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Abstract—The present paper aims to show that there exists a
strong simplification force inside neural networks. However, it is
naturally necessary to introduce some complexity into connection
weights to make learning possible. This means that simplification
must be violated to achieve appropriate learning. To address
this issue, we assume that the simplification principle is always
maintained, and the only way it can be (seemingly) violated is
by combining several different types of simplification procedures.
This combination, which adds some complexity, can be called
“productive simplification,” meaning that the added complexity
arises as a result of the interaction among many different simpli-
fication procedures. The simplification principle still holds, but
it can be modulated by various types of these very simplification
processes. To demonstrate productive simplification, we use two
types of simplification: local and distributed simplification. Local
simplification aims to reduce the number of components, while
distributed simplification attempts to simplify the roles of each
component as much as possible. These two types of simplification
are unified in productive simplification, and in practice, some
complexity can thereby be introduced. Productive simplification
was applied to an artificial dataset that incorporated both linear
and non-linear relations. The results show that the unification
of local and distributed simplification appeared in the form of
a phase transition, where generalization performance changed
significantly in this transition phase. This phase transition demon-
strates the existence of a productive unification of different types
of simplification, ultimately strengthening the simplification force
inside neural networks.
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I. INTRODUCTION

This paper aims to demonstrate that the simplification force
should be observed at all levels of neural learning, even
in situations where some complexity in connection weights
is required [1]. This apparent contradiction can be resolved
by assuming that different types of simplification forces are
combined to produce the effect of complexity in connection
weights, though only seemingly. This means that complexity
is actually the result of many simplification forces operating
inside neural networks.

A. Simplification Principle

The present paper aims to show that there exists a strong
simplification force inside neural networks. These simplifica-
tion forces should be observed internally and in many different
ways. Internal simplification lies in the existence of self-
organizing forces that simplify internal network configurations
as much as possible, and this can be realized even without in-
formation from external inputs. Naturally, this is too idealized,

and in practice it must take input information into account.
Thus, it becomes necessary to add some complexity to con-
nection weights during learning, which seems contradictory to
the hypothesis of simplicity. This contradiction can be resolved
by supposing that simplification can take many different forms.
Although these forms may appear contradictory to each other,
their interaction can be used to introduce complexity into the
connection weights. This means that complexity is in fact
the outcome of the simplification principle, which operates
universally in learning.

B. Reductive and Productive Simplification

As mentioned above, it is often necessary to introduce
some complexity into connection weights to make learning
possible. This implies that simplification must be weakened
or seemingly violated for appropriate learning. To address
this issue, we assume that the simplification principle always
holds, and that the only way it can be (seemingly) violated
is by combining several different simplification procedures.
This combination, which adds some complexity, can be called
“productive simplification,” meaning that complexity arises as
a consequence of the coexistence of many different simplifi-
cation procedures. In other words, the simplification principle
continues to operate, but it can be modulated by employing
different types of simplification.

To emphasize the importance of productive simplification,
we distinguish between two types of simplification: reductive
and productive. Reductive simplification refers to the usual
meaning of simplification: reducing the complexity of network
configurations as much as possible, as many previous learning
procedures for improving generalization and interpretation
have done. In contrast, productive simplification aims to
add some complexity into network configurations while still
adhering to the simplification principle. This means that in
each computational step, the simplification principle must be
strictly followed, but the combination of these procedures can
result in the addition of complexity necessary for learning.
In this sense, productive simplification shows that even when
complexity is introduced, the simplification principle continues
to prevail.

C. Local and Distributed Simplification

The general simplification principle governs learning pro-
cesses, but in practice, many different types of simplification
forces are likely to be present. This arises from attempts
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to achieve simplified configurations from as many different
perspectives as possible. Among these, we consider two types
of simplification forces as a first approximation in this paper:
local and distributed simplification. In general, simplification
is assumed to reduce the total strength of connection weights.
Local simplification seeks to reduce the number of strong
connection weights as much as possible. In this case, only
one weight retains significant strength, while the others are
forced to become very small. This ultimately reduces the total
strength of the connection weights, with only one weight
playing an essential role in information processing. On the
other hand, distributed simplification seeks to reduce the
strength of all connection weights as much as possible. In
this case, all weights retain small, evenly distributed strength
values. When a small number of weights are known to play
important roles, local simplification is appropriate. Conversely,
when no prior knowledge is available about which weights
are more important, distributed simplification should be used.
In productive simplification, these two types of forces are
combined, producing an effect that weakens the total simplifi-
cation force. It should be noted that even this weaker form of
simplification still arises from the combination of two distinct
simplification strategies.

D. Main Contributions

The main contributions of this paper can be summarized as
follows:

o The present paper aims to clarify the simplification forces
hidden in multi-layered neural networks.

« Even in the process of adding complexity during learning,
the simplification principle continues to operate internally.
This can be realized through productive simplification,
which combines multiple reductive simplification proce-
dures.

« We propose two types of simplification forces: local and
distributed simplification. These two types should be unified,
and through their unification, some complexity can be in-
troduced while still adhering to the simplification principle.

« We conducted experiments to demonstrate how this unifica-
tion of simplification types occurs. The results show that,
initially, local simplification dominates, and then a phase
transition occurs to unify local and distributed simplification.

o The results indicate that simplification forces exist in neural
networks. The main mechanism lies in strengthening sim-
plification through the unification of different simplification
forces. This suggests that behind seemingly complexity-
adding operations, strong simplification forces are always
at work.

E. Paper Outline and Organization

In Section II, we show that our method of productive
simplification can be regarded as one of the first attempts
to transform conventional reductive simplification procedures
into a productive and unified approach. In Section III, we in-
troduce local and distributed potentiality, which are consumed
to achieve simplicity. The unification of these two types of
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potentiality is realized through diachronic potentiality, where
unification is controlled in a time-dependent manner. In addi-
tion, we provide a brief explanation of computational methods
such as compression and ratio potentiality for comparison. In
Section IV, we present experimental results obtained using
productive potentiality. We first show that simplification can
be modulated by introducing productive potentiality control.
Then, during learning, a kind of phase transition occurs,
demonstrating a compromise between local and distributed
simplification. Finally, simplification tends to make networks
as linear as possible despite the presence of many nonlinear
properties in neural networks. In Section V, we summarize
the paper and suggest future work, such as exploring the
relationship between productive simplification and the problem
of simplicity versus complexity in neuroscience.

II. RELATED WORK

We have stated the existence of multiple types of simpli-
fication procedures in the complexity addition processes of
productive learning. Almost all conventional methods, how-
ever, seem to be confined to reductive simplification. Here,
we describe four conventional reductive simplification proce-
dures, emphasizing that all of them aim to address reductive
simplicity without sufficient consideration of the productive
property. The reductive procedures must be complemented
by productive simplification, whereby certain complexities are
reintroduced as a result of the simplification itself.

A. Prototype Simplification

The prototype approach has been one of the major sim-
plification procedures in neural networks. Here, we use the
prototype to describe the simplest form achievable through
the simplification forces inherent in the network. Prototype-
based approaches have been studied extensively since the early
stages of learning, under names such as vector quantization,
competitive learning, and self-organizing maps [2]-[7]. These
methods aim to identify a small number of representative vec-
tors for many input patterns. In recent deep learning research,
prototype learning has gained renewed attention [8], as the
volume of input patterns to be processed has grown larger
and increasingly heterogeneous. Simplifying these complex
and heterogeneous patterns has become urgent, giving rise to
methods like one-shot and few-shot learning, which represent
many inputs using a few representative patterns. Similarly,
zero-shot learning [9] has been developed to incorporate the
abstract and semantic properties of input patterns. These meth-
ods exemplify a typical reductive simplification procedure,
representing a large number of input patterns with a smaller
set of representative inputs and more abstract features. In
contrast, our approach focuses on the network itself, aiming
to determine which network configuration should be organized
when all network components are given before learning. Fur-
thermore, we attempt to unify multiple types of simplification
to introduce complexity.
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B. Interpretable Simplification

Second, most interpretation methods can be classified as
reductive simplification. Among these, a popular approach is
localized interpretation, which focuses on specific instances
rather than the overall inference mechanism. Unlike global
interpretation methods [10]-[12], localized interpretation has
proven effective in practical applications due to its simplicity
and the urgent demand for explainability. Linear and local
simplifications have been widely used in interpretation meth-
ods, replacing complex non-linear models with correspond-
ing linear models [13]-[15]. These simplified local models
aim to interpret surface networks, which are diverse and
heterogeneous. However, because the main characteristics of
surface networks lie in their diversity, such diversity hinders
interpretation. It is therefore necessary to seek a simpler and
unified prototype for interpretation. Our approach seeks to
uncover the prototype hidden deep within surface models.
Surface models are produced through transformational rules
and may be too complex to understand, but the underlying
prototype is expected to be much easier to interpret.

C. Distilling Simplification

Third, network compression simplifies neural networks by
replacing complex networks with smaller ones [16]—-[20]. This
type of simplification has become increasingly necessary as
networks grow larger to process more input patterns. However,
this approach does not allow us to interpret how all com-
ponents in such networks operate to produce outputs. Most
compression methods represent typical external and reductive
simplification, replacing the original network with smaller and
often unrelated networks. These methods attempt to interpret
the smaller “student” networks under the assumption that their
inference mechanism is similar to the original network’s. How-
ever, this assumption may not always hold true. In contrast, the
productive simplification we propose compresses the original
multi-layered neural network directly, retaining the original
network’s information. Thus, interpreting and explaining the
compressed networks is more directly connected to the orig-
inal multi-layered networks. Conventional compression is not
productive in the sense that it cannot directly relate the original
networks to compressed ones for interpretation.

D. Mutual Information-Theoretic Simplification

Fourth, information-theoretic methods also relate to network
simplification, though in more abstract ways. Multiple network
configurations can be represented by simpler and more abstract
information content, and the objective of learning can be
considered as necessary information acquisition. In particular,
mutual information has played a significant role in neural
networks. Well-known examples include maximum mutual
information preservation [21]-[24], which aims to retain as
much relevant information as possible, and the information
bottleneck method [25]-[28], which seeks to maximize neces-
sary information while minimizing unnecessary information.

Despite their utility, mutual information-based methods face
difficulties, such as computational complexity and ambigu-
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ous interpretations of the results. These issues arise because
mutual information involves contradictory operations: entropy
maximization and conditional entropy minimization. Recent
information bottleneck methods introduce additional mutual
information computations to balance compression and relevant
information preservation [29], but computational complexity
remains a challenge. The main procedure is to reduce infor-
mation on inputs while retaining appropriate information about
targets. This is similar to distributed simplification.

Mutual information maximization can, in fact, be viewed
as addressing both local and distributed simplification, as
is the case with the productive simplification in this paper.
We believe it can be applied to the problem of complexity
and simplicity in neuroscience [30]. However, due to the
computational complexity inherent to mutual information, its
productive property of simplification has not yet been realized
[24][31][32]. The present attempt at productive simplification
aims to take the first step toward realizing the actual potential
of mutual information in neural networks.

III. THEORY AND COMPUTATIONAL METHODS

Here, we introduce how to compute two types of simpli-
fication: local and distributed. Then, we briefly explain how
to combine these simplification forces to add complexity. In
addition, we give a short explanation for better understanding
of the experimental results and how to compress a neural
network into the corresponding prototype. Since our method is
an extension of entropy, we also compare it with conventional
entropic methods, showing how our approach can enhance
learning characteristics in a simplified manner.

A. Theoretical Procedures

1) Simplification Principle: The present paper aims to show
how to use the simplification principle to add some complexity
to network configurations, which is necessary for realizing
appropriate learning processes. Figure 1 shows a process
of productive simplification, transforming a network from a
surface network into a simpler one. For the surface network,
two types of reductive simplification are applied. Local sim-
plification aims to reduce the number of important connection
weights as much as possible, whereas distributed simplification
aims to reduce the strength of all connection weights. Both
procedures are unified in productive simplification, producing
an intermediate multi-layered neural network. In addition, this
productive simplification is adjusted in a diachronic manner,
meaning that the ratio of local to distributed simplification
is controlled throughout the course of learning. Finally, the
intermediate network is compressed into the simplest form,
namely, a prototype network.

2) Simplification Potentiality Consumption: First, we intro-
duce the basic simplification indexes used in this paper. The
overall measure of simplification is defined as the strength of
absolute connection weights. When this simplification poten-
tiality, or the strength of absolute weights, becomes smaller,
the network becomes simpler by definition. For simplicity, we
consider only one layer, from the nth layer to the n-+1th layer,
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Figure 1. Diachronic productive simplification from a surface network to a
prototype network by unifying local and distributed reductive simplification.

denoted as (n,n+1) in Figure 2. The individual simplification
potentiality for (n,n + 1) is computed as:

where the notation for the layer is simpliﬁed from (n,n + 1)
to (n), and all potentialities (absolute weights) are assumed
to be greater than zero. The simplification potentiality for
one layer is obtained by summing all individual simplification
potentialities, and by summing across all layers, we obtain the

total potentiality:
U=>"uly. )
njk

As this potentiality becomes larger, the network has a higher
capacity to be simplified. The simplification potentiality should
be reduced or consumed to achieve the simplest network.

3) Local Potentiality Consumption: As mentioned above,
simplification potentiality must generally be reduced or con-
sumed. However, there are several possible ways to achieve
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Figure 2. A network architecture with ten hidden layers.
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this reduction. One popular method can be called “local
simplification potentiality.” Local simplification potentiality,
or simply local potentiality, aims to reduce the strength of
all connection weights except a small number of specific
ones. Because the majority of weights become smaller, the
total simplification potentiality decreases, even though a small
number of stronger weights remain.

Now, by normalizing the individual potentiality by its max-
imum value, we define the relative local potentiality as:

u(n) Bioe
(n) _ ik
g_]k; - (n) ) (3)
max;: s uj,k,

where (.. is a parameter controlling the strength of local
potentiality. In particular, when (5, = 1, the potentiality
corresponds to the base case. By summing across all layers,
we obtain the local potentiality:

(n) Broc
el : (4)

max; (n)
7K Uy

G =
njk

Figure 3(a) illustrates the individual local potentiality for
different parameter values. As the parameter [3j,. increases,
the majority of connection weights are forced to decrease,
thereby reducing the potentiality. Figure 3(b) shows the local
potentiality as a function of §j,.. As explained above, the local
potentiality decreases gradually as the parameter increases.

Using this local potentiality, the new weights at the (¢+1)th
learning step are obtained by multiplying the weights at the
tth step by the corresponding potentiality:

Wi (t+1) = giw (t). ®)

4) Distributed Potentiality Consumption: The distributed
potentiality is the inverse of the local potentiality and aims
to make the strength of all connection weights as small as
possible. By normalizing the inverse of individual potentiality
by the maximum value, we can define the relative distributed
potentiality as:

(n) _, (n)7Pais
n max; g U, Gk T U, ik
h’g‘k) — > J , (6)

max;: u§,k,
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where [g4;s is a parameter controlling the strength of the
potentiality. By summing all the relative potentialities, we
obtain the final form of distributed potentiality:

max;: g’ u(?’)/ _ u(n) Bais
H = Z [ J J'k ik ] . -

max;/ g’ u(n)
5’k j/kl

njk

Using this distributed potentiality, new weights at the (¢ +
1)th learning step are obtained by multiplying the weights at
the tth step by the corresponding potentiality:

wi (¢4 1) = Kl (@), (®)

Finally, we note that the distributed potentiality is simply
the inverse of local potentiality for the base case (8 = 1). In
this case, it can be obtained by taking the inverse of the local
potentiality.

5) Productive Potentiality Consumption: After defining the
local and distributed potentiality, we need to combine these
two types to produce complexity, namely, productive poten-
tiality control. We combine the two types of potentiality as:

P =aG + aH, )

where the parameter « ranges between zero and one and is
introduced to control the ratio of local to distributed potential-
ity. Note that & corresponds to 1 — «.. The unification of local
and distributed simplification is simply the sum of the two
potentialities when treated synchronically. However, the pro-
cess of unification must be controlled more subtly to achieve
better generalization with simplification, since generalization
is considered the most important factor in neural networks.

6) Diachronic Productive Potentiality Consumption: This
unification can be realized by defining a new type of potential-
ity called “diachronic”. The diachronic potentiality considers
the entire sequence of learning steps. The individual diachronic
potentiality at the tth learning step (epoch) is defined solely
based on the time step t:

v =t. (10)
The individual diachronic potentiality is then defined as
Bdch
2 = [”t} . (11)
maxys Uy

We invert this original diachronic potentiality to obtain a dis-
tributed type of simplification. The new individual diachronic
potentiality is obtained by inverting the original:

2 = 1-— Zt-. (12)

This equation is used to ensure that the sum of the two types
of potentiality equals one. In addition, the local potentiality is
used at the beginning of learning, followed by the introduction
of distributed potentiality. The diachronic potentiality is then
used to combine the local and distributed potentiality as

wi (t+1) = (Btg§Z)+Bth§’;>) W (), (3)
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Figure 4. Individual diachronic potentiality (a) and diachronic potentiality
(b) as a function of the parameter 54, -

where 3 = 7 and 3 = z. The effect of diachronic potentiality
increases as learning progresses. As the diachronic parameter
Bach increases, the effect of local potentiality becomes increas-
ingly mixed with the effect of distributed potentiality.

To explain how diachronic potentiality controls local and
distributed potentiality, Figure 4(a) illustrates the diachronic
potentiality for different parameter values. As the parameter
Baia increases, the majority of individual potentialities in-
crease. This means that the local potentiality becomes more ef-
fective throughout learning as the parameter increases. Figure
4(b) shows the inverse of diachronic potentiality as a function
of Bgia- As explained, the inverse diachronic potentiality
increases gradually with increasing parameter strength. By
using diachronic potentiality, local potentiality is applied first,
followed by the introduction of distributed potentiality. As the
parameter increases, the local potentiality remains effective
for a longer period. This sequential operation improves the
generalization performance of the final neural network.

B. Computational Procedures

1) Compression: To obtain an estimated prototype, we must
compress the original multi-layered neural network into the
corresponding simplest network without hidden layers. This
assumes that all activation functions are linear, although they
are actually non-linear. Our simplicity principle aims to make
activation functions as linear as possible. If the compressed
networks differ from actual linear networks, these differences
can be used to specify the effects of non-linearity in neural
networks.

Suppose we attempt to compress a twelve-layered neural
network, including the input and output layers in Figure 2,
into a network without hidden layers. The layers are numbered
from No. 1 (input) to No. 12 (output), with ten hidden layers
in between. This configuration was used in our experiments,
described in the next section. We begin the first compression
by:

wiy? =3 wiPwi?, (14)
J

where layer (1,2) is combined with layer (2,3) to produce the
compressed layer (1,3). Repeating this process, we obtain the
compressed weights connecting the first and eleventh layers,
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denoted wE}n’u). Using these weights, we finally obtain the

fully compressed weights for (1,12):
w12 _ sz(:r;ll)w'grlbl’lZ)?

(2

15)

m

where (1,12) indicates that the twelve-layered network is
compressed into a two-layered one (1,12).

This compression method differs from conventional ap-
proaches [33][34] because it aims to interpret internal rep-
resentations as much as possible. Our method seeks to un-
derstand the inference mechanism of neural networks while
preserving the original information in a simplified form.

2) Ratio Potentiality: In addition to the standard poten-
tialities explained above, we introduce the ratio potentiality
for comparing estimated and supposed prototypes. Using a
twelve-layered network for simplicity, the ratio of compressed
individual potentiality of the compressed network to the sup-
posed individual potentiality of the prototype network can be

computed by:

H(112) 91(1’12)

i - 1,2) °
o
Here, (1,12) and (1,2) denote the estimated and supposed
networks, respectively. For this ratio r;, we compute the ratio
potentiality:

(16)

(1,12)
o112 T

i (1,12)
max; 1,

a7)

Then,
v = 3701, (18)
i

When all ratio potentialities are equal, the ratio potentiality is
larger. If only one ratio potentiality is larger than the others, the
ratio potentiality is smaller. This metric can be used to assess
the similarity between compressed and prototype networks.

3) Entropy and Divergence: Potentiality has been intro-
duced to simplify the entropy function, and it is necessary
to compare potentiality with the corresponding entropy. Our
entropy and related divergence are defined as follows. The
relative potentiality for the supposed prototype network is
computed as

4 (1:2)

1,2 1

" = (19)
il ui”

Next, the relative potentiality for the compressed network is

(112) _ u2(1,12)

S e
i i

Entropy is defined as

SO = N ph 1P 1og p{t1?). 1)

Entropy decreases when only one weight becomes large while
the others are small. Conversely, when entropy is large, all
weights are equal. This behavior is similar to the property of
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potentiality used in this paper. Divergence, as a complementary
measure, is computed as

(1,12) p(1,12)
1,12) _ , i
D12 — Zpi log SR

2

(22)

Divergence corresponds to ratio potentiality and decreases as
the potentialities of the two networks become more similar.

IV. RESULTS AND DISCUSSION

The experimental results show that two types of simpli-
fication can be unified to produce some complexity. Then,
this productive simplification can produce a kind of phase
transition in connection weights. Through this transition, the
final networks were forced to approach the supposed proto-
type. This phase transition can also improve generalization,
meaning that simplification should be considered a necessary
step for improving generalization and interpretation. However,
even in cases with better generalization and added complexity,
simplification must still be operating inside neural networks.

A. Experiment Outline

The data set was created by imitating an actual business data
set used to estimate the bankruptcy of companies [35]. The
objective of the experiment is not to improve generalization
but to interpret how bankruptcy occurs and what the major
causes of bankruptcy are. In more technical terms, we aim
to understand relationships between inputs and outputs. In
the actual data set, linear and non-linear relationships are
naturally mixed, making it seemingly impossible to explicitly
understand the relationships between inputs and outputs. To
address this issue, we created a data set with both linear and
non-linear relationships between inputs and targets artificially.
This artificial data set allows us to explicitly examine how
neural networks respond to specific inputs to produce outputs.
The number of input variables was seven. Of these, input No.
5, input No. 6, and input No. 7 were created non-linearly using
exponential and sine functions, while the remaining inputs
were linear.

The number of input patterns was 1000, and the number
of hidden layers was ten, with ten neurons in each hidden
layer. We used the PyTorch program package, with almost all
parameter values set to default to ensure easy reproduction
of the results presented here. The experiment was designed
to make the neural networks as close as possible to the
prototype network, which is assumed to be hidden within
surface networks. The prototype network is the simplest form,
and connection weights in this paper were computed using
correlation coefficients between inputs and targets of the
training data set.

Figure 5 shows a supposed prototype network computed
by correlation coefficients between inputs and outputs from
the artificial data set. As shown in the figure, the first four
inputs are strongly correlated with outputs, whereas the last
three inputs (No. 5 to No. 7) were only weakly correlated with
outputs. As already mentioned, these three inputs were created
non-linearly, and the linear correlation coefficients could not
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Figure 5. Supposed prototype (left) and the normalized strength of connection
weights of the prototype network (right), computed by correlation coefficients
between inputs and targets.

capture those relations. The final multi-layered neural network
was then compressed into the simplest network without hidden
layers. Compression was conducted layer by layer. We then
compared the estimated and compressed networks with the
assumed simplest prototype network.

A set of potentiality values was used to improve general-
ization performance, since generalization was considered the
most important factor for evaluating network performance.
However, we should note that the purpose of this study is to
interpret how networks self-organize to achieve the simplest
configuration. The parameters (3;,. and [34;5s were set to 0.005
to stabilize the learning process. The parameter (4., was set
to 2, and we first used local potentiality, gradually introducing
distributed potentiality.

Before explaining local and distributed potentiality, it should
be noted that they were computed only in the base case for
illustrating the figures. In this case, distributed potentiality is
actually the inverse of local potentiality, and therefore only the
results of local potentiality are shown.

Now, the main findings can be summarized as follows:

o Productive simplification could control local and distributed
potentiality forces to produce networks with better general-
ization.

« Connection weights with better generalization were obtained
through a kind of phase transition during learning.

« Those connections with better generalization showed clearer
characteristics even in hidden layers.

« By controlling local and distributed potentiality, we could
produce the final and estimated prototypes, close to the
supposed prototype.

« The experimental results show that complexity added during
learning should be based on simplification procedures.

B. Potentiality and Entropy

The method could decrease the strength of total simplifi-
cation potentiality. In addition, productive potentiality could
control the strength of total and local potentiality appropriately
for better generalization.

Figure 6 shows the total simplification potentiality (left),
local potentiality (middle), and entropy (right). When only
local potentiality was used in Figure 6(a), simplification poten-
tiality (left) decreased gradually, and local potentiality (mid-
dle) decreased sharply. Similarly, entropy (right) decreased
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rapidly as the number of learning steps increased. When
the diachronic parameter was two, corresponding to the best
generalization performance in Figure 6(b), the total simpli-
fication potentiality was small but remained nearly constant
throughout learning. Local potentiality decreased in the first
stage and then increased gradually. This indicates that the
effect of distributed potentiality appeared in the later stage
of learning. Entropy showed the same trend, though less
clearly. Productive simplification was able to control local
potentiality while keeping total potentiality nearly unchanged.
Figure 6(c) shows the results when distributed potentiality was
used. Simplification potentiality decreased very slowly, while
local potentiality increased gradually. However, entropy did
not show a clear trend. Finally, Figure 6(d) shows the results
with the conventional method without potentiality control.
Simplification potentiality increased considerably, while local
potentiality decreased only slightly, and entropy again did not
show a clear trend.

The results show that productive simplification control can
adjust the strength of both total simplification potentiality
and local potentiality appropriately. Local potentiality can
be decreased and then increased to introduce complexity.
On the other hand, entropy, although conceptually related to
potentiality, could not clearly represent these properties. Our
potentiality method, while close to entropy, can more explicitly
capture the characteristics of connection weights due to its
computational simplicity.

C. Weights for All Layers

Better generalization was obtained through productive po-
tentiality control and by making full use of all hidden layers
with explicit characteristics.

Figure 7 shows the weights of all layers for the four
methods. When only the local potentiality was used in Figure
7(a), a stronger weight could be seen in most layers. The local
potentiality attempted to achieve simplification by weakening
all connection weights except for a small number of specific
ones. However, in the middle layers, these stronger weights
became smaller, indicating that important weights could not be
detected there. This means that under local potentiality, hidden
layers in the middle could not acquire important information,
and only the layers closer to the input and output played impor-
tant roles in learning. When the diachronic parameter was set
to two, yielding the best generalization in Figure 7(b), weights
were arranged symmetrically. This indicates that important
and non-important weights were explicitly separated, and this
tendency was observed even in the middle layers. Better
generalization was thus obtained by fully utilizing all hidden
layers. When only the distributed potentiality was used, the
symmetric arrangement of weights became somewhat blurred,
as shown in Figure 7(c). Finally, when the conventional
method without any potentialities was applied in Figure 7(d),
all weights became obscure, showing almost no regularity.

The results show that better generalization was obtained
by using all hidden layers and by explicitly detecting some
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characteristics in those layers. When such characteristics could
not be detected, better generalization was not obtained.

D. Layer Potentiality

The layer potentiality demonstrated that better generaliza-
tion could be obtained by considering hidden layers in the
middle in addition to the input and output layers. These
hidden layers seemed to resemble those obtained with the
conventional method. The layer potentiality was computed by
summing the individual local potentiality for each layer.

Figure 8(a) shows the results when only the local potential-
ity was used for learning. As can be seen in the figure, the
input layer initially had the largest potentiality value, and the
potentialities of subsequent layers gradually decreased, with
the output layer having the largest potentiality at the end.
Figure 8(b) shows the results when the diachronic parameter
was set to two, corresponding to the best generalization.
Compared with the results from using local potentiality alone,
the sixth layer’s potentiality increased in the later stage of
learning. This indicates that hidden layers attempted to detect
certain characteristics for better generalization. When only the
distributed potentiality was used, as shown in Figure 8(c), layer
No. 7 had a larger potentiality. Note, however, that better
generalization under productive potentiality considered layer
No. 6 as important. Finally, when the conventional method
was applied, as in Figure 8(d), layer No. 6 became larger.
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(d) Conventional
Figure 7. Weights for all layers, when the local potentiality was used (a), the
diachronic potentiality was used (b), the distributed potentiality was used (c),
and the conventional method was used (d).

The results show that productive potentiality could utilize
hidden layers in the middle. The characteristics detected by
these layers appeared to be similar to those identified by
the conventional method. The productive method attempted to
enhance the characteristics found by the conventional method.

E. Ratio Potentiality

The results confirmed that productive potentiality aimed
to increase the ratio potentiality as much as possible. This
produced a kind of phase transition, leading to structural
changes in connection weights that improved generalization.
The ratio potentiality represents the ratio of the individual
potentiality of a compressed network to that of the supposed
prototype, computed using the correlation coefficients of the
data set. When ratio potentiality increases, the similarity
between the estimated and supposed prototype increases. The
divergence between compressed and supposed prototypes was
also computed for comparison. A smaller divergence indicates
greater similarity.

Figure 9 shows the ratio potentiality (left), divergence
(middle), and generalization performance (right). When only
the local potentiality was used, as in Figure 9(a), the ratio
potentiality was initially high but gradually decreased. This
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suggests that, at first, local potentiality control attempted to
detect the prototype network. By contrast, divergence in the
middle and correlation coefficients did not clearly show this
tendency. Generalization (right) increased rapidly at first and
then decreased slightly toward the end. When the diachronic
parameter was set to two with the best generalization in Figure
9(b), ratio potentiality continued to increase as the number of
learning steps grew. The estimated prototype was forced to
remain closer to the supposed prototype throughout learning.
The divergence in the middle also decreased as learning
progressed, though it could not be normalized and the tendency
was not as clear. The right figure shows that generalization
performance increased gradually, with a kind of phase tran-
sition occurring in the middle of learning. This indicates that
improved generalization performance resulted from structural
changes in weights achieved by controlling both local and
distributed potentiality. When only the distributed potentiality
was applied, as shown in Figure 9(c), ratio potentiality in-
creased only at the beginning of learning, while divergence did
not clearly reveal this tendency. Consequently, generalization
(right) was lower across the entire learning process. When the
conventional method was used, as in Figure 9(d), the ratio
potentiality was initially high, but divergence decreased at
first and then gradually increased later. Generalization (right),
however, remained relatively low.

The results show that productive simplification consistently
attempted to detect the prototype network throughout learning,
whereas the other methods attempted detection only at the
beginning. This persistent attempt by productive simplification
seems to produce a kind of phase transition that improves
generalization.

F. Interpreting Compressed Weights

The results show that under productive simplification, the
weights were close to those of the supposed prototype network,
which were obtained by computing the correlation coefficients
between inputs and outputs independently. The best general-
ization performance was obtained by preserving the weights
of the supposed prototype network. This means that improved
generalization could be achieved through simplification.

Figure 10 shows the weights of compressed networks ob-
tained by four methods. When only the local potentiality was
used, as in Figure 10(a), the weights were initially close to
those of the prototype, but gradually changed, with only the
weight from input No. 3 remaining strong. When generaliza-
tion was highest and the diachronic parameter was set to two
in Figure 10(b), the weights in the initial stage of learning
remained almost unchanged until the final stage. Productive
simplification attempted to detect the supposed prototype as
consistently as possible throughout learning. When only the
distributed potentiality was used, as shown in Figure 10(c),
the prototype was detected in the early stage, but later the
weight from input No. 3 became dominant, with several other
weights also relatively large. When the conventional method
was used, as in Figure 10(d), the weight from input No. 3 was
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potentiality. Even in this case, the total simplification was
strictly maintained.

The lower table shows the results based on generalization
performance. When the diachronic parameter was two, the
generalization performance was the highest (0.838), and the
ratio potentiality was also the largest (0.698) with the greatest
number of learning steps (1032). The simplification potential-
ity was the second smallest (0.126), and the local potentiality
was the second largest (0.301). Even when generalization per-
formance was the criterion for evaluation, the ratio potentiality
remained the largest and the total simplification potentiality
the second smallest. The best generalization was obtained by
controlling both simplification and local potentiality.

The results show that generalization could be improved
by making networks as simple as possible, while allowing
some complexity in the connection weights. This added com-
plexity did not significantly increase the total simplification
potentiality. These findings indicate that simplification can
ultimately be controlled in correspondence with the necessary
complexity.

TABLE I. SUMMARY OF RESULTS, BASED ON MAXIMUM RATIO
POTENTIALITY (UPPER) AND MAXIMUM GENERALIZATION ACCURACY
(LOWER).

Method Ratio Step Simp Local Testing
Local 0.684 103 0.129 0.330 0.509
CBaen=2  0.796 1857 0126 0413  0.827
Distributed 0754 260 0176 0.245  0.768
" Conventional 0764 251 0.204 0401  0.768
Method Ratio Step Simp Local Testing
Local 0.277 254 0.118 0.200 0.776
Bacn=2 0.698 1032 0.126 0301  0.838
Distributed 0296 498 0.172 0217 0774
* Conventional 0341 166 0.195 0404 0777

V. CONCLUSION

The present paper aimed to show that there exists a strong
simplification force inside all types of neural networks as a
model of human cognition. In fact, there are different forms
of simplification. For example, the number of components may
be reduced in terms of local simplification, while the number
of components may also be increased with reduced strength
to capture the roles or features of each component. These
different types of simplification can be unified productively to
create a more powerful simplification force, enabling neural
networks to handle a wider variety of new inputs. This pro-
ductive simplification is naturally based on the simplification
principle, but it can eventually produce some complexity in the
connection weights. This simplified complexity generated by
productive simplification is assumed to prevail in any cognitive
system, including neural networks.
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The method was applied to an artificial data set with linear
and nonlinear inputs. The results show that two types of
simplification could be unified productively to produce a more
flexible simplification force. This productive unification could
be realized through a phase transition, improving generaliza-
tion performance. This means that productive simplification
can drastically and structurally change network configurations
for better generalization.

For future work, we should mention four points. First, we
dealt only with the linear type of prototype network obtained
by our method. Since our data set also contained nonlinear
relations between inputs and outputs, we need to consider a
nonlinear prototype network. Second, we need to extend our
experiments to real-world data sets to examine how effectively
our method can reveal the simplification force in neural
networks. Third, the present method essentially attempted
to simplify the well-known mutual information principle in
neural networks, in which two contradictory operations of
entropy maximization and minimization coexist. We therefore
need to examine more precisely how our method can be
used to realize the effect of mutual information maximization
[21]. Fourth, we need to compare our simplification model
with actual findings in neuroscience, where simplicity and
complexity have often been discussed with some confusion.
It is possible to extend our method to clarify the problem of
simplicity in neuroscience [30], where simplification should
play a more significant role.
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