) may not
necessarily be relevant, as only the nodes (and their values)
(hereinafter, “N+V”) need to be compared; in other cases,
such as for ordered sets, the edges and the sequencing of the
nodes is of significance. Exemplar ICSM2 considerations
are presented, in somewhat logical order, within Table V
below.

Data (NOD) apriori” or near-contemporaneously, “to serve as a
baseline” for contextualizing the Operational
Data” [first DOI of Table IV].

Situational environs data that is “contextualized and integrated

Awareness Data | with Operational Data” for the purpose of

(SAD) appraising Operational Data “prior to the exigency

circumstance;” “in this way...lessons can be
learned and leveraged without necessarily needing
the immediate performance required of
Operational Data” [first DOI of Table IV].

“this data is, when contextualized by Situational
Awareness Data and Non-Operational Data, can
be quite indicative and better lend to the immediate
performance expected of quasi-real-time data for
decision-making” [first DOI of Table IV].

Operational Data
(OD)

To recap Tables II and III, and as discussed in the first
DOI of Table IV, under a LAHU paradigm, given a
sufficient repertoire of experience, the tolerance for
uncertainty is raised, thereby lowering “the need to turn
Non-Operational Data and Situational Awareness Data into
immediate performance data” [first DOI of Table IV].
Suffice it to say, for future circumstances, wherein
immediate DM is necessary, the now formulated set of Deep
Belief Heuristics may be utilized. The practical utility of the
LHM (i.e., its enablement) is delineated in [5], [6], and
those DOIs of Table IV below.

TABLE IV. EXEMPLAR DIGITAL OBJECT IDENTIFIERS (DOIS)
PERTAINING TO THE NOTIONS OF LAHU/HALU
Facet Dor
LAHU; *10.1109/TEMCON.2019.8936241

HALU + 10.1109/1AICT62357.2024.10617473
+ 10.1109/GEM61861.2024.10585580
* http://dx.doi.org/10.2139/ssrn.5183492
* http://dx.doi.org/10.2139/ssrn.4984663
(DOIs are generally not assigned to

patents, such as [5] and [6]).

As described by the last DOI of Table IV, central to the
LHM are various supporting modules, such as that of an
Isomorphic Paradigm (IsoP) Comparator Similarity
Measure (ICSM) Module (ICSM2) as well as a
Metaheuristic Algorithm Module (MAM), among other
modules. These are briefly described as follows, and further
clarification will be provided in Section II.

TABLE V. EXEMPLAR CONSIDERATIONS PRIOR TO AND INCLUDING
THAT OF ISOMORPHIC COMPARISON

1cCSm2 Definition

Considerations

Unordered Set | Set of disparate constituents, wherein the order of the
(UnS) constituents is not relevant. By way of example, {1, 2, 3,

4,5} equates to {5, 3, 1, 4, 2}.

Equal Sets A pair of sets S and S’ is equal if and only if (iff) each
(EqS) constituent of S is also a constituent of S’; moreover, the

order of the constituents is not relevant. By way of]
example, if S=[1,2,3,8,9,10]and S’ = {9, 3, 1, 2, 10,
8}, then S=S’.

Equivalent Sets

A pair of sets S and S’ is considered equivalent if the

(Equivs) number of constituents in S and S’ is the same (i.c.,
same cardinality). By way of example, if S = {1, 3,5, 7,
9} and S* = {2, 4, 6, 8, 10}, then S and S’ are
considered to be equivalent.

Ordered Set Set of disparate constituents, wherein the order of the

(OrS) constituents is relevant, and the constituents can be
ordered and compared via operators, such as <. By way
of example, an ordered set might be {1, 2, 3, 5, 6, 8, 9,
10}, whereas an unordered set might be {6, 5, 1, 2, 3,
10, 9, 8}.

Partially Set of disparate constituents, wherein the constituents

Ordered Set might or might not be able to be ordered and compared,

(POSET) since operators such as <= can yield different variations.

By way of example, Calcworkshop
(https://calcworkshop.com/relations/partial-order/)
provides some examples, which we extrapolate upon in
the way of {a<b<c<d<=e<=f}, {a<=b<=c<d
<e<=f<g},and {a<b<c<=d<=e<f}, which are
shown diagrammatically in Table VI.

Unordered Sets
with

For a set of disparate constituents, wherein the
constituents are unordered, if there is a one-to-one

Isomorphism relationship (i.e., bijection), then the unordered sets are

(UnS-Iso) likely isomorphic. By way of example, if S={1, 2, 3, 4,
5}, S’={a, b, ¢, d, e}, and 1<->a, 2<->b, 3<->¢, 4<->d,
and 5<->e (wherein each constituent in S relates to a
unique constituent in S’), then S and S' are considered to
be isomorphic.

POSETs with For a set of disparate constituents, wherein the

Isomorphism constituents are considered to be within a POSET, if]

(POSET-Ts0)

there is a bijection, then the POSETs are likely
isomorphic. By way of example, if S={Si, Sz, S3, Ss,
Ss}, S’={S’2, S’4, S’s, S’3, S"1}, and S1<->S’2, $»<->§’s,
S3<->S’1, S4<->S’;, and Ss<->S’3;, (wherein each
constituent in S relates to a unique constituent in S’),
then S and S' are considered to be isomorphic. To
demonstrate this, online tools are available, such as
https://graphonline.top/en/?graph=xPLjwOkrgIDRgYeS,
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TABLE VIII. EXEMPLAR DOIS PERTAINING TO CRITERIA WEIGHTING
EXPERIMENTATION
Facet Dor
CW, * 10.1109/ICSGTEIS60500.2023.10424230
ACWS *10.1109/ICPEA56918.2023.10093212

+ 10.1109/Al10T61789.2024.10579033
* http://dx.doi.org/10.2139/ssrn1.4984663
* http://dx.doi.org/10.2139/ssrm.5183492
+ 10.1109/A110T65859.2025.11105315

among others.
Isomorphism Extrapolating upon the POSETs with isomorphism,
Variants (IV) there are also permutations that are actually
isomorphism variants (e.g., automorphism, which is a
particular type of isomorphism that has a symmetrical
structure), which Lemons nicely casts and for which
examples are shown in Table VII as IV#1 through #3
[7].
TABLE VI. EXEMPLARS OF ISOMORPHIC PARTIALLY-ORDERED SETS
(POSETS)
POSET #1 POSET #2 POSET #3
Maximal: d, e, f Maximal: g Maximal:
Greatest: none Greatest: g Greatest:
Minimal: a Minimal: a, b, ¢ Minimal: a
Least: a Least: none Least: a
TABLE VIIL. EXEMPLARS OF ISOMORPHIC VARIANTS (IVS)
1V #1 1V #2 1V #3 (automorphism)
a h g a [¢ a b c
b
b f d h d
f
c d e g € g f e
The LHM ICSM2’s considered pathways for

undertaking the requisite pre- and isomorphic/non-
isomorphic comparisons, such as alluded to by Table V, are
underpinned by the LHM’s MAM. After all, depending
upon the time available (as was depicted in Figure 1),
certain pathways may likely be more computationally
tractable. The notion of Criteria Weights (CW), such as that
of an Adaptive Criteria Weighting System (ACWS), is
crucial in this regard, and exemplar prior experimentation is
listed in Table VIII; it should be remembered that
CW/ACWS is pivotal for Multi-Criteria Decision-Making
(MCDM) and that the notion of the CW/ACWS dovetails
with the Interstitial bespoke (b) Shapley Additive
Explanations (SHAP)-Owen Amalgam or Interstitial b-
SHAP-Owen Amalgam (IbSOA), which designates an
importance value to each feature; after all, CW/ACWS
systematically assesses and ranks alternatives or features
based upon their relative importance (as determined by the
CW). IbSOA will be further addressed in Section IIID.

2) LHM'’s MAM

Proceeding from the ICSM2 discussion to that of the
MAM, the MAM’s decided actions, particularly amidst the
temporal limitations of CDC, may also be predicated upon
what type of Decision-Making Problem (DMP) is
encountered. In the case of SDM, each DM point may be
handled by whether the DMP is any of, among others, the
following: (1) Programmed DMP, (2) Analytical DMP, and
(3) Non-Programmed DMP. The definitions for these are
shown in Table IX below.

TABLE IX. TYPES OF DECISION-MAKING PROBLEMS (DMPS)

Type of DMP Definition

Programmed DMP Prototypical Structured Problems (PSP), as

(PDMP) pertains to DMP, with well-established Standard
Operating Procedures (SOPs) and approach
vectors.

Analytical DMP Mid-range Semi-Structured Problems (MRSSP),

(ADMP) as pertains to DMP, that require more in-depth

analysis and a more comprehensive approach; it
may also require decomposing the DMP into
smaller, more manageable (i.e., computationally
tractable) DMPs.

Non-Programmed
DMP (NPDMP)

More Complex Unstructured Problems (CUP),
as pertains to DMP, that may require a bespoke
approach.

As the MAM, by way of example, considers each DMP, the
insights provided by the IbSOA will be invaluable, as the
likely behavior within the MNTZ may be pivotal in
ensuring that a prudent pathway, within the given time
constraints, is chosen. This will be further expounded upon
in Sections IIC and IIID. In the context of the MAM, as
noted in the 6th DOI of Table VIII, according to Hjeij, in
the journal paper, “A brief history of heuristics: how did
research on heuristics evolve,” “the use of a heuristic is
‘inevitable where no method to find an optimal solution
exists or is known,” particularly when ‘the problem and/or
the optimality criterion is ill-defined’.” To add to this,
Bobadilla-Suarez, in the journal paper, “Fast or Frugal, but
Not Both: Decision Heuristics Under Time Pressure,” notes
“that heuristics do not form a uniform class and that “more
frugal heuristics will not necessarily be faster to implement
than less frugal ones. Similarly, less frugal strategies can be
fast given the right stimuli [i.e., accelerants]” [6th DOI of
Table VIII]. Drake as well as Fisher & Thompson add to
what Bobadilla-Suarez asserted; as delineated in the journal
paper, “A Novel Cooperative Multi-State Hyper-Heuristic
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for Combination Optimization Problems,” “‘mixing and
combining different Low-Level Heuristics [LLH] produced
better quality solutions than if they were applied separately’
and ‘showed that individual heuristics may be particularly
effective at certain stages...but perform poorly at others,” as
each individual heuristic may involve particular methods (as
Zayat and Watrobski well noted) [6th DOI of Table VIII]. In
essence, 6th DOI of Table VIII features the case study,
wherein it “might be prudent to avoid utilizing AHP, SAW,
and [Preference Ranking Organization Method for
Enrichment Evaluation] PROMETHEE when handling
negative values” [6th DOI of Table VIII].

The presets of ICSM2 and MAM (two of the key
components of LHM) have now been touched upon. Prior to
the unpacking of the proposed third component of LHM,
CAIR-A, some background information will be provided.
For the reader’s convenience, a listing of the acronyms
utilized thus far as well as for the sections that follow is
being provided in Table X below.
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TABLE X. LISTING OF ACRONYMS UTILIZED

Acronym Full Form

A Ambiguity

ACWS Adaptive Criteria Weighting System

ADMP Analytical DMP

Al Artificial Intelligence

AICDS Artificial Intelligence Control and Decision
System

AIS Artificial Intelligence System

AS Autonomous System

ADMB Automatic Differentiation Model Builder

ASR Automatic Speech Recognition

A/U Ambiguity/Uncertainty

AUV Autonomous Underwater Vehicle

b-SHAP Bespoke Shapley Additive Explanation

b-SHAP-Owen Bespoke Shapley Additive Explanation Owen

c-SHAP classical Shapley Additive Explanation

CAA Conversational Artificial Intelligence Agent

CAIR Conversational Artificial Intelligence Robustness

CAIR-A Conversational Artificial Intelligence Robustness
Accelerant

CAP Component Assignment Problem

CBR Case-Based Reasoning

CDC Compressed Decision Cycle

CDS Control and Decision System

CPRLD Constriction Factor-Particle Swarm
Optimization-Robust Convex Relaxation-Long
Short-Term Memory-Deep Convolutional Neural
Network

CF Constriction Factor

CRITIC CRiteria Importance through Intercriteria
Correlation

CWS Criteria Weighting System

CWT Continuous Wavelet Transforms

CVA Conversational Virtual Agent

CW Criteria Weight

DCGAN Deep Learning Generative Adversarial Network

DCNN Deep Convolutional Neural Network

DL Deep Learning

DM Decision-Making; Decision Maker

DMP Decision-Making Problem

DMIP Decision-Making Inflection Point

DOI Digital Object Identifier

E Execution

ELECTRE ELimination Et Choix Traduisant la REalité

EM Estimation-based Method

EUT Expected Utility Theory

FCSO Finite-Change Shapley-Owen

FN Fuzzy Number

FS Fuzzy Set

GAN Generative Adversarial Network

GBR Graph-Based Reasoning

GfFN Generalized f-sided Fuzzy Number

GFN Generalized Fuzzy Number

GFS Generalized Fuzzy Set

GHpFN Generalized Heptagonal Fuzzy Number

GHxFN Generalized Hexagonal Fuzzy Number

GI Graph Isomorphism

GL/FN Generalized Linear f-sided Fuzzy Number

GLIVPeFN) Generalized Linear Interval-Valued Pentagonal
Fuzzy Number

Glocal a portmanteau “global” and “local”

GLIVPeFN Generalized Linear Interval-Valued Pentagonal
Fuzzy Number

GLPeFN Generalized Linear Pentagonal Fuzzy Number

GN Grey Number

GNEN Generalized N-sided Fuzzy Number

GNL/FN Generalized Non-Linear f-sided Fuzzy Number

GNLIVPeFN Generalized Non-Linear Interval-Valued
Pentagonal Fuzzy Number

GNLPeFN Generalized Non-Linear Pentagonal Fuzzy
Number

GOcFN Generalized Octagonal Fuzzy Number

GPeFN Generalized Pentagonal Fuzzy Number

GPL General Public License

GPU Graphics Processing Unit

GS Grey Set

GSO Generic Shapley-Owen

GTpFN Generalized Trapezoidal Fuzzy Number

GTrFN Generalized Triangular Fuzzy Number

HALU Higher Ambiguity, Lower Uncertainty

HH Hyper-Heuristic

1 Interpretability

1A Independence Axiom

IBE Inference to the Best Explanation

ICSM Isomorphic Paradigm Comparator Similarity
Measure

ICSM2 Isomorphic Paradigm Comparator Similarity
Measure Module

IFF If and Only If

IFN Intuitionistic Fuzzy Number

IFS Intuitionistic Fuzzy Set

™M Intelligent-based Method

IPOPT Interior Point OPTimizer

IsoP Isomorphic Paradigm

1UC Inherent Uncertainty Construct

IVFN Interval-Valued Fuzzy Number

IVFS Interval-Valued Fuzzy Set

IVIES Interval-Valued Intuitionistic Fuzzy Set

LAHU Lower Ambiguity, Higher Uncertainty

LLH Lower-Level Heuristic

LHM Lower Ambiguity, Higher Uncertainty/Higher
Ambiguity, Lower Uncertainty Module

LLM Large Language Model

LOE Line of Effort

LSTM Long Short-Term Memory

MADM Multi-Attribute Decision-Making

MADM/MODM Multi-Attribute Decision-Making/Multi-
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SM/OM Objective Decision-Making Subjective Method/ TPU Tensor Processing Unit
Objective Method TIA Triple I Algorithm
MAM Metaheuristic Algorithm Module T1FS Type 1 Fuzzy Set
MCDM Multi-Criteria Decision-Making T2FS Type 2 Fuzzy Set
Mi Imprecision Membership U Uncertainty; [performance under] Uncertainty
MILP Mixed Integer Linear Programming UAV Unmanned Aerial Vehicle
MINLP Mixed Integer Non-Linear Programming UDC Uncompressed Decision Cycle
MIP Mixed Integer Programming usv Unmanned Surface Vehicle
ML Machine Learning \ Validity
ML2 Machine Learning on Machine Learning VAP Value-added Proposition
Mmn Median Membership VBSO Variance-Based Shapley-Owen
MMSO Multi-Attribute Decision-Making/Multi- VIKOR VlseKriterijumska Optimizacija I Kompromisno
Objective Decision-Making Subjective Method/ Resenje
Objective Method vIHD Voltage Imbalance and Total Harmonic Detection
MNTZ Monotonic/Non-Monotonic Transition Zone VVS Voltage Vector Shift
MODM Multi-Objective Decision-Making WM Wavelet Transform-based Method
MR Monotonic Reasoning
NDZ Non-Detection Zone
NLG Natural Language Generation With these acronyms and their full forms in hand, it
NLP Natural Language Processing _ seems prudent to provide a quasi-dependencies equation so
NLU Natural Language Understanding -1: . . .
. - as to facilitate the parsing of this paper. The first equation
NMR Non-Monotonic Reasoning il take the f d i 1 d th dard
NOD Non-Operational Data will take the form presented in (la), an e standar
NPDMP Non-Programmed DMP convention of a dashed arrow (wherein the dependent
oD Operational Data element is to the left of the tail, and the element that it is
oM Objective Method dependent upon is to the right of the arrowhead) is utilized.
OSNS Optimal Shapley-Nondominated Solution
OSONS Optimal Shapley-Owen-Nondominated Solution
OUF Over/Under Frequency AIS-»SDM->LHM-»ICSM2+MAM  (la)
ouv Over/Under Voltage
P-RM Primary Reasoning Mechanism - . -
PDMP Programmed DMP The extended version for constituents supporting thp
PID Phase Jump Detection module for LHM-»ICSM+MAMEF, for the purposes of this
POSET Partially Ordered Set paper, becomes (1b).
PROMETHEE Preference Ranking Organization Method for
Enrichment Evaluation
PSO Particle Swarm Optimization LHM-->ICSM2+MAM-+CAIR-A (lb)
r-IsoP Relaxed Isomorphic Paradigm
RMS Relationship/Membership Stream As it is understood that the LHM instantiation now
RR Rank Reversal includes CAIR-A 1l h . flected i b 1
RCAP or dP/dt Rate of Change of Active Power 1n§: u .ES -A as well, such as 18 retlecte m ( )’ ( )
RCR Robust Convex Relaxation will simply be referred to as ASL-IMC. Proceeding on, the
RDM Robust Dialogue Management second equation will take the form, as presented in (2),
RM Reasoning Mechanism using the same convention.
ROCOF of df/dt Rate of Change of Frequency
ROCPAD Rate of Change of Phase Angle Difference
ROYG Red-Orange-Yellow-Green RDM -»>MR/NMR-->MNTZ->IbSOA 2)
ROI Return on Investment
RTIA or R-III Reverse Triple I Algorithm For convenience, (2) will be referred to as RMMI. The
RWS Real-World Scenario . ] . .
S Sensitivity follow-on third equation will then take the form, as is
S.RM Secondary Reasoning Mechanism presented in (3), using the same convention.
SAD Situational Awareness Data
SAE Society of Automotive Engineers
SCSO “Squared Cohorts” Shapley-Owen ASL-IMC-»RMMI (3)
SDM Sequential Decision-Making
SDP Semi-Definite Programming For this paper, (3) will be the overarching operative
SQP Sequential Quadratic Programming quasi-dependencies equation, and (3) will be unpacked
SHAP Shapley Additive Explanation Y . . . . .
: — within this paper in the following fashion. Section I had
SNOPT Sparse Nonlinear OPTimizer . . .
SIS Subsethood Inference Subsethood provided an overview of the SDM challenge and provided
SM Subjective Method some exemplar presets (e.g., LHM, ICSM2, MAM) as well
SOP Standard Operating Procedure (SOP) as introduced a new module (e.g. CAIR-A) to be utilized for
STEA System Transparency Explainability & the experimentation herein; Section I also addressed (1a).
Accountability The remainder of this paper is organized as follows. Section
TOPSIS Technique for Order Preference by Similarity to

Ideal Solution

IT presents the backdrop/background for an AIS approach
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towards DMP, such as SDM, which is predicated upon a
robust harmonizing/counterpoising of MR and NMR; in
turn, a successful MR/NMR counterpoising is dependent
upon robust insights into the MNTZs. The MNTZs, in turn,
are informed by IbSOA. Then, the previously referenced
bespoke mechanism in the form of the referenced CAIR-A
Module, which can assist with the ongoing CAA challenge
of Robust Dialogue Management (RDM), is touched upon.
Section III lays out some theoretical foundations and picks
back up on the discussion regarding IbSOA and its derived
insights, which can be instrumental at the MNTZs by
gleaning the interplays among local, glocal (a portmanteau
“global” and “local”), and global, particularly when
conjoined with a robust MADM/MODM SM/OM (MMSO)
mechanism; the section then proceeds with presenting some
precursor experimentation as well as an interim discussion
on IbSOA. Section IV provides some further thoughts as
well as concluding remarks, and proposed future work
closes the paper.

II.  BACKGROUND

The AIS approach towards DMP, such as SDM, may
involve a variety of Reasoning Mechanisms (RMs). In the
context of the referenced LHM, Analogical Reasoning,
Abductive Reasoning, Inductive Reasoning, Probabilistic
Reasoning, and Temporal Reasoning, among others, may be
utilized. These primary RMs are described in Table XI.

TABLE XI. TYPES OF PRIMARY RMS (P-RMS)

Type of Primary RM Definition

Analogical Reasoning
(AnaR)

Firt put it quite nicely and simply by saying
that analogical reasoning is a “type of thinking
that relies upon an analogy” [8]. Gentner
affirms and deems it to be “the ability to
perceive and use relational similarity between
two situations or events” [9]. In a similar
fashion, Thibaut refers to it as a “process in
which a base domain and a target domain are
compared in order to find relational
correspondences” [10].

Probabilistic
Reasoning (ProbR)

Nandi opines that probabilistic reasoning “is a
framework used to make inferences and
decisions under uncertainty” [11]. Nafar
concurs, cites Oaksford and Chater, and notes
that “probabilistic reasoning often aligns with
Bayesian Rationalism,” and within an Al
context, Nafar refers to it as a “mapping [of]
uncertainty...to a Bayesian probabilistic
framework™ [12].

Temporal
(TempR)

Reasoning | Leeuwenberg posits that temporal reasoning is
“the process of combining different temporal
cues into a coherent temporal view” [13].
Xiong unpacks this further and asserts that
some of the types of temporal reasoning
include  “sequencing, duration, frequency,
simultaneity, temporal relation, comparative
analysis and facts extraction,” which can be
construed roughly as determining
chronological order, how long an event lasted,
how much time elapsed between the start of
one event and the start of another, when a
particular event occurred, whether events
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happened at the same time, and contrasting
multiple events, respectively [14].

Deductive Reasoning
(DedR)

Grote-Garcia put it quite well by noting that
“deductive reasoning is the process of using
general premises to draw specific conclusions”
[15]. Along this vein, Taylor & Francis recaps
this by stating that deductive reasoning
“involves moving from the general to the
specific, and it is used to draw conclusions
based on known facts or assumptions” [16].

Inductive
(IndR)

Reasoning | The University of Illinois Springfield puts it
succinctly: “inductive reasoning is the ability
to combine pieces of information that may
seem unrelated to form general rules or
relationships” [17]. In essence, inductive
reasoning is a technique of deriving
conclusions by progressing from the specific to

the general.

Sandoval-Hernandez asserts that “abductive
reasoning involves starting with surprising or
puzzling observations and inferring the most
likely explanations” [18]. Thagard views it in a
slightly more subdued fashion, wherein
“explanatory hypotheses are formed and
evaluated” [19]. Belzen follows Thagard and
asserts that “abductive reasoning describes the
theory-based attempt of explaining a
phenomenon by a cause” [20].

Abductive Reasoning
(AbdR)

In turn, both Analogical Reasoning and Abductive
Reasoning may leverage Case-Based Reasoning (CBR),
while the former may also utilize Graph-Based Reasoning
(GBR). These are described in Table XII below.

TABLE XII.  TYPES OF SECONDARY RMS (S-RMS)

Type of RM Definition

Case-Based Reasoning
(CBR)

Yan describes CBR as being “based on the
cognitive assumption that similar problems
have similar solutions” [21]. Taylor &
Francis captures this as CBR being “a
problem-solving approach that involves using
past  successful solutions to  similar

problems to solve new problems” [22].

Graph-Based
Reasoning (GBR)

GBR approaches have been utilized for the
purposes of, among others, that described in
[23]. In essence, it is a technique that
buttresses  reasoning  capabilities by
characterizing problems as graphs. Cao adds
an interesting addendum to this notion by
putting forth the “Reasoning Graph Verifier”
(ak.a.,, “GraphReason”) to “analyze and
verify the solutions generated by LLMs,”
which Cao asserts “enhances the reasoning
abilities of LLMs” and “also outperforms
existing verifier methods in terms of
improving  these  models’  reasoning
performance” [24];

Interestingly, GBR is often applied by AIS for Fault
Detection (discerning anomalies and positing causes/root
causes), Diagnosis, and NLP/NLU (for positing the context
and intended meaning), such as described by the papers
associated with the DOIs of Table XIII.
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TABLE XIII.  EXEMPLAR DOIS PERTAINING TO THE NOTIONS OF
DETECTION, DIAGNOSIS, NLP/NLU
Facet DOI
Detection + 10.1109/CMD48350.2020.9287173
+ 10.1109/CMD48350.2020.9287173
+ 10.1109/CMD48350.2020.9287281
* 10.1109/CMD48350.2020.9287262
+ 10.1109/CMD48350.2020.9287299
Diagnosis » 10.1109/ICOIACT46704.2019.8938444
NLP/NLU * https://ssrn.com/abstract=3789767

A. AIS for Various Sectors and a Proxy Application

AIS approaches, particularly for AI Control and
Decision Systems (CDS) (AICDS), as pertains to
DMP/SDM, remain an active research area not only for the
sector touched upon in Section IA, but also for the sectors
of, among others, healthcare, finance, and energy. These
sectors tend to involve elongated temporal spans for
evaluation metrics, and definitive results may be
challenging to come by. While the referenced AUVs, USVs,
UAVs, and self-driving cars can indeed be somewhat
comprehensively evaluated, the benchmarking thereof can
be cost prohibitive and may require elongated temporal
spans (e.g., testing them under various weather conditions,
such as detection capability against the white background of
snow). Accordingly, the analysis of Abductive Reasoning
and benchmarking of NLU as well as NLG can, potentially,
be more cost effective and economize on time when using a
proxy application, such as Conversational Al (wherein Al is
used to mimic human-like conversational dialogue). For a
CAA (ak.a., Conversational Virtual Agent or CVA),
beyond the essential first step of ASR, NLU and NLG are
formidable downstream steps. It is imperative that the AIS
be able to discern the conversational context as well as the
overarching intent of the user (i.e., NLU) and respond
accordingly (i.e., NLG). Presuming that NLU and
meaningful NLG can be satisfactorily achieved, RDM
becomes central. In essence, RDM involves the CAA being
able to carry on a coherent conversation, wherein validity is,
ideally, sustained both within the single interaction as well
as over the course of several interactions (a.k.a., multi-turn
conversations). Even within a single interaction, the
conversation may be quite nuanced with a variety of
inflection points. These inflections may also occur over the
course of the multi-turn conversation. Maintaining
consistency, coherency, and validity throughout these multi-
turn conversations is central for meaningful/productive
dialogues (i.e., RDM). Significantly, consistent validity
inspires trust in the CAA. As the time-dependent priorities
of the user and information being consumed by the CAA
may dynamically change, the varying context could
contradict prior information. Therefore, it is critical that the
CAA has the capability for the graceful handling of
contradictions with due care so as to help ensure
conversational fluidity and maintain ongoing confidence
and trust in the CAA. This capability is rooted in the
successful counterpoising of the CAA’s Monotonic
Reasoning (MR) and Non-Monotonic Reasoning (NMR)
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and the handling of MR/NMR and the MNTZs (ak.a.,
CAIR-A). MR/NMR (and the MNTZs) will be further
unpacked in the following Sections IIB through IIC.

B. MR and NMR Counterpoising

Against the backdrop of Al and RMs, MR and NMR are
two of the major pillars for Al-centric logic/RMs. These are
described in Table XIV below.

TABLE XIV. TYPES OF AI-CENTRIC LOGIC/RMS

Type of Al-centric logic/RMs Definition

MR-centric responses will remain
consistent throughout time despite
whatever new information might
arrive.

Monotonic Reasoning (MR)

Non-Monotonic Reasoning
(NMR)

NMR-centric responses allow for
modification and/or retraction of
prior assertions.

As noted in Section IA, “as the priorities of the user and
arriving information may alter the context and/or contradict
prior information,” the harmonizing and counterpoising of
the MR and NMR becomes critical for maintaining logical
consistency and interconnectedness among the multi-turn
conversations (i.e., coherence); if the constituent elements
of the multi-turn conversation are indeed logically related,
then the overall dialogue should be relatively free of
contradictions. This constitutes “conversational coherence.”
There are a variety of evaluation tools in this regard. For
example, the “ConversationCoherence Evaluator” is
purported to be “a tool designed to check the coherence of
conversations by an Al” as “it evaluates whether each
response in a conversation logically follows from the
previous messages, ensuring that the Al maintains context
and relevance throughout the interaction” [25]. However,
“conversational coherence” is, actually, quite difficult to
maintain in RWS, where information is often
sparse/incomplete and/or ambiguous/uncertain. Depending
upon “what” and “when” the information is made available
(the issues of provenance/pedigree regarding the “who” and
the “where” will not be discussed here; rather, they will be
discussed in future work), a specific RM may be used, such
as shown in Table XV.

TABLE XV. TYPES OF PRIMARY REASONING MECHANISMS (P-RMS)

Type of RM
Utilized

Information Available: Conclusion

“What”/”When”

Guaranteed to be
true, if the
premises and
argument are valid.

Deductive
Reasoning

Used in an
iterative
fashion

* Facts

* Accepted
Truths

* Rules

* Scientific
Laws

* Mathematical
Theorems

* Established
Principles

* Specific
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Information
* Logical
Connections
Starts with the Typically Inductive Likely to be true,
same set as front- Reasoning but it could be
Deductive loaded, false despite the
Reasoning (if but can observations being
available), but also accurate.
also involves “unfold in
Probabilistic a bottom-
approaches up”
fashion
Starts with the Typically Abductive Plausible best
same set as front- Reasoning guess
Deductive loaded, approximation or a
Reasoning (if but as it is posit as to the
available), but trend- optimal
also involves sensitive explanation; along
hypotheses, as well as this particular vein,
assessments, aberration- Harman is well-
and best-fit sensitive, known for his
approximations | it can also research involving
“unfold in “Inference to the
a bottom- Best Explanation”
up” (IBE) [26].
fashion

With regards to the various RMs presented in Table XV,
first, deductive reasoning will be addressed. Ferguson
proclaims that “classic deductive logic entails that once a
conclusion is sustained by a valid argument, the argument
can never be invalidated, no matter how many new premises
are added. This derived property of deductive reasoning is
known as monotonicity” [27]. Bundy and Wallen restates
this as “the monotonicity of deductive logic,” wherein “the
addition of new axioms to a set of axioms can never
decrease the set of theorems or facts” [28]. Fuhrmann
summarizes the aforementioned with the notion that
“deductive inference, at least according to the canons of
classical logic, is monotonic; if a conclusion is reached on
the basis of a certain set of premises, then that conclusion
still holds if more premises are added” [29].

Next, turning to abductive reasoning, Hentenryck asserts
that “as a form of reasoning appropriate for handling
incomplete information, abduction is also closely related to
non-monotonic reasoning” [30]. Paul affirms this by clearly
stating: “abduction is a form of non-monotonic reasoning”
[31]. Lagerkvist follows on by summarizing as follows:
“one of the best-known examples of non-monotonic
reasoning is abductive reasoning” [32].

Proceeding along to inductive reasoning, Leidinger cites
Hans with regards to testing “nonmonotonic reasoning
among other inductive reasoning tasks” [33]. What is
particularly interesting is that Hans notes that in his testing,
Large Multimodal Models (LMMs)/LLMs (e.g., GPT-3.5,
GPT-4) were not able to capture “human behavior on the
non-monotonicity phenomena,” and actually took “the
opposite” position [34]. Along this vein, although GPT-4
was much more successful in capturing human behavior
than GPT-3.5, Hans highlighted the “notable exception” in

International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

“its failure to capture the phenomenon of premise non-
monotonicity” with regards to inductive reasoning (a.k.a.,
property induction) [34]. Hence, the handling of non-
monotonic reasoning remains an ongoing challenge that
may be impacting the performance of the newer
LMMSs/LLMs being released. Generally speaking, Kazemi
notes that LLMs have difficulty contending with
contradictory information (thereby segueing into the
challenges of contending with the non-monotonic realm).
[35].

In brief, deductive reasoning is often construed as a form
of MR (wherein the addition of relevant information
buttresses conclusions reached based upon recitals of fact
and evidentiary material) while abductive reasoning is often
considered to be a form of NMR (wherein new information
can potentially reverse [i.e., cause to retract] prior inferences
reached through evidentiary material and reasoning). Hence,
inductive reasoning is typically taken to be non-monotonic,
but the literature has also noted cases where it is weakly
monotonic; for example, Janke delineates how NMR “is
inherently required in several approaches to inductive
inference” [36]. Overall, insights into MR/NMR behavior
(within the MNTZ) and an apropos
harmonizing/counterpoising of MR/NMR can provide the
requisite flexibility for RDM and the desired ensuing CAA
conversational coherence.

C. Insights into the MNTZ

As noted at the end of Section IIB, the successful
counterpoising of MR/NMR necessitates meaningful
insights into the MNTZ. Yet, as discussed in [2], the
discerning/comprehending of the behavior at the MNTZ can
be quite challenging. In addition, [2] noted that
“maintaining coherence and monotonicity is non-trivial, as
the involved AIS might discern connections (particularly
those that are non-monotonic) within the evolving dataset.
In the context of CAIR at-large (CAIR-A, specifically),
non-monotonic aspects can arise as incoming information
can re-contextualize and/or contradict matters. Yet,
enforcing a strict monotonic paradigm can segue to an
unnatural rigidity and/or incorrect/irrelevant responses by
the” CAA. Hence, the counterpoising of MR/NMR is non-
trivial.

As further noted in [2], “the shift of the involved
variables from a monotonic to a non-monotonic paradigm
can be quite unexpected and occur more frequently than
anticipated/desired.” For AIS-SDM-A/U, the spawning of
“non-monotonic, non-polynomial, and even non-continuous
functions” does indeed occur more frequently than expected
or desired [37]. Restated, as pertains to the MNTZ, there
exists a proclivity for “spawning to the NP-Hard side,” and
this is similar to the situation, “wherein the transformation of
non-convex Mixed Integer Non-Linear Programming
(MINLP) to convex problems often spawn further non-
convex MINLP problems” [2]. With regards to
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Monotonic/Non-Monotonic and Linear/Non-linear (wherein
Non-Monotonic can be Continuous or Discontinuous and
Non-Linear can be Polynomial or Non-Polynomial), Figure 2
conveys some of the prospective pathways to convex form
(in green) as well as the pathways that remain nonconvex (in
red) [2]; MIP equates to Mixed Integer Programming, and
MILP equates to Mixed Integer Linear Programming.

MIP

£ Polynomial
Z

Eon—?olynomial

Discontinuous

Continuous

Y07

Monotonic Non-Monotonic

Convex Nonconvex Convex

Figure 2. “Non-convex to convex transformation pathways (e.g., non-
convex non-monotonic, non-polynomial, non-continuous MINLPs to
convex form)” [2].

For the convex form, a myriad of Semi-Definite
Programming (SDP) solvers can be leveraged to handle the
computations in polynomial time (“presuming further
spawning does not occur,” since “NP-hard-related spawn
can potentially congest matters with an indefinite impasse”)
[2]. There are a variety of mechanisms that can be useful in
this regard, and some of these facets are discussed in
Section IID.

D. Formulating a Bespoke Mechanism for the MNTZ

As noted in Sections IIA and IIB, the type of reasoning
and prospective = RM  combinatorial  (Analogical,
Probabilistic, Temporal, Deductive, Inductive, Abductive,
etc.) can indeed impact the MR/NMR amalgam and the
likely behavior within the MNTZ. For example, as noted in
the prologue to Section II, various forms of primary RM
(and various secondary RMs, which they may leverage) are
utilized in the context of the referenced LHM. Taking the
examples of Tables XI and XII, Table XVI is presented,
which delineates the referenced RMs and their MR/NMR
categorization.

EXAMPLE RMS AND THEIR MR AND/OR NMR
CATEGORIZATION

TABLE XVI.
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with Monotonic), while Grosof defines “an
approach to non-monotonic probabilistic
reasoning” [39][40].

Monotonic and Non-Monotonic; Baral asserts
that temporal reasoning is monotonic much
of the time, but amidst new incoming
information, the understanding of past,
present, and future can alter, and this
necessitates “that goals be changed non-
monotonically” [41].

Temporal Reasoning

Monotonic; As noted earlier in Section IIB,
Ferguson notes that Deductive Reasoning is
monotonic [27]. However, it should be noted
that Hunter makes the caveat that deductive
argumentation is non-monotonic [42].

Deductive Reasoning

Weakly Monotonic and Non-Monotonic; as
noted earlier in Section IIB, Jantke notes that
NMR “is inherently required in several
approaches to inductive inference” [36].
Jantke builds wupon this by asserting,
“monotonic and non-monotonic reasoning is
introduced into inductive inference,”
discusses a “weakly monotonic
inductive inference algorithm,” and notes that
“consistency and monotonicity can hardly be
achieved simultaneously” [37]. The general
idea is that a monotonic approach can be
used to formulate hypotheses in an
incremental  fashion, but during this
formulation, revisions/retractions may be
necessary, and this segues into the area of
non-monotonicity. Jantke summarizes with
the statement “in the area of inductive
inference of total recursive functions
monotonicity can rarely be guaranteed” [43].

Inductive Reasoning

Non-Monotonic; as noted earlier in Section
IIB, Hentenryck and Paul have noted that
abductive reasoning is in the realm of non-
monotonic reasoning [30][31]. Pereira
affirms this [44].

Abductive Reasoning

Case-Based Reasoning
(CBR)

Cautiously Monotonic and Non-Monotonic;
the premise of CBR is that prior cases are
examined to determine a  best-fix
approximation (i.e., ascertaining the most
similar cases) to resolve a current situation.
However, new cases may reverse the
determinations of prior cases, and new
information may result in revision/retraction
to an earlier conclusion. However, it should
be noted that Paulino-Passos makes the
caveat by defining a wvariation, which is
cautiously monotonic [45].

RM MR/NMR Categorization

Non-Monotonic; Kerber notes that “two modi
of analogical reasoning” “rely on different
forms of relevance knowledge that cause
non-monotonicity” [38].

Analogical Reasoning

Graph-Based
Reasoning (GBR)

Monotonic and Non-Monotonic; when the
addition of edges reinforces the conclusion,
the paradigm is monotonic, but when the
subtraction/negation of edges or addition of
edges that obviate prior paths occurs, it is
significant to note that Bochman asserts that
GBR-related representations and
nonmonotonic inheritance/nonmonotonic
reasoning are intricately connected [46].

Probabilistic
Reasoning

Monotonic and Non-Monotonic; Liu notes
that “it has been found that the ability to
handle incomplete information or to perform
nonmonotonic reasoning does not exist in
some probabilistic reasoning mechanisms”

(i.e., these mechanisms can only contend

When Table XVI is sorted by the prevalence of
monotonicity to non-monotonicity, the results are as
depicted in Table XVII with Red-Orange-Yellow-Green
(ROYG) color coding, wherein Monotonic is indicated by
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green and Non-Monotonic is indicated by red; weakly = monotonic unexpectedly. Moreover, the much-desired CBR
monotonic is indicated by orange, and cautiously monotonic and IndR approaches are at much higher risk for segueing to
is indicated by yellow. non-monotonic (as they are already cautiously monotonic
and weakly monotonic, respectively). Finally, some of the
desired “more sophisticated approaches” (e.g., AnaR,

TABLE XVII.  RM-CENTRIC SORTING OF MR AND NMR BY PREVALENCE $ -alc :
AbdR) squarely reside within the non-monotonic realm, as

RM MR/NMR Categorization is evidenced by Table XVII.
g:g;f;ﬁeg Monotonic Within the realm of analogical reasoning, isomorphism
(DedR) exhibits some promise for being computationally tractable,
Probabistic e and certain approaches leverage potentially more
Reasoning accelerated pathways. The amalgam of ICSM2, MAM, and
(ProbR) CAIR-A is one such triumvirate approach.
Temporal Monotonic 1) ICSM2
?g;orﬁr)lg As noted in Section IB, the LHM is buttressed by,
P among other modules, an ICSM2, which determines (should
g;zggr'f:gsed Lozt it be needed) antecedent occurrences of IsoPs. In graph
(GBR) theory, if there exists a one-to-one correspondence between
: the vertice set of S and S’, then S and S’ are isomorphic.
gzzz;fl?s;d %’;ﬁ‘;ﬁg This is shown in Table XVIII, and should the reader desire,
(CBR) this can be affirmed via a variety of tools, such as the one
- : available at
gfa‘;ffgﬁg ERE LT https://graphonline.top/en/?graph=xPLjwOkrgIDRgYeS.
(IndR) Rather than the graphs, adjacency matrices can also be

utilized to determine isomorphism. This can be affirmed via
a variety of tools, such as the one available at
https://graphonline.top/en/create_graph by matrix.

Analogical
Reasoning
(AnaR)

Abductive

Reasoning TABLE XVIII. EXEMPLAR ISOMORPHISM BETWEEN S AND S’

(AbdR) Isomorphism | Graph S Graph S’
between
SandS’
Depending upon the amalgam of RMs and ensuing RM fla)=1 h

pathways initially selected, such as by the LHM-at-large, J(b) =2

the related DM points/DMIPs will likely impact the ;% j

downstream behavior within the MNTZ in terms of a fe) =5

preponderance of monotonic or non-monotonic behavior. ) =6

Furthermore, as previously noted in the Abstract, “shifts fle) =1

from a monotonic to a non-monotonic paradigm and vice fth) =8 e d o

versa in the MNTZs can occur at a higher than anticipated f=9

rate.” This is also previously in Section IIC noted: “the shift
of the involved variables from a monotonic to a non- ] ) )
monotonic paradigm can be quite unexpected and occur Prior work on “graph theory isomorphisms” or Graph
more frequently than anticipated/desired” [2]. Accordingly, ~ Isomorphism (GI) included aberration detection as pertains
given the propensity to migrate towards non-monotonic, the to the smart grid. Exemplar publications on this thematic are
ability to well-handle non-monotonic and somewhat shown in Table XIX.

mitigate against the shift from a monotonic to a non-

monotonic paradigm seems crucial and prudent. Again, the TABLE XIX. EXEMPLAR DIGITAL OBJECT IDENTIFIERS (DOI)
involved counterpoising is key, as the simpler strategy of PERTAINING TO GRAPH ISOMORPHISM (GI)
reliance (readily segueing into overreliance) upon a non- Facet DOI

monotonic paradigm can readily lead to complicated models Gl + 10.1109/IEMCON.2019.8936241

that are prone to overfitting and, quite possible, consume a 18-1i83;?};&2?%25172-(2)23‘41-(1)23221(7)3

not. insignificant portion of the computational resources . ht.tp: J/dx doi.org/1 0.2139/ssrm. 5183492
available. - hitp://dx.doi.org/10.2139/s5rn.4984663

While it seems that focusing on certain RMs (e.g., ) ) ]
deductive) might seem computationally more tractable, it For that particular Line of Effort (LOE), various
would preclude more RWS RM approaches (e.g., ProbR, aberration detection techniques were utilized, and these are
TempR, and GBR). Yet, these approaches can segue to non-  shown in Table XX below.
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TABLE XX. EXEMPLAR DOIS PERTAINING TO ABERRATION DETECTION —@—NDZ —@=Speed —@—NDZ =@=Speed
TECHNIQUES ouv ouv

Short-Form Long-Form Name wM : OUF wM : OUF
Acr.o nym for ; EM 4 PID M 4 PID
various Aberration 5 ,
Detection
Techniques M RCAP EM ROCOF
OUV Over/.UHder VOltage ROCPAD ROCOF ROCPAD VvTHD
OUF Over/Under Frequency
PJD Phase Jump Detection vIHD s s Reap
RCAP or dP/dt Rate of Change of Active Power
ROCOF of df/dt Rate of Change of Frequency
VVS Voitage Vec‘ngSh‘ﬁ - l : For many ecosystems, wherein addressing computational
VIHD ggtz%ﬁm E?H?);mce and Total - Harmonic forays with graph-based approaches can be invaluable,
ROCPAD Rate of Change of Phase Angle Difference “non-graph—ba}s'ed approaches” can be of comparable value-
M Intelligent-based Method added proposition (VAP). By way of example, the robust
EM Estimation-based Method treatment of various figures of speech (e.g., simile,
WM Wavelet Transform-based Method

The techniques presented in Table XX were then sorted
by Non-Detection Zone (NDZ) and Speed, wherein green
indicates either a good NDZ or speed, and red indicates
either a poor NDZ or speed, such as shown in Table XXI,
row 2. This is then recast in radar chart form, which is
shown in Table XXI, row 4. For this particular comparison,
the main point to convey, for the presented example in
Table XXI, is that the structure itself holds no meaning, as
only the values associated with each technique has any
significance. Hence, no IsoP testing/comparison needs to be
performed (with the associated savings of computational
resources).

TABLE XXI. EXAMPLE WHEREIN THE STRUCTURAL TOPOLOGY IS
IRRELEVANT; NO ISOP IS NEEDED
Techniques sorted by NDZ Techniques sorted by Speed
Sorted by NDZ Sorted by Speed
Technique NDZ Speed Technique NDZ Speed
ouv ouv
OUF OUF
PJD PJD
RCAP ROCOF 5 4
ROCOF vTHD 3 4
VS RCAP s
vTHD VVS 6 3
ROCPAD ROCPAD 3
IM EM
EM IM
WM WM
Radar  Chart of Techniques | Radar Chart of Techniques
characterized by NDZ and Speed | characterized by NDZ and Speed
(sorted by NDZ) (sorted by speed)

metaphor) and argument (e.g., analogy) (a.k.a., collectively,
elements of figurative language) can be invaluable, such as
reviewed in Table XXII.

TABLE XXII. EXEMPLAR ELEMENTS OF FIGURATIVE LANGUAGE

Exemplar Element Description

Simile is a comparison of two disparate entities, via

words, such as “like” or “as.”

Metaphor is a direct comparison and asserts that two
disparate entities are the same, via words, such
as “is,” “was,” etc. (wherein the words “like” or

as” are not utilized).

Analogy creates a comparison of how a seemingly
disparate entity is akin to, relates to, or is similar
to another disparate entity for the purpose of

explaining/demonstrating.

Allegory embodies a more complex/symbolic comparison
and leverages a narrative to convey an abstract
notion/concept; Wearing points out that
“allegories make sense when they’re interpreted
literally while (most) metaphors do not” [47].
Holme asserts that “arguably, an allegory frames
all the events of a story inside an extended
metaphor” [48]. More simplistically, Burton
claims that “an allegory is a complete narrative
that seems to be about one thing but is actually
about another” [49].

Hofstadter has argued that analogy is “the core of
cognition,” and Holyoak seems to affirm [50][51].
Hofstadter further states, “without concepts there can be no
thought, and without analogies there can be no concepts”
[52]. Given the significance of analogies, it seems prudent
to review analogies at various levels of intricacy.
Wijesiriwardene asserts that analogies can be viewed “at
four distinct levels of complexity: lexical, syntactic,
semantic, and pragmatic,” and he further notes that “as the
analogies become more complex, they require increasingly
extensive, diverse knowledge beyond the textual content,
unlikely to be found in the lexical co-occurrence statistics
that power LLMs” [53].
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A discussion on Large Concept Models (LCMs), to
assist in this regard, can be found within those DOIs shown

table XXIII below.

TABLE XXIII. EXEMPLAR DOIS/TITLES OF PAPERS PERTAINING TO LARGE
CONCEPT MODELS (LCMS)

Facet DOI

LCM

+ 10.1109/IAICT65714.2025.11100570

* A Prospective Monotonic/Non-Monotonic
Transition Zone Impediment for Concept Model-

Centric Artificial Intelligence Systems

Wijesiriwardene depicts the increasing levels of analogy
complexity, and a version is shown in Figure 3 below.

Pragmatic
Analogies

“The Greek Trojan horse was the entry mechanism into Troy”
“The malware was the entry mechanism into the IT system”

Semantic
Analogies

Syntactic
Analogies

Lexical
Analogies

NDZ | narrow:wide::slow:fast
AIS Architecture | complex:complicated::elementary:simple
MNTZ | nonmonotonic:NP-hard::monotonic:Polynomial time
“noun+are+adjective” syntactic pattern:
“GPUs are fast (in some cases)”
“TPUs are faster (in some cases)”
S:TasU:V
“spider radar plot:chart as LLM:Al.”

Figure 3.

“Increasing Levels of Analogy Complexity” [53].

These increasing levels of analogical complexity are
further delineated in Table XXIV.

TABLE XXIV. EXEMPLAR ANALOGY TYPES

Analogy Types

Descriptors

Lexical Analogies

Lexical analogies center upon the affinity and
shared relationships between concepts
despite the concepts being quite distinct and
disparate. An example would be S:T as U:V
or “spider radar plot is to chart as LLM is to
AL”

Syntactic Analogies

Syntactic analogies undertake reasoning by
comparison so as to discern structural affinity
and  relationships  between  syntactic
structures. An example would be that of the
“nountare+adjective”  syntactic  pattern,
which can be seen in the following:
“Graphics Processing Units (GPUs) are fast
(in some cases)” and “Tensor Processing
Units (TPUs) are faster (in some cases).”

Semantic Analogies

Semantic analogies center upon the affinity
and shared relationships between entities
(while the underlying structure may not be
the same). Examples include antonymy (e.g.,
narrow:wide::slow:fast), synonymy (e.g.,
complex:complicated::elementary:simple),
cause &  effect  (nonmonotonic:NP-
hard::monotonic:Polynomial time), etc.

Pragmatic Analogies

Pragmatic analogies are often predicated
upon figurative language, wherein literal
translations may not convey the implied
meaning intended. A classic example would
be, “Reading this paper was a piece of cake;”
in essence, the intended meaning was that the

paper was easy to read rather than the literal

translation that the paper was an edible slice
of cake. Wijesiriwardene’s example of the
Trojan horse theme and comparing it to
malware is particularly appropriate for
modern times.

Wijesiriwardene explains that “pragmatic analogies are
the most complex [of the analogy types], spanning several
sentences (often a paragraph) that elaborate on both the
source and target domains, contain multiple concept or
entities related by diverse relationships, contain abstractions
(modeled as subgraphs), and require us to map
concepts/entities, relationships and subgraphs between
source and target contextualized by external knowledge and
a purpose” [53]. To further explain this, if S and S’ are
isomorphic, then they are analogous in their underlying
linkages/relationships and structure. However, while the
various forms of analogies exhibit similarities, there may
not be a seamless structural match. It then follows that while
the gamut of isomorphic cases can be considered analogies,
not all analogies are isomorphic. This particular
determination is central. If IsoP can be avoided, then the
expenditure (of an unknown level of computational resource
expenditure) can be bypassed. However, if an IsoP
comparison is indeed required, then the ICSM2
operationalizes the IsoP comparison via the derivation of a
specific amalgam, which is comprised of two key facets,
such as shown in Figure 4 below.

ICSM2

[ GFN/GFS with IUC J

A/U consideration amidst
Paradoxes

Figure 4. ICSM2’s Derivation of a specific amalgam: (1) a pertinent
GFN/GFS and Inherent Uncertainty Construct (IUC), and (2) A/U
Consideration Amidst Paradoxes

Figure 4 needs some unpacking. First, starting with the
more discrete facet, Generalized Fuzzy Numbers (FN)
(GFN) can be quite useful. The type of shape of the
involved GFN is typically captured by the “f~sided” notation
within the long form of “Generalized f-sided Fuzzy
Number” as well as by “f” notation in the short-form of the
“GfFN” acronym. The GfFN membership function can
extend into a more sophisticated shape beyond the more
common and simplistic 3-sided (i.e., triangular) or 4-sided
(i.e., trapezoidal, which has a minimum of one pair of
parallel sides) prototypical shapes. Examples of the
involved notation for these more sophisticated shapes are
shown in Table XXV below.

TABLE XXV. EXEMPLAR GENERALIZED FUZZY NUMBERS (GFNS) WITH

SHAPE TYPES
Short-Form Long-Form Name
Acronym
GTrFN Generalized Triangular Fuzzy Number
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GTpFN Generalized Trapezoidal Fuzzy Number
GPeFN Generalized Pentagonal Fuzzy Number
GHxFN Generalized Hexagonal Fuzzy Number

GHpFN Generalized Heptagonal Fuzzy Number
GOcFN Generalized Octagonal Fuzzy Number

In some cases, within the literature, the 7r, Tp, Pe, Hx, Hp,
Oc, etc. are supplanted by “N,” and the utilized acronym is
that of GNFN. Regardless, the “N-sided”/‘'f-sided”’ nature
allows the membership function to be defined by a greater
multiple of linear and/or non-linear functions for better
capturing/representing the U of A/U than that by the simpler
[prototypical] shapes (given their limitations with regard to
their constituent number of linear and/or non-linear
functions able to be represented). However, a further
distinction is also made. A GfFN can not only have a
varying number of f sides, but also the sides comprising the
boundary of the GfFN might not necessarily be linear (i.e.,
the sides can be non-linear, such as in the case of a Gaussian
curve, etc.). Accordingly, the notation can be of the form
GL/FN for a Generalized Linear f-sided FN and GNL/FN
for a Generalized Non-Linear f-sided FN. Taking the
example case of 5-sides, GLPeFN denotes the involved
“Generalized Linear Pentagonal FN,” wherein the sides are
all linear; in contrast, GNLPeFN denotes Generalized Non-
Linear Pentagonal FN, wherein the side(s) might be non-
linear. Chakraborty depicts a GLPeFN in [54], and a
variation is shown in Figure 5.

D ] e ——

Y1

X4 X.2 X3 X4 X5
Figure 5. An exemplar GLPeFN

Chakraborty also provides an example of a GNLPeFN,
and a version is reproduced below in Figure 6 [54].

| —

Yi I B BN E

X; X2 X3 Xg4 Xs

Figure 6. An exemplar GNLPeFN
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In some cases, the GLPeFN approximation can suffice,
rather than computing the GNLPeFN, and Velu &
Ramalingam provide an example of this, for which a
variation is shown below in Figure 7 [55].

Y3

Yo '

Y1 / BN
X; X, Xz X4 Xs Xg

Figure 7. An exemplar GNLPeFN

Before plowing forward, some background information
is necessary; an Interval-Valued Fuzzy Number (IVFN) is a
fuzzy number, wherein the degree of membership is denoted
by an interval (as a range of prospective membership
values) instead of a single value. Along this vein,
Chakraborty further presents a Generalized Linear Interval-
Valued Pentagonal Fuzzy Number (GLIVPeFN), and a
variation is shown in Figure 8 (with symmetry) along with a
Hexagonal rendition (GNLIVHxFN) in Figure 9 (with
asymmetry) [54].

'

Yooy
)] —

'

Y1
Y1

l

' ' '
X'y Xy X'pXaX3XgX'y X5 X5

Figure 8. An exemplar GLIVPeFN (with symmetry)

' |
Y4
Ya \
1
Y3
Yoy,
Y2
v
Y1
X1 X2 X3, X4, X5 Xg
X'y X'y X3 X4 X5 Xg

Figure 9. An exemplar GLIVHxFN (with asymmetry)

Chakraborty further presents a Generalized Non-Linear
Interval-Valued Pentagonal Fuzzy Number (GNLIVPeFN),
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but to be consistent with Figure 9, a Hexagonal rendition

(GNLIVHxFN) is cast below in Figure 10 (with
asymmetry).
| :
Ya '
2y ,
Vs
y' /TR . | W T T NS
8z ( ]
X; X Xs X, Xe Xg
X'y 7X'22 )3<'3 ()1('4 5X'56X'6

Figure 10. An exemplar GNLIVHxFN (with asymmetry)

Again, as previously shown in Figure 7, for some cases,
best-fit approximations (or even more rudimentary
approximations) may suffice. This raises the issue of which
particular approach vector might be prudent (depending
upon the need). Prior to unpacking this, Intuitionistic Fuzzy
Numbers (IFNs) will be explained. In essence, IFN embody
both membership and non-membership degrees, thereby
providing a more nuanced delineation of uncertainty. Mert
depicts a Generalized Non-Linear P [Intuitionistic Logic]
Pentagonal Fuzzy Number (with asymmetry), but to be
consistent with Figures 9 and 10, a hexagonal version is cast
in Figure 11 [55].

Y's
Ys \
Ya
Y3
y2 /
Y’
X1 X2 X3 Xq4 X5 Xg_,
X' X'ox's XYy X'g

Figure 11. An exemplar GNLILPeFN (with asymmetry)

As can be gleaned, IFNs and IVFNs depict U in varying
ways. For some cases, IFNs are able to be expressed in
IVFN form (e.g., when membership as well as non-
membership values are expressed as single-point intervals),
such as in the case wherein (0.9, 0.1) segues to ([0.9, 0.9],
[0.1, 0.1]). In contrast, the reverse is not necessarily true,
such as in the case, wherein ([0.1, 0.9], [0.3, 0.7]) might not
necessarily translate to a “single, representative IFN.” For
certain basic operations (e.g., “and”, “or”), equivalence can
be demonstrated. However, this is not necessarily the case
for more complicated operations.

Proceeding from the various GFNs to the broader
category of Generalized Fuzzy Sets (GFSs) can be quite
useful as well. By way of context, the classical FS involves
a membership function that assigns a degree of membership
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(e.g., between 0 and 1) to each element within the involved
FS. However, this does not necessarily reflect the Aesitation
for scenarios with incomplete/uncertain information. In
contrast, GFS encompass a range of extensions to the
classical Fuzzy Set (FS), such as that of Intuitionistic FS
(IFS), Interval-Valued FS (IVFS), etc. Along this vein, IFR
equates to Intuitionistic Fuzzy Reasoning and IVFR equates
to Interval-Valued Fuzzy Reasoning. In terms of
isomorphism, IFSs and IVFSs have been shown to be
formally equivalent [56][57]. In essence, they share
equivalent mathematical structures in spite of their
differences in representing U. Luo had expressed this
diagrammatically, for which a version is reproduced in
Figure 12 [57]. With regards to Figure 12, TIA equates to
the Triple I Algorithm (i.e., “a fuzzy reasoning algorithm,”
which posits an output given a specified input), RTIA
equates to the Reverse Triple I (a.k.a., R-IIT) Algorithm (i.e.,
“a fuzzy reasoning algorithm,” which inverts the TIA so as
to ascertain an apropos input given a specified desired
output), SIS equates to Subsethood Inference Subsethood
(i.e., the degree of containment of a FS within another FS),
b equates to bijection, and i equates to isomorphic [57].

N
IFS ~—{ IVFS
1
.
IFRTIA IVFR TIA
A\ J b
' N\
IFR RTIA IVFR RTIA
L ) b y
e A
IFR SISA IVFR SISA
b y,

Figure 12. The IFS and IVFS Isomorphism and various Bijections [57]

The significance of this resides in the paradigm that,
generally, IFS tend to be quicker to compute than IVFS
(particularly in the area of basic comparisons/operations).
Moving beyond IVFS, the Interval-Valued Intuitionistic
Fuzzy Set (IVIFS) yields even “more precise results” [58].
After all, while an IVFS depicts the uncertainty of
membership via an interval, an IVIFS leverages both an
interval-centric degree of membership as well as an
interval-centric degree of non-membership. Thus, IVIFS is
even more nuanced than IVFS. Fortunately, it is a
generalization of IFS, which is isomorphic to IVFS, as
Bustince well depicted, and a version is reproduced in
Figure 13 [118]. Along the vein of Figure 13, the Type 2
Fuzzy Set (T2FS) had been discussed in, among other
papers, the second DOI of Table IV, which discussed the
notion that the “Type-2 Fuzzy Set (T2FS)...can
accommodate the uncertainty of membership fluidity,
whereas the Type-1 Fuzzy Set (T1FS) only accommodates
membership invariableness” [second DOI of Table IV][first
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DOI of Table VIII][second DOI of Table VIII]. Along with
IVFS, IFS, IVIFS, there are also the notions of Vague Set
(VS) and Grey Set (GS).

T2FS ‘

—— N T —
— P ~~ T
[ IVFS H IFS }—v 'S }—{ GS }
i i i

IVIFS

i

Figure 13. Mathematical Equivalence among particular GFS [118]

Lu illuminates the notions that VS “is more natural
than an IFS for merging fuzzy” values [59]. A classic
example involves the merging of three fuzzy values, such
as 0.3/m, 0.7/m, and 0.9/m; the resultant VS expression
would be [0.3, 0.9]/m, wherein the lower bound of the
membership m is 0.3 and the upper bound is 0.9. In
contrast, the IFS expression would be less intuitive with
0.6 for the degree of membership, 0.2 for the degree of
non-membership, and 0.2 for the hesitation margin.
Furthermore, Lu notes that ascertaining the Median
Membership (Mm) and/or the Imprecision Membership
(Mi) is more intuitively gleaned via VS, such as depicted
in Figure 14, which is a variation of Lu’s figure.

1 | Median Membership M, 1 |Imprecision Membership M;
1-b / 1-b
(@a+1-b)/2 1-b-al
a [T a [ e
0 U 0 U

Figure 14. Delineating the Median and Imprecision Membership via VS,
where y axis denotes “Membership Functions” and the x axis denotes
“Data Objects” [59]

Likewise, delineating the hesitation region for VS is
much more straightforward, such as shown in Figure 15. In
essence, VS is more intuitive for delineating the Support
Region, Opposition Region, and the Hesitation Region
(wherein there is neither support nor opposition).

1
Opposition Region

Hesitation Region

Support Region

u

Figure 15. Delineating the Hesitation Region for VS (as contrasted to IFS)
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As Lu discusses, “in the literature, the notions of IFSs
and VSs are regarded as equivalent,” in the sense that an
IFS is isomorphic to a VS [59]. This is useful for
transitioning among IVFS, IFS, VS, and GS [118]. Next,
there is also a distinction between VS and GS. For
example, Alkhazaleh states that a VS “is defined by a truth-
membership function ... and a false-membership function”
[60]. Lu adds to this by asserting that “interval-based
membership is used in a VS” and that “the interval-based
membership generalization” in VS “is more expressive in
capturing vagueness of data” [59]. On the other hand, GS
leverages the notion of Grey Numbers (GNs), and Khuman
notes that “the generalised” GN “can cater to both discrete
and continuous data” [61]. Although there is the obvious
connection between GS and GN, they are distinguished by
the fact that a GS captures uncertainty about membership to
the involved set while a GN denotes uncertainty about the
actual value of a particular quantity. Sifeng provides a
generalization for both: “the information that grey is often
associated with is information that can be described as being
partially known and partially unknown, which in actuality is
a common occurrence of uncertain systems” [62]. Along
this vein, Shaker and Moore-Clingenpeel reference the
epistemological (pertaining to the theory of knowledge)
constructs of the “known knowns” (KK), “known
unknowns” (KU), and “unknown unknowns” (UU) that
were infamously popularized by Donald Rumsfeld. The
extrapolated quad chart, which also references the writings
of Shaker and McGregor, is shown in Table XXVI
[63][64].

TABLE XXVI. EPISTEMOLOGICAL CONSTRUCTS [63][64]

Known Knowns (KK) Known Unknowns (KU)

“Things we are aware of and
understand”

“Things we are aware of and do
not understand”

Unknown Knowns (UK) Unknown Unknowns (UU)

“Things we are not aware of, but
understand”

“Things we are not aware of and
do not understand”

With regards to Sifeng’s referencing of “partially
known” and “partially unknown,” this could pertain to the
KK and KU for the former and KU, UK, and UU for the
latter. As previously stated in the prologue of Section II (and
as exhibited in Tables XI, XII, XVI, XVII and the broader
categorizations of Table XIV), despite the varied RMs that
might be utilized, an inconsistency/contradiction could
occur due to phenomenon, such as the Ellsberg Paradox,
which can be described as ‘“ambiguity aversion” — a
predilection to avert alternatives whose prospects are
unknown; citing the logic of Lang (“zero exposure to
ambiguity can be optimal”) as well as the assertions of
Ellsberg, Machina, and others, ambiguity aversion
“violate[s] both the key rationality axioms and classic
models of choice under uncertainty” [65]. For a number of
cases, ambiguity aversion segues to sub-optimal DM
[65][66]. As a case in point, Jia’s findings show that
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experimental participants preferred KK over KU/UK/UU
even when the options with U might be more favorable (it is
not clear whether KK/KU prevailed over UK/UU). In any
case, Jia does indeed note that “participants who learned
about the Ellsberg Paradox were more tolerant of ambiguity,
yet ambiguity aversion was not completely abolished” [67].
Coleman summarizes matters as: “The Ellsberg paradox is
often cited as evidence for unknowable ‘ambiguity’ versus
computable ‘risk’ and a refutation of the Savage axioms
regarding expected utility maximization” [68][69]. Chen
describes the Ellsberg paradox more simply, as “people
prefer betting on known (objective) probabilities rather than
unknown (subjective) probabilities” [70]. Weber describes it
as “in ambiguity over time, the eventual outcome is known,
but the length of time before the outcome will occur
is uncertain [71]. In Table I of Section I, it is clear that
ambiguity and uncertainty are indeed different. Yet, despite
these differences, definitions of the “Ellsberg paradox”
demonstrate how these terms are often used interchangeably
(with a lack of distinction made between the two).
Exemplars of this are shown in Table XXVII.

TABLE XXVII. EXEMPLAR UTILIZATION OF AMBIGUITY (A) VERSUS

UNCERTAINTY (U) IN VARIED DEFINITIONS OF THE ELLSBERG PARADOX

Researcher Remarks

Binmore “Experimental results on the Ellsberg
paradox typically reveal behavior that is
commonly interpreted as ambiguity aversion”
[72].

Leopold “Smarter in the Long-Term: Diminishing
Ambiguity Aversion in a Repeated Ellsberg Urn
Task” [73].

Chen “Ambiguity Aversion: The Ellsberg paradox
shows that people prefer betting on known
(objective) probabilities rather than unknown
(subjective) probabilities” [74].

Halevy and | “The Ellsberg paradox demonstrates that

Feltkamp people’s belief over uncertain events might not
be representable by subjective probability” [75].

Segal “Measuring Nonmonetary Utilities
in Uncertain Choices: The Ellsberg Urn” [76].

Joreno-Jimenez and | “we present a method to deal with uncertainty,

Vargas which considers Ellsberg’s objections” [77].

Jabarian and Lazrus | “55% of the subjects prefer avoiding ambiguity
even when it means choosing dominated risky
options — what we call the Two-Ball Ellsberg
Paradox” [78].

Perhaps, the preferred embodiment for the use of the
cited terms (ambiguity, uncertainty), with regards to the
Ellsberg paradox, is as follows. In essence, the Ellsberg
paradox alludes to the notion that people have a predilection
towards choices with less uncertainty, thereby running
counter to the Expected Utility Theory (EUT) (e.g., a
rational cost-benefit analysis) by subscribing to ambiguity
aversion.
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Apart from the Ellsberg paradox, there is also the
Machina paradox (wherein the preference ranking may
change although the underlying probabilities are
equivalent). Aerts notes that the Machina and Ellsberg
paradoxes run counter to the EUT [79]. Likewise, the Allais
paradox (where DM are unlikely to consistently make
rational decisions under CDC) runs counter to the EUT [80].
Both the Machina and Allais paradoxes run counter to
Savage’s Independence Axiom (IA). Ferrari-Toniolo
proclaims that the IA is the “most demanding axiom” as
pertains to EUT [81]; Blavatskyy explains A simply: “The
independence axiom postulates that”...the DM’s...
“preferences between two lotteries are not affected by
mixing both lotteries with the same third lottery (in identical
proportions)” with the extension of this being that the DM
“does not necessarily prefer the same choice alternative
when repeatedly presented with the same choice set” [82].
Overall, the Ellsberg, Machina, and Allais paradoxes all run
counter to EUT and highlight DM behavior that deviates
from rational behavior, such as is shown in Table XX VIII.

TABLE XXVIII. EXEMPLAR TYPES OF PARADOXES WITH TYPE OF
EFFECTS
Type of | Type of Effect Description
Paradox
Ellsberg | Ambiguity DMs have a predilection to be
Aversion ambiguity-averse and tend towards
choices with known calculable risks
rather than those with unknown
incalculable risks.
Machina | Inconsistent Accurate preference ranking methods
Preference are problematic amidst A and U; this
Rankings has high impact for AI models that are
trained to learn and predict
preferences.*
Allais Certainty Effect DMs have a predilection for more
certain outcomes over probabilistic
outcomes.

Jim refers to this as “each of these models is trained
from a common base model to predict the...preferences of a
single individual,” Aldoseri refers to this as “machine
learning algorithms learn, make predictions, and improve
their performance over time” [83][84]. From Table XXVIII
and the discussions leading up to this point, the key take-
away, taking the cue on inconsistent preference rankings, is:
(1) with regards to non-monotonic phenomenon, human
behavior may not be able to be captured and the involved
AIS may actually adopt “the opposite” position (from
Section 1IB) [34]; (2) “the shift of the involved variables
from a monotonic to a non-monotonic paradigm can be
quite unexpected and occur more frequently than
anticipated/desired” for AIS (from Section IIC) [2]; and (3)
as report by Chen, with regards to inconsistent preference
rankings, “most state-of-the-art preference-tuned models
achieve a ranking accuracy of less than 60% on common
preference datasets,” which basically equates to “preference
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learning algorithms do not learn preference rankings,”
“existing reference models rarely have correct rankings,”
and “preference learning rarely corrects incorrect rankings”
[85]. Also, interestingly and ironically, leaning the other
way towards monotonic does not seem to be viable either;
for example, “enforcing a strict monotonic paradigm can
segue to an unnatural rigidity and/or incorrect/irrelevant
responses by the” AIS (from Section IIC). A robust
counterpoising seems to be the key.

III. EXPERIMENTATION

Counterpoising mechanisms, such as that of a robust
MMSO mechanism, have been previously experimented
upon, as shown in Table XXIX.

TABLE XXIX. EXEMPLAR DOIS AND PAPER TITLES PERTAINING TO THE
NOTIONS OF MADM/MODM SM/OM

Facet DOI

MADM/MODM * A Prospective Monotonic/Non-Monotonic
SM/OM (MMSO) Transition Zone Impediment for Concept
Model-Centric Artificial Intelligence
Systems

+ 10.1109/1AICT65714.2025.11100570
+10.1109/Al10T65859.2025.1110531

* http://dx.doi.org/10.2139/ssrn.5291883

* http://dx.doi.org/10.2139/ssrn.5291881

* http://dx.doi.org/10.2139/ssr.5291879

* 10.1109/ICAIIC64266.2025.10920828

* http://dx.doi.org/10.2139/ssr.5183492

+ 10.1109/1AICT62357.2024.10617473

+ 10.1109/GEM61861.2024.10585580

+ 10.1109/Al10T61789.2024.10579033

* http://dx.doi.org/10.2139/ss1m.4984663

*+ 10.1109/ICSGTEIS60500.2023.10424230

+ 10.1109/ICPEAS56918.2023.10093212

As previously discussed in Section IID, “depending upon
the RM/amalgam of RMs/overall RM pathway initially
selected, such as by the LHM, the related DM point/DMIP
will likely impact the downstream behavior within the
MNTZ in terms of a preponderance of monotonic or non-
monotonic behavior.” Consequently, the selection is non-
trivial. To assist in this regard, the MMSO could be quite
useful. After all, as pertains to preference ranking, it is a
central component of MMSO, which is the mainstay of
MCDM. For MCDM, preference ranking impacts the
specification of alternatives, the defining of criteria, the
assigning of weights, and the sorting of alternatives, among
other items.

Homing in on the aforementioned delineation of criteria,
assignment of weights, and the ranking of alternatives, the
Shapley value has been found to be quite instrumental. It
can facilitate the analysis of interactions between the
various criteria, thereby providing invaluable insights during
the ascertainment of apropos criteria weights, as well as
enhance various ranking methods. As Qin puts it, the
Shapley value “is widely used for” “feature importance
analysis” [86]. To further this, B. Rozemberczki asserts that,

International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

“the Shapley value is used to measure the contributions of
input features to the output of a machine learning model”
[87]. In essence, the Shapley value can be construed as
helping to gauge the overall significance of each criterion.
Given this pivotal role, it seemed prudent to explore the
Shapley value in terms of its prospective value within the
MNTZ for the ultimate purpose of helping to better
counterpoise MR/NMR via a better counterpoised MMSO.
For this reason, explorations of a bespoke IbSOA approach
were undertaken.

Given the various counterpoising within the discussed
AIS, enhanced context is a mainstay of this paper, and this
was alluded to in [1], which this paper is rooted upon.
Axiomatically, to enhance context for an AIS, ML2 is vital.
Hence, in the case of this paper, interstitial analyses are
crucial for ascertaining “whether the prospective ML
learnings are of potential benefit” [1]. In terms of theoretical
foundations, it is posited that “Borgonovo’s glocal notion
can help bridge the gap, and the significance of the [Optimal
Shapley-Nondominated Solution] OSNS segueing to an
Optimal Shapley-Owen-Nondominated Solution (OSONS)”
paradigm is underscored in [1] as well as articulated by
various researchers within this arena, such as Casajus,
Lopez, Beal, and others [88][89][90]. Fundamentally, the
referenced Owen value nicely captures the intricate
interactions between/among the constituent members of the
involved feature set as well as “extends the Shapley value
(which well captures the individual feature contributions) in
a consistent fashion” [1]. Yet, OSONS is predicated upon
the referenced IbSOA, which encompasses ‘“temporal-
centric [Finite-Change Shapley-Owen] FCSO values,
[“Squared Cohorts” Shapley-Owen] SCSO values, and
[Generic  Shapley-Owen] GSO values/[Variance-Based
Shapley-Owen] VBSP values” [1]. In addition, to
operationalize the IbSOA, it should be conjoined with the
previously referenced MMSO mechanism.

Based upon the experimentation referenced in Table
XXIX, it seemed prudent to further investigate those areas
promulgated by Wu, Wang, Hua, and others. By way of
example, among others, Wu and Wang have been
proponents of “Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) OM in conjunction
with SHAP,” and this seemed favorable for MMSO
experimentation [91][92]. As another example, among
others, Hua has been a proponent of “the PROMETHEE
OM with SHAP” [1]. Again, this seemed promising for
MMSO experimentation as well. As noted in [1], the
experimentation assessed the referenced
favorable/promising avenues, and an output, among others,
centers upon the notion that it seems well advised to utilize
“an OM (e.g., CRiteria Importance through Intercriteria
Correlation or CRITIC) to first, derive the criteria weights
and second, use a complementary pairing for the ensuing
ranking (e.g., TOPSIS, PROMETHEE)” [1]. The reader
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should note that a substantive portion of the balance of
Section III (particularly Sections IIIA and IIIB) is derived
from [1], and that this journal paper is an invited extended
version of that paper (i.e., [1]).

A. Experimental Testbed

For a tasked ML to well learn atop another ML in an
ML2 sense, it is important to mitigate against inadvertent
spawning (i.e., Spawn Reduction). Accordingly, enhanced
context and understanding at the interstices can be central to
the necessary ML2 mechanism to substantially decrease the
“spawning of further non-convex MINLP (e.g., from the
transformation pathways of non-convex MINLP to convex
MILP)” [1]. For the experimentation in [1] and herein,
“SDP solvers were implemented aboard GNU’s Not Unix
(GNU) Octave (a “numerical computation platform” that is
“under the GNU [General Public License] (GPL) v3
license” and is generally “compatible with the likes of
MATLAB”) along with a myriad of Octave Forge
packages” [1][93]. As noted in [1] and [93], “’the source
code was modified in the lab environment’ so as to
implement accelerants for the referenced SDP solvers to
quickly address the various involved convex optimization
problems described herein;” also, as noted in [1] and [93],
“GPLv3 avoids the issue of tivoization (the instantiation of
a system that incorporates software under the terms of a
copyleft software license but leverages hardware restrictions
or digital rights management to prevent users from running
modified versions of the software on the involved
hardware)” [93]. The experimental “testing was conducted
using a variety of open-source software packages, such as
Automatic Differentiation Model Builder (ADMB) (for non-
linear statistical modeling) and Interior Point OPTimizer
(IPOPT) (for large-scale nonlinear optimization)” [1][93].
Additional “promising software packages, such as LOQO
(like IPOPT, it is based upon the interior-point method) and
Sparse Nonlinear OPTimizer (SNOPT) (it leverages
Sequential Quadratic Programming or SQP for resolving
large-scale non-linear optimization problems) were
examined, but they were not utilized given their licensing
caveats” [1].

It had been discussed in [1] and [the second DOI of
Table IV] that a particular numerical implementation of
Continuous Wavelet Transforms (CWTs), aboard a
Constriction Factor (CF)-Particle Swarm Optimization
(PSO)-Robust Convex Relaxation (RCR)-Long Short-Term
Memory (LSTM)-Deep Convolutional Neural Network
DCNN (CPRLD) architectural paradigm, well contributes to
System Transparency Explainability & Accountability
(STEA) by way of the intrinsic “successive convolutional
layers (which contain the cascading of ever smaller ‘CWT-
like’ convolutional filters)” [1][the second DOI of Table
IV]. As noted in [1], “the referenced CPRLD construct
handled the various transformation pathways” alluded to in
Figure 2 previously “(e.g., convex approximations, series of
convex relaxations, etc.), and the architectural
implementation for this paper was unique in that a ML2
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paradigm was implemented for Spawn Reduction (SR2 on
SR1),” such as depicted in Figure 16.

Key Solver for
Spawn Reduction (SR),

Key Solver for
Spawn Reduction (SR),

Key Solver for
the additional
Non-Convex

Maintain Numerical

Key Solver for Stability for the Mitigator Against

RCR Optimization Problems Spawned Key Solvers and the Mode Failure/
Problems via the RCR Construct-at-large Collapse
DCNN-1 DCNN-2 i DCNN-4 | VDCGAN-l |

DCNN-3

DCNN-5

Figure 16. CPRLD Architectural Construct with a ML2 (SRz on SR1)
Spawn Reduction paradigm [1]

As discussed in [1], “in terms of implementation details,
a DCNN-centric instantiation was chosen for the requisite
sufficient balance of reduced computational complexity
along with sufficient robustness to be fit for purpose. The
assigned tasks of the various DCNN are labeled accordingly
in Figure 16. For example, as DCNN-1 was tasked with
being the key solver for the involved convex optimization
problems, it required a high degree of numerical stability,
and PyTorch version 0.4.1 was seclected; DCGAN-1
leveraged a “forward stable” TensorFlow-based Deep
Learning (DL)  Convolutional GAN  (DCGAN)
implementation to be able to well address the potentiality of
mode collapse/mode failure (a phenomenon that may occur
when adversarial GANs, which are being trained in tandem,
are either unable to converge or undergo an anomalous
convergence)” [the second DOI of Table I'V].

B.  Experimental Construct

As pertains to the involved experimental construct,
which is based upon Figure 4 of [1], such as is now shown
in Figure 17, “prior experimentation aspects used as presets
are reflected in blue font while current experimental
elements are shown in purple font” [1].

AIS ML2
IbSOA MMSO CPRLD
Local Glocal Global MADM/MODM SM/OM
FCSO SCSO VBSO
CRITIC PROMETHEE

Figure 17. Conjoining of IbSOA and MMSO

For additional context, “t-” elements (e.g., t-FCSO, t-
SCSO, t-GSO, t-VBSO) of the b-SHAP can be extrapolated,
and these relate to Borgonovo’s work...which more fully
considers “Kotthoff’s emphasis on  temporal-
sensitive/temporal-centric ~ Shapley values” [94]. As
described in [1], “the OM of CRITIC was utilized as a
preset for deriving the criteria weights, and the OMs of
PROMETHEE, TOPSIS, and ELimination Et Choix
Traduisant la REalit¢ (ELECTRE) were utilized for the
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subsequent rankings. Initial selections and avoidances,
among others, were based upon the following rationale. For
example, PROMETHEE was known to be ‘easily...
understood’ and interpretable, so it was selected for testing”
[95][96]. Along this vein, [fuzzy] VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) was not
selected, as it was known to be less interpretable and “less
explainable than other more intuitive methods” [97].

In general, selections were made in adherence with the
principles for high efficacy ML2. In addition, there were
other technical considerations. As discussed in [1] as well as
those papers pertaining to related experimentation, such as
shown in Table XXX, the issue of “Rank Reversal” (RR),
wherein ranking results might change when the method
changes or when the set of alternatives changes (leading to
inconsistent and/or inaccurate results), was also investigated
(as RR affects several of the methodologies)

TABLE XXX. EXEMPLAR DOIS PERTAINING TO THE NOTIONS OF RANK

REVERSAL (RR)
Facet DOI
RR *10.1109/TAICT65714.2025.11100570

*10.1109/A110T65859.2025.11105315
* http://dx.doi.org/10.2139/ssrm.5291883
* http://dx.doi.org/10.2139/ssrn.5291881

As noted in [1], “the select OMs experimented with were
known to be the most resistant to RR (yet are still subject to
the phenomenon), and preliminary results” are reflected in
Figure 18 [98]. “The key for the chart is as follows. First,
the referenced ‘select OMs’ of this Section IIIC are self-
evident: ELECTRE, TOPSIS, and PROMETHEE” [1]
“Second, these ‘select OMs’ were benchmarked by
execution time (E), sensitivity (S), performance under
uncertainty (U), validity (V), and interpretability (I)” [1].
“Third, the aforementioned were benchmarked against
classical SHAP (c-SHAP), as well as the b-SHAP approach
described within this paper” [1]. “Using the CPRLD as a
preset, collectively, this forms the basis” of the mechanisms
described herein. The relative values were normalized
against a scale of one to ten for ease of comparison” [1].

1

on A O @O

Elsiuy b-SHAPC

E
Slu v C-SHAP C

ELECTRE Els |y

TOPSIS Vi

PROMETHEE

mc-SHAPC mc-SHAPNC mb-SHAPC mb-SHAPNC

Figure 18. Preliminary Results from b-SHAP/select OM Benchmarking

Also, “the V and I were higher for PROMETHEE than
for TOPSIS or ELECTRE. The E for TOPSIS was notably
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higher than that of the others, but the computational
complexity is known to be less, and the performance under
conditions of U was weaker than that of the others; the
performance of PROMETHEE under conditions of U were
seemingly better than ELECTRE and TOPSIS, in that order.
Overall, the performance of b-SHAP was better than that of
c-SHAP across the board for the range of E, S, U, V, I (for
all the “select OMs” of ELECTRE, TOPSIS, and
PROMETHEE). Hence, the b-SHAP-PROMETHEE
amalgam (along with the CRITIC, CPRLD, etc. presets)
exhibits promise” [1].

C. Discussion re: IbSOA

As noted in the first DOI of Table XXIX, “the myriads of
interplays among local, glocal, and global is clear, as a
transformation and/or sequence of transformations can lead
from one to another” [94]. For example, what Mase deemed
to be the [local] Baseline Shapley (i.e., what equates to the
average of the FCSO values function under uncertainty) can
be readily transformed to the [global] VBSO values [94][99].
Likewise, the [glocal] SCSO values can be transformed to
the VBSO values. These interplays, among others,
demonstrate how “additional insights into the [ML] model
behavior” are possible [99].

Local Glocal Global

SCSO
|
~
Baseline VBSO
FCSO Shapley

Figure 19. Derived from Figure 1 of [94]; the interplay among Local
(FCSO and Baseline Shapley), Glocal (SCSO), and Global (VBSO)

This is akin to the Figure 13 interplays, and the
successful operationalization of Figure 17 is contingent
upon a phenomenon, which has been previously
investigated, such as exhibited in Table XXXI — Robust
Convex Relaxations (RCR).

TABLE XXXI. EXEMPLAR DOIS PERTAINING TO THE NOTIONS OF ROBUST
CONVEX RELAXATIONS (RCR)

Facet DOI

RCR * A Prospective Monotonic/Non-Monotonic
Transition Zone Impediment for Concept
Model-Centric Artificial Intelligence
Systems

+ 10.1109/1AICT65714.2025.11100570

+ 10.1109/Al10T65859.2025.11105315

* http://dx.doi.org/10.2139/ssrn.5291883

* http://dx.doi.org/10.2139/ssrn.5291881

* http://dx.doi.org/10.2139/ssr.5291879

* http://dx.doi.org/10.2139/ssrn.5183492

+ 10.1109/IBDAP62940.2024.10689701

+ 10.1109/1AICT62357.2024.10617473

+ 10.1109/GEM61861.2024.10585580

+ 10.1109/Al10T61789.2024.10579033

* http://dx.doi.org/10.2139/ss11.4984663

* http://dx.doi.org/10.2139/ssr1.4679251
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* 10.1109/ICSGTEIS60500.2023.10424230
* http://dx.doi.org/10.2139/ss1.4679260

+ 10.1109/ICPEA56918.2023.10093212

* 10.1109/CyMaEn57228.2023.10051057

+ 10.1109/CyMaEn57228.2023.10050946

+ 10.1109/0ETIC57156.2022.10176215

* http://dx.doi.org/10.2139/ssrn.4287248

* https://ssmn.com/abstract=4219298

By leveraging the described RCR approach, the notion
of relaxations/convex relaxations can be applied so as to
attain “Relaxed Isomorphisms”/”’Isomorphic Relaxations.”
In this way, should IsoP be required, the DMP can be more
computationally tractable. Mancinska references this
approach as do Atserias and Maneva. Aflalo asserts “that for
friendly graphs, the convex relaxation is guaranteed to find
the exact isomorphism or certify its inexistence”
[100][101][102].

The starting impetus of this paper was to address SDM,
particularly SDM-A/U, and the LHM was discussed as a
meaningful option. As discussed, the main components of
the LHM include the ICSM2 and MAM. The ICSM2 has a
list of questions to address (e.g., whether the involved set is
UnS, EgS, EquivS, OrS, POSET, UnS-Iso, POSET-Iso, or
IV), such as previously described in Table V. The MAM
also has a list of questions to answer (e.g., how much time is
available, what and how much information is available, as
this might dictate that type of initial RM is most feasible
and what is the probability that the involved is PDMP,
ADMP, or NPDMP), such as shown in Figure 20, and re-
expressed in Figure 21 in terms of N+V or IsoP pathways.

Exemplar MAM Question Pathway

Time Available?

oo | [ ]
|

[Deductive?] [ Inductive? ]

Weakly
Monotonic

Abductive?

Type of DMP? |

ADMP

Monotonic ]

Figure 20. MAM Exemplar Question Pathway

N+V

GFN/GFS/IUC
1sop?< MR/NMR Risk
Paradox A/U

Figure 21. N+V or IsoP Pathways; IsoP has MR/NMR Risk
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It should be remembered that Deductive is achieved
iteratively (not front-loaded) while Inductive and Abductive
are front-loaded. In addition, the CAIR-A also has the
challenge of ascertaining what primary RMs and secondary
RMs might be involved, and this was previously presented
in Table XVII.

As noted in the 1% DOI of Table VIII, “the establishment
of an Inherent Uncertainty Construct (IUC)...is central, and
crucial to this is the leveraging of T2FS and Zadeh’s Fuzzy
Systems Theory (ak.a., IUC-la) along with the
consideration of Rough-Fuzzy Set (a.k.a., [UC-2a), which is
an extension of IUC-la and Pawlak’s Rough Set (a.k.a.,
IUC-1b); after all, [UC-2a can well accommodate the notion
of an affiliation, “but not necessarily absolute inclusion”
[103]. Furthermore, “Deng’s Grey Systems Theory (a.k.a.,
TUC-2b) can enhance the precision of [UC-2a.”

TABLE XXXIL. COMPONENTS OF THE INHERENT
UNCERTAINTY CONSTRUCT (IUC)

Short-Form
Acronym

Long-Form Name

IUC-1a Leverages T2FS and Zadeh’s Fuzzy Systems Theory

(FST).

IUC-1b Pawlak’s Rough Set (RS).

IUC-2a Rough-Fuzzy Set (RFS) can well accommodate the
notion of an affiliation, “but not necessarily absolute
inclusion” [103]. It is an extension of IUC-1a and IUC-

1b.

IUC-2b Deng’s Grey Systems Theory (GST) can contend with
systems with incomplete or uncertain information. For
RWS, the uncertainty can stem from continuous data
that may absent, exhibit intricate relationships, be
noisy, etc. GST leverages GSs (which rely upon GNs),
which are numbers with known upper and lower
boundaries, but for which the precise value is unknown
within those boundaries; this embodiment is able to
concurrently represent of both discrete and continuous
data simultaneously) to enhance the precision of IUC-
2a. GST also leverages discontinuous Grey Sets, which
are specifically geared to handling discontinuous data
(wherein only partial information is available) or data
with uncertainty. It should be remembered that
although a discontinuous function may have a
continuous domain, it may have breaks/gaps/jumps or
points where it is not defined. In contrast, a discrete
function has distinct and disparate values (e.g.,
integers).

1UC-3 Information Entropy Methods, whose strength resides
in ascertaining “unknown attribute weights” [1% DOI of

Table VIIT][104].

“If the relationship/membership (e.g., entity, attribute,
etc.) is discontinuous, IUC-2b can be leveraged; otherwise,
given a continuous/continuous alternative paradigm, then
other Probability [& statistics] Systems Theory (PST)
approaches might be utilized, such as Information Entropy
Methods (IEMs) (a.k.a., IUC-3), whose strength resides in
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ascertaining “‘unknown attribute weights’” [second DOI of
Table IV][Ist DOI of Table VII][104]. Furthermore,
“whether the relationship/membership is discontinuous or
continuous (e.g., pulsed, rather than continuous), it can still
be construed as a Relationship/Membership Stream (RMS)
— a key constituent component of the IUC that is
summarized in” Figure 22 below [1st DOI of Table VIII]:

[Discontinuous — 1UC-2b (IUC-2a, IUC-1b, IUC-1a) — MADM
—MODM

. MCDM
Continuous —|UC-3 “

Figure 22. RMS Paradigms for the IUC [1st DOI of Table VIII]

The following Sections IIIC1 through IIIC6 stem from
the 4" DOI of Table IV.

1) Nondominated Solution (NS)

Wu had noted the opportunity of transforming FN-
related Fuzzy Optimization and Decision Making (FODM)
problems to “Scalar Optimization Problem[s]” (SOPs),
which can be efficiently resolved to segue to the
nondominated solution, wherein “no one objective function
can be improved without” a concurrent degradation to “the
other objectives,” and “the OSNS can then be ascertained.”
[3" DOI of Table IV][105].

2) Optimal Corresponding (OC) GLfSFN-based

membership function

Interestingly, “regarding ‘best-fix approximation[s],’
Lakshmana had reported on the efficacy of the
“approximations of general non-linear FNs’ by way of
higher-order linearized Generalized ‘f’-gonal FN/SFN
forms, ‘such as Triangular, Trapezoidal,” as well as
Pentagonal, Hexagonal, Heptagonal, Octagonal, etc.” [3"
DOI of Table IV]; “these can be re-expressed as “G7rFN,
GTpFN, GPeFN, GHxFN, GHpFN, GOnFN, etc.,
respectively” [3™ DOI of Table IV]. “According to Velu
and Ramalingam, ‘best-fit approximations’ can be improved
‘when higher-order piecewise linear’ FNs are utilized to
approximate ‘non-linear information™ [3™ DOI of Table
IV][106]. “Along this vein, Augustin asserts that, as one
example, GHpFN ‘can represent more intricate and nuanced
degrees of uncertainty’ since ‘certain apropos ‘f’-gonal
FN/SFN forms’ are quite good at ‘preserving ambiguity’”’
[3'4 DOI of Table IV][107]. “Ban, another advocate of this
principle” is satisfied even with “Triangular, Trapezoidal,
and  semi-Trapezoidal for the ‘preserv[ing]...and
weight[ing]” of ambiguity” [3™ DOI of Table IV][108].
“The pathways for deriving the OSNS (a Multi-Objective
Decision Making or MODM problem) and the selection of
the ‘t”-gonal FN/SFN form (a FODM and MCDM problem)
are informed by the ICSM2.”

3) Preferred OCGLfSFN
“A goal of the involved [Metaheuristic Algorithm] MA
(for which the MAM is responsible) is to ascertain the
OCGL/SFN. Prior to segueing to this OC form, there is a
Precursor (P-) non-OC form (i.e., P-GLfSFN); for example,
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Augustin  acknowledged...GHpFN for its ability to
‘represent more intricate and nuanced degrees of
uncertainty’ while Ban favored GTrFN, GTpFN, and semi-
GTpFN for the preservation of ambiguity and weighted
ambiguity” [3¢ DOI of Table IV][116][117]. “Whatever the
preferred form, the choice of the precursor Generalized ‘f*-
gonal FN/SFN form (e.g., P-GLfSFN) affects the efficacy of
the utilized ‘defuzzification method” (i.e., ‘the
transformation of a FN/SFN into a crisp form’)” [3™ DOI of
Table IV]. “The significance of this center upon the
intricacy that ‘as the LHM contends with the counterpoising
of” A/U, the precursor non-OC form, which best preserves
ambiguity, is likely to be optimal for facilitating/deriving
the OCGL{SFN.”

4) The Ranking of FNs/SFNs

Significantly, “there are numerous ‘ranking methods for
the discussed pre-cursor [non-OC form] Generalized ‘f’-
gonal FN/SFN form (e.g., P-GL/SFN), and the appropriate
selection” is central” [3™ DOI of Table IV]. For example,
Velu and Ramalingam noted that ‘a ranking method which
works very well for’ G Hexagonal FNs/SFNs ‘may have
some shortfalls when it is extended for’ G Octagonal
FNs/SFNs” [3" DOI of Table IV][105]. “Similarly, ‘a
ranking method which works very well for’ G Octagonal
FNs/SFNs might have ‘some shortfalls when it is used for’
Triangular or Trapezoidal FNs/SFNs” [3" DOI of Table
IV][109]. “In any case, the ranking mechanism (facilitated
by the ACWS) informs the precursor non-OC to final OC
form.”

5)  Similarity Measure (SimM) Challenge for FN/SFN

With regards ranking methods, the underpinning
measures typically involve various SimMs. Gogoi & Chutia
noted that while there are a myriad of methods (each with
advantages/drawbacks), a universally accepted ‘silver
bullet” SimM for ascertaining the similarity between
FNs/SFNs ‘does not necessarily exist™ [3' DOI of Table
IV][110]. “They also noted that a ‘literature survey reveals
that most of the’ SimM ‘are being developed based upon’
the following parameters: “geometric distances, height, area,
perimeter, ‘Center of Gravity (COG),” ‘Radius of Gyration
(ROG),” etc.” [3™ DOI of Table IV][110]. It was noted in
[110] that for various studies, with the exception ‘of Hejazi
et al. (2011),” certain ‘glass ceiling’” SimM methods (e.g.,
“’failing to give reasonable similarity between pairs of FNs
when one FN is identical for both the pairs) ‘are being
carried forward’ into contemporary works” [3' DOI of
Table IV][110]. This is reminiscent of our prior finding that
certain bugs/issues in various frameworks/libraries/toolkits,
such as made available via assorted developer platforms,
were being carried forward into various projects/papers. To
aggravate matters, FNs are simply a special case of a FS,
and ‘beyond FS, there’ are other FS variations; these include
the IFS, Pythagorean Fuzzy Set (PFS), and Neutrosophic
Fuzzy Set (NFS)” [3 DOI of Table IV][111][112]. “The
IFS, which is often leveraged for ‘coalition decision-
making,” is comprised of constituent elements that ‘have
both membership function # and non-membership function
v, such that 4 + v <=1, and hesitation margin 4, such that u +
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v + h = 1" [3 DOI of Table IV]. “Other situations are
better addressed by PFS, ‘wherein u + v >=1 (or u + v <=1)
and u? +1? + h* = 1’7 [3" DOI of Table IV][111]. “Yet
other cases are better handled by NFS, which combines “FS
with NS” [3™ DOI of Table IV][112]; “delving into this,
Das notes that while FS addresses “uncertainty” by the
utilization of ‘membership grade,” Smarandache’s NS
tackles ‘uncertainty using truth, indeterminacy, and falsity
member grades’” [3' DOI of Table IV][112]. “Furthermore,
Ashraf, Gundogdu & Kahraman, Mahmood, etc. have
‘contributed to the [overall] notion of...SFS, which is the
generalized structure over’ the referenced FS (e.g., IFS,
PFS, and NFS)” [3™ DOI of Table IV][113].

6) SimMs and Distance Measures (DMs) for SFS/T-SFS
“Various SimM approaches have been adapted for the
SFS ecosystem, as noted by Zhang, and Wei observes, by
way of example, that a plethora of ‘SimMs for SFS based on
the cosine and cotangent function have been’ put forth” [3%
DOI of Table IV][114]. “Likewise, certain combinatorial,
such as ‘Jaccard, Exponential, Square root cosine for SFS,’
etc., have been employed as pragmatic implementations of
SimMs” [3™ DOI of Table IV][115]. “With regards to DMs,
Donyatalab and others have examined ‘Minkowski,
Minkowski-Hausdorff, Weighted Minkowski and Weighted
Minkowski-Hausdorff distances for SFSs’> [3 DOI of
Table IV]. “Overall, there have been numerous SimM and
DM advances, and among these, researchers, such as Wu,
have ‘focused on the T-SFS,” which is a ‘specific case of
NS’ (ak.a., ‘n-hyper SFS’)” [3™ DOI of Table IV][114][
115]. According to Wu, T-SFS is quite adept in contending
with “uncertainty information” and “can handle information
that SFSs...cannot process” [3' DOI of Table IV][115].
Accordingly, the SimMs/DMs of T-SFS show promise for
higher efficacy.

IV. CONCLUDING REMARKS

For a CAA to successfully operationalize a high efficacy
NLG and engage in unscripted dialogues, it needs to have
RDM; for a CAA to learn/tune from each and every
engagement, it needs to not only have an efficient ML
mechanism, but it also needs to have a high performance
ML2 mechanism. With these two facets in hand, the CAA is
more likely to be able to engage in real-time conversation
without any undesired delays in performance. The
benchmark as to whether the aforementioned is successfully
actualized is predicated upon whether the CAA responses
are “consistent, coherent, and valid.” As noted in Section I,
this is non-trivial to achieve. Delving deeper (from the high-
level references to NLG and RDM), it was necessary, for
the purposes of this paper, to first address SDM
(specifically, SDM-A/U for RWS).

While the longer-term impetus of this paper is to address
SDM-A/U for AIS/AICDS/AS (e.g., AUVs, USVs, UAVs,
etc.) as well as other applications of SAE 5, the proxy
application of CAIR was selected to better understand the
multi-stage challenges of SDM-A/U. For SDM-A/U, at each
DM point, a choice needs to be made as to whether a “full
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resolution,” “partial resolution,” or “no resolution” action
will be taken. In contrast to a single-stage DM, a key
challenge of SDM is to optimize the overall outcome over
the full range of multi-stage DM points.

One approach, among others, for tackling the SDM-A/U
challenge resides in the leveraging of an LHM, which
carefully considers — concurrently — the notions of A/U. The
LHM is powered by, among other key modules, an ICSM2
and a MAM,; for the purposes of the CAA use case and
CAIR application discussed in this paper, a CAIR-A was
added as well. The ICSM2 starts with an initial set of
considerations and ascertainments (UnS, EqS, Equivs, OrS,
POSET, UnS-Iso, POSET-Iso, IV, etc.) prior to proceeding
to an IsoP, whose computational complexities can vary
greatly. Of course, the pre-IsoP approach is quickly handled
while the IsoP determination and approach is also
contingent upon how much time is available. For example,
while a full IsoP approach might be selected under UDC, a
relaxed IsoP (r-IsoP) might be opted for under CDC or in-
between CDC and UDC. The choice of approach is heavily
contingent upon the CW mechanism of the ACWS, which
remains a central element of not only the entire described
apparatus, but also both ICSM2 and MAM operations in
particular.

There exists a mutual reinforcement interplay between
ACWS and MMSO, and the overarching MCDM rubric
(which tends to have a myriad of conflicting objectives or
criteria, particularly for RWS) can be contextualized by a
non-dominated solution (which illuminates a number of best-
scenario trade-offs; however, it does not indicate a single
optimal solution). It had previously been determined that
OSNS (particularly the extended OSONS version) can be
useful in this regard, and it has been found to be of value-
added proposition for AIS not only in the area of better
understanding trade-offs but has also been acknowledged for
its value in the areas of I&E (under the STEA rubric) and
feature importance analysis. For this extrapolated journal
paper, it should be remembered from [1] varied SHAP
approaches differ in their local and global efficacies. It
should also be remembered that CW/ACWS ranks the
criteria (i.e., CW/ACWS prioritizes what is most important
before the alternatives are even reviewed), wherein criteria
are the factors utilized to assess, compare, and contrast the
set of alternatives. Each of the alternatives are characterized
by features. Interestingly, IbSOA can leverage the clustering
of features into coalitions to facilitate computational
efficiency. Section IB2 reviews the notion of “updating a
heuristic” and notes that, contrary to popular opinion,
heuristics may segue to sub-optimal paradigms more
frequently than anticipated; in essence, the notion of simply
using a heuristic as an accelerant is far too simplistic and
may be disappointing. Of significance, the “updating of a
heuristic” may necessitate sufficient STEA (and IbSOA may
be useful in this regard) so as to facilitate ML2; overall,
heuristics for RWS should be able to: (1)self-recognize that
the heuristic is not qualified to handle the incoming
information and needs to refer the matter back to the higher-
order hyper-heuristic, (2) mitigate against the ongoing
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prospective brittleness of the heuristic itself, and (3) have the
capability to operationalize the involved [meta]heuristic-
algorithm amalgam in an advantageous fashion. Section IB2
culminates with the overarching equation of this paper: ASL-
IMC-»RMMI, wherein ASL equates to AIS-»SDM->LHM,
IMC equates to ICSM2+MAM+CAIR-A, and RMMI
equates to RDM ->MR/NMR-»>MNTZ->IbSOA. Of course,
IbSOA is captured within the first part of the title of this
paper: “Interstitial b-SHAP-Owen Amalgam.”

IbSOA is put forth as a central item for the second part
of the title of this paper: “Enhancement of Artificial
Intelligence System-Centric Sequential Decision-Making,”
and Section II had opened with the notion that “the AIS
approach towards DMP, such as SDM, may involve a
variety of” RMs. Each of the varied RMs has certain
monotonic and/or non-monotonic tendencies, and depending
upon a paradigm of UDC or CDC, the MAM may opt for
certain RM pathways and proceed in stages depending upon
the time remaining and/or any time adjustments that may
occur along the SDM pathway. The MAM supports the
ICSM2, particularly when it is determined that IsoP needs to
occur. Along this vein, the ICSM2 operationalizes the IsoP
comparison via the use of GFN/GFS-IUC and Paradoxes-
A/U. By working in conjunction, the ICSM2 and MAM
combinatorial form a powerful engine for LHM. The
addition of the CAIR-A module enhances the combinatorial
by serving as a precursor function; the CAIR-A endeavors
to ascertain what primary, secondary, etc. RMs might be
involved. The involved CAIR-related CW/ACWS-MMSO
pre-sort tends to be of value-added proposition for RWS
SDM paradigms. The “A” facet of the CAIR-A Module is
an orchestration mechanism that leverages the MAM (which
supports the LHM) in conjunction with a Birnbaum
Importance assignment; it should be remembered that the
Birnbaum importance measure is often leveraged as a
Lower-Level Heuristic (LLH) for use in resolving
Component Assignment Problem (CAP) (which centers
upon optimally placing components at various positions
within an AIS to maximize reliability).

To clarify this point, if N+V in it of itself does not
suffice (and IsoP is required), then there is an accompanying
increased MR/NMR skewing risk that should be mitigated.
In particular, as pertains to the MNTZ, it has been noted
consistently throughout this paper and the specified apriori
examinations that there exists a tendency for spawning to
the NP-Hard side (e.g., non-monotonic, non-polynomial,
and even non-continuous functions). Roughly speaking, the
problem with this is that LLMs struggle with emulating
human behavior on the non-monotonic side, and oftentimes,
the AIS (in this case, the CAA) will take the opposite stance
as what the human would choose. Cognizant of the range of
paradoxes (e.g., Ellsberg, Machina, Allais, etc.) that
influence this paradigm, due consideration should be paid
regarding the associated preference ranking, and the related
issue of RR has been previously scrutinized. While it seems
that focusing on certain RMs (e.g., deductive) might seem
computationally more tractable, it would preclude more
RWS RM approaches (e.g., probabilistic, temporal, and
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graph-based). Yet these parenthetical approaches, among
others, can segue to non-monotonic unexpectedly.
Moreover, the desired related CBR and inductive
approaches are at much higher risk for segueing to non-
monotonic. Finally, some of the other desired more
sophisticated approaches (e.g., analogical, abductive)
squarely reside in the non-monotonic. Depending upon the
RM pathway opted for, the related DM will likely impact
the downstream behavior within the MNTZ in terms of a
skewing towards monotonic or non-monotonic behavior. In
essence, while the gamut of isomorphic cases can be
construed to be analogies, not all analogies are construed to
be isomorphic. This particular determination is central
because if IsoP can be avoided, then the expenditure of an
unknown amount of computation resources can by
bypassed.

The significance of the IbSOA is that, fundamentally, the
referenced Owen value nicely captures the intricate
interactions between/among the constituent members of the
involved feature set and, as noted in [1], “extends the
Shapley value (which well captures the individual feature
contributions) in a consistent fashion.” These pertinent
insights into CAA behavior at the MNTZ, as noted by [2],
“can potentially be quite meaningful for elevating CAIR-
related coherence and consistency (with the concomitant
validity).” After all, as [2] further articulates, “maintaining
coherence and monotonicity is non-trivial, as the involved
AIS might discern connections (particularly those that are
non-monotonic) within the evolving dataset. In the context
of CAIR, non-monotonic aspects can arise as incoming
information can re-contextualize and/or contradict matters.”

As noted in [2], the effectiveness of particular RWS
implementations, such as that of CAA, “is often predicated
upon consistency and reliability” (along with the associated
notions of coherency and validity), and this aspect is the
essence of CAIR. As noted by [2], the CAA should, ideally,
provide ‘human-like conversations’ by comprehending user
intent, maintaining context, and putting forth pertinent
responses’ consistent with ‘the principle of CAIR;’ in
essence, a key tenet of CAIR is that responses provided by
the CAA remain steady in their validity not only during the
course of the involved interaction, but also over the course
of the multi-turn conversation. In summary, this paper posits
that the CAIR-A notion isof VAP to the ongoing challenge
of conversational coherence and RDM. Future work will
involve more quantitative experimentation, and as discussed
in Section IIB, the issues of provenance/pedigree, as
pertains to RM selection, regarding the “who” and the
“where” (as contrasted to simply the “what” and “when” the
information is made available) will be further explored.
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