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Abstract—The leveraging of an Interstitial b-SHAP-Owen 
Amalgam (IbSOA) is the focus of this paper; interestingly, the 
amalgam can potentially lend towards the enhancement of 
Artificial Intelligence (AI) System (AIS)-Centric multi-stage 
Sequential Decision-Making (DM) (SDM) amidst Ambiguity 
and Uncertainty (A/U) by leveraging certain previously peer-
reviewed preset modules — Lower Ambiguity, Higher 
Uncertainty (LAHU) and Higher Ambiguity, Lower 
Uncertainty (HALU) Module (LHM) — and certain 
subordinate modules — LHM’s Isomorphic Paradigm (IsoP) 
Comparator Similarity Measure Module (ICSM2) and LHM’s 
Metaheuristic Algorithm Module (MAM) — as well as a new 
module in the form of a Conversational AI Robustness (CAIR) 
Accelerant (CAIR-A) Module (as a proxy case study example); 
CAIR-A addresses the challenge of Robust Dialogue 
Management (RDM) with the objective of sufficiently 
supporting a Conversational AI Agent (CAA) so as to be able 
to maintain consistency, coherency, and validity throughout an 
ongoing dialogue. To achieve this, the involved Reasoning 
Mechanisms (RMs) — Monotonic Reasoning (MR) and Non-
Monotonic Reasoning (NMR) — need to be well counterpoised; 
the apropos harmonizing of MR/NMR can help ensure the 
RDM’s plasticity for enhanced conversational coherence. In 
turn, the successful counterpoising of MR/NMR is predicated 
upon insights into the Monotonic/Non-Monotonic Transition 
Zones (MNTZs); after all, shifts from a monotonic to a non-
monotonic paradigm and vice versa in the MNTZs can occur at 
a higher than anticipated rate. IbSOA-related insights into the 
myriads of interplays among local, glocal, and global facets can 
better contextualize the behavior within the MNTZs and better 
support the CAA’s SDM amidst A/U. As previously noted, the 
CAA is simply a proxy application, and the implications of the 
referenced counterpoising have broader implications for AIS 
SDM. 
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I. INTRODUCTION 
Conversational AI Agents (CAA) endeavor to emulate 

natural human conversation through, among other modes, 
text and/or voice (CAA capability has also been extended to 
include holographic form, such as offered by Holoconnects, 
Ravatar, Proto, and others). Other companies focus on 
certain realism aspects, and offerings include those by 
Hume (https://www.hume.ai/?tab=evi),  ElevenLabs 
(https://elevenlabs.io/conversational-ai), etc. Conventional 

CAA leverages an amalgam of constituent technologies, 
such as Automatic Speech Recognition (ASR), Natural 
Language Processing (NLP), Natural Language 
Understanding (NLU), Natural Language Generation 
(NLG), Large Language Models (LLMs), and Machine 
Learning (ML), among others, so as to engage in 
meaningful dialogue and provide robust “human-like 
responses.” In contrast to prototypical chatbots, which are 
underpinned by “rule-based” prescribed scripts, CAA can 
engage in unscripted dialogues, learn/tune from each and 
every engagement, as well as leverage external 
sources/systems. In terms of realism, CAA should be able to 
perform in real-time without any awkward delays. This 
paper builds upon [1], which was submitted to Future 
Computing 2025 on March 1, 2025 (now published), as well 
as touches upon certain elements of [2], which was 
submitted to AI-based Systems and Services (AISyS) 2025 
on June 10, 2025 (accepted; in press), and fundamentally, 
this paper, which was substantially completed in April 2025 
(following the journal invitation), underscores the notion 
that CAA responses need to remain consistent, coherent, 
and valid. This is non-trivial to achieve, and a number of 
technical challenges exist within this ecosystem. Among 
other challenges, first, the CAA must contend with the SDM 
challenge; in essence, the series of decisions that the CAA 
makes will have a cumulative effect as to how robust the 
overall conversation (which may ensue across multiple 
interactions) will be. Second, the CAA needs to undertake 
SDM amidst varying degrees of A/U, whose definitions are 
provided in Table I below. 

TABLE I.  AMBIGUITY (A) VERSUS UNCERTAINTY (U) 

DM Notions Definitions 

Ambiguity 
(A) 

Ambiguity is prevalent when the involved 
circumstance(s) and/or the involved information can 
be construed in varying ways (including 
contradictory). 

Uncertainty 
(U) 

Uncertainty is prevalent when the outcome of the 
involved circumstance(s) is unknown/unpredictable, 
and there exists a lack of knowledge (wherein 
information pertains to recitals of fact and/or 
descriptors while knowledge pertains to the 
comprehension and operationalization of that 
information). 

 

 Interestingly, the issue of SDM extends far beyond the 
CAA case study, as will be delineated in Section IA. 
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A. The SDM Challenge 
Autonomous Systems (AS), such as in the form of 

Autonomous Artificial Intelligence Systems (AIS), may 
include Autonomous Underwater Vehicles (AUVs), 
Unmanned Surface Vehicles (USVs), Unmanned Aerial 
Vehicles (UAVs), unmanned spacecraft, etc. A more 
commonly recognized manifestation might be in the form of 
self-driving cars. Some of the involved companies are quite 
well-known in the marketplace: Amazon’s Zoox, General 
Motors’ Cruise, Tesla, and Waymo, with the latter two, in 
particular, asserting their desire to achieve the Society of 
Automotive Engineers’ (SAE) sixth level of driving-related 
automation – “5 (full automation),” which is contrasted to 
“0 (no automation).” This type of sixth level autonomous 
AI-centric vehicle, as well as certain “near-to-this-level” 
paradigms — as pertains to the other referenced drones — 
are necessarily reliant upon robust Sequential Decision-
Making (DM) (SDM), which is often referred to as multi-
stage DM since the SDM challenge itself resides in the fact 
that multiple DM points — over an elongated temporal span 
(i.e., a longer time horizon) — are interrelated. Each 
decision made at a DM point potentially constitutes a DM 
Inflection Point (DMIP) and impacts the ensuing 
prospective possible courses of action and their outcomes, 
such as described by Wanke, for which an abridged version 
is shown in Figure 1 below [3]. 

 

Figure 1.  Various DM points comprising an exemplar SDM problem 

Utilizing Wanke’s presented case, 1.0 equates to “no 
resolution actions will be taken,” 0.5 equates to “resolve the 
anticipated issue,” 0.6 equates to a “partial resolution,” Jij 
equates to “resolution cost distribution at decision point i of 
option j,” and the mean cost for the indicated path in purple 
of 0.6-1.0-0.5 is expressed in (1) [3].  

                E(J)=J12+E(J21|J12)+E(J31|J21|J12)          (1) 

It should be clear from Figure 1 and (1) that SDM stands in 
stark contrast to single-stage DM, wherein downstream 
consequences are not necessarily considered. After all, a 
core challenge of SDM is to optimize the cumulative 
outcome over the various multi-stage DM points. Practically 
speaking, Real-World Scenarios (RWS) typically involve 
SDM amidst ever-evolving environs; along this vein, RWS 
SDM often occurs amidst varying degrees of A/U, whose 

proposed handling, among other approaches, is discussed in 
the following Section IB. 

B. Tackling SDM Amidst A/U 
 At the core, RWS AIS SDM A/U (AIS-SDM-A/U) 

tends to involve several steps/DM points/DMIPs amidst a 
complex and dynamic ecosystem. Apart from the 
transportation-related venues previously described in 
Section IA, AIS-SDM-A/U has also become more prevalent 
in the energy sector (e.g., for the positing of energy demand 
over a certain period of time and optimizing the involved 
power grid to handle the associated consumption), the 
financial sector (e.g., for the determination of the allocation 
and re-allocation of financial assets to optimize Return on 
Investment or ROI), the healthcare sector with regards to 
patient monitoring, diagnosis, and treatment planning (e.g., 
for the selection of a series of treatments to attain, 
ultimately, a more optimal outcome), etc. Apart from these 
referenced sectors, AIS-SDM-A/U is becoming prevalent in 
other sectors as well. Yet, at its core, SDM is a formidable 
area to tackle with the well-known Bellman notion of the 
“curse of dimensionality” (wherein contending with an 
increasing number of features can segue to an exponential 
increase in computational cost and/or a prospective marked 
decline in performance), and the question of how to handle 
A/U remains an ongoing challenge [4]; along this vein, 
features, dimensions, and criteria should be differentiated. 
Features typically equate to what the involved entity “is” or 
“does” (i.e., property/characteristic, functionality), 
dimensions relate to how the entity can be delineated or 
classified/categorized, and criteria include the standards 
and/or benchmarks utilized to assess the entity. Given these 
distinctions and the associated backdrop, certain preset 
approaches, such as that of a Lower Ambiguity, Higher 
Uncertainty (LAHU) and Higher Ambiguity, Lower 
Uncertainty (HALU) Module (LHM), have been advanced 
in an effort to tackle the AIS-SDM-A/U challenge. The 
functions of the LAHU and HALU LHM components are 
described in Table II.  

TABLE II.  LAHU/HALU MODULE (LHM) 

LHM 
Components 

Definitions 

Lower 
Ambiguity, 
Higher 
Uncertainty 
(LAHU) 

“Under a Compressed Decision Cycles (CDC) ‘paradigm 
or tight time constraints,’ the LHM ‘accepts higher 
uncertainty (i.e., sparse data) given the condition of lower 
ambiguity’ (i.e., Lower Ambiguity, Higher Uncertainty 
or LAHU),” “and this roughly translates to the 
consideration that an isomorphic scenario has manifested 
previously within the available historical data” [5], [6], 
and those Digital Object Identifiers (DOIs) of Table IV. 

Higher 
Ambiguity, 
Lower 
Uncertainty 
(HALU) 

Under a paradigm of Uncompressed Decision Cycles 
(UDC), meaning, “if there exists a condition of Higher 
Ambiguity” conjoined with Lower Uncertainty (i.e., 
HALU), “wherein the isomorphic scenario is nonexistent 
within the historical data, there will be a proactive 
seeking of more data ‘to lower uncertainty’ so as to move 
towards a more acceptable state” [5], [6], and those DOIs 
of Table IV. 
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With regards to the LHM’s repertoire of experience, this 
can include the various data categories of Table III: Non-
Operational Data, Situational Awareness Data, and 
Operational Data, among others. These comprise, among 
other facets, the “repertoire of experience” (e.g., the 
encountering of similar scenarios) of the LHM. 

TABLE III.  LHM DATA CATEGORIES  

Data Categories Definitions 

Non-Operational 
Data (NOD) 

“historical and forensic data that has been ingested, 
apriori” or near-contemporaneously, “to serve as a 
baseline” for contextualizing the Operational 
Data” [first DOI of Table IV]. 

Situational 
Awareness Data 
(SAD) 

environs data that is “contextualized and integrated 
with Operational Data” for the purpose of 
appraising Operational Data “prior to the exigency 
circumstance;” “in this way…lessons can be 
learned and leveraged without necessarily needing 
the immediate performance required of 
Operational Data” [first DOI of Table IV]. 

Operational Data 
(OD) 

“this data is, when contextualized by Situational 
Awareness Data and Non-Operational Data, can 
be quite indicative and better lend to the immediate 
performance expected of quasi-real-time data for 
decision-making” [first DOI of Table IV]. 

 

To recap Tables II and III, and as discussed in the first 
DOI of Table IV, under a LAHU paradigm, given a 
sufficient repertoire of experience, the tolerance for 
uncertainty is raised, thereby lowering “the need to turn 
Non-Operational Data and Situational Awareness Data into 
immediate performance data” [first DOI of Table IV]. 
Suffice it to say, for future circumstances, wherein 
immediate DM is necessary, the now formulated set of Deep 
Belief Heuristics may be utilized. The practical utility of the 
LHM (i.e., its enablement) is delineated in [5], [6], and 
those DOIs of Table IV below.  

TABLE IV.  EXEMPLAR DIGITAL OBJECT IDENTIFIERS (DOIS) 
PERTAINING TO THE NOTIONS OF LAHU/HALU 

Facet DOI 

LAHU; 
HALU 

• 10.1109/IEMCON.2019.8936241 
• 10.1109/IAICT62357.2024.10617473 
• 10.1109/GEM61861.2024.10585580 
•  http://dx.doi.org/10.2139/ssrn.5183492 
•  http://dx.doi.org/10.2139/ssrn.4984663 
(DOIs are generally not assigned to 
patents, such as [5] and [6]). 
 

 

As described by the last DOI of Table IV, central to the 
LHM are various supporting modules, such as that of an 
Isomorphic Paradigm (IsoP) Comparator Similarity 
Measure (ICSM) Module (ICSM2) as well as a 
Metaheuristic Algorithm Module (MAM), among other 
modules. These are briefly described as follows, and further 
clarification will be provided in Section II. 

1) LHM’s ICSM2 
The ICSM’s decided actions may be predicated upon 

whether the compared paradigm actually needs to undergo a 
computationally more extensive IsoP examination. For 
example, in some cases, such as for unordered sets, the 
ordering of the edges (and their weights) may not 
necessarily be relevant, as only the nodes (and their values) 
(hereinafter, “N+V”) need to be compared; in other cases, 
such as for ordered sets, the edges and the sequencing of the 
nodes is of significance. Exemplar ICSM2 considerations 
are presented, in somewhat logical order, within Table V 
below. 

TABLE V.  EXEMPLAR CONSIDERATIONS PRIOR TO AND INCLUDING 
THAT OF ISOMORPHIC COMPARISON 

ICSM2 
Considerations 

Definition 

Unordered Set 
(UnS) 

Set of disparate constituents, wherein the order of the 
constituents is not relevant. By way of example, {1, 2, 3, 
4, 5} equates to {5, 3, 1, 4, 2}. 

Equal Sets 
(EqS) 

A pair of sets S and S’ is equal if and only if (iff) each 
constituent of S is also a constituent of S’; moreover, the 
order of the constituents is not relevant. By way of 
example, if S = [1, 2, 3, 8, 9, 10] and S’ = {9, 3, 1, 2, 10, 
8}, then S=S’. 

Equivalent Sets 
(EquivS) 

A pair of sets S and S’ is considered equivalent if the 
number of constituents in S and S’ is the same (i.e., 
same cardinality). By way of example, if S = {1, 3, 5, 7, 
9} and S’ = {2, 4, 6, 8, 10}, then S and S’ are 
considered to be equivalent. 

Ordered Set 
(OrS) 

Set of disparate constituents, wherein the order of the 
constituents is relevant, and the constituents can be 
ordered and compared via operators, such as <. By way 
of example, an ordered set might be {1, 2, 3, 5, 6, 8, 9, 
10}, whereas an unordered set might be {6, 5, 1, 2, 3, 
10, 9, 8}. 

Partially 
Ordered Set 
(POSET) 

Set of disparate constituents, wherein the constituents 
might or might not be able to be ordered and compared, 
since operators such as <= can yield different variations. 
By way of example, Calcworkshop 
(https://calcworkshop.com/relations/partial-order/) 
provides some examples, which we extrapolate upon in 
the way of {a < b < c < d <= e <= f }, {a <= b <= c < d 
< e <= f < g}, and {a < b < c <= d <= e < f}, which are 
shown diagrammatically in Table VI. 

Unordered Sets 
with 
Isomorphism 
(UnS-Iso) 

For a set of disparate constituents, wherein the 
constituents are unordered, if there is a one-to-one 
relationship (i.e., bijection), then the unordered sets are 
likely isomorphic. By way of example, if S={1, 2, 3, 4, 
5}, S’={a, b, c, d, e}, and 1<->a, 2<->b, 3<->c, 4<->d, 
and 5<->e (wherein each constituent in S relates to a 
unique constituent in S’), then S and S' are considered to 
be isomorphic.  

POSETs with 
Isomorphism 
(POSET-Iso) 

For a set of disparate constituents, wherein the 
constituents are considered to be within a POSET, if 
there is a bijection, then the POSETs are likely 
isomorphic. By way of example, if S={S1, S2, S3, S4, 
S5}, S’={S’2, S’4, S’5, S’3, S’1}, and S1<->S’2, S2<->S’5, 
S3<->S’1, S4<->S’4, and S5<->S’3, (wherein each 
constituent in S relates to a unique constituent in S’), 
then S and S' are considered to be isomorphic. To 
demonstrate this, online tools are available, such as  
https://graphonline.top/en/?graph=xPLjwOkrglDRgYeS, 
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among others. 

Isomorphism 
Variants (IV) 

Extrapolating upon the POSETs with isomorphism, 
there are also permutations that are actually 
isomorphism variants (e.g., automorphism, which is a 
particular type of isomorphism that has a symmetrical 
structure), which Lemons nicely casts and for which 
examples are shown in Table VII as IV#1 through #3 
[7]. 

TABLE VI.  EXEMPLARS OF ISOMORPHIC PARTIALLY-ORDERED SETS 
(POSETS) 

POSET #1 POSET #2 POSET #3 

   

Maximal: d, e, f Maximal: g Maximal: f 

Greatest: none Greatest: g Greatest: f 

Minimal: a Minimal: a, b, c Minimal: a 

Least: a Least: none Least: a 

TABLE VII.  EXEMPLARS OF ISOMORPHIC VARIANTS (IVS) 

IV #1 IV #2 IV #3 (automorphism) 

   

 
The LHM ICSM2’s considered pathways for 

undertaking the requisite pre- and isomorphic/non-
isomorphic comparisons, such as alluded to by Table V, are 
underpinned by the LHM’s MAM. After all, depending 
upon the time available (as was depicted in Figure 1), 
certain pathways may likely be more computationally 
tractable. The notion of Criteria Weights (CW), such as that 
of an Adaptive Criteria Weighting System (ACWS), is 
crucial in this regard, and exemplar prior experimentation is 
listed in Table VIII; it should be remembered that 
CW/ACWS is pivotal for Multi-Criteria Decision-Making 
(MCDM) and that the notion of the CW/ACWS dovetails 
with the Interstitial bespoke (b) Shapley Additive 
Explanations (SHAP)-Owen Amalgam or Interstitial b-
SHAP-Owen Amalgam (IbSOA), which designates an 
importance value to each feature; after all, CW/ACWS 
systematically assesses and ranks alternatives or features 
based upon their relative importance (as determined by the 
CW). IbSOA will be further addressed in Section IIID. 

TABLE VIII.  EXEMPLAR DOIS PERTAINING TO CRITERIA WEIGHTING 
EXPERIMENTATION 

Facet DOI 

CW, 
ACWS 

• 10.1109/ICSGTEIS60500.2023.10424230 
• 10.1109/ICPEA56918.2023.10093212 
• 10.1109/AIIoT61789.2024.10579033 
• http://dx.doi.org/10.2139/ssrn.4984663 
• http://dx.doi.org/10.2139/ssrn.5183492 
• 10.1109/AIIoT65859.2025.11105315 

 
2) LHM’s MAM 
Proceeding from the ICSM2 discussion to that of the 

MAM, the MAM’s decided actions, particularly amidst the 
temporal limitations of CDC, may also be predicated upon 
what type of Decision-Making Problem (DMP) is 
encountered. In the case of SDM, each DM point may be 
handled by whether the DMP is any of, among others, the 
following: (1) Programmed DMP, (2) Analytical DMP, and 
(3) Non-Programmed DMP. The definitions for these are 
shown in Table IX below.  

TABLE IX.  TYPES OF DECISION-MAKING PROBLEMS (DMPS) 

Type of DMP Definition 

Programmed DMP 
(PDMP) 

Prototypical Structured Problems (PSP), as 
pertains to DMP, with well-established Standard 
Operating Procedures (SOPs) and approach 
vectors. 

Analytical DMP 
(ADMP) 

Mid-range Semi-Structured Problems (MRSSP), 
as pertains to DMP, that require more in-depth 
analysis and a more comprehensive approach; it 
may also require decomposing the DMP into 
smaller, more manageable (i.e., computationally 
tractable) DMPs. 

Non-Programmed 
DMP (NPDMP) 

More Complex Unstructured Problems (CUP), 
as pertains to DMP, that may require a bespoke 
approach. 

 

As the MAM, by way of example, considers each DMP, the 
insights provided by the IbSOA will be invaluable, as the 
likely behavior within the MNTZ may be pivotal in 
ensuring that a prudent pathway, within the given time 
constraints, is chosen. This will be further expounded upon 
in Sections IIC and IIID. In the context of the MAM, as 
noted in the 6th DOI of Table VIII, according to Hjeij, in 
the journal paper, “A brief history of heuristics: how did 
research on heuristics evolve,” “the use of a heuristic is 
‘inevitable where no method to find an optimal solution 
exists or is known,’ particularly when ‘the problem and/or 
the optimality criterion is ill-defined’.” To add to this, 
Bobadilla-Suarez, in the journal paper, “Fast or Frugal, but 
Not Both: Decision Heuristics Under Time Pressure,” notes 
“that heuristics do not form a uniform class and that “more 
frugal heuristics will not necessarily be faster to implement 
than less frugal ones. Similarly, less frugal strategies can be 
fast given the right stimuli [i.e., accelerants]” [6th DOI of 
Table VIII]. Drake as well as Fisher & Thompson add to 
what Bobadilla-Suarez asserted; as delineated in the journal 
paper, “A Novel Cooperative Multi-State Hyper-Heuristic 
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for Combination Optimization Problems,” “‘mixing and 
combining different Low-Level Heuristics [LLH] produced 
better quality solutions than if they were applied separately’ 
and ‘showed that individual heuristics may be particularly 
effective at certain stages…but perform poorly at others,’ as 
each individual heuristic may involve particular methods (as 
Zayat and Watrobski well noted) [6th DOI of Table VIII]. In 
essence, 6th DOI of Table VIII features the case study, 
wherein it “might be prudent to avoid utilizing AHP, SAW, 
and [Preference Ranking Organization Method for 
Enrichment Evaluation] PROMETHEE when handling 
negative values” [6th DOI of Table VIII]. 

The presets of ICSM2 and MAM (two of the key 
components of LHM) have now been touched upon. Prior to 
the unpacking of the proposed third component of LHM, 
CAIR-A, some background information will be provided. 
For the reader’s convenience, a listing of the acronyms 
utilized thus far as well as for the sections that follow is 
being provided in Table X below. 

TABLE X.  LISTING OF ACRONYMS UTILIZED 

Acronym Full Form 

A Ambiguity 
ACWS Adaptive Criteria Weighting System 
ADMP Analytical DMP 
AI Artificial Intelligence 
AICDS Artificial Intelligence Control and Decision 

System 
AIS Artificial Intelligence System 
AS Autonomous System 
ADMB Automatic Differentiation Model Builder 
ASR Automatic Speech Recognition 
A/U Ambiguity/Uncertainty 
AUV Autonomous Underwater Vehicle 
b-SHAP Bespoke Shapley Additive Explanation 
b-SHAP-Owen Bespoke Shapley Additive Explanation Owen 
c-SHAP classical Shapley Additive Explanation 
CAA Conversational Artificial Intelligence Agent 
CAIR Conversational Artificial Intelligence Robustness 
CAIR-A Conversational Artificial Intelligence Robustness 

Accelerant 
CAP Component Assignment Problem 
CBR Case-Based Reasoning 
CDC Compressed Decision Cycle 
CDS Control and Decision System 
CPRLD Constriction Factor-Particle Swarm 

Optimization-Robust Convex Relaxation-Long 
Short-Term Memory-Deep Convolutional Neural 
Network 

CF Constriction Factor 
CRITIC CRiteria Importance through Intercriteria 

Correlation 
CWS Criteria Weighting System 
CWT Continuous Wavelet Transforms 
CVA  Conversational Virtual Agent 
CW Criteria Weight 
DCGAN Deep Learning Generative Adversarial Network 
DCNN Deep Convolutional Neural Network 
DL Deep Learning 
DM Decision-Making; Decision Maker 
DMP Decision-Making Problem 

DMIP Decision-Making Inflection Point 
DOI Digital Object Identifier 
E Execution 
ELECTRE ÉLimination Et Choix Traduisant la REalité 
EM Estimation-based Method 
EUT Expected Utility Theory 
FCSO Finite-Change Shapley-Owen 
FN Fuzzy Number 
FS Fuzzy Set 
GAN Generative Adversarial Network 
GBR Graph-Based Reasoning 
GfFN Generalized f-sided Fuzzy Number 
GFN Generalized Fuzzy Number 
GFS Generalized Fuzzy Set 
GHpFN Generalized Heptagonal Fuzzy Number 
GHxFN Generalized Hexagonal Fuzzy Number 
GI Graph Isomorphism 
GLfFN Generalized Linear f-sided Fuzzy Number 
GLIVPeFN) Generalized Linear Interval-Valued Pentagonal 

Fuzzy Number 
Glocal a portmanteau “global” and “local” 
GLIVPeFN Generalized Linear Interval-Valued Pentagonal 

Fuzzy Number 
GLPeFN Generalized Linear Pentagonal Fuzzy Number 
GN Grey Number 
GNFN Generalized N-sided Fuzzy Number 
GNLfFN Generalized Non-Linear f-sided Fuzzy Number 
GNLIVPeFN Generalized Non-Linear Interval-Valued 

Pentagonal Fuzzy Number 
GNLPeFN Generalized Non-Linear Pentagonal Fuzzy 

Number 
GOcFN Generalized Octagonal Fuzzy Number 
GPeFN Generalized Pentagonal Fuzzy Number 
GPL General Public License 
GPU Graphics Processing Unit 
GS Grey Set 
GSO Generic Shapley-Owen 
GTpFN Generalized Trapezoidal Fuzzy Number 
GTrFN Generalized Triangular Fuzzy Number 
HALU Higher Ambiguity, Lower Uncertainty 
HH Hyper-Heuristic 
I Interpretability 
IA Independence Axiom 
IBE Inference to the Best Explanation 
ICSM Isomorphic Paradigm Comparator Similarity 

Measure 
ICSM2 Isomorphic Paradigm Comparator Similarity 

Measure Module 
IFF If and Only If 
IFN Intuitionistic Fuzzy Number 
IFS Intuitionistic Fuzzy Set 
IM Intelligent-based Method 
IPOPT Interior Point OPTimizer 
IsoP Isomorphic Paradigm 
IUC Inherent Uncertainty Construct 
IVFN Interval-Valued Fuzzy Number 
IVFS Interval-Valued Fuzzy Set 
IVIFS Interval-Valued Intuitionistic Fuzzy Set 
LAHU Lower Ambiguity, Higher Uncertainty 
LLH Lower-Level Heuristic 
LHM Lower Ambiguity, Higher Uncertainty/Higher 

Ambiguity, Lower Uncertainty Module 
LLM Large Language Model 
LOE Line of Effort 
LSTM Long Short-Term Memory  
MADM Multi-Attribute Decision-Making 
MADM/MODM Multi-Attribute Decision-Making/Multi-
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SM/OM Objective Decision-Making Subjective Method/ 
Objective Method 

MAM Metaheuristic Algorithm Module 
MCDM Multi-Criteria Decision-Making 
Mi Imprecision Membership 
MILP Mixed Integer Linear Programming 
MINLP Mixed Integer Non-Linear Programming 
MIP Mixed Integer Programming 
ML Machine Learning 
ML2 Machine Learning on Machine Learning 
Mm Median Membership 
MMSO Multi-Attribute Decision-Making/Multi-

Objective Decision-Making Subjective Method/ 
Objective Method 

MNTZ Monotonic/Non-Monotonic Transition Zone 
MODM Multi-Objective Decision-Making 
MR Monotonic Reasoning 
NDZ Non-Detection Zone 
NLG Natural Language Generation 
NLP Natural Language Processing 
NLU Natural Language Understanding 
NMR Non-Monotonic Reasoning 
NOD Non-Operational Data 
NPDMP Non-Programmed DMP 
OD Operational Data 
OM Objective Method 
OSNS Optimal Shapley-Nondominated Solution 
OSONS Optimal Shapley-Owen-Nondominated Solution 
OUF Over/Under Frequency  
OUV Over/Under Voltage  
P-RM Primary Reasoning Mechanism 
PDMP Programmed DMP 
PJD Phase Jump Detection 
POSET Partially Ordered Set 
PROMETHEE Preference Ranking Organization Method for 

Enrichment Evaluation 
PSO Particle Swarm Optimization 
r-IsoP Relaxed Isomorphic Paradigm 
RMS Relationship/Membership Stream 
RR Rank Reversal 
RCAP or dP/dt Rate of Change of Active Power 
RCR Robust Convex Relaxation 
RDM Robust Dialogue Management 
RM Reasoning Mechanism 
ROCOF of df/dt Rate of Change of Frequency  
ROCPAD Rate of Change of Phase Angle Difference 
ROYG Red-Orange-Yellow-Green 
ROI Return on Investment 
RTIA or R-III Reverse Triple I Algorithm 
RWS Real-World Scenario 
S Sensitivity 
S-RM Secondary Reasoning Mechanism 
SAD Situational Awareness Data 
SAE Society of Automotive Engineers 
SCSO “Squared Cohorts” Shapley-Owen 
SDM Sequential Decision-Making 
SDP Semi-Definite Programming 
SQP Sequential Quadratic Programming 
SHAP Shapley Additive Explanation  
SNOPT Sparse Nonlinear OPTimizer 
SIS Subsethood Inference Subsethood 
SM Subjective Method 
SOP Standard Operating Procedure (SOP) 
STEA System Transparency Explainability & 

Accountability 
TOPSIS Technique for Order Preference by Similarity to 

Ideal Solution 

TPU Tensor Processing Unit 
TIA Triple I Algorithm 
T1FS Type 1 Fuzzy Set 
T2FS Type 2 Fuzzy Set 
U Uncertainty; [performance under] Uncertainty 
UAV Unmanned Aerial Vehicle 
UDC Uncompressed Decision Cycle 
USV Unmanned Surface Vehicle 
V Validity 
VAP Value-added Proposition 
VBSO Variance-Based Shapley-Owen 
VIKOR VlseKriterijumska Optimizacija I Kompromisno 

Resenje 
vTHD Voltage Imbalance and Total Harmonic Detection  
VVS Voltage Vector Shift 
WM Wavelet Transform-based Method 

 
With these acronyms and their full forms in hand, it 

seems prudent to provide a quasi-dependencies equation so 
as to facilitate the parsing of this paper. The first equation 
will take the form presented in (1a), and the standard 
convention of a dashed arrow (wherein the dependent 
element is to the left of the tail, and the element that it is 
dependent upon is to the right of the arrowhead) is utilized.  

     AIS⇢SDM⇢LHM⇢ICSM2+MAM      (1a) 

The extended version for constituents supporting the 
module for LHM⇢ICSM+MAMF, for the purposes of this 
paper, becomes (1b). 

               LHM⇢ICSM2+MAM+CAIR-A       (1b) 

As it is understood that the LHM instantiation now 
includes CAIR-A as well, such as is reflected in (1b), (1) 
will simply be referred to as ASL-IMC. Proceeding on, the 
second equation will take the form, as presented in (2), 
using the same convention. 

     RDM ⇢MR/NMR⇢MNTZ⇢IbSOA       (2) 

For convenience, (2) will be referred to as RMMI. The 
follow-on third equation will then take the form, as is 
presented in (3), using the same convention. 

                      ASL-IMC⇢RMMI                        (3) 

For this paper, (3) will be the overarching operative 
quasi-dependencies equation, and (3) will be unpacked 
within this paper in the following fashion. Section I had 
provided an overview of the SDM challenge and provided 
some exemplar presets (e.g., LHM, ICSM2, MAM) as well 
as introduced a new module (e.g. CAIR-A) to be utilized for 
the experimentation herein; Section I also addressed (1a). 
The remainder of this paper is organized as follows. Section 
II presents the backdrop/background for an AIS approach 
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towards DMP, such as SDM, which is predicated upon a 
robust harmonizing/counterpoising of MR and NMR; in 
turn, a successful MR/NMR counterpoising is dependent 
upon robust insights into the MNTZs. The MNTZs, in turn, 
are informed by IbSOA. Then, the previously referenced 
bespoke mechanism in the form of the referenced CAIR-A 
Module, which can assist with the ongoing CAA challenge 
of Robust Dialogue Management (RDM), is touched upon. 
Section III lays out some theoretical foundations and picks 
back up on the discussion regarding IbSOA and its derived 
insights, which can be instrumental at the MNTZs by 
gleaning the interplays among local, glocal (a portmanteau 
“global” and “local”), and global, particularly when 
conjoined with a robust MADM/MODM SM/OM (MMSO) 
mechanism; the section then proceeds with presenting some 
precursor experimentation as well as an interim discussion 
on IbSOA. Section IV provides some further thoughts as 
well as concluding remarks, and proposed future work 
closes the paper.   

II. BACKGROUND 
The AIS approach towards DMP, such as SDM, may 

involve a variety of Reasoning Mechanisms (RMs). In the 
context of the referenced LHM, Analogical Reasoning, 
Abductive Reasoning, Inductive Reasoning, Probabilistic 
Reasoning, and Temporal Reasoning, among others, may be 
utilized. These primary RMs are described in Table XI.  

TABLE XI.  TYPES OF PRIMARY RMS (P-RMS) 

Type of Primary RM Definition 

Analogical Reasoning 
(AnaR) 

Firt put it quite nicely and simply by saying 
that analogical reasoning is a “type of thinking 
that relies upon an analogy” [8]. Gentner 
affirms and deems it to be “the ability to 
perceive and use relational similarity between 
two situations or events” [9]. In a similar 
fashion, Thibaut refers to it as a “process in 
which a base domain and a target domain are 
compared in order to find relational 
correspondences” [10].  

Probabilistic 
Reasoning (ProbR) 

Nandi opines that probabilistic reasoning “is a 
framework used to make inferences and 
decisions under uncertainty” [11]. Nafar 
concurs, cites Oaksford and Chater, and notes 
that “probabilistic reasoning often aligns with 
Bayesian Rationalism,” and within an AI 
context, Nafar refers to it as a “mapping [of] 
uncertainty…to a Bayesian probabilistic 
framework” [12]. 

Temporal Reasoning 
(TempR) 

Leeuwenberg posits that temporal reasoning is 
“the process of combining different temporal 
cues into a coherent temporal view” [13]. 
Xiong unpacks this further and asserts that 
some of the types of temporal reasoning 
include  “sequencing, duration, frequency, 
simultaneity, temporal relation, comparative 
analysis and facts extraction,” which can be 
construed roughly as determining 
chronological order, how long an event lasted, 
how much time elapsed between the start of 
one event and the start of another, when a 
particular event occurred, whether events 

happened at the same time, and contrasting 
multiple events, respectively [14]. 

Deductive Reasoning 
(DedR) 

Grote-Garcia put it quite well by noting that 
“deductive reasoning is the process of using 
general premises to draw specific conclusions” 
[15]. Along this vein, Taylor & Francis recaps 
this by stating that deductive reasoning 
“involves moving from the general to the 
specific, and it is used to draw conclusions 
based on known facts or assumptions” [16]. 

Inductive Reasoning 
(IndR) 

The University of Illinois Springfield puts it 
succinctly: “inductive reasoning is the ability 
to combine pieces of information that may 
seem unrelated to form general rules or 
relationships” [17]. In essence, inductive 
reasoning is a technique of deriving 
conclusions by progressing from the specific to 
the general.  

Abductive Reasoning 
(AbdR) 

Sandoval-Hernandez asserts that “abductive 
reasoning involves starting with surprising or 
puzzling observations and inferring the most 
likely explanations” [18]. Thagard views it in a 
slightly more subdued fashion, wherein 
“explanatory hypotheses are formed and 
evaluated” [19]. Belzen follows Thagard and 
asserts that “abductive reasoning describes the 
theory-based attempt of explaining a 
phenomenon by a cause” [20]. 

 

In turn, both Analogical Reasoning and Abductive 
Reasoning may leverage Case-Based Reasoning (CBR), 
while the former may also utilize Graph-Based Reasoning 
(GBR).  These are described in Table XII below. 

TABLE XII.  TYPES OF SECONDARY RMS (S-RMS) 

Type of RM Definition 

Case-Based Reasoning 
(CBR) 

Yan describes CBR as being “based on the 
cognitive assumption that similar problems 
have similar solutions” [21]. Taylor & 
Francis captures this as CBR being “a 
problem-solving approach that involves using 
past successful solutions to similar 
problems to solve new problems” [22]. 

Graph-Based 
Reasoning (GBR) 

GBR approaches have been utilized for the 
purposes of, among others, that described in 
[23]. In essence, it is a technique that 
buttresses reasoning capabilities by 
characterizing problems as graphs. Cao adds 
an interesting addendum to this notion by 
putting forth the “Reasoning Graph Verifier” 
(a.k.a., “GraphReason”) to “analyze and 
verify the solutions generated by LLMs,” 
which Cao asserts “enhances the reasoning 
abilities of LLMs” and “also outperforms 
existing verifier methods in terms of 
improving these models’ reasoning 
performance” [24];  

 
Interestingly, GBR is often applied by AIS for Fault 

Detection (discerning anomalies and positing causes/root 
causes), Diagnosis, and NLP/NLU (for positing the context 
and intended meaning), such as described by the papers 
associated with the DOIs of Table XIII. 
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TABLE XIII.  EXEMPLAR DOIS PERTAINING TO THE NOTIONS OF 
DETECTION, DIAGNOSIS, NLP/NLU 

Facet DOI 
Detection • 10.1109/CMD48350.2020.9287173 

• 10.1109/CMD48350.2020.9287173 
• 10.1109/CMD48350.2020.9287281 
•  10.1109/CMD48350.2020.9287262 
•  10.1109/CMD48350.2020.9287299 

Diagnosis •  10.1109/ICOIACT46704.2019.8938444 
NLP/NLU •  https://ssrn.com/abstract=3789767 

 

A. AIS for Various Sectors and a Proxy Application 
AIS approaches, particularly for AI Control and 

Decision Systems (CDS) (AICDS), as pertains to 
DMP/SDM, remain an active research area not only for the 
sector touched upon in Section IA, but also for the sectors 
of, among others, healthcare, finance, and energy. These 
sectors tend to involve elongated temporal spans for 
evaluation metrics, and definitive results may be 
challenging to come by. While the referenced AUVs, USVs, 
UAVs, and self-driving cars can indeed be somewhat 
comprehensively evaluated, the benchmarking thereof can 
be cost prohibitive and may require elongated temporal 
spans (e.g., testing them under various weather conditions, 
such as detection capability against the white background of 
snow). Accordingly, the analysis of Abductive Reasoning 
and benchmarking of NLU as well as NLG can, potentially, 
be more cost effective and economize on time when using a 
proxy application, such as Conversational AI (wherein AI is 
used to mimic human-like conversational dialogue). For a 
CAA (a.k.a., Conversational Virtual Agent or CVA), 
beyond the essential first step of ASR, NLU and NLG are 
formidable downstream steps. It is imperative that the AIS 
be able to discern the conversational context as well as the 
overarching intent of the user (i.e., NLU) and respond 
accordingly (i.e., NLG). Presuming that NLU and 
meaningful NLG can be satisfactorily achieved, RDM 
becomes central. In essence, RDM involves the CAA being 
able to carry on a coherent conversation, wherein validity is, 
ideally, sustained both within the single interaction as well 
as over the course of several interactions (a.k.a., multi-turn 
conversations). Even within a single interaction, the 
conversation may be quite nuanced with a variety of 
inflection points. These inflections may also occur over the 
course of the multi-turn conversation. Maintaining 
consistency, coherency, and validity throughout these multi-
turn conversations is central for meaningful/productive 
dialogues (i.e., RDM). Significantly, consistent validity 
inspires trust in the CAA. As the time-dependent priorities 
of the user and information being consumed by the CAA 
may dynamically change, the varying context could 
contradict prior information. Therefore, it is critical that the 
CAA has the capability for the graceful handling of 
contradictions with due care so as to help ensure 
conversational fluidity and maintain ongoing confidence 
and trust in the CAA. This capability is rooted in the 
successful counterpoising of the CAA’s Monotonic 
Reasoning (MR) and Non-Monotonic Reasoning (NMR) 

and the handling of MR/NMR and the MNTZs (a.k.a., 
CAIR-A). MR/NMR (and the MNTZs) will be further 
unpacked in the following Sections IIB through IIC. 

B. MR and NMR Counterpoising 
Against the backdrop of AI and RMs, MR and NMR are 

two of the major pillars for AI-centric logic/RMs. These are 
described in Table XIV below. 

TABLE XIV.  TYPES OF AI-CENTRIC LOGIC/RMS 

Type of AI-centric logic/RMs Definition 

Monotonic Reasoning (MR) MR-centric responses will remain 
consistent throughout time despite 
whatever new information might 
arrive. 

Non-Monotonic Reasoning 
(NMR) 

NMR-centric responses allow for 
modification and/or retraction of 
prior assertions. 

 
As noted in Section IA, “as the priorities of the user and 

arriving information may alter the context and/or contradict 
prior information,” the harmonizing and counterpoising of 
the MR and NMR becomes critical for maintaining logical 
consistency and interconnectedness among the multi-turn 
conversations (i.e., coherence); if the constituent elements 
of the multi-turn conversation are indeed logically related, 
then the overall dialogue should be relatively free of 
contradictions. This constitutes “conversational coherence.” 
There are a variety of evaluation tools in this regard. For 
example, the “ConversationCoherence Evaluator” is 
purported to be “a tool designed to check the coherence of 
conversations by an AI,” as “it evaluates whether each 
response in a conversation logically follows from the 
previous messages, ensuring that the AI maintains context 
and relevance throughout the interaction” [25]. However, 
“conversational coherence” is, actually, quite difficult to 
maintain in RWS, where information is often 
sparse/incomplete and/or ambiguous/uncertain. Depending 
upon “what” and “when” the information is made available 
(the issues of provenance/pedigree regarding the “who” and 
the “where” will not be discussed here; rather, they will be 
discussed in future work), a specific RM may be used, such 
as shown in Table XV. 

TABLE XV.  TYPES OF PRIMARY REASONING MECHANISMS (P-RMS) 

Information Available: 
“What”/”When” 
 

Type of RM 
Utilized 

Conclusion  

• Facts 
• Accepted 
  Truths 
• Rules 
• Scientific 
  Laws 
• Mathematical  
  Theorems 
• Established 
  Principles 
• Specific 

Used in an 
iterative 
fashion 

Deductive 
Reasoning 

Guaranteed to be 
true, if the 
premises and 
argument are valid. 
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  Information 
• Logical 
  Connections 
Starts with the 
same set as 
Deductive 
Reasoning (if 
available), but 
also involves 
Probabilistic 
approaches 

Typically 
front-
loaded, 
but can 
also 
“unfold in 
a bottom-
up” 
fashion 

Inductive 
Reasoning 

Likely to be true, 
but it could be 
false despite the 
observations being 
accurate. 

Starts with the 
same set as 
Deductive 
Reasoning (if 
available), but 
also involves 
hypotheses, 
assessments, 
and best-fit 
approximations 

Typically 
front-
loaded, 
but as it is 
trend-
sensitive  
as well as 
aberration-
sensitive, 
it can also 
“unfold in 
a bottom-
up” 
fashion 

Abductive 
Reasoning 

Plausible best 
guess 
approximation or a 
posit as to the 
optimal 
explanation; along 
this particular vein, 
Harman is well-
known for his 
research involving 
“Inference to the 
Best Explanation” 
(IBE) [26]. 

 
With regards to the various RMs presented in Table XV, 

first, deductive reasoning will be addressed. Ferguson 
proclaims that “classic deductive logic entails that once a 
conclusion is sustained by a valid argument, the argument 
can never be invalidated, no matter how many new premises 
are added. This derived property of deductive reasoning is 
known as monotonicity” [27]. Bundy and Wallen restates 
this as “the monotonicity of deductive logic,” wherein “the 
addition of new axioms to a set of axioms can never 
decrease the set of theorems or facts” [28]. Fuhrmann 
summarizes the aforementioned with the notion that 
“deductive inference, at least according to the canons of 
classical logic, is monotonic; if a conclusion is reached on 
the basis of a certain set of premises, then that conclusion 
still holds if more premises are added” [29]. 

Next, turning to abductive reasoning, Hentenryck asserts 
that “as a form of reasoning appropriate for handling 
incomplete information, abduction is also closely related to 
non-monotonic reasoning” [30]. Paul affirms this by clearly 
stating: “abduction is a form of non-monotonic reasoning” 
[31]. Lagerkvist follows on by summarizing as follows: 
“one of the best-known examples of non-monotonic 
reasoning is abductive reasoning” [32]. 
 

Proceeding along to inductive reasoning, Leidinger cites 
Hans with regards to testing “nonmonotonic reasoning 
among other inductive reasoning tasks” [33]. What is 
particularly interesting is that Hans notes that in his testing, 
Large Multimodal Models (LMMs)/LLMs (e.g., GPT-3.5, 
GPT-4) were not able to capture “human behavior on the 
non-monotonicity phenomena,” and actually took “the 
opposite” position [34]. Along this vein, although GPT-4 
was much more successful in capturing human behavior 
than GPT-3.5, Hans highlighted the “notable exception” in 

“its failure to capture the phenomenon of premise non-
monotonicity” with regards to inductive reasoning (a.k.a., 
property induction) [34]. Hence, the handling of non-
monotonic reasoning remains an ongoing challenge that 
may be impacting the performance of the newer 
LMMs/LLMs being released. Generally speaking, Kazemi 
notes that LLMs have difficulty contending with 
contradictory information (thereby segueing into the 
challenges of contending with the non-monotonic realm). 
[35]. 
 

In brief, deductive reasoning is often construed as a form 
of MR (wherein the addition of relevant information 
buttresses conclusions reached based upon recitals of fact 
and evidentiary material) while abductive reasoning is often 
considered to be a form of NMR (wherein new information 
can potentially reverse [i.e., cause to retract] prior inferences 
reached through evidentiary material and reasoning). Hence, 
inductive reasoning is typically taken to be non-monotonic, 
but the literature has also noted cases where it is weakly 
monotonic; for example, Janke delineates how NMR “is 
inherently required in several approaches to inductive 
inference” [36]. Overall, insights into MR/NMR behavior 
(within the MNTZ) and an apropos 
harmonizing/counterpoising of MR/NMR can provide the 
requisite flexibility for RDM and the desired ensuing CAA 
conversational coherence.  

C. Insights into the MNTZ 
As noted at the end of Section IIB, the successful 

counterpoising of MR/NMR necessitates meaningful 
insights into the MNTZ. Yet, as discussed in [2], the 
discerning/comprehending of the behavior at the MNTZ can 
be quite challenging. In addition, [2] noted that 
“maintaining coherence and monotonicity is non-trivial, as 
the involved AIS might discern connections (particularly 
those that are non-monotonic) within the evolving dataset. 
In the context of CAIR at-large (CAIR-A, specifically), 
non-monotonic aspects can arise as incoming information 
can re-contextualize and/or contradict matters. Yet, 
enforcing a strict monotonic paradigm can segue to an 
unnatural rigidity and/or incorrect/irrelevant responses by 
the” CAA. Hence, the counterpoising of MR/NMR is non-
trivial. 

 
As further noted in [2], “the shift of the involved 

variables from a monotonic to a non-monotonic paradigm 
can be quite unexpected and occur more frequently than 
anticipated/desired.” For AIS-SDM-A/U, the spawning of 
“non-monotonic, non-polynomial, and even non-continuous 
functions” does indeed occur more frequently than expected 
or desired [37]. Restated, as pertains to the MNTZ, there 
exists a proclivity for “spawning to the NP-Hard side,” and 
this is similar to the situation, “wherein the transformation of 
non-convex Mixed Integer Non-Linear Programming 
(MINLP) to convex problems often spawn further non-
convex MINLP problems” [2]. With regards to 
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Monotonic/Non-Monotonic and Linear/Non-linear (wherein 
Non-Monotonic can be Continuous or Discontinuous and 
Non-Linear can be Polynomial or Non-Polynomial), Figure 2 
conveys some of the prospective pathways to convex form 
(in green) as well as the pathways that remain nonconvex (in 
red) [2]; MIP equates to Mixed Integer Programming, and 
MILP equates to Mixed Integer Linear Programming. 
 

 
Figure 2.  “Non-convex to convex transformation pathways (e.g., non-
convex non-monotonic, non-polynomial, non-continuous MINLPs to 
convex form)” [2]. 

For the convex form, a myriad of Semi-Definite 
Programming (SDP) solvers can be leveraged to handle the 
computations in polynomial time (“presuming further 
spawning does not occur,” since “NP-hard-related spawn 
can potentially congest matters with an indefinite impasse”) 
[2]. There are a variety of mechanisms that can be useful in 
this regard, and some of these facets are discussed in 
Section IID. 

D. Formulating a Bespoke Mechanism for the MNTZ 
As noted in Sections IIA and IIB, the type of reasoning 

and prospective RM combinatorial (Analogical, 
Probabilistic, Temporal, Deductive, Inductive, Abductive, 
etc.) can indeed impact the MR/NMR amalgam and the 
likely behavior within the MNTZ. For example, as noted in 
the prologue to Section II, various forms of primary RM 
(and various secondary RMs, which they may leverage) are 
utilized in the context of the referenced LHM. Taking the 
examples of Tables XI and XII, Table XVI is presented, 
which delineates the referenced RMs and their MR/NMR 
categorization. 

TABLE XVI.  EXAMPLE RMS AND THEIR MR AND/OR NMR 
CATEGORIZATION 

RM MR/NMR Categorization 

Analogical Reasoning Non-Monotonic; Kerber notes that “two modi 
of analogical reasoning” “rely on different 
forms of relevance knowledge that cause 
non-monotonicity” [38]. 

Probabilistic 
Reasoning 

Monotonic and Non-Monotonic; Liu notes 
that “it has been found that the ability to 
handle incomplete information or to perform 
nonmonotonic reasoning does not exist in 
some probabilistic reasoning mechanisms” 
(i.e., these mechanisms can only contend 

with Monotonic),  while Grosof defines “an 
approach to non-monotonic probabilistic 
reasoning” [39][40]. 

Temporal Reasoning Monotonic and Non-Monotonic; Baral asserts 
that temporal reasoning is monotonic much 
of the time, but amidst new incoming 
information, the understanding of past, 
present, and future can alter, and this 
necessitates “that goals be changed non-
monotonically” [41].  

Deductive Reasoning Monotonic; As noted earlier in Section IIB, 
Ferguson notes that Deductive Reasoning is 
monotonic [27]. However, it should be noted 
that Hunter makes the caveat that deductive 
argumentation is non-monotonic [42]. 

Inductive Reasoning Weakly Monotonic and Non-Monotonic; as 
noted earlier in Section IIB, Jantke notes that 
NMR “is inherently required in several 
approaches to inductive inference” [36]. 
Jantke builds upon this by asserting, 
“monotonic and non-monotonic reasoning is 
introduced into inductive inference,” 
discusses a “weakly monotonic 
inductive inference algorithm,” and notes that 
“consistency and monotonicity can hardly be 
achieved simultaneously” [37]. The general 
idea is that a monotonic approach can be 
used to formulate hypotheses in an 
incremental fashion, but during this 
formulation, revisions/retractions may be 
necessary, and this segues into the area of 
non-monotonicity. Jantke summarizes with 
the statement “in the area of inductive 
inference of total recursive functions 
monotonicity can rarely be guaranteed” [43]. 

Abductive Reasoning Non-Monotonic; as noted earlier in Section 
IIB, Hentenryck and Paul have noted that 
abductive reasoning is in the realm of non-
monotonic reasoning  [30][31]. Pereira 
affirms this [44]. 

Case-Based Reasoning 
(CBR) 

Cautiously Monotonic and Non-Monotonic; 
the premise of CBR is that prior cases are 
examined to determine a best-fix 
approximation (i.e., ascertaining the most 
similar cases) to resolve a current situation. 
However, new cases may reverse the 
determinations of prior cases, and new 
information may result in revision/retraction 
to an earlier conclusion. However, it should 
be noted that Paulino-Passos makes the 
caveat by defining a variation, which is 
cautiously monotonic [45]. 

Graph-Based 
Reasoning (GBR) 

Monotonic and Non-Monotonic; when the 
addition of edges reinforces the conclusion, 
the paradigm is monotonic, but when the 
subtraction/negation of edges or addition of 
edges that obviate prior paths occurs, it is 
significant to note that Bochman asserts that 
GBR-related representations and 
nonmonotonic inheritance/nonmonotonic 
reasoning are intricately connected [46]. 

 

When Table XVI is sorted by the prevalence of 
monotonicity to non-monotonicity, the results are as 
depicted in Table XVII with Red-Orange-Yellow-Green 
(ROYG) color coding, wherein Monotonic is indicated by 



220International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

green and Non-Monotonic is indicated by red; weakly 
monotonic is indicated by orange, and cautiously monotonic 
is indicated by yellow. 

TABLE XVII.  RM-CENTRIC SORTING OF MR AND NMR BY PREVALENCE 

RM MR/NMR Categorization 

Deductive 
Reasoning 
(DedR) 

Monotonic 

Probabilistic 
Reasoning 
(ProbR) 

Monotonic Non-Monotonic 

Temporal 
Reasoning 
(TempR) 

Monotonic Non-Monotonic 

Graph-Based 
Reasoning 
(GBR) 

Monotonic Non-Monotonic  

Case-Based 
Reasoning 
(CBR) 

Cautiously 
Monotonic 

Non-Monotonic  

Inductive 
Reasoning 
(IndR) 

Weakly Monotonic Non-Monotonic  

Analogical 
Reasoning 
(AnaR) 

Non-Monotonic 

Abductive 
Reasoning 
(AbdR) 

Non-Monotonic 

 

Depending upon the amalgam of RMs and ensuing RM 
pathways initially selected, such as by the LHM-at-large, 
the related DM points/DMIPs will likely impact the 
downstream behavior within the MNTZ in terms of a 
preponderance of monotonic or non-monotonic behavior. 
Furthermore, as previously noted in the Abstract, “shifts 
from a monotonic to a non-monotonic paradigm and vice 
versa in the MNTZs can occur at a higher than anticipated 
rate.” This is also previously in Section IIC noted: “the shift 
of the involved variables from a monotonic to a non-
monotonic paradigm can be quite unexpected and occur 
more frequently than anticipated/desired” [2]. Accordingly, 
given the propensity to migrate towards non-monotonic, the 
ability to well-handle non-monotonic and somewhat 
mitigate against the shift from a monotonic to a non-
monotonic paradigm seems crucial and prudent. Again, the 
involved counterpoising is key, as the simpler strategy of 
reliance (readily segueing into overreliance) upon a non-
monotonic paradigm can readily lead to complicated models 
that are prone to overfitting and, quite possible, consume a 
not insignificant portion of the computational resources 
available. 

While it seems that focusing on certain RMs (e.g., 
deductive) might seem computationally more tractable, it 
would preclude more RWS RM approaches (e.g., ProbR, 
TempR, and GBR). Yet, these approaches can segue to non-

monotonic unexpectedly. Moreover, the much-desired CBR 
and IndR approaches are at much higher risk for segueing to 
non-monotonic (as they are already cautiously monotonic 
and weakly monotonic, respectively). Finally, some of the 
desired “more sophisticated approaches” (e.g., AnaR, 
AbdR) squarely reside within the non-monotonic realm, as 
is evidenced by Table XVII. 

Within the realm of analogical reasoning, isomorphism 
exhibits some promise for being computationally tractable, 
and certain approaches leverage potentially more 
accelerated pathways. The amalgam of ICSM2, MAM, and 
CAIR-A is one such triumvirate approach. 

1) ICSM2 
As noted in Section IB, the LHM is buttressed by, 

among other modules, an ICSM2, which determines (should 
it be needed) antecedent occurrences of IsoPs. In graph 
theory, if there exists a one-to-one correspondence between 
the vertice set of S and S’, then S and S’ are isomorphic. 
This is shown in Table XVIII, and should the reader desire, 
this can be affirmed via a variety of tools, such as the one 
available at 
https://graphonline.top/en/?graph=xPLjwOkrglDRgYeS. 
Rather than the graphs, adjacency matrices can also be 
utilized to determine isomorphism. This can be affirmed via 
a variety of tools, such as the one available at 
https://graphonline.top/en/create_graph_by_matrix. 

TABLE XVIII.  EXEMPLAR ISOMORPHISM BETWEEN S AND S’ 

Isomorphism 
between 
S and S’ 

Graph S Graph S’ 
 

f(a) = 1 
f(b) =2 
f(c) =3 
f(d) =4 
f(e)  =5 
f(f) =6 
f(g) =7 
f(h) =8 
f(i) =9 
 

  

 
Prior work on “graph theory isomorphisms” or Graph 

Isomorphism (GI) included aberration detection as pertains 
to the smart grid. Exemplar publications on this thematic are 
shown in Table XIX. 

TABLE XIX.  EXEMPLAR DIGITAL OBJECT IDENTIFIERS (DOI) 
PERTAINING TO GRAPH ISOMORPHISM (GI) 

Facet DOI 
GI • 10.1109/IEMCON.2019.8936241 

• 10.1109/IAICT62357.2024.10617473 
• 10.1109/GEM61861.2024.10585580 
•  http://dx.doi.org/10.2139/ssrn.5183492 
•  http://dx.doi.org/10.2139/ssrn.4984663 

 
For that particular Line of Effort (LOE), various 

aberration detection techniques were utilized, and these are 
shown in Table XX below. 
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TABLE XX.  EXEMPLAR DOIS PERTAINING TO ABERRATION DETECTION 
TECHNIQUES 

Short-Form 
Acronym for 
various Aberration 
Detection 
Techniques 

Long-Form Name 

OUV Over/Under Voltage  
OUF Over/Under Frequency  
PJD Phase Jump Detection 
RCAP or dP/dt Rate of Change of Active Power 
ROCOF of df/dt Rate of Change of Frequency  
VVS Voltage Vector Shift 
vTHD Voltage Imbalance and Total Harmonic 

Detection (THD) 
ROCPAD Rate of Change of Phase Angle Difference 
IM Intelligent-based Method 
EM Estimation-based Method 
WM Wavelet Transform-based Method 

 

The techniques presented in Table XX were then sorted 
by Non-Detection Zone (NDZ) and Speed, wherein green 
indicates either a good NDZ or speed, and red indicates 
either a poor NDZ or speed, such as shown in Table XXI, 
row 2. This is then recast in radar chart form, which is 
shown in Table XXI, row 4. For this particular comparison, 
the main point to convey, for the presented example in 
Table XXI, is that the structure itself holds no meaning, as 
only the values associated with each technique has any 
significance. Hence, no IsoP testing/comparison needs to be 
performed (with the associated savings of computational 
resources).  

TABLE XXI.  EXAMPLE WHEREIN THE STRUCTURAL TOPOLOGY IS 
IRRELEVANT; NO ISOP IS NEEDED   

Techniques sorted by NDZ Techniques sorted by Speed 

  
Radar Chart of Techniques 
characterized by NDZ and Speed 
(sorted by NDZ) 
 

Radar Chart of Techniques 
characterized by NDZ and Speed 
(sorted by speed) 

 
 

 

 
For many ecosystems, wherein addressing computational 
forays with graph-based approaches can be invaluable, 
“non-graph-based approaches” can be of comparable value-
added proposition (VAP). By way of example, the robust 
treatment of various figures of speech (e.g., simile, 
metaphor) and argument (e.g., analogy) (a.k.a., collectively, 
elements of figurative language) can be invaluable, such as 
reviewed in Table XXII. 

TABLE XXII.  EXEMPLAR ELEMENTS OF FIGURATIVE LANGUAGE 

Exemplar Element Description 
 

Simile is a comparison of two disparate entities, via 
words, such as “like” or “as.” 

Metaphor is a direct comparison and asserts that two 
disparate entities are the same, via words, such 
as “is,” “was,” etc. (wherein the words “like” or 
“as” are not utilized). 

Analogy creates a comparison of how a seemingly 
disparate entity is akin to, relates to, or is similar 
to another disparate entity for the purpose of 
explaining/demonstrating. 

Allegory embodies a more complex/symbolic comparison 
and leverages a narrative to convey an abstract 
notion/concept; Wearing points out that 
“allegories make sense when they’re interpreted 
literally while (most) metaphors do not” [47]. 
Holme asserts that “arguably, an allegory frames 
all the events of a story inside an extended 
metaphor” [48]. More simplistically, Burton 
claims that “an allegory is a complete narrative 
that seems to be about one thing but is actually 
about another” [49]. 
 

 
Hofstadter has argued that analogy is “the core of 

cognition,” and Holyoak seems to affirm [50][51]. 
Hofstadter further states, “without concepts there can be no 
thought, and without analogies there can be no concepts” 
[52]. Given the significance of analogies, it seems prudent 
to review analogies at various levels of intricacy. 
Wijesiriwardene asserts that analogies can be viewed “at 
four distinct levels of complexity: lexical, syntactic, 
semantic, and pragmatic,” and he further notes that “as the 
analogies become more complex, they require increasingly 
extensive, diverse knowledge beyond the textual content, 
unlikely to be found in the lexical co-occurrence statistics 
that power LLMs” [53].  
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A discussion on Large Concept Models (LCMs), to 
assist in this regard, can be found within those DOIs shown 
table XXIII below. 

TABLE XXIII.  EXEMPLAR DOIS/TITLES OF PAPERS PERTAINING TO LARGE 
CONCEPT MODELS (LCMS) 

Facet DOI 
LCM • 10.1109/IAICT65714.2025.11100570 

• A Prospective Monotonic/Non-Monotonic 
Transition Zone Impediment for Concept Model-
Centric Artificial Intelligence Systems 

 
Wijesiriwardene depicts the increasing levels of analogy 

complexity, and a version is shown in Figure 3 below. 
 

 
Figure 3.  “Increasing Levels of Analogy Complexity” [53]. 

These increasing levels of analogical complexity are 
further delineated in Table XXIV. 
 

TABLE XXIV.  EXEMPLAR ANALOGY TYPES 

Analogy Types Descriptors 

Lexical Analogies Lexical analogies center upon the affinity and 
shared relationships between concepts 
despite the concepts being quite distinct and 
disparate. An example would be S:T as U:V 
or “spider radar plot is to chart as LLM is to 
AI.” 

Syntactic Analogies Syntactic analogies undertake reasoning by 
comparison so as to discern structural affinity 
and relationships between syntactic 
structures. An example would be that of the 
“noun+are+adjective” syntactic pattern, 
which can be seen in the following: 
“Graphics Processing Units (GPUs) are fast 
(in some cases)” and “Tensor Processing 
Units (TPUs) are faster (in some cases).” 

Semantic Analogies Semantic analogies center upon the affinity 
and shared relationships between entities 
(while the underlying structure may not be 
the same). Examples include antonymy (e.g., 
narrow:wide::slow:fast), synonymy (e.g., 
complex:complicated::elementary:simple), 
cause & effect (nonmonotonic:NP-
hard::monotonic:Polynomial time), etc. 

Pragmatic Analogies Pragmatic analogies are often predicated 
upon figurative language, wherein literal 
translations may not convey the implied 
meaning intended. A classic example would 
be, “Reading this paper was a piece of cake;” 
in essence, the intended meaning was that the 
paper was easy to read rather than the literal 

translation that the paper was an edible slice 
of cake. Wijesiriwardene’s example of the 
Trojan horse theme and comparing it to 
malware is particularly appropriate for 
modern times. 

 
Wijesiriwardene explains that “pragmatic analogies are 

the most complex [of the analogy types], spanning several 
sentences (often a paragraph) that elaborate on both the 
source and target domains, contain multiple concept or 
entities related by diverse relationships, contain abstractions 
(modeled as subgraphs), and require us to map 
concepts/entities, relationships and subgraphs between 
source and target contextualized by external knowledge and 
a purpose” [53]. To further explain this, if S and S’ are 
isomorphic, then they are analogous in their underlying 
linkages/relationships and structure. However, while the 
various forms of analogies exhibit similarities, there may 
not be a seamless structural match. It then follows that while 
the gamut of isomorphic cases can be considered analogies, 
not all analogies are isomorphic. This particular 
determination is central. If IsoP can be avoided, then the 
expenditure (of an unknown level of computational resource 
expenditure) can be bypassed. However, if an IsoP 
comparison is indeed required, then the ICSM2 
operationalizes the IsoP comparison via the derivation of a 
specific amalgam, which is comprised of two key facets, 
such as shown in Figure 4 below. 

 
Figure 4.  ICSM2’s Derivation of a specific amalgam: (1) a pertinent 
GFN/GFS and Inherent Uncertainty Construct (IUC), and (2)  A/U 
Consideration Amidst Paradoxes  

Figure 4 needs some unpacking. First, starting with the 
more discrete facet, Generalized Fuzzy Numbers (FN) 
(GFN) can be quite useful. The type of shape of the 
involved GFN is typically captured by the “f-sided” notation 
within the long form of “Generalized f-sided Fuzzy 
Number” as well as by “f” notation in the short-form of the 
“GfFN” acronym. The GfFN membership function can 
extend into a more sophisticated shape beyond the more 
common and simplistic 3-sided (i.e.,  triangular) or 4-sided 
(i.e., trapezoidal, which has a minimum of one pair of 
parallel sides) prototypical shapes. Examples of the 
involved notation for these more sophisticated shapes are 
shown in Table XXV below. 

TABLE XXV.  EXEMPLAR GENERALIZED FUZZY NUMBERS (GFNS) WITH 
SHAPE TYPES 

Short-Form 
Acronym 

Long-Form Name 

GTrFN Generalized Triangular Fuzzy Number 
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GTpFN Generalized Trapezoidal Fuzzy Number 

GPeFN Generalized Pentagonal Fuzzy Number 

GHxFN Generalized Hexagonal Fuzzy Number 

GHpFN Generalized Heptagonal Fuzzy Number 

GOcFN Generalized Octagonal Fuzzy Number 

 
In some cases, within the literature, the Tr, Tp, Pe, Hx, Hp, 
Oc, etc. are supplanted by “N,” and the utilized acronym is 
that of GNFN. Regardless, the “N-sided”/“f-sided” nature 
allows the membership function to be defined by a greater 
multiple of linear and/or non-linear functions for better 
capturing/representing the U of A/U than that by the simpler 
[prototypical] shapes (given their limitations with regard to 
their constituent number of linear and/or non-linear 
functions able to be represented). However, a further 
distinction is also made. A GfFN can not only have a 
varying number of f sides, but also the sides comprising the 
boundary of the GfFN might not necessarily be linear (i.e., 
the sides can be non-linear, such as in the case of a Gaussian 
curve, etc.). Accordingly, the notation can be of the form 
GLfFN for a Generalized Linear f-sided FN and GNLfFN 
for a Generalized Non-Linear f-sided FN. Taking the 
example case of 5-sides, GLPeFN denotes the involved 
“Generalized Linear Pentagonal FN,” wherein the sides are 
all linear; in contrast, GNLPeFN denotes Generalized Non-
Linear Pentagonal FN, wherein the side(s) might be non-
linear. Chakraborty depicts a GLPeFN in [54], and a 
variation is shown in Figure 5. 
 

 

Figure 5.  An exemplar GLPeFN 

Chakraborty also provides an example of a GNLPeFN, 
and a version is reproduced below in Figure 6 [54]. 

 

Figure 6.  An exemplar GNLPeFN 

In some cases, the GLPeFN approximation can suffice, 
rather than computing the GNLPeFN, and Velu & 
Ramalingam provide an example of this, for which a 
variation is shown below in Figure 7 [55]. 

 

Figure 7.  An exemplar GNLPeFN 

Before plowing forward, some background information 
is necessary; an Interval-Valued Fuzzy Number (IVFN) is a 
fuzzy number, wherein the degree of membership is denoted 
by an interval (as a range of prospective membership 
values) instead of a single value. Along this vein, 
Chakraborty further presents a Generalized Linear Interval-
Valued Pentagonal Fuzzy Number (GLIVPeFN), and a 
variation is shown in Figure 8 (with symmetry) along with a 
Hexagonal rendition (GNLIVHxFN) in Figure 9 (with 
asymmetry) [54]. 

 

Figure 8.  An exemplar GLIVPeFN (with symmetry) 

 

Figure 9.  An exemplar GLIVHxFN (with asymmetry) 

Chakraborty further presents a Generalized Non-Linear 
Interval-Valued Pentagonal Fuzzy Number (GNLIVPeFN), 
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but to be consistent with Figure 9, a Hexagonal rendition 
(GNLIVHxFN) is cast below in Figure 10 (with 
asymmetry).  

 

Figure 10.  An exemplar GNLIVHxFN (with asymmetry) 

Again, as previously shown in Figure 7, for some cases, 
best-fit approximations (or even more rudimentary 
approximations) may suffice. This raises the issue of which 
particular approach vector might be prudent (depending 
upon the need). Prior to unpacking this, Intuitionistic Fuzzy 
Numbers (IFNs) will be explained. In essence, IFN embody 
both membership and non-membership degrees, thereby 
providing a more nuanced delineation of uncertainty. Mert 
depicts a Generalized Non-Linear P [Intuitionistic Logic] 
Pentagonal Fuzzy Number (with asymmetry), but to be 
consistent with Figures 9 and 10, a hexagonal version is cast 
in Figure 11 [55]. 

 

Figure 11.  An exemplar GNLILPeFN (with asymmetry) 

As can be gleaned, IFNs and IVFNs depict U in varying 
ways. For some cases, IFNs are able to be expressed in 
IVFN form (e.g., when membership as well as non-
membership values are expressed as single-point intervals), 
such as in the case wherein (0.9, 0.1) segues to ([0.9, 0.9], 
[0.1, 0.1]). In contrast, the reverse is not necessarily true, 
such as in the case, wherein ([0.1, 0.9], [0.3, 0.7]) might not 
necessarily translate to a “single, representative IFN.” For 
certain basic operations (e.g., “and”, “or”), equivalence can 
be demonstrated. However, this is not necessarily the case 
for more complicated operations. 

Proceeding from the various GFNs to the broader 
category of Generalized Fuzzy Sets (GFSs) can be quite 
useful as well.  By way of context, the classical FS involves 
a membership function that assigns a degree of membership 

(e.g., between 0 and 1) to each element within the involved 
FS. However, this does not necessarily reflect the hesitation 
for scenarios with incomplete/uncertain information. In 
contrast, GFS encompass a range of extensions to the 
classical Fuzzy Set (FS), such as that of Intuitionistic FS 
(IFS), Interval-Valued FS (IVFS), etc. Along this vein, IFR 
equates to Intuitionistic Fuzzy Reasoning and IVFR equates 
to Interval-Valued Fuzzy Reasoning. In terms of 
isomorphism, IFSs and IVFSs have been shown to be 
formally equivalent [56][57]. In essence, they share 
equivalent mathematical structures in spite of their 
differences in representing U. Luo had expressed this 
diagrammatically, for which a version is reproduced in 
Figure 12  [57]. With regards to Figure 12, TIA equates to 
the Triple I Algorithm (i.e., “a fuzzy reasoning algorithm,” 
which posits an output given a specified input), RTIA 
equates to the Reverse Triple I (a.k.a., R-III) Algorithm (i.e., 
“a fuzzy reasoning algorithm,” which inverts the TIA so as 
to ascertain an apropos input given a specified desired 
output), SIS equates to Subsethood Inference Subsethood 
(i.e., the degree of containment of a FS within another FS), 
b equates to bijection, and i equates to isomorphic [57]. 

 

Figure 12.  The IFS and IVFS Isomorphism and various Bijections [57] 

The significance of this resides in the paradigm that, 
generally, IFS tend to be quicker to compute than IVFS 
(particularly in the area of basic comparisons/operations). 
Moving beyond IVFS, the Interval-Valued Intuitionistic 
Fuzzy Set (IVIFS) yields even “more precise results” [58]. 
After all, while an IVFS depicts the uncertainty of 
membership via an interval, an IVIFS leverages both an 
interval-centric degree of membership as well as an 
interval-centric degree of non-membership. Thus, IVIFS is 
even more nuanced than IVFS. Fortunately, it is a 
generalization of IFS, which is isomorphic to IVFS, as 
Bustince well depicted, and a version is reproduced in 
Figure 13 [118]. Along the vein of Figure 13, the Type 2 
Fuzzy Set (T2FS) had been discussed in, among other 
papers, the second DOI of Table IV, which discussed the 
notion that the “Type-2 Fuzzy Set (T2FS)…can 
accommodate the uncertainty of membership fluidity, 
whereas the Type-1 Fuzzy Set (T1FS) only accommodates 
membership invariableness” [second DOI of Table IV][first 
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DOI of Table VIII][second DOI of Table VIII]. Along with 
IVFS, IFS, IVIFS, there are also the notions of Vague Set 
(VS) and Grey Set (GS).  

 

Figure 13.  Mathematical Equivalence among particular GFS [118] 

Lu illuminates the notions that VS “is more natural 
than an IFS for merging fuzzy” values [59]. A classic 
example involves the merging of three fuzzy values, such 
as 0.3/m, 0.7/m, and 0.9/m; the resultant VS expression 
would be [0.3, 0.9]/m, wherein the lower bound of the 
membership m is 0.3 and the upper bound is 0.9. In 
contrast, the IFS expression would be less intuitive with 
0.6 for the degree of membership, 0.2 for the degree of 
non-membership, and 0.2 for the hesitation margin. 
Furthermore, Lu notes that ascertaining the Median 
Membership (Mm) and/or the Imprecision Membership 
(Mi) is more intuitively gleaned via VS, such as depicted 
in Figure 14, which is a variation of Lu’s figure.  

  

Figure 14.  Delineating the Median and Imprecision Membership via VS, 
where y axis denotes “Membership Functions” and the x axis denotes 
“Data Objects” [59] 

Likewise, delineating the hesitation region for VS is 
much more straightforward, such as shown in Figure 15. In 
essence, VS is more intuitive for delineating the Support 
Region, Opposition Region, and the Hesitation Region 
(wherein there is neither support nor opposition). 

 

Figure 15.  Delineating the Hesitation Region for VS (as contrasted to IFS) 

As Lu discusses, “in the literature, the notions of IFSs 
and VSs are regarded as equivalent,” in the sense that an 
IFS is isomorphic to a VS [59]. This is useful for 
transitioning among IVFS, IFS, VS, and GS [118]. Next, 
there is also a distinction between VS and GS. For 
example, Alkhazaleh states that a VS “is defined by a truth-
membership function … and a false-membership function” 
[60]. Lu adds to this by asserting that “interval-based 
membership is used in a VS” and that “the interval-based 
membership generalization” in VS “is more expressive in 
capturing vagueness of data” [59]. On the other hand, GS 
leverages the notion of Grey Numbers (GNs), and Khuman 
notes that “the generalised” GN “can cater to both discrete 
and continuous data” [61]. Although there is the obvious 
connection between GS and GN, they are distinguished by 
the fact that a GS captures uncertainty about membership to 
the involved set while a GN denotes uncertainty about the 
actual value of a particular quantity. Sifeng provides a 
generalization for both: “the information that grey is often 
associated with is information that can be described as being 
partially known and partially unknown, which in actuality is 
a common occurrence of uncertain systems” [62]. Along 
this vein, Shaker and Moore-Clingenpeel reference the 
epistemological (pertaining to the theory of knowledge) 
constructs of the “known knowns” (KK), “known 
unknowns” (KU), and “unknown unknowns” (UU) that 
were infamously popularized by Donald Rumsfeld. The 
extrapolated quad chart, which also references the writings 
of Shaker and McGregor, is shown in Table XXVI  
[63][64]. 

TABLE XXVI.  EPISTEMOLOGICAL CONSTRUCTS [63][64] 

Known Knowns (KK) 

“Things we are aware of and 
understand” 

Known Unknowns (KU) 

“Things we are aware of and do 
not understand” 

Unknown Knowns (UK) 

“Things we are not aware of, but 
understand” 

Unknown Unknowns (UU) 

“Things we are not aware of and 
do not understand” 

 

With regards to Sifeng’s referencing of “partially 
known” and “partially unknown,” this could pertain to the 
KK and KU for the former and KU, UK, and UU for the 
latter. As previously stated in the prologue of Section II (and 
as exhibited in Tables XI, XII, XVI, XVII and the broader 
categorizations of Table XIV), despite the varied RMs that 
might be utilized, an inconsistency/contradiction could 
occur due to phenomenon, such as the Ellsberg Paradox, 
which can be described as “ambiguity aversion” — a 
predilection to avert alternatives whose prospects are 
unknown; citing the logic of Lang (“zero exposure to 
ambiguity can be optimal”) as well as the assertions of 
Ellsberg, Machina, and others, ambiguity aversion 
“violate[s] both the key rationality axioms and classic 
models of choice under uncertainty” [65]. For a number of 
cases, ambiguity aversion segues to sub-optimal DM 
[65][66]. As a case in point, Jia’s findings show that 
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experimental participants preferred KK over KU/UK/UU 
even when the options with U might be more favorable (it is 
not clear whether KK/KU prevailed over UK/UU). In any 
case, Jia does indeed note that “participants who learned 
about the Ellsberg Paradox were more tolerant of ambiguity, 
yet ambiguity aversion was not completely abolished” [67]. 
Coleman summarizes matters as: “The Ellsberg paradox is 
often cited as evidence for unknowable ‘ambiguity’ versus 
computable ‘risk’ and a refutation of the Savage axioms 
regarding expected utility maximization” [68][69]. Chen 
describes the Ellsberg paradox more simply, as “people 
prefer betting on known (objective) probabilities rather than 
unknown (subjective) probabilities” [70]. Weber describes it 
as “in ambiguity over time, the eventual outcome is known, 
but the length of time before the outcome will occur 
is uncertain [71]. In Table I of Section I, it is clear that 
ambiguity and uncertainty are indeed different. Yet, despite 
these differences, definitions of the “Ellsberg paradox” 
demonstrate how these terms are often used interchangeably 
(with a lack of distinction made between the two). 
Exemplars of this are shown in Table XXVII. 

TABLE XXVII.  EXEMPLAR UTILIZATION OF AMBIGUITY (A) VERSUS 
UNCERTAINTY (U) IN VARIED DEFINITIONS OF THE ELLSBERG PARADOX 

Researcher Remarks 

Binmore “Experimental results on the Ellsberg 
paradox typically reveal behavior that is 
commonly interpreted as ambiguity aversion” 
[72]. 

Leopold “Smarter in the Long-Term: Diminishing 
Ambiguity Aversion in a Repeated Ellsberg Urn 
Task” [73]. 

Chen “Ambiguity Aversion: The Ellsberg paradox 
shows that people prefer betting on known 
(objective) probabilities rather than unknown 
(subjective) probabilities” [74]. 

Halevy and 
Feltkamp 

“The Ellsberg paradox demonstrates that 
people’s belief over uncertain events might not 
be representable by subjective probability” [75]. 

Segal  “Measuring Nonmonetary Utilities 
in Uncertain Choices: The Ellsberg Urn” [76]. 

Joreno-Jimenez and 
Vargas 

“we present a method to deal with uncertainty, 
which considers Ellsberg’s objections” [77]. 

Jabarian and Lazrus “55% of the subjects prefer avoiding ambiguity 
even when it means choosing dominated risky 
options – what we call the Two-Ball Ellsberg 
Paradox” [78]. 

 

Perhaps, the preferred embodiment for the use of the 
cited terms (ambiguity, uncertainty), with regards to the 
Ellsberg paradox, is as follows. In essence, the Ellsberg 
paradox alludes to the notion that people have a predilection 
towards choices with less uncertainty, thereby running 
counter to the Expected Utility Theory (EUT) (e.g., a 
rational cost-benefit analysis) by subscribing to ambiguity 
aversion. 

Apart from the Ellsberg paradox, there is also the 
Machina paradox (wherein the preference ranking may 
change although the underlying probabilities are 
equivalent). Aerts notes that the Machina and Ellsberg 
paradoxes run counter to the EUT [79]. Likewise, the Allais 
paradox (where DM are unlikely to consistently make 
rational decisions under CDC) runs counter to the EUT [80]. 
Both the Machina and Allais paradoxes run counter to 
Savage’s Independence Axiom (IA). Ferrari-Toniolo 
proclaims that the IA is the “most demanding axiom” as 
pertains to EUT [81]; Blavatskyy explains IA simply: “The 
independence axiom postulates that”…the DM’s…           
“preferences between two lotteries are not affected by 
mixing both lotteries with the same third lottery (in identical 
proportions)” with the extension of this being that the DM 
“does not necessarily prefer the same choice alternative 
when repeatedly presented with the same choice set” [82]. 
Overall, the Ellsberg, Machina, and Allais paradoxes all run 
counter to EUT and highlight DM behavior that deviates 
from rational behavior, such as is shown in Table XXVIII. 

TABLE XXVIII.  EXEMPLAR TYPES OF PARADOXES WITH TYPE OF 
EFFECTS  

Type of 
Paradox 

Type of Effect Description 

Ellsberg Ambiguity 
Aversion 

DMs have a predilection to be 
ambiguity-averse and tend towards 
choices with known calculable risks 
rather than those with unknown 
incalculable risks. 

Machina Inconsistent 
Preference 
Rankings 

Accurate preference ranking methods 
are problematic amidst A and U; this 
has high impact for AI models that are 
trained to learn and predict 
preferences.* 

Allais Certainty Effect DMs have a predilection for more 
certain outcomes over probabilistic 
outcomes. 

 

Jim refers to this as “each of these models is trained 
from a common base model to predict the…preferences of a 
single individual,” Aldoseri refers to this as “machine 
learning algorithms learn, make predictions, and improve 
their performance over time” [83][84]. From Table XXVIII 
and the discussions leading up to this point, the key take-
away, taking the cue on inconsistent preference rankings, is: 
(1) with regards to non-monotonic phenomenon, human 
behavior may not be able to be captured and the involved 
AIS may actually adopt “the opposite” position (from 
Section IIB) [34]; (2) “the shift of the involved variables 
from a monotonic to a non-monotonic paradigm can be 
quite unexpected and occur more frequently than 
anticipated/desired” for AIS (from Section IIC) [2]; and (3) 
as report by Chen, with regards to inconsistent preference 
rankings, “most state-of-the-art preference-tuned models 
achieve a ranking accuracy of less than 60% on common 
preference datasets,” which basically equates to “preference 
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learning algorithms do not learn preference rankings,” 
“existing reference models rarely have correct rankings,” 
and “preference learning rarely corrects incorrect rankings” 
[85]. Also, interestingly and ironically, leaning the other 
way towards monotonic does not seem to be viable either; 
for example, “enforcing a strict monotonic paradigm can 
segue to an unnatural rigidity and/or incorrect/irrelevant 
responses by the” AIS (from Section IIC). A robust 
counterpoising seems to be the key. 

III. EXPERIMENTATION 
Counterpoising mechanisms, such as that of a robust 

MMSO mechanism, have been previously experimented 
upon, as shown in Table XXIX. 

TABLE XXIX.  EXEMPLAR DOIS AND PAPER TITLES PERTAINING TO THE 
NOTIONS OF MADM/MODM SM/OM 

Facet DOI 
MADM/MODM 
SM/OM (MMSO) 

• A Prospective Monotonic/Non-Monotonic 
Transition Zone Impediment for Concept 
Model-Centric Artificial Intelligence 
Systems 
• 10.1109/IAICT65714.2025.11100570 
•10.1109/AIIoT65859.2025.1110531 
•  http://dx.doi.org/10.2139/ssrn.5291883 
•  http://dx.doi.org/10.2139/ssrn.5291881 
• http://dx.doi.org/10.2139/ssrn.5291879 
• 10.1109/ICAIIC64266.2025.10920828 
• http://dx.doi.org/10.2139/ssrn.5183492 
• 10.1109/IAICT62357.2024.10617473 
• 10.1109/GEM61861.2024.10585580 
• 10.1109/AIIoT61789.2024.10579033 
• http://dx.doi.org/10.2139/ssrn.4984663 
• 10.1109/ICSGTEIS60500.2023.10424230 
• 10.1109/ICPEA56918.2023.10093212 

 
As previously discussed in Section IID, “depending upon 

the RM/amalgam of RMs/overall RM pathway initially 
selected, such as by the LHM, the related DM point/DMIP 
will likely impact the downstream behavior within the 
MNTZ in terms of a preponderance of monotonic or non-
monotonic behavior.” Consequently, the selection is non-
trivial. To assist in this regard, the MMSO could be quite 
useful. After all, as pertains to preference ranking, it is a 
central component of MMSO, which is the mainstay of 
MCDM. For MCDM, preference ranking impacts the 
specification of alternatives, the defining of criteria, the 
assigning of weights, and the sorting of alternatives, among 
other items. 
 

Homing in on the aforementioned delineation of criteria, 
assignment of weights, and the ranking of alternatives, the 
Shapley value has been found to be quite instrumental. It 
can facilitate the analysis of interactions between the 
various criteria, thereby providing invaluable insights during 
the ascertainment of apropos criteria weights, as well as 
enhance various ranking methods. As Qin puts it, the 
Shapley value “is widely used for” “feature importance 
analysis” [86]. To further this, B. Rozemberczki asserts that, 

“the Shapley value is used to measure the contributions of 
input features to the output of a machine learning model” 
[87]. In essence, the Shapley value can be construed as 
helping to gauge the overall significance of each criterion. 
Given this pivotal role, it seemed prudent to explore the 
Shapley value in terms of its prospective value within the 
MNTZ for the ultimate purpose of helping to better 
counterpoise MR/NMR via a better counterpoised MMSO. 
For this reason, explorations of a bespoke IbSOA approach 
were undertaken. 
 

Given the various counterpoising within the discussed 
AIS, enhanced context is a mainstay of this paper, and this 
was alluded to in [1], which this paper is rooted upon. 
Axiomatically, to enhance context  for an AIS, ML2 is vital. 
Hence, in the case of this paper, interstitial analyses are 
crucial for ascertaining “whether the prospective ML 
learnings are of potential benefit” [1]. In terms of theoretical 
foundations, it is posited that “Borgonovo’s glocal notion 
can help bridge the gap, and the significance of the [Optimal 
Shapley-Nondominated Solution] OSNS segueing to an 
Optimal Shapley-Owen-Nondominated Solution (OSONS)” 
paradigm is underscored in [1] as well as articulated by 
various researchers within this arena, such as Casajus, 
Lopez, Beal, and others [88][89][90]. Fundamentally, the 
referenced Owen value nicely captures the intricate 
interactions between/among the constituent members of the 
involved feature set as well as “extends the Shapley value 
(which well captures the individual feature contributions) in 
a consistent fashion” [1]. Yet, OSONS is predicated upon 
the referenced IbSOA, which encompasses “temporal-
centric [Finite-Change Shapley-Owen] FCSO values, 
[“Squared Cohorts” Shapley-Owen] SCSO values, and 
[Generic Shapley-Owen] GSO values/[Variance-Based 
Shapley-Owen] VBSP values” [1]. In addition, to 
operationalize the IbSOA, it should be conjoined with the 
previously referenced MMSO mechanism.  

 
Based upon the experimentation referenced in Table 

XXIX, it seemed prudent to further investigate those areas 
promulgated by Wu, Wang, Hua, and others. By way of 
example, among others, Wu and Wang have been 
proponents of “Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) OM in conjunction 
with SHAP,” and this seemed favorable for MMSO 
experimentation [91][92]. As another example, among 
others, Hua has been a proponent of “the PROMETHEE 
OM with SHAP” [1]. Again, this seemed promising for 
MMSO experimentation as well. As noted in [1], the 
experimentation assessed the referenced 
favorable/promising avenues, and an output, among others, 
centers upon the notion that it seems well advised to utilize 
“an OM (e.g., CRiteria Importance through Intercriteria 
Correlation or CRITIC) to first, derive the criteria weights 
and second, use a complementary pairing for the ensuing 
ranking (e.g., TOPSIS, PROMETHEE)” [1]. The reader 
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should note that a substantive portion of the balance of 
Section III (particularly Sections IIIA and IIIB) is derived 
from [1], and that this journal paper is an invited extended 
version of that paper (i.e., [1]). 

A. Experimental Testbed 
For a tasked ML to well learn atop another ML in an  

ML2 sense, it is important to mitigate against inadvertent 
spawning (i.e., Spawn Reduction). Accordingly, enhanced 
context and understanding at the interstices can be central to 
the necessary ML2 mechanism to substantially decrease the 
“spawning of further non-convex MINLP (e.g., from the 
transformation pathways of non-convex MINLP to convex 
MILP)” [1]. For the experimentation in [1] and herein, 
“SDP solvers were implemented aboard GNU’s Not Unix 
(GNU) Octave (a “numerical computation platform” that is 
“under the GNU [General Public License] (GPL) v3 
license” and is generally “compatible with the likes of 
MATLAB”) along with a myriad of Octave Forge 
packages” [1][93]. As noted in [1] and [93], “’the source 
code was modified in the lab environment’ so as to 
implement accelerants for the referenced SDP solvers to 
quickly address the various involved convex optimization 
problems described herein;” also, as noted in [1] and [93], 
“GPLv3 avoids the issue of tivoization (the instantiation of 
a system that incorporates software under the terms of a 
copyleft software license but leverages hardware restrictions 
or digital rights management to prevent users from running 
modified versions of the software on the involved 
hardware)” [93]. The experimental “testing was conducted 
using a variety of open-source software packages, such as 
Automatic Differentiation Model Builder (ADMB) (for non-
linear statistical modeling) and Interior Point OPTimizer 
(IPOPT) (for large-scale nonlinear optimization)” [1][93]. 
Additional “promising software packages, such as LOQO 
(like IPOPT, it is based upon the interior-point method) and 
Sparse Nonlinear OPTimizer (SNOPT) (it leverages 
Sequential Quadratic Programming or SQP for resolving 
large-scale non-linear optimization problems) were 
examined, but they were not utilized given their licensing 
caveats” [1]. 

It had been discussed in [1] and [the second DOI of 
Table IV] that a particular numerical implementation of 
Continuous Wavelet Transforms (CWTs), aboard a 
Constriction Factor (CF)-Particle Swarm Optimization 
(PSO)-Robust Convex Relaxation (RCR)-Long Short-Term 
Memory (LSTM)-Deep Convolutional Neural Network 
DCNN (CPRLD) architectural paradigm, well contributes to 
System Transparency Explainability & Accountability 
(STEA) by way of the intrinsic “successive convolutional 
layers (which contain the cascading of ever smaller ‘CWT-
like’ convolutional filters)” [1][the second DOI of Table 
IV]. As noted in [1], “the referenced CPRLD construct 
handled the various transformation pathways” alluded to in 
Figure 2 previously “(e.g., convex approximations, series of 
convex relaxations, etc.), and the architectural 
implementation for this paper was unique in that a ML2 

paradigm was implemented for Spawn Reduction (SR2 on 
SR1),” such as depicted in Figure 16.  

 
Figure 16.  CPRLD Architectural Construct with a ML2 (SR2 on SR1) 

Spawn Reduction paradigm [1] 

As discussed in [1], “in terms of implementation details, 
a DCNN-centric instantiation was chosen for the requisite 
sufficient balance of reduced computational complexity 
along with sufficient robustness to be fit for purpose. The 
assigned tasks of the various DCNN are labeled accordingly 
in Figure 16. For example, as DCNN-1 was tasked with 
being the key solver for the involved convex optimization 
problems, it required a high degree of numerical stability, 
and PyTorch version 0.4.1 was selected; DCGAN-1 
leveraged a “forward stable” TensorFlow-based Deep 
Learning (DL) Convolutional GAN (DCGAN) 
implementation to be able to well address the potentiality of 
mode collapse/mode failure (a phenomenon that may occur 
when adversarial GANs, which are being trained in tandem, 
are either unable to converge or undergo an anomalous 
convergence)” [the second DOI of Table IV]. 

B. Experimental Construct 
As pertains to the involved experimental construct, 

which is based upon Figure 4 of [1], such as is now shown 
in Figure 17, “prior experimentation aspects used as presets 
are reflected in blue font while current experimental 
elements are shown in purple font” [1].  
 

 
Figure 17.  Conjoining of IbSOA and MMSO 

For additional context, “t-” elements (e.g., t-FCSO, t-
SCSO, t-GSO, t-VBSO) of the b-SHAP can be extrapolated, 
and these relate to Borgonovo’s work…which more fully 
considers “Kotthoff’s emphasis on temporal-
sensitive/temporal-centric Shapley values” [94]. As 
described in [1], “the OM of CRITIC was utilized as a 
preset for deriving the criteria weights, and the OMs of 
PROMETHEE, TOPSIS, and ÉLimination Et Choix 
Traduisant la REalité (ELECTRE) were utilized for the 
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subsequent rankings. Initial selections and avoidances, 
among others, were based upon the following rationale. For 
example, PROMETHEE was known to be ‘easily… 
understood’ and interpretable, so it was selected for testing” 
[95][96]. Along this vein, [fuzzy] VlseKriterijumska 
Optimizacija I Kompromisno Resenje (VIKOR) was not 
selected, as it was known to be less interpretable and “less 
explainable than other more intuitive methods” [97]. 

 
In general, selections were made in adherence with the 

principles for high efficacy ML2. In addition, there were 
other technical considerations. As discussed in [1] as well as 
those papers pertaining to related experimentation, such as 
shown in Table XXX, the issue of “Rank Reversal” (RR), 
wherein ranking results might change when the method 
changes or when the set of alternatives changes (leading to 
inconsistent and/or inaccurate results), was also investigated 
(as RR affects several of the methodologies) 

TABLE XXX.  EXEMPLAR DOIS PERTAINING TO THE NOTIONS OF RANK 
REVERSAL (RR) 

Facet DOI 
RR • 10.1109/IAICT65714.2025.11100570 

• 10.1109/AIIoT65859.2025.11105315 
• http://dx.doi.org/10.2139/ssrn.5291883 
• http://dx.doi.org/10.2139/ssrn.5291881 
 

 
As noted in [1], “the select OMs experimented with were 

known to be the most resistant to RR (yet are still subject to 
the phenomenon), and preliminary results” are reflected in 
Figure 18 [98]. “The key for the chart is as follows. First, 
the referenced ‘select OMs’ of this Section IIIC are self-
evident: ELECTRE, TOPSIS, and PROMETHEE” [1] 
“Second, these ‘select OMs’ were benchmarked by 
execution time (E), sensitivity (S), performance under 
uncertainty (U), validity (V), and interpretability (I)” [1]. 
“Third, the aforementioned were benchmarked against 
classical SHAP (c-SHAP), as well as the b-SHAP approach 
described within this paper” [1]. “Using the CPRLD as a 
preset, collectively, this forms the basis” of the mechanisms 
described herein. The relative values were normalized 
against a scale of one to ten for ease of comparison” [1]. 

 
Figure 18.  Preliminary Results from b-SHAP/select OM Benchmarking 

Also, “the V and I were higher for PROMETHEE than 
for TOPSIS or ELECTRE. The E for TOPSIS was notably 

higher than that of the others, but the computational 
complexity is known to be less, and the performance under 
conditions of U was weaker than that of the others; the 
performance of PROMETHEE under conditions of U were 
seemingly better than ELECTRE and TOPSIS, in that order. 
Overall, the performance of b-SHAP was better than that of 
c-SHAP across the board for the range of E, S, U, V, I (for 
all the “select OMs” of ELECTRE, TOPSIS, and 
PROMETHEE). Hence, the b-SHAP-PROMETHEE 
amalgam (along with the CRITIC, CPRLD, etc. presets) 
exhibits promise” [1]. 

C. Discussion re: IbSOA 
As noted in the first DOI of Table XXIX, “the myriads of 

interplays among local, glocal, and global is clear, as a 
transformation and/or sequence of transformations can lead 
from one to another” [94]. For example, what Mase deemed 
to be the [local] Baseline Shapley (i.e., what equates to the 
average of the FCSO values function under uncertainty) can 
be readily transformed to the [global] VBSO values [94][99]. 
Likewise, the [glocal] SCSO values can be transformed to 
the VBSO values. These interplays, among others, 
demonstrate how “additional insights into the [ML] model 
behavior” are possible [99].  

 

 
 

Figure 19.  Derived from Figure 1 of [94]; the interplay among Local 
(FCSO and Baseline Shapley), Glocal (SCSO), and Global (VBSO) 

This is akin to the Figure 13 interplays, and the 
successful operationalization of Figure 17 is contingent 
upon a phenomenon, which has been previously 
investigated, such as exhibited in Table XXXI — Robust 
Convex Relaxations (RCR). 

TABLE XXXI.  EXEMPLAR DOIS PERTAINING TO THE NOTIONS OF ROBUST 
CONVEX RELAXATIONS (RCR) 

Facet DOI 
RCR • A Prospective Monotonic/Non-Monotonic 

Transition Zone Impediment for Concept 
Model-Centric Artificial Intelligence 
Systems 
• 10.1109/IAICT65714.2025.11100570 
• 10.1109/AIIoT65859.2025.11105315 
• http://dx.doi.org/10.2139/ssrn.5291883 
• http://dx.doi.org/10.2139/ssrn.5291881 
• http://dx.doi.org/10.2139/ssrn.5291879 
• http://dx.doi.org/10.2139/ssrn.5183492 
• 10.1109/IBDAP62940.2024.10689701 
• 10.1109/IAICT62357.2024.10617473 
• 10.1109/GEM61861.2024.10585580 
• 10.1109/AIIoT61789.2024.10579033 
• http://dx.doi.org/10.2139/ssrn.4984663 
• http://dx.doi.org/10.2139/ssrn.4679251 
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• 10.1109/ICSGTEIS60500.2023.10424230 
• http://dx.doi.org/10.2139/ssrn.4679260 
• 10.1109/ICPEA56918.2023.10093212 
• 10.1109/CyMaEn57228.2023.10051057 
• 10.1109/CyMaEn57228.2023.10050946 
• 10.1109/OETIC57156.2022.10176215 
• http://dx.doi.org/10.2139/ssrn.4287248 
• https://ssrn.com/abstract=4219298 

 

By leveraging the described RCR approach, the notion 
of relaxations/convex relaxations can be applied so as to 
attain “Relaxed Isomorphisms”/”Isomorphic Relaxations.” 
In this way, should IsoP be required, the DMP can be more 
computationally tractable. Mancinska references this 
approach as do Atserias and Maneva. Aflalo asserts “that for 
friendly graphs, the convex relaxation is guaranteed to find 
the exact isomorphism or certify its inexistence” 
[100][101][102]. 

The starting impetus of this paper was to address SDM, 
particularly SDM-A/U, and the LHM was discussed as a 
meaningful option. As discussed, the main components of 
the LHM include the ICSM2 and MAM. The ICSM2 has a 
list of questions to address (e.g., whether the involved set is 
UnS, EqS, EquivS, OrS, POSET, UnS-Iso, POSET-Iso, or 
IV), such as previously described in Table V. The MAM 
also has a list of questions to answer (e.g., how much time is 
available, what and how much information is available, as 
this might dictate that type of initial RM is most feasible 
and what is the probability that the involved is PDMP, 
ADMP, or NPDMP), such as shown in Figure 20, and re-
expressed in Figure 21 in terms of N+V or IsoP pathways. 

 

Figure 20.  MAM Exemplar Question Pathway 

 

Figure 21.  N+V or IsoP Pathways; IsoP has MR/NMR Risk 

It should be remembered that Deductive is achieved 
iteratively (not front-loaded) while Inductive and Abductive 
are front-loaded. In addition, the CAIR-A also has the 
challenge of ascertaining what primary RMs and secondary 
RMs might be involved, and this was previously presented 
in Table XVII. 

As noted in the 1st DOI of Table VIII, “the establishment 
of an Inherent Uncertainty Construct (IUC)…is central, and 
crucial to this is the leveraging of T2FS and Zadeh’s Fuzzy 
Systems Theory (a.k.a., IUC-1a) along with the 
consideration of Rough-Fuzzy Set (a.k.a., IUC-2a), which is 
an extension of IUC-1a and Pawlak’s Rough Set (a.k.a., 
IUC-1b); after all, IUC-2a can well accommodate the notion 
of an affiliation, “but not necessarily absolute inclusion” 
[103]. Furthermore, “Deng’s Grey Systems Theory (a.k.a., 
IUC-2b) can enhance the precision of IUC-2a.” 

TABLE XXXII.  COMPONENTS OF THE INHERENT 
UNCERTAINTY CONSTRUCT (IUC)  

Short-Form 
Acronym 

Long-Form Name 

IUC-1a Leverages T2FS and Zadeh’s Fuzzy Systems Theory 
(FST). 

IUC-1b Pawlak’s Rough Set (RS). 

IUC-2a Rough-Fuzzy Set (RFS) can well accommodate the 
notion of an affiliation, “but not necessarily absolute 
inclusion” [103]. It is an extension of IUC-1a and IUC-
1b. 

IUC-2b Deng’s Grey Systems Theory (GST) can contend with 
systems with incomplete or uncertain information. For 
RWS, the uncertainty can stem from continuous data 
that may absent, exhibit intricate relationships, be 
noisy, etc. GST leverages GSs (which rely upon GNs), 
which are numbers with known upper and lower 
boundaries, but for which the precise value is unknown 
within those boundaries; this embodiment is able to 
concurrently represent of both discrete and continuous 
data simultaneously) to enhance the precision of IUC-
2a. GST also leverages discontinuous Grey Sets, which 
are specifically geared to handling discontinuous data 
(wherein only partial information is available) or data 
with uncertainty. It should be remembered that 
although a discontinuous function may have a 
continuous domain, it may have breaks/gaps/jumps or 
points where it is not defined. In contrast, a discrete 
function has distinct and disparate values (e.g., 
integers). 

IUC-3 Information Entropy Methods, whose strength resides 
in ascertaining “unknown attribute weights” [1st DOI of 
Table VIII][104]. 

 

“If the relationship/membership (e.g., entity, attribute, 
etc.) is discontinuous, IUC-2b can be leveraged; otherwise, 
given a continuous/continuous alternative paradigm, then 
other Probability [& statistics] Systems Theory (PST) 
approaches might be utilized, such as Information Entropy 
Methods (IEMs) (a.k.a., IUC-3), whose strength resides in 
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ascertaining ‘unknown attribute weights’” [second DOI of 
Table IV][1st DOI of Table VIII][104]. Furthermore, 
“whether the relationship/membership is discontinuous or 
continuous (e.g., pulsed, rather than continuous), it can still 
be construed as a Relationship/Membership Stream (RMS) 
— a key constituent component of the IUC that is 
summarized in” Figure 22 below [1st DOI of Table VIII]: 

 

 

Figure 22.  RMS Paradigms for the IUC [1st DOI of Table VIII] 

The following Sections IIIC1 through IIIC6 stem from 
the 4th DOI of Table IV. 

 
1) Nondominated Solution (NS) 
Wu had noted the opportunity of transforming FN-

related Fuzzy Optimization and Decision Making (FODM) 
problems to “Scalar Optimization Problem[s]” (SOPs), 
which can be efficiently resolved to segue to the 
nondominated solution, wherein “no one objective function 
can be improved without” a concurrent degradation to “the 
other objectives,” and “the OSNS can then be ascertained.” 
[3rd DOI of Table IV][105].  

 
2) Optimal Corresponding (OC) GLfSFN-based 

membership function 
Interestingly, “regarding ‘best-fix approximation[s],’ 

Lakshmana had reported on the efficacy of the 
“approximations of general non-linear FNs’ by way of 
higher-order linearized Generalized ‘f’-gonal FN/SFN 
forms, ‘such as Triangular, Trapezoidal,’ as well as 
Pentagonal, Hexagonal, Heptagonal, Octagonal, etc.” [3rd 
DOI of Table IV]; “these can be re-expressed as “GTrFN, 
GTpFN, GPeFN, GHxFN, GHpFN, GOnFN, etc., 
respectively” [3rd DOI of Table IV].  “According to Velu 
and Ramalingam, ‘best-fit approximations’ can be improved 
‘when higher-order piecewise linear’ FNs are utilized to 
approximate ‘non-linear information’” [3rd DOI of Table 
IV][106]. “Along this vein, Augustin asserts that, as one 
example, GHpFN ‘can represent more intricate and nuanced 
degrees of uncertainty’ since ‘certain apropos ‘f’-gonal 
FN/SFN forms’ are quite good at ‘preserving ambiguity’” 
[3rd DOI of Table IV][107]. “Ban, another advocate of this 
principle” is satisfied even with “Triangular, Trapezoidal, 
and semi-Trapezoidal for the ‘preserv[ing]…and 
weight[ing]’ of ambiguity” [3rd DOI of Table IV][108]. 
“The pathways for deriving the OSNS (a Multi-Objective 
Decision Making or MODM problem) and the selection of 
the ‘f’-gonal FN/SFN form (a FODM and MCDM problem) 
are informed by the ICSM2.” 

3) Preferred OCGLfSFN 
“A goal of the involved [Metaheuristic Algorithm] MA 

(for which the MAM is responsible) is to ascertain the 
OCGLfSFN. Prior to segueing to this OC form, there is a 
Precursor (P-) non-OC form (i.e., P-GLfSFN); for example, 

Augustin acknowledged…GHpFN for its ability to 
‘represent more intricate and nuanced degrees of 
uncertainty’ while Ban favored GTrFN, GTpFN, and semi-
GTpFN for the preservation of ambiguity and weighted 
ambiguity” [3rd DOI of Table IV][116][117]. “Whatever the 
preferred form, the choice of the precursor Generalized ‘f’-
gonal FN/SFN form (e.g., P-GLfSFN) affects the efficacy of 
the utilized ‘defuzzification method’ (i.e., ‘the 
transformation of a FN/SFN into a crisp form’)” [3rd DOI of 
Table IV]. “The significance of this center upon the 
intricacy that ‘as the LHM contends with the counterpoising 
of’ A/U, the precursor non-OC form, which best preserves 
ambiguity, is likely to be optimal for facilitating/deriving 
the OCGLfSFN.” 

4) The Ranking of FNs/SFNs 
Significantly, “there are numerous ‘ranking methods for 

the discussed pre-cursor [non-OC form] Generalized ‘f’-
gonal FN/SFN form (e.g., P-GLfSFN), and the appropriate 
selection” is central” [3rd DOI of Table IV]. For example, 
Velu and Ramalingam noted that ‘a ranking method which 
works very well for’ G Hexagonal FNs/SFNs ‘may have 
some shortfalls when it is extended for’ G Octagonal 
FNs/SFNs” [3rd DOI of Table IV][105]. “Similarly, ‘a 
ranking method which works very well for’ G Octagonal 
FNs/SFNs might have ‘some shortfalls when it is used for’ 
Triangular or Trapezoidal FNs/SFNs” [3rd DOI of Table 
IV][109]. “In any case, the ranking mechanism (facilitated 
by the ACWS) informs the precursor non-OC to final OC 
form.” 

5) Similarity Measure (SimM) Challenge for FN/SFN 
With regards ranking methods, the underpinning 

measures typically involve various SimMs. Gogoi & Chutia 
noted that while there are a myriad of methods (each with 
advantages/drawbacks), a universally accepted ‘silver 
bullet’ SimM for ascertaining the similarity between 
FNs/SFNs ‘does not necessarily exist’” [3rd DOI of Table 
IV][110]. “They also noted that a ‘literature survey reveals 
that most of the’ SimM ‘are being developed based upon’ 
the following parameters: “geometric distances, height, area, 
perimeter, ‘Center of Gravity (COG),’ ‘Radius of Gyration 
(ROG),’ etc.” [3rd DOI of Table IV][110]. It was noted in 
[110] that for various studies, with the exception ‘of Hejazi 
et al. (2011),’ certain ‘glass ceiling’ SimM methods (e.g., 
“’failing to give reasonable similarity between pairs of FNs 
when one FN is identical for both the pairs) ‘are being 
carried forward’ into contemporary works” [3rd DOI of 
Table IV][110]. This is reminiscent of our prior finding that 
certain bugs/issues in various frameworks/libraries/toolkits, 
such as made available via assorted developer platforms, 
were being carried forward into various projects/papers. To 
aggravate matters, FNs are simply a special case of a FS, 
and ‘beyond FS, there’ are other FS variations; these include 
the IFS, Pythagorean Fuzzy Set (PFS), and Neutrosophic 
Fuzzy Set (NFS)” [3rd DOI of Table IV][111][112]. “The 
IFS, which is often leveraged for ‘coalition decision-
making,’ is comprised of constituent elements that ‘have 
both membership function u and non-membership function 
v, such that u + v <=1, and hesitation margin h, such that u + 
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v + h = 1’” [3rd DOI of Table IV]. “Other situations are 
better addressed by PFS, ‘wherein u + v >=1 (or u + v <=1) 
and u2 + v2 + h2 = 1’” [3rd DOI of Table IV][111]. “Yet 
other cases are better handled by NFS, which combines “FS 
with NS” [3rd DOI of Table IV][112]; “delving into this, 
Das notes that while FS addresses “uncertainty” by the 
utilization of ‘membership grade,’ Smarandache’s NS 
tackles ‘uncertainty using truth, indeterminacy, and falsity 
member grades’” [3rd DOI of Table IV][112]. “Furthermore, 
Ashraf, Gundogdu & Kahraman, Mahmood, etc. have 
‘contributed to the [overall] notion of…SFS, which is the 
generalized structure over’ the referenced FS (e.g., IFS, 
PFS, and NFS)” [3rd DOI of Table IV][113]. 

6) SimMs and Distance Measures (DMs) for SFS/T-SFS 
“Various SimM approaches have been adapted for the 

SFS ecosystem, as noted by Zhang, and Wei observes, by 
way of example, that a plethora of ‘SimMs for SFS based on 
the cosine and cotangent function have been’ put forth” [3rd 
DOI of Table IV][114]. “Likewise, certain combinatorial, 
such as ‘Jaccard, Exponential, Square root cosine for SFS,’ 
etc., have been employed as pragmatic implementations of 
SimMs” [3rd DOI of Table IV][115]. “With regards to DMs, 
Donyatalab and others have examined ‘Minkowski, 
Minkowski-Hausdorff, Weighted Minkowski and Weighted 
Minkowski-Hausdorff distances for SFSs’” [3rd DOI of 
Table IV]. “Overall, there have been numerous SimM and 
DM advances, and among these, researchers, such as Wu, 
have ‘focused on the T-SFS,’ which is a ‘specific case of 
NS’ (a.k.a., ‘n-hyper SFS’)” [3rd DOI of Table IV][114][ 
115]. According to Wu, T-SFS is quite adept in contending 
with “uncertainty information” and “can handle information 
that SFSs…cannot process” [3rd DOI of Table IV][115]. 
Accordingly, the SimMs/DMs of T-SFS show promise for 
higher efficacy. 

IV. CONCLUDING REMARKS 
For a CAA to successfully operationalize a high efficacy 

NLG and engage in unscripted dialogues, it needs to have 
RDM; for a CAA to learn/tune from each and every 
engagement, it needs to not only have an efficient ML 
mechanism, but it also needs to have a high performance 
ML2 mechanism. With these two facets in hand, the CAA is 
more likely to be able to engage in real-time conversation 
without any undesired delays in performance. The 
benchmark as to whether the aforementioned is successfully 
actualized is predicated upon whether the CAA responses 
are “consistent, coherent, and valid.” As noted in Section I, 
this is non-trivial to achieve. Delving deeper (from the high-
level references to NLG and RDM), it was necessary, for 
the purposes of this paper, to first address SDM 
(specifically, SDM-A/U for RWS).  

While the longer-term impetus of this paper is to address 
SDM-A/U for AIS/AICDS/AS (e.g., AUVs, USVs, UAVs, 
etc.) as well as other applications of SAE 5, the proxy 
application of CAIR was selected to better understand the 
multi-stage challenges of SDM-A/U. For SDM-A/U, at each 
DM point, a choice needs to be made as to whether a “full 

resolution,” “partial resolution,” or “no resolution” action 
will be taken. In contrast to a single-stage DM, a key 
challenge of SDM is to optimize the overall outcome over 
the full range of multi-stage DM points. 

One approach, among others, for tackling the SDM-A/U 
challenge resides in the leveraging of an LHM, which 
carefully considers – concurrently – the notions of A/U. The 
LHM is powered by, among other key modules, an ICSM2 
and a MAM; for the purposes of the CAA use case and 
CAIR application discussed in this paper, a CAIR-A was 
added as well. The ICSM2 starts with an initial set of 
considerations and ascertainments (UnS, EqS, EquivS, OrS, 
POSET, UnS-Iso, POSET-Iso, IV, etc.) prior to proceeding 
to an IsoP, whose computational complexities can vary 
greatly. Of course, the pre-IsoP approach is quickly handled 
while the IsoP determination and approach is also 
contingent upon how much time is available. For example, 
while a full IsoP approach might be selected under UDC, a 
relaxed IsoP (r-IsoP) might be opted for under CDC or in-
between CDC and UDC. The choice of approach is heavily 
contingent upon the CW mechanism of the ACWS, which 
remains a central element of not only the entire described 
apparatus, but also both ICSM2 and MAM operations in 
particular. 

There exists a mutual reinforcement interplay between 
ACWS and MMSO, and the overarching MCDM rubric 
(which tends to have a myriad of conflicting objectives or 
criteria, particularly for RWS) can be contextualized by a 
non-dominated solution (which illuminates a number of best-
scenario trade-offs; however, it does not indicate a single 
optimal solution). It had previously been determined that 
OSNS (particularly the extended OSONS version) can be 
useful in this regard, and it has been found to be of value-
added proposition for AIS not only in the area of better 
understanding trade-offs but has also been acknowledged for 
its value in the areas of I&E (under the STEA rubric) and 
feature importance analysis. For this extrapolated journal 
paper, it should be remembered from [1] varied SHAP 
approaches differ in their local and global efficacies. It 
should also be remembered that CW/ACWS ranks the 
criteria (i.e., CW/ACWS prioritizes what is most important 
before the alternatives are even reviewed), wherein criteria 
are the factors utilized to assess, compare, and contrast the 
set of alternatives. Each of the alternatives are characterized 
by features. Interestingly, IbSOA can leverage the clustering 
of features into coalitions to facilitate computational 
efficiency. Section IB2 reviews the notion of “updating a 
heuristic” and notes that, contrary to popular opinion, 
heuristics may segue to sub-optimal paradigms more 
frequently than anticipated; in essence, the notion of simply 
using a heuristic as an accelerant is far too simplistic and 
may be disappointing. Of significance, the “updating of a 
heuristic” may necessitate sufficient STEA (and IbSOA may 
be useful in this regard) so as to facilitate ML2; overall, 
heuristics for RWS should be able to: (1)self-recognize that 
the heuristic is not qualified to handle the incoming 
information and needs to refer the matter back to the higher-
order hyper-heuristic, (2) mitigate against the ongoing 
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prospective brittleness of the heuristic itself, and (3) have the 
capability to operationalize the involved [meta]heuristic-
algorithm amalgam in an advantageous fashion. Section IB2 
culminates with the overarching equation of this paper: ASL-
IMC⇢RMMI, wherein ASL equates to AIS⇢SDM⇢LHM, 
IMC equates to ICSM2+MAM+CAIR-A, and RMMI  
equates to RDM ⇢MR/NMR⇢MNTZ⇢IbSOA. Of course, 
IbSOA is captured within the first part of the title of this 
paper: “Interstitial b-SHAP-Owen Amalgam.” 

IbSOA is put forth as a central item for the second part 
of the title of this paper: “Enhancement of Artificial 
Intelligence System-Centric Sequential Decision-Making,” 
and Section II had opened with the notion that “the AIS 
approach towards DMP, such as SDM, may involve a 
variety of” RMs. Each of the varied RMs has certain 
monotonic and/or non-monotonic tendencies, and depending 
upon a paradigm of UDC or CDC, the MAM may opt for 
certain RM pathways and proceed in stages depending upon 
the time remaining and/or any time adjustments that may 
occur along the SDM pathway. The MAM supports the 
ICSM2, particularly when it is determined that IsoP needs to 
occur. Along this vein, the ICSM2 operationalizes the IsoP 
comparison via the use of GFN/GFS-IUC and Paradoxes-
A/U. By working in conjunction, the ICSM2 and MAM 
combinatorial form a powerful engine for LHM. The 
addition of the CAIR-A module enhances the combinatorial 
by serving as a precursor function; the CAIR-A endeavors 
to ascertain what primary, secondary, etc. RMs might be 
involved. The involved CAIR-related CW/ACWS-MMSO 
pre-sort tends to be of value-added proposition for RWS 
SDM paradigms. The “A” facet of the CAIR-A Module is 
an orchestration mechanism that leverages the MAM (which 
supports the LHM) in conjunction with a Birnbaum 
Importance assignment; it should be remembered that the 
Birnbaum importance measure is often leveraged as a 
Lower-Level Heuristic (LLH) for use in resolving 
Component Assignment Problem (CAP) (which centers 
upon optimally placing components at various positions 
within an AIS to maximize reliability). 

 To clarify this point, if N+V in it of itself does not 
suffice (and IsoP is required), then there is an accompanying 
increased MR/NMR skewing risk that should be mitigated. 
In particular, as pertains to the MNTZ, it has been noted 
consistently throughout this paper and the specified apriori 
examinations that there exists a tendency for spawning to 
the NP-Hard side (e.g., non-monotonic, non-polynomial, 
and even non-continuous functions). Roughly speaking, the 
problem with this is that LLMs struggle with emulating 
human behavior on the non-monotonic side, and oftentimes, 
the AIS (in this case, the CAA) will take the opposite stance 
as what the human would choose. Cognizant of the range of 
paradoxes (e.g., Ellsberg, Machina, Allais, etc.) that 
influence this paradigm, due consideration should be paid 
regarding the associated preference ranking, and the related 
issue of RR has been previously scrutinized. While it seems 
that focusing on certain RMs (e.g., deductive) might seem 
computationally more tractable, it would preclude more 
RWS RM approaches (e.g., probabilistic, temporal, and 

graph-based). Yet these parenthetical approaches, among 
others, can segue to non-monotonic unexpectedly. 
Moreover, the desired related CBR and inductive 
approaches are at much higher risk for segueing to non-
monotonic. Finally, some of the other desired more 
sophisticated approaches (e.g., analogical, abductive) 
squarely reside in the non-monotonic.  Depending upon the 
RM pathway opted for, the related DM will likely impact 
the downstream behavior within the MNTZ in terms of a 
skewing towards monotonic or non-monotonic behavior. In 
essence, while the gamut of isomorphic cases can be 
construed to be analogies, not all analogies are construed to 
be isomorphic. This particular determination is central 
because if IsoP can be avoided, then the expenditure of an 
unknown amount of computation resources can by 
bypassed. 

The significance of the IbSOA is that, fundamentally, the 
referenced Owen value nicely captures the intricate 
interactions between/among the constituent members of the 
involved feature set and, as noted in [1], “extends the 
Shapley value (which well captures the individual feature 
contributions) in a consistent fashion.” These pertinent 
insights into CAA behavior at the MNTZ, as noted by [2], 
“can potentially be quite meaningful for elevating CAIR-
related coherence and consistency (with the concomitant 
validity).” After all, as [2] further articulates, “maintaining 
coherence and monotonicity is non-trivial, as the involved 
AIS might discern connections (particularly those that are 
non-monotonic) within the evolving dataset. In the context 
of CAIR, non-monotonic aspects can arise as incoming 
information can re-contextualize and/or contradict matters.” 

As noted in [2], the effectiveness of particular RWS 
implementations, such as that of CAA, “is often predicated 
upon consistency and reliability” (along with the associated 
notions of coherency and validity), and this aspect is the 
essence of CAIR. As noted by [2], the CAA should, ideally, 
provide ‘human-like conversations’ by comprehending user 
intent, maintaining context, and putting forth pertinent 
responses’ consistent with ‘the principle of CAIR;’ in 
essence, a key tenet of CAIR is that responses provided by 
the CAA remain steady in their validity not only during the 
course of the involved interaction, but also over the course 
of the multi-turn conversation. In summary, this paper posits 
that the CAIR-A notion isof VAP to the ongoing challenge 
of conversational coherence and RDM. Future work will 
involve more quantitative experimentation, and as discussed 
in Section IIB, the issues of provenance/pedigree, as 
pertains to RM selection, regarding the “who” and the 
“where” (as contrasted to simply the “what” and “when” the 
information is made available) will be further explored. 
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