
79International Journal on Advances in Intelligent Systems, vol 18 no 3&4, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Visualizing Similarities of Music from Different Instruments -
A Novel Proposal to Project High-dimensional Music Features on a 2-dimensional Plane

Goutam Chakraborty ∗

Iwate Prefectural University, Information Science, IPU, Iwate, Japan
Email: goutam@iwate-pu.ac.jp

Cedric Bornand†

University of Applied Sciences HES-SO
Yverdon-les-Bains, Switzerland

Email: cedric.bornand@heig-vd.ch

Lokesh Ayyaswamy‡, Lakshman Patti§, Praveen Kumar Reddy Sangati¶, Subhash Molaka∥

Department of Computer Science Engineering and Artificial Intelligence‡§¶∥

Madanapalle Institute of Technology & Science, Madanapalle, India‡§¶∥

Email: lokeshreddy2680@gmail.com‡, lakshmanpatti99@gmail.com§,
prawinreddy1909@gmail.com¶, molakasubhash@gmail.com∥

Abstract—We perceive music from various perspectives: the
melody, the rhythm, the emotions or passions they evoke, the
richness of sound, and how it correlates with the time of day
(like Morning Raga) or with seasons (like Vivaldi’s Four Seasons).
This is a multimodal classification challenge for which correct
data annotation is a difficult issue. In this work, we propose
a method for visualizing audio signals from various musical
instruments to find their variances, quantify their similarities,
and distances. To facilitate visualizing, we project the audio data
on a 2-dimensional plane such that the distances (dis-similarities)
of the audio signals are preserved as much as possible. The
appropriate tools (algorithms) for this task were identified by
experimental analysis. The work is conducted in two stages:
the first is audio feature extraction and compression, and the
second is the projection of high-dimensional audio features on a
two-dimensional plane using various unsupervised visualization
techniques. The aim is to determine which feature compression and
visualization tools can produce clearly separated clusters of audio
signals. The features of the Short Time Fourier Transform (STFT)
spectrograms extracted using Convolutional Neural Networks
(CNN) provided the best compressed representations, facilitating
clear separation and meaningful projection of the audio signals
using visualization tools t-Stochastic Neighbor Embedding (t-SNE)
and Uniform Manifold Approximation and Projection (UMAP).
The scatterplots of the samples achieved silhouette scores of 84%
and 81%, respectively, ensuring clear groups for sounds generated
from different instruments. We also experimented with UNet to
find numerical vector representations of the spectrogram images.
UNet could achieve silhouette scores of around 75%.

Keywords-MFCC; STFT; Spectrogram; CNN; U-Net; t-SNE;
UMAP.

I. INTRODUCTION

This study analyzes audio signals from ten musical in-
struments, a combination of traditional Indian and Western
ones. The features extracted from these signals are high-
dimensional and projected onto a 2-dimensional plane to
visualize similarities. The Indian instruments include flute,
nadaswaram, and shehnai (wind-type); santoor and veena
(string); and thavil and mridangam (percussion), while the
Western ones are piano, guitar, and violin. Each instrument has
distinct sound characteristics: wind instruments produce tones
through vibration of air, string instruments through plucking
or bowing, percussion by striking a tense diaphragm with a
hand or a stick, and the piano by hammering strings via key
presses.

This work builds upon our conference publication [1]
expanding the number of instruments from six to ten and
improving the visualization methodology.

The Fourier Transform (FT) [2] and the Fast FT (FFT) [2]
were used to examine the audio signals. However, FFT cannot
capture sequential information from the signal. Advances in
speech processing introduced techniques such as STFT [3],
Wavelet Transform (WT) [4], and Mel-frequency cepstral
coefficients (MFCC) [5]. MFCC exploits the log scale of
human audio perception and is widely used for audio signal
analysis like speaker identification. As it uses small windows,
the number of features increases linearly as the length of the
audio signal increases. Using audio feature extraction methods
and deep neural networks for compressing high-dimensional
audio data enables us to achieve a relatively low-dimension
representation of the audio signal, which is further used for
visual representation as scatter plots on a 2-dimensional display.
The overall plan is shown in Figure 1.

Figure 1. Overall plan for the Experiments.

The decorrelated MFCC features were extracted from the
audio samples [5], using MFCC window lengths of 25
milliseconds. Even a few seconds of audio signal generate
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a high-dimensional feature vector. To be able to capture the
characteristic features of the audio samples, we used signals of
length 30 seconds. We had to find ways to represent them as a
relatively low-dimensional vector. Here, we used spectrograms
and neural networks to extract features from the spectrogram
images.

For spectral analysis, we used the STFT. We converted the
STFT features into spectrogram images [3]. These spectrograms
serve as visual representations of the musical features. We
also converted the audio to wavelet coefficients using Morlet
wavelets, and that is being transformed to a spectrogram image
representation.

To extract features from spectrograms, we trained a CNN
model [6], and a U-Net model [7] on STFT and wavelet
spectrograms. As our sample classes are known, the deep
neural network was trained as a supervised classifier. Features
were taken from the output of the convolutional layers, which
are inputs to the dense classification layer. In the U-Net model,
features were extracted from the bottleneck layer at the end of
the encoder.

The effectiveness of the proposed methods was validated
through several experiments by projecting the features onto
a two-dimensional plane [8]. Section III details how CNN
and U-Net architectures extract features from STFT and WT
spectrogram images. To visualize music signals on a two-
dimensional plane, we used Principal Component Analysis
(PCA) (a linear method), t-SNE, and UMAP (nonlinear
methods).

The remainder of this paper is organized as follows. Section
II reviews related work. Section III describes the methodology,
including data collection and preprocessing, feature extraction,
and the proposed solution. Section IV presents the experimental
results and their analysis. Finally, Section V concludes the paper
and discusses future research directions.

II. RELATED WORK

The previous works on the visualization of audio sample
characteristics are discussed below.

The authors used three different datasets in their work
reported in 2024 [9]. Two datasets with 10 classes and an
augmented version of one (using pitch shifting, time-stretching,
and added random noise) were used. MFCC features were
extracted, and CNN and Recurrent Neural Network (RNN)-
(Long Short Term Memory) LSTM models were trained.
CNN performed better on smaller datasets, while RNN-LSTM
excelled on larger ones.

In the work reported in 2020 [8], the authors experimented
with audio data of 10 classes, extracting MFCC features. They
visualized these high-dimensional features using PCA, t-SNE,
Iso-Map, and SOM. t-SNE produced well-separated clusters.
SOM showed slight separation, while Iso-Map failed to capture
any meaningful clustering. The conclusion was that Iso-Map
failed to work with this high-dimensional data.

In another work on the audio classifier, reported in 2020 [6],
the authors used a public dataset and converted the audio signals
into Mel power spectrograms. They applied two approaches

to capture features: a CNN model trained from scratch and a
pre-trained VGG19 model using transfer learning. Both models
performed well. The CNN model trained from scratch slightly
outperformed the VGG19 model.

III. PROPOSED METHODS

This Section presents the workflow of our experiments,
covering the collection of audio samples of ten musical
instruments, preprocessing, feature extraction, dimensionality
reduction, and finally 2-dimension projection.

A. Data Collection and Pre-processing

Audio samples were sourced from public platforms like
YouTube and recorded media, ensuring that each sample
captures the unique tonal and spectral qualities of the instru-
ment without background noise or interference from other
instruments.

We gathered 300 audio samples, 30 samples per instrument,
using YTMP3 and converted them to MP3. We processed them
with Clideo. Clips were segmented into 30–45 seconds, then
converted to WAV, ensuring standard audio quality for audio
signal analysis.

B. Feature Extraction
1) MFCC Feature Extraction: MFCC features are widely

used in audio analysis for music, speech recognition, and
speaker identification. Pre-processing involves standardizing
samples to 30 seconds through padding or trimming, then
sampling at 44,100 Hz to preserve the high-quality of audio
samples.

The MFCC extraction process starts with splitting the
30-second audio into 25 ms non-overlapping frames (1,201
frames, each with 1,103 samples). The segmented audio will
get distortions at the end points due to abrupt change. To
smooth out the change, we apply Hanning window [10] to
maintain smooth transition betweem frames. The Discrete
Fourier Transform (DFT) transforms the signal to the frequency
domain, capturing spectral characteristics. A Mel filter bank
emulates human hearing by dividing the spectrum into 26 bands,
reducing dimension while maintaining required information.
A logarithmic transformation follows to constrict the dynamic
range. The last step is Discrete Cosine Transform (DCT) to
decorrelates Mel-spectral coefficients, retaining the first 13
MFCCs.

Figure 2. The process of MFCC Feature Extraction.
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The MFCC extraction process is shown in Figure 2. Each 30-
seconds sample is converted into 13 MFCCs × 1,201 frames and
flattened into a 1-D vector of 15,613 elements. MFCCs capture
important audio characteristics, preserving tonal, timbral, and
rhythmic features for analysis of the audio signal.

Finally we have 300 samples, 30 samples each from ten
musical instruments. Each sample is represented by a vector
of 15,613 elements, 13 MFCC values from 1201 frames.

2) STFT Spectrogram Generation: The audio sample of 30
seconds is segmented into windows of size 25 milliseconds.
Each segment of 25 millisecond contains 1,103 sample points,
because the sampling rate is 44,120. FFT is applied to extract
the frequency content (frequency band and corresponding
intensity) of the signal within the segmented window. These
frequency domain representations are then concatenated to
form the spectrogram images. The spectrogram is an image of
the frequency spectrum where the intensity of a frequency band
is represented as brightness [11]. Figure 3 shows the STFT
spectrograms of different musical instruments, capturing the
tonal and spectral characteristics of the instruments as images.

3) Wavelet Spectrogram Generation: The 30-second audio is
segmented into 2-second chunks. We use a minimum frequency
of 64 Hz and a maximum frequency as the Nyquist frequency
which is half of the sampling rate 44100/2. We used 32 scales.
The sampling rate high so as to be able to capture the delicate
abrupt changes that happen with musical instruments. For voice
a much lower sampling rate suffices. We apply Continuous
wavelet transform using the Morlet wavelet. The Morlet wavelet
is shown in Figure 4. Morlet wavelets are a product of a sine
wave and a Gaussian function. The standard deviation of the
Gaussian determines the window size. Different sine wave
frequencies capture different frequency components of the
audio signal. As mentioned, 32 scales were used. The wavelets
convolve over the signal and gets the wavelet coefficients.
Amplitudes are converted into decibels. Wavelet coefficients
from all the segments are concatenated to represent the entire
audio signal.

The wavelet spectrogram displays the frequency spectrum
where the intensity of a frequency is converted into brightness.
Each spectrogram represents the unique characteristic of an
audio signal [12]. The wavelet spectrograms of the sample for
each instrument are shown in Figure 5.

C. Projection of higher dimension into 2D

We thus have five sets of features - one obtained from MFCC,
two sets from STFT spectrogram features and then using
CNN and U-Net; and two sets of wavelet spectrogram features
and then using CNN and U-Net. To visualize these features
in 2 Dimension, we employed three different visualization
techniques. Firstly, we visualized the extracted features using
PCA by taking the first two principal components and projecting
the samples on two dimension where the two principal eigen
vectors are the basis [13]. Its capability for proper projection is
limited due to its linearity restriction. We used two nonlinear
tools for projection t-SNE [14] and UMAP [3]. t-SNE takes
the distribution in the high dimension and maps it to two

dimension using a non-linear method, by which data that are
closer in high dimension become closer, and data that are far
are pushed further. This helps to represent the data in tight
clusters in 2-dimension. UMAP [3] on the other hand, works
on manifold space. Distances between samples are measured
in terms of probabilities, as a random walk on a Markov chain.
Thus, the distances between two data points are measured
on the manifold space, not in the Euclidean space. The two
prominant embedding space directions were used as the two
axes of 2-dimensional visualization space. UMAP could give
excellent results, even when high dimension MFCC features
were used.

D. Proposed Method

To map high-dimensional audio samples onto a two-
dimensional plane, we employed three distinct visualization
algorithms: PCA, t-SNE, and UMAP.

1) MFCC features onto 2D plane: MFCC features are
extracted from audio signals, resulting in a high-dimensional
data set with 15,613 dimensions for each 30-second music
sample. In total, we have 300 samples from 10 different
instruments. This dataset matrix of dimensions 300x15613 is
the input to PCA, t-SNE, and UMAP to visualize the data on
a 2-dimensional plane.

2) Feature Extraction using CNN: The STFT and WT
spectrogram images of audio samples are used to train a Deep
Neural Network (CNN) classifier model. The samples are
labeled with the respective musical instruments. The output
from the CNN layers are taken out as image features. The
architecture of the CNN model consists of two convolutional
layers, each succeeded by max - pooling layers, followed by a
flatten layer and two dense layers for classification, one hidden
and one output layer. The output from hidden layer is used as
the compressed feature vector.

In Figure 6, the architecture of the CNN model utilized for
training is shown. The model receives an STFT spectrogram
images of size 400x600x3 as input. The first convolution layer
comprises of 16 filters yielding an output of 400x600x16.
Subsequently, a MaxPooling layer with a 2x2 kernel diminishes
the size to 200x300x16. Following this, a second convolution
layer with 32 filters is applied, and after executing 2x2 size
max pooling, the output is further reduced to 100x150x32. The
output is then flattened into a vector and processed through
a dense layer classifier with a hidden layer of 64 nodes. The
network is trained as a supervised classifier with 48,000 features
as input, and 10 output nodes for 10 musical instruments.
As mentioned, the hidden layer consists of 64 nodes. The
extracted features are visualized using PCA, t-SNE, and UMAP
algorithms.

For the wavelet spectrograms, which are of size 390×584×3,
we use the same CNN architecture as for the STFT spectro-
grams. The only modification is that the first convolutional
layer is configured with 20 filters. We then train a separate
CNN model with this architecture and extract the features from
the hidden dense layer for visualization.
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(a) Flute (b) Nadaswaram

(c) Thavil (d) Santoor

(e) Veena (f) Piano

(g) Mridangam (h) Guitar

(i) Violin (j) Shenai

Figure 3. STFT spectrogram samples for ten musical instruments.
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Figure 4. Morlet Wavelet In Wavelet Transform.

3) Feature Extraction using UNet: UNET, which was
proposed for medical image segmentation, is used to compress
the image features. The UNet architecture consists of encoder
and decoder. The encoding part uses convolutional layers
followed by max-pooling layers to extract features and reduce
dimensions, while the decoding part employs upsampling layers
to reconstruct the input. Essential compressed audio features
are available in the bottom layer of the UNet.

In Figure 7, the architecture of UNET is shown. The STFT
spectrograms of size 400×600×3 are input to the UNET
model. Initially, two convolution layers with 32 filters are
used, followed by max pooling with a pool size of 4×4. Next,
two more Convolution layers with 64 filters are appended,
followed by another MaxPooling operation. After that, two
additional convolution layers are added, one with 128 filters
and the next one with 64 filters, leading to the bottleneck layer,
which captures the encoded representation of the input.

From the bottleneck layer, the features are upsampled
using a transposed convolution operation with 64 filters of
size 4×4. These up-sampled features are concatenated with
corresponding layer from the encoding side. The process
of convolution, upsampling, and concatenation is repeated
for feature reconstruction. Finally, this process produces the
reconstructed image. It is an unsupervised algorithm for
encoding-decoding of images.

The elements from the bottleneck layer represent the input
spectrogram image features. These values from the UNET
bottom layer are the input to the three visualization software,
namely PCA, t-SNE, and UMAP.

First, we train the UNet using data from all ten classes. The
compressed features from the UNet bottleneck, from different
classes, are superimposed in the feature space and fail to be
presented as separate clusters on a 2-Dimensional plane. In the
next experiments, we trained UNet separately with individual
classes of samples. After this training, the features from the
UNet bottleneck layer are used. The visualization algorithms
projected them as isolated groups. Both STFT and wavelet
spectrograms are used to train the UNET model and extract
the features from the bottleneck layer, and the features are
visualized.

IV. EXPERIMENTS AND RESULTS

In this Section, we present the visualization results of
MFCC features and the extracted features from STFT and
WT spectrogram images using CNN and UNet.

A. Visualization of MFCC Features

To visualize high-dimensional MFCC features on a 2-
dimensional plane, we used PCA, t-SNE, and UMAP. The
resulting scatter plots of 300 music samples are shown in
Figures 8, 9, and 10.

In Figure 8, the scatter plot shows that different instrument
classes are mixed, with poor separation between samples from
different musical instruments. All audio samples from different
musical instruments are randomly placed on the 2-dimensional
projection. This is because (1) the number of MFCC features is
too large, and (2) PCA, being a linear method, cannot correctly
project the data, which are on a curved manifold space in the
MFCC feature space.

Both t-SNE and UMAP reveal distinct clustering patterns
for different instruments based on their MFCC features. Piano
consistently appears well-separated in both visualizations,
reflecting its unique timbral profile. Thavil also shows clear
separation in the t-SNE plot, whereas UMAP emphasizes
tighter groupings among other instruments. Figure 10(UMAP)
demonstrates a slightly better overall grouping of audio samples
from different instruments than as Figure 9 (t-SNE). But
neither of the two methods could achieve clear separation of
all samples generated from 10 different instruments.

B. Visualization of Extracted features from CNN model

The STFT spectrogram and wavelet spectrogram are trained
with CNN, and the features extracted from the hidden layer of
the densenet classifier are now used as input to the visualization
software. These features are much lower in number (64) than
the MFCC features. These features extracted by CNN from
both STFT and wavelet spectrograms are then input to PCA,
t-SNE, and UMAP for visualization.

1) STFT spectrogram Features through CNN: The STFT
spectrogram results are shown in Figures 11, 12 and 13.

In Figure 11, the PCA plot of CNN features displays
moderately distinct groupings, but some overlaps persist.
Clusters for classes like Santoor and Nadaswaram are visible,
though not as tightly packed as in UMAP or t-SNE.

In Figure 12, the t-SNE representation of CNN features
reveals distinct, compact clusters for all ten instruments.
For instance, the shehnai and violin are far from the piano
and mridhangam, suggesting meaningful class separation. By
meaningful, we mean how we perceive the sounds from those
10 instruments - some perceived as more similar than others.
This visualization confirms the CNN model’s ability to learn
feature representations that preserve inter-class differences
effectively.

When UMAP was used for the 2-dimensional projection, as
shown in Figure 13, highly compact clusters of samples from
individual instruments were formed. The intra-cluster distances
between violin, veena, thavil, guitar and mridhangam music
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(a) Flute_wavelet (b) Nadaswaram_wavelet

(c) Thavil_wavelet (d) Santoor_wavelet

(e) Veena_wavelet (f) Piano_wavelet

(g) Mridangam1_wavelet (h) Guitar_wavelet

(i) Violin_wavelet (j) Shenai_wavelet

Figure 5. Wavelet spectrograms of different musical instruments.
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Figure 6. Architecture of CNN Classifier Model.

Figure 7. UNet Architecture.

Figure 8. PCA visualization of MFCC features.

samples are less. Compared to MFCC-UMAP, this visualization
reflects a significant improvement in class separation, making
UMAP effective and similar to projecting CNN features onto
2-dimensional space.

2) Wavelet spectrogram features using CNN: The results
are shown in Figures 14, 15 and 16.

In Figure 14, PCA is used for 2-dimensional projection.
As expected, the scatter plot of samples do not present clear
clusters. Yet, we see samples from similar-sounding instruments
are closely placed, and though there are no clear clusters,
there is a vague separation visible, suggesting that the most

Figure 9. t-SNE visualization of MFCC features.

Figure 10. UMAP visualization of MFCC features.

significant variances in the features are somewhat aligned with
class boundaries.

In Figure 15, t-SNE is used for visualization of samples from
CNN features extracted from spectrograms. t-SNE is especially
good in preserving the local structure of the data distribution
in high dimension. The resulting visualization displays well-
separated and compact clusters for each instrument class.
Instruments such as the shehnai, thavil, and flute show clearly
defined boundaries, indicating strong class discrimination.
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Figure 11. PCA visualization of STFT CNN features.

Figure 12. t-SNE visualization of STFT CNN features.

Figure 13. UMAP visualization of STFT CNN features.

Unlike t-SNE, UMAP attempts to preserve both local
and global structure. The UMAP projection, as shown in
Figure 16, exhibits even better-separated clusters compared to
t-SNE. Each instrument class occupies distinct regions in the
scatter plot. This ensures that the Wavelet-CNN model has
successfully captured both fine-grained and broad distinctions
among instrument types.

Figure 14. PCA visualization of wavelet CNN features.

Figure 15. t-SNE visualization of wavelet CNN features.

Figure 16. UMAP visualization of wavelet CNN features.

C. Visualization Results of UNet Features

The STFT spectrograms and wavelet spectrograms were
input into the UNet model, and features at the bottleneck
layer were extracted. Thus, the original STFT features are
compressed, and more abstraction is achieved at the UNet
bottleneck. These compressed features are then used to visualize
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the data as a scatter plot on a 2-dimensional plane using PCA,
t-SNE, and UMAP.

1) STFT spectrogram features through UNET: The STFT
features extracted from the bottleneck are visualized, and results
are shown in Figures 17, 18 and 19.

Figure 17. PCA visualization of UNET features.

In Figure 17, PCA projected samples forming compact
clusters but widely separated. There are overlappings of samples
from different instruments as well as splitting of samples from
the same instrument. Flute forms a well-separated cluster. The
other distinctive characteristics of Figure 17 is that samples
appear to be compressed along the first principal component.
As a linear dimensionality reduction method, PCA is less
effective in separating the complex, non-linear relationships
among UNET features.

Figure 18. t-SNE visualization of UNET features.

In Figures. 18 and 19, the UMAP and t-SNE results on
UNET features show clear, well-separated clusters for almost
all instruments. UMAP reveals compact groupings, especially
for flute, piano, nadaswaram, and violin, with low intra-cluster
distances for thavil, piano, and shehnai. t-SNE also highlights
distinct clusters. While minor dispersion exists in t-SNE, overall
class separability is clear.

Figure 19. UMAP visualization of STFT UNet features.

2) Wavelet spectrogram features through UNET: The STFT
features extracted from the bottleneck layer of UNET are used
as input to the visualization tools. The results are shown in
Figures 20, 21 and 22.

Figure 20. PCA visualization of Wavelet UNET features.

Figure 20 presents PCA results. Some instrument classes
show partial separation, while a few samples from different
classes overlapped. Despite limitations of the PCA being a
linear projection algorithm, classes like Mridhangam and Piano
form relatively distinct groups. But the shehnai and guitar
music samples are overlapping.

In Figure 21, results using t-SNE are presented. We can see
tightly clustered and well-separated groups. The strong local
separation indicates that the model effectively distinguishes
between instrument classes. This assures the improved ability
of UNET to capture reliable feature representation.

Figure 22 shows the result when UMAP is used as the
visualization tool. The figure shows distinct and compact
clusters for each instrument class. The clear separation suggests
that the combination of the Wavelet-UNET model effectively
captures both local and global patterns in the data. Instruments
like the flute, nadaswaram, and violin exhibit strong class
distinction, which is what is perceived by human.
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Figure 21. t-SNE visualization of Wavelet UNET features.

Figure 22. UMAP visualization of Wavelet UNet features.

TABLE I. COMPARISON OF VISUALIZATION TECHNIQUES BASED ON
SILHOUETTE SCORES

Technique

Features
MFCC

STFT
(CNN)a

STFT
(UNet)b

Wavelet
(CNN)a

Wavelet
(UNet)b

PCA 7.30 30.32 73.74 31.99 69.52

t-SNE 14.22 84.72 78.09 84.35 78.83

UMAP 19.18 78.66 75.05 79.20 74.47

The Silhouette scores, which are the ratio of interclass and
intraclass distances, are displayed in Table I. High silhouette
score means better separation between more compact clusters.

PCA demonstrates moderate performance for MFCC features
and STFT spectrogram features using CNN but performs
significantly better for the STFT features using UNET. t-
SNE and UMAP outperform PCA in all experiments, with
t-SNE achieving the highest silhouette scores. Both t-SNE and
UMAP show similar performance for the STFT features using
UNET, indicating their suitability for high-dimensional feature
visualization. t-SNE gives a better compression closer samples
are more tightly packed, and far-away samples are pushed
farther away.

V. CONCLUSION AND FUTURE WORK

This study aims to find the correct tools to successfully
visualize complex audio signals from musical instruments using
machine learning and deep learning techniques. MFCC features,
STFT, and wavelet spectrogram features were extracted to
visualize the music samples in a two-dimensional plane. Three
visualizations tools namely PCA, t-SNE, and UMAP are used.
STFT features and wavelet coefficients were converted to
spectrograms. Deep learning models and UNet were used to
obtain a compressed version of the spectrogram image features.
t-SNE and UMAP gave the best results, showing well-separated
clusters. Though t-SNE gives better silhouette scores, UMAP
projections are more akin to human perception. This is because
t-SNE works locally whereas UMAP works on the manifold
space which preservea the global information about sample
distances.

MFCC features are proven to be the best for applications
like speaker identification. But, for our application it is not.
Instead of using MFCC features, concatenated spectrograms
from sequential segments form an image for the whole musical
sample. Analyzing those images are a better way to get
distinct, separated clusters. The CNN model is sensitive to
hyper parameters. The UNet model is robust and works better
at all times. We train and extract the features, and it gives
distinct separation between clusters. It is difficult to quantify
the correctness of the results as far as human perception is
concerned. For further investigation, we will
• Find the first few eigenvalues to check how fast the

eigenvalues are diminishing and how that is reflected when
the data is projected on the plane of the first two eigenvectors.

• Compare the interclass distances resulting from three differ-
ent visualization algorithms and whether the relative distances
from different methods are similar or not.

• Implement SOM as a tool for 2D visualization.
We will also extend this work for music generation, combining
music generated by different instruments.
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