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Abstract—Directed graphs such as neural networks can be 

described by Arrow Terms that link a finite set of incoming nodes 

to some response node. Scott and Engeler have shown that its 

powerset is a model for Combinatory Logic. This algebra is 

called Graph Model of Combinatory Logic. Since Combinatory 

Logic is Turing-complete, the model explains both traditional 

programming logic as well as neural networks such as the brain 

or Artificial Neural Networks as used in a Large Language Model. 

The underlying graph model is a general model for all kinds of 

knowledge. The graph model would yield a powerful AI-tool if 

used as a blueprint for implementing AI. Chain of Thoughts 

would come for free, and explainability with it. However, its 

performance would make such a tool impractical and useless. 

The paper proposes a combined approach for adding 

explainability to AI and creating Intelligent Systems. It is the 

strategy humans use when they try to explain their ideas. First, 

the generative power of neural networks is used to produce an 

idea or solution. Next, humans create a chain of thoughts that 

explain such ideas to others and try to provide evidence. AI 

could follow the same strategy. The architecture of such 

intelligent systems consists of two distinct elements: a well-

trained artificial neural network for observing and generating 

solution approaches, and a controlling engine for fact checking 

and reliability assessment. 

Keywords—Intelligent Systems; Chain-of-Thought (CoT); 

Explainable AI (XAI); Artificial Neural Networks (ANN); Deep 

Neural Network (DNN); Combinatory Logic; Quality Function 

Deployment (QFD). 

I.  INTRODUCTION 

This paper is a revised version of the author’s contribution 
to the 1st International Conference on Systems Explainability, 
held in Valencia, Spain, in autumn 2024 [1]. 

A. Short History of AI and its Philosophical Background 

In the early 20th century, there were some shocking events 
taking place in mathematical logic and natural science. Gödel 
[2], when trying to solve some of Hilbert’s 23 problems, 
detected that predicate logic, something with a long history 
dating back to the ancient Greeks, is undecidable. This insight 
gave birth to theoretical computer science, including the 
theory of computation, founded by Turing [3]. For a modern 
compilation, see Raatikainen [4]. 

Schönfinkel and Curry [5] developed Combinatory Logic 
to avoid the problems introduced when using logical 

quantifiers, and Church invented Lambda Calculus as a rival 
formalism [6]. Scott and Engeler developed the Graph Model 
[7], based on Arrow Terms, and proved that this is a model of 
combinatory logic. This means that you can combine sets of 
arrow terms to get new arrow terms, and that combinators, 
accelerators, and constructors can be used to create new 
elements of algebra. 

Graphs in the form of neural networks appeared already at 
the origins of Artificial Intelligence (AI). Its first instantiation 
in modern times was the Perceptron, a network of neurons 
postulated by Rosenblatt [8]. It later became a directed graph 
[9]. Rosenblatt was also the first who postulated concepts, 
among perception and recognition, as constituent parts of AI 
[8, p. 1]. 

Since its origins, AI has experienced difficulties; however, 
today there are many AI applications that provide value for 
the user. In some areas, training an AI model is simpler and 
more rewarding than finding and programming an algorithm. 

For instance, AI-powered visual recognition systems excel 
in recognizing and classifying objects, following the ideas 
established by Rosenblatt [8]. However, they have difficulty 
recognizing temporal dependencies and are unable to combine 
what they have learned, although attempts have been made to 
develop methods using sequential data and the ability to 
capture temporal patterns. AI lacks what humans use in such 
cases: a concept. 

Logical skills such as inference and deduction provide 
quite a challenge, as exemplified by the ARC Price challenge, 
a sort of intelligence test for AI models, proposed by Chollet 
[10]. A Large Language Model (LLM) easily summarizes 
texts or books but it still does not understand what is written 
in it, in the sense that the US National Council of English 
Teachers calls Literacy, see [11], [12]. 

Artificial Neural Networks (ANN) can be divided into four 
types: Recurrent Neural Network (RNN), Fuzzy Neural 
Network (FNN), Convoluted Neural Network (CNN) and 
Deep Neural Network (DNN). DNN are the most successfully 
used for LLM and thus the most important type of ANN 
regarding explainability because they rely on many hidden 
layers. Among the rapidly developing literature, Gerven & 
Bothe’s classification are a good start [13]. Natural Neural 
Networks, in analogy to ANNs, are abbreviated by NNN. 

IBM defines Explainable Artificial Intelligence (XAI) as 
a set of processes and methods that allow human users to 
comprehend and trust the results created by machine learning 
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algorithms [14]. Current approaches to XAI attempt to use 
statistical correlations as a basis for reasoning. From a 
theoretical perspective, this is unlikely to work, because of 
Gödel [2]. However, engineers try to use statistical methods 
to circumvent Gödel’s undecidability. Sometimes the results 
look convincing. Dallanoce [15] compiled a list of available 
processes and methods for XAI. 

Artificial General Intelligence (AGI) is a type of artificial 
intelligence (AI) that falls within the lower and upper limits of 
human cognitive capabilities across a wide range of cognitive 
tasks. The creation of AGI is a primary goal of AI research 
and companies such as OpenAI and Meta, but what exactly 
AGI refers to is controversial [16]. 

Current attempts towards AGI focus on the investigation 
of Chain of Thoughts (CoT). Using an LLM based on 
DeepSeek with CoT enabled yields the feeling that the LLM 
does some “reasoning” because it displays the intermediate 
results obtained with the processing of some query [17]. The 
real innovation behind DeepSeek is using a hash function to 
avoid processing useless branches in an LLM. This is not what 
reasoning really is, namely the use of logic based on factual 
knowledge to find previously unknown answers. The hash 
function is still based on statistics from a suitable training set 
[18]. 

B. Research Questions 

The aim of this paper is to recall prior work in logic and 
AI to understand how neural networks work. To do this, we 
investigate the following three research questions: 

 
RQ 1: How are neural networks and especially DNNs 

linked to the graph model? 
RQ 2: Does CoT relate to a sequence of arrow terms? 
RQ 3: Can the graph model explain AI? 

 
The motivation for this is that we are experiencing the 

fourth AI hype in sixty years and that its acceptance in society 
is currently transitioning from admiration to rejection. 
Because the nature of AI is poorly understood not only by 
society but also by the AI research community. We believe 
that the graph model is an excellent way to understand what 
intelligence is, both natural and artificial. However, it is not 
an answer to how to construct XAI. 

C. Paper Structure 

We first explain combinatory logic (Section II) and the 
motivation for building a model (Section III). Then we 
compare DNNs with graphs and explain how arrow schemes 
represent what a DNN does and have an outlook on the 
architecture of intelligent systems (Section IV). Finally, we 
present the method for designing intelligent systems (Section 
V) and explain how we want to go ahead (Section VI). 

II. COMBINATORY LOGIC 

In the past decades, there has been a lack of attention and 
consequently of publications on Combinatory Logic. 
Nevertheless, it explains quite a bit what artificial intelligence 
can do and what not.  

A. Combinatory Logic and Axiom of Choice  

Combinatorial Logic is a notation that eliminates the need 
for quantified variables in mathematical logic, and thus the 
need to explain what the meaning of existential quantifiers 
∃𝑥 ∈ 𝑀 is, see Curry [5] and [19]. Eliminating quantifiers is 
an elegant way to avoid the Axiom of Choice [20] in its 
traditional form. Combinatory Logic can be used as a 
theoretical model for computation and as design for functional 
languages (Engeler [21]); however, the original motivation for 
combinatory logic was to better understand the role of 
quantifiers in mathematical logic. 

Combinatory logic is based on Combinators which were 
introduced by Schönfinkel in 1920. A combinator is a higher-
order function that uses only functional applications, and 
earlier defined combinators, to define a result from its 
arguments. 

The combination operation is denoted as 𝑀 • 𝑁  for all 
combinatory terms 𝑀,𝑁. To make sure there are at least two 
combinatory terms, we postulate the existence of two special 
combinators 𝐒 and 𝐊.  

They are characterized by the following two properties (1) 
and (2): 

 𝐊 • 𝑃 • 𝑄 = 𝑃 (1) 

 𝐒 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • (𝑃 • 𝑅) (2) 

𝑃, 𝑄, 𝑅 are terms in combinatory logic. The combinator 𝐊 
acts as projection, and 𝐒  is a substitution operator for 
combinatory terms. Equations (1) and (2) act like axioms in 
traditional mathematical logic. 

Like an assembly language for computers, or a Turing 
machine, the 𝐒-𝐊 terms become quite lengthy and are barely 
readable by humans, but they work fine as a foundation for 
computer science. The power of these two operators is best 
understood when we use them to define other, handier, and 
more understandable combinators.  

The identity combinator for instance is defined as 

 𝐈: = 𝐒 • 𝐊 • 𝐊 (3) 

 Indeed, 𝐈 • 𝑀 = 𝐒 • 𝐊 • 𝐊 • 𝑀 = 𝐊 • 𝑀 • (𝐊 • 𝑀) = 𝑀 . 
Association is to the left. Moreover, 𝐒 and 𝐊 are sufficient to 
build a Turing machine. Thus, combinatory logic is Turing-
complete. For proof, consult Barendregt [22, pp. 17-22]. 

B. Functionality by the Lambda Combinator 

Curry’s Lambda Calculus [23] is a formal language that 
can be understood as a prototype programming language. The 
𝐒 -𝐊  terms implement the lambda calculus by recursively 
defining the Lambda Combinator 𝐋𝐱  for a variable 𝑥  as 
follows: 

 

𝐋𝐱 • 𝑥 = 𝐈 

𝐋𝐱 • 𝑌 = 𝐊 • 𝑌 if 𝑌 different from 𝑥 

𝐋𝐱 • 𝑀 • 𝑁 = 𝐒 • 𝐋𝐱 • 𝑀 • 𝐋𝐱 • 𝑁 

(4) 

The definition holds for any term 𝐱 of combinatory logic. 
Usually, on writes suggestively 𝜆𝑥.𝑀 instead of 𝐋𝐱 • 𝑀, for 
any combinatory term 𝑀 . Lambda Terms 𝜆𝑥.𝑀  offer the 
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possibility of programmatic parametrization. Note that 𝜆𝑥.𝑀 
is a combinatory term, as proofed by (4), and that this 
introduces a kind of variable in combinatory logic with  
precisely defined binding behavior.  

The Lambda combinator allows writing programs in 
combinatory logic using a higher-level language. When a 
lambda term is compiled, the resulting combinatorial term 
looks like machine code in traditional programming 
languages.  

C. The Fixpoint Combinator 

Given any combinatory term 𝑍, the Fixpoint Combinator 
𝐘 generates a combinatory term 𝐘 • 𝑍, called Fixpoint of 𝑍, 
that fulfills 𝐘 • 𝑍 = 𝑍 • (𝐘 • 𝑍) . This means that 𝑍  can be 
applied to its fixpoint as many times as wanted and still yields 
back the same combinatory term.  

In linear algebra, such fixpoint combinators yield an 
eigenvector solution 𝐘 • 𝑍 to some problem 𝑍.  

According to Barendregt in his textbook about Lambda 
calculus [22, p. 12], the fixpoint combinator can be written as  

 𝐘:= 𝜆𝑓. (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) • (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) (5) 

Translating (5) into an 𝐒–𝐊  term demonstrates how 
combinatory logic works, see [24].  

When translated into arrow terms, the fixpoint combinator 
contains loops. Fixpoint operations are related to infinite 
loops, thus, to programming constructions that never end and 
have no normal form. Applying 𝐘, or any equivalent fixpoint 
combinator to a combinatory term Z, usually does not 
terminate. An infinite loop can occur, and must sometimes 
occur, otherwise Turing would be wrong and all finite state 
machines would reach a finishing state [3].  

D. A few More Sample Combinators  

The following samples are taken from Zachos 1978 [25], 
where all proofs are given: 

• Composition:  

𝐁 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • 𝑅 by  
𝐁:= 𝐒 • (𝐊 • 𝐒) • 𝐊 

• Exchange of arguments: 
𝐂 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑅 • 𝑄 by  
𝐂: = 𝐒 • (𝐁 • 𝐁 • 𝐒) • (𝐊 • 𝐊) 

• Argument identification: 

𝐖 • 𝑃 • 𝑄 = 𝑃 • 𝑄 • 𝑄 by  
𝐖:= 𝐒 • 𝐒 • (𝐊 • 𝐈) 

• Composition:  
𝚽 • 𝑂 • 𝑃 • 𝑄 • 𝑅 = 𝑂 • (𝑃 • 𝑅) • (𝑄 • 𝑅) by  

𝚽:= 𝐁 • (𝐁 • 𝐒) • 𝐁) 
• Composition:  

𝚿 • 𝑂 • 𝑃 • 𝑄 • 𝑅 = 𝑂 • (𝑃 • 𝑄) • (𝑃 • 𝑅) by  
𝚿:= 𝐁 • (𝐁 • 𝐖 • (𝐁 • 𝐂)) • 𝐁 • 𝐁 • (𝐁 • 𝐁) 

• Fixpoint Combinator:  
𝐘 • 𝑅 = 𝑅 • (𝒀 • 𝑅) by  
𝐘:= 𝐖 • 𝐒 • (𝐁 • 𝐖 • 𝐁) 

There is no negation combinator, because with a negation 

𝑵 we would have 𝐘 • 𝑵 = 𝑵 • (𝒀 • 𝑵). This contra-intuitive 

example explains why so few people dare to work with 

combinatory logic. However, it also strengthens our point 

that it is highly rewarding to try it. 

It is a specific human behavior to identify complicated 

behavior with simple explanations, such as “Exchange of 

arguments.” If you expand that combinator, it would be near 

to unreadable; same with the fixpoint operator 𝐘, as shown in 

[24]. 

III. THE GRAPH MODEL OF COMBINATORY LOGIC 

The graph model is a versatile model for knowledge in all 
its different forms. It is highly recursive and Turing-complete, 
which means it can also be used to describe conventional 
algorithmic programming. The LISP language was once 
created to allow programming in a framework close to the 
graph model [26]. 

A. A Logic Needs a Model  

A Model for a logical structure is a set-theoretic 
construction that has the properties postulated for the logic 
and can be proved to be non-empty. Then it means that such 
logic makes sense as far as it describes an existing structure 
and can be used to prove something about the model. 

Let ℒ be a non-empty set. Engeler [7] defined a Graph as 
the set of ordered pairs: 

 〈{𝑎1, 𝑎2, … , 𝑎𝑚}, 𝑏〉 (6) 

with 𝑎1, 𝑎2, … , 𝑎𝑚, 𝑏 ∈ ℒ. We write {𝑎1, … , 𝑎𝑚} → 𝑏 for the 
ordered pair to make notation mnemonic, i.e., referring to 
directed graphs, and call them Arrow Terms. These terms 
describe the constituent elements of directed graphs with 
multiple origins and a single node. We refer to ℒ  as 
Observations, and to terms {𝑎1, … , 𝑎𝑚} → 𝑏 as Concepts, i.e., 
a non-empty finite set of arrow terms with level 1 or higher. 

We extend the definition of arrow terms to a powerset by 
including all formal set-theoretic objects recursively defined 
as follows: 

 
Every element of ℒ is an arrow term. 

Let 𝑎1, … , 𝑎𝑚, 𝑏 be arrow terms.  

Then {𝑎1, … , 𝑎𝑚} → 𝑏 is also an arrow term. 
(7) 

The left-hand side of an arrow term is a finite set of arrow 
terms, and the right-hand side is a single arrow term. This 
definition is recursive. Elements of ℒ are also arrow terms. 
The arrow, where present, should suggest the ordering in a 
graph, not logical imply.  

B. Einstein-Notation for Arrow Terms 

To avoid the many set-theoretical parenthesis, the 
following notation, called Arrow Schemes, is applied, in 
analogy to the Einstein notation [27, p. 6]: 

• 𝑎𝑖  for a finite set of arrow terms,  𝑖  denoting some 

Choice Function selecting finitely many specific 

terms out of a set of arrow terms 𝑎. 

• 𝑎1 for a singleton set of arrow terms; i.e., 𝑎1 = {𝑎} 
where 𝑎 is an arrow term. 

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎. 

• 𝑎𝑖 + 𝑏𝑗  for the union of two observation sets 𝑎𝑖 ,𝑏𝑗 . 

(8) 
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The application rule for 𝑀 and 𝑁 now reads: 

 𝑀 • 𝑁 = (𝑎𝑖 → 𝑏) • 𝑁 = {𝑏|∃𝑎𝑖 → 𝑏 ∈ 𝑀; 𝑎𝑖 ⊂ 𝑁} (9) 

Arrow schemes always represent sets of arrow terms. 
(𝑎𝑖 → 𝑏) ⊂ 𝑀  is the subset of level 1 arrow terms in 𝑀 , 
provided 𝑎𝑖 ∈ 𝑀  and 𝑏 ∈ 𝑀 . Thus,  (𝑎𝑖 → 𝑏)𝑗  denotes a 

concept, together with two choice functions 𝑖, 𝑗 . Each set 
element has at least one arrow. 

The choice function 𝑖 chooses specific observations 𝑎𝑖 out 
of a (larger) set of observations 𝑎 . This is what Zhong 
describes as Grounding when linking observations to real-
world objects [28]. In AI, grounding is crucial for linking AI 
engines to the real world. If 𝑎  denotes knowledge, i.e., an 
infinite set of arrow terms of any level, 𝑎𝑖 can become part of 
a concept consisting of specific arrow terms referring to some 
specific object, specified by the choice function 𝑖 . Choice 
functions therefore have the power of focusing knowledge on 
specific objects in specific areas. That makes choice functions 
interesting for intelligent systems and AI. 

There is a conjunction of choice functions, thus  𝑎𝑖,𝑗 
denotes the union of a finite number of grounded arrow 
schemes: 

 𝑎𝑖,𝑗 = 𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ …∪ 𝑎𝑖,𝑚 =⋃𝑎𝑖,𝑘

𝑚

𝑘=1

 (10) 

There is also cascading of choice functions. Assume 𝑁 =
(𝑎𝑗 → 𝑏)𝑘, then: 

 
𝑀 = (((𝑎𝑗 → 𝑏)𝑘 → 𝑏𝑖)𝑙

→ 𝑐) and 

𝑀 • 𝑁 = (𝑏𝑖𝑙 → 𝑐) 
(11) 

The choice function might be used for grounding an arrow 
scheme to observations.  

An arrow scheme without outer indices represents a 
potentially infinite set of arrow terms. Thus, writing 𝑎, we 
mean knowledge about an observed object. Adding an index, 
𝑎𝑗, indicates such a grounded object together with a choice 

function 𝑗 that chooses finitely many specific observations or 
knowledge. 

While on the first glimpse, the Einstein notation seems like 
just another way of denoting arrow terms, for representing 
such data in computers it means that the simple enumeration 
of finite data sets is replaced by an intelligent choice function 
providing grounding that must be computed and can be either 
programmed or guessed by an intelligent system. 

For practical applications, the choice function is an 
important part of deep learning. It means learning by 
generalization. The more choices you get on the left-hand 
side, the more knowledge you acquire. The ARC price 
competition for instance is easily solvable if we can generalize 
our choice functions good enough, drawing conclusions from 
the samples into general rules. However, generalization is not 
easily available with current AI technology. Controlling 
Combinators, see Section IV.C, are a workaround. 

C. The Graph Model of Combinatory Logic 

The algebra of observations represented as arrow terms is 
a combinatory algebra and thus a model of combinatory logic. 
The following definitions demonstrate how the graph model 
implements Curry’s combinators 𝐒 and 𝐊 fulfilling equations 
(1) and (2), following [5]. 

• 𝐈 = 𝑎1 → 𝑎 is the Identification, i.e., (𝑎1 → 𝑎) • 𝑏 = 𝑏 

• 𝐊 = 𝑎1 → ∅ → 𝑎 selects the 1st argument: 

𝐊 •  𝑏 • c = (𝑏1 → ∅ → 𝑏) • 𝑏 • c = (∅ → 𝑏) • c = b 

• 𝐊𝐈 = ∅ → 𝑎1 → 𝑎 selects the 2nd argument: 

𝐊𝐈 • 𝑏 • c = (∅ → 𝑐1 → 𝑐) • 𝑏 • c = (𝑐1 → 𝑐) • 𝑐 = c 

• 𝐒 = (𝑎𝑖 → (𝑏𝑗 → 𝑐))
1
→ (𝑑𝑘 → 𝑏)𝑖 → (𝑎𝑖 + 𝑏𝑗,𝑖 → 𝑐) 

(12) 

Therefore, the algebra of observations is a model of 
combinatory logic. The interested reader can find complete 
proofs in Engeler [7, p. 389].  

The Lambda Theorem from Barendregt [23] says that 
with 𝐒 and 𝐊, an abstraction operator can be constructed that 
adds algorithmic skills to knowledge represented as arrow 
schemes, following equation (4).  

𝑥1
𝑥2

𝑥 

 

𝑎1

𝑎2

𝑎𝑚

𝑎1

𝑎2

𝑎𝑚

 =   →   
→  

 
𝑵 =   →   

  • 𝑵 =    

Figure 1. A Neural Network becomes a Combinatorial Algebra  

As the name “graph model” suggests, arrow terms are an 
algebraic way of describing neural networks. Thus, something 
that nature uses to acquire and work with knowledge. 

Figure 1 illustrates the effect of the combination according 
to equation (9). It becomes apparent that the graph model 
describes graphs indeed, with loops. Repeatedly applying 
equation (9) leads to what we perceive as the “response of a 
neural network”. The combination of knowledge and 
combinators thus plays a significant role in AI. 

However, Figure 1 is not only a picture of an abstract 
graph. It can also be understood as a part of a Deep Neural 
Network (DNN) – or of a Natural Neural Network (NNN). 
Engeler [29] associated neuroscience with the graph model in 
2019, by explaining how a brain works. He used the graph 
model as an algebraic representation of NNN. 

IV. TOWARDS INTELLIGENT SYSTEMS 

Barceló et al. has shown in 2019 that modern neural 
network architectures are Turing-complete [30]. This is also a 
property of the graph model but not of every DNN. An 
architecture for intelligent systems should be suitable for 
using conventional algorithmic programming instead of 
complex arrow notations. 
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A. Solving the World Formula 

Artificial neural networks learn continuously by using 
corrective feedback loops to improve their predictive 
analytics. Neural networks perform supervised learning tasks, 
building knowledge from training data where the right answer 
is provided in advance. In contrast, in unsupervised learning, 
algorithms learn patterns exclusively from unlabeled data 
[31]. There exist mixed forms; a famous example of semi-
supervised learning has led to the creation of ChatGPT [32]. 

In both cases, the principle is the same as with Six Sigma 
Transfer Functions (SSTF) [33]: One has to solve an equation 
(13), where the expected response   is known but neither the 
required controls   nor the transfer function 𝑨 itself, which 
cause this response, are known. Transfer functions are 
abundant in technology and science – just to mention the Fast 
Fourier Transform (FFT) of audio and video signals from 
analog to digital [34] – and AI-enabled applications belong 
also to that category. In either case, the problem to be solved 
is: 

  = 𝑨  (13) 

The equation (13) is often called the “World Formula” 
[35]. In the case of AI, the world formula describes Deep 
Learning (DL), i.e., the process of parametrizing the model so 
that it provides the expected answers. 

In AI, the transfer function 𝑨 is usually represented as a 
large sparse matrix. For small dimensions, the easiest way to 
solve equation (13) is the Eigenvector method used by Saaty 
for the Analytic Hierarchy Process (AHP), for decision 
making method [36]. The method also works for Quality 
Function Deployment (QFD) [33, p. 34].  
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Figure 2. Solving the World Formula 

The idea of the Eigenvector solution method is to calculate 
the Principal Eigenvector  𝑬 with the property: 

  𝑬 = 𝑨𝑨
  𝑬 (14) 

The principal eigenvector exists due to the Perron-
Frobenius theorem [33, p. 365]. Setting  𝑬 = 𝑨

  𝑬 yields an 
approximate solution to equation (13), using equation (14), 
provided that   𝑨 𝑬  is close enough. The Euclidean 
distance (15) is called the Convergence Gap: 

 ‖  𝑨 𝑬‖ (15) 

The eigenvector method is not applicable for large AI 
matrices, because the solution is numerical and not algebraic. 
New methods suitable for large sparse matrices representing 
neural networks had to be invented, see for example Hinton 
[31]. 

The breakthrough for solving such matrices, and thus 
enabling machines for deep learning, happened in 2012 and 
involves breaking up those matrices into smaller pieces that 
can be managed in parallel. Its impact on humanity and 
society might become comparable with the FFT transform of 
1977 that made the analog/digital conversion of audio and 
video in real-time possible and thus stood at the origins of the 
Internet of today. 
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Figure 3. Deep Learning as a Transfer Function 

Once the neural net has been sufficiently trained, the 
model can be used to predict responses not just for the training 
set but for any query submitted to the AI. The convergence 
gap in Figure 3, the vector distance between the true response 
and the response received, is what we consider the inaccuracy, 
or uncertainty, of the trained model. 

 

B. How Arrow Schemes describe DNNs  

While it is obvious how an NNN is represented by arrow 
schemes, this is not equally clear for ANNs. The reason is that 
directed graphs contain loops while looping in ANNs is very 
restricted. There exist certain architectures for ANNs that 
allow for loops, within narrow limits; however, a Multi-
Layered Perceptron (MLP) as used for LLMs does not [13].  
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Hidden Layers  

Figure 4. Multi-Layered Perceptron as an DNN 
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Consequently, a DNN has only a limited ability to emulate 
an NNN. In principle, every arrow scheme 𝑎𝑖 → 𝑏 describes 
one node in a directed but not loop-free graph. Some arrow 
schemes describe algorithmic concepts such as in equation 
(12) or as explained in equation (5). Other arrow schemes 
simply connect observations 𝑎𝑖 to some response 𝑏. General 
knowledge has many facets.  

It would be wonderful if we had the ability to look at an 
LLM and identify arrow schemes for each node. This would 
add full explainability to AI, but unfortunately, this has no 
practical value. Neither combinatory terms nor arrow schemes 
have normal forms. Very often there is a wide variety of 
solutions that are equivalent but widely different; not only 
formally but also in effectiveness. 

This makes explainability of AI difficult. The lack of 
normal forms blocks all attempts to find the one sequence of 
arrow schemes that explains what AI is doing. AI engineers 
have no other choice than trying to train their DNNs such that 
the response meets expectations but without exactly knowing 
what happens. It is comforting, however, that they share the 
same sad fate with neuroscientists. It is astonishing how long-
forgotten theoretical results such as the lack of a normal form 
in combinatory logic yields economically relevant results, 
nowadays, in the evolving AI ecosystem. Consult Lachowski 
[37] for a survey of the performance challenges that occur 
around combinatory logic. 

However, there is a famous saying that nothing is too 
difficult for the engineer (“Inventor of Anything”). Recent 
findings suggest that AI is capable of recognizing chains of 
thought that lead to the observation of a specific response [38]. 
This complements earlier findings that describe CoT as a 
prompting technique [17]. Thus, there exist AI architectures 
that allow us to identify at least some arrow schemes that 
describe what AI does. It is not necessarily the whole truth, 
just as it is not when people explain their thoughts to 
colleagues. But it should be enough to convince them. 

Having a complete sequence of arrow schemes describing 
approximatively some DNN would lead to explainable AI that 
even is able to get certified for safety-critical applications. 
However, the problem with hidden layers remains. While the 
QFD method uses identifiable topics for each layer [39], an 
DNN has none; they remain hidden and unknown. Thus, much 
of the intermediate reasoning also remains hidden. RQ 2 
remains at least partially unanswered. If the input data and 
response can only be captured by arrow schemes, the 
intermediate steps must be guessed based on domain 
knowledge, but it is not known exactly what the AI engine did 
consider. AI might change behavior and create hazardous 
changes to the hidden layers. Low-rank adaptation (LoRA) of 
LLMs is an attempt to limit such change [40]. In QFD, on the 
contrary, intermediate stages are identifiable based on their 
topic; for example, when deploying customer needs, we first 
go to user stories and then to testable features. 

Another approach to better explainable AI is already well 
established: Retrieval-Augmented Generation (RAG) might 
avoid hallucinations for LLMs [41] by referencing knowledge 
databases and including them into the generation of responses. 
RAG impacts the architecture of intelligent systems by 
connecting neural networks to knowledge databases [42]. 

RAG corresponds to grounding arrow schemes using the 
choice function; RAG is indispensable for explainable AI. 

This is the motivation for looking at AI architecture. In 
some way, it must be complemented by functionality that 
controls the behavior of AI. With such controls an AI-engine 
can perform safety-critical tasks. When certifying an AI-
engine for safety, it is not necessary to convert all nodes of an 
DNN into arrow schemes, but we can focus on the overall 
result, because these results are not presented plainly but 
reviewed by a controlling combinator first. If an AI fails on 
such tasks, we do not have a white-box trace of all nodes 
including their arrow schemes that have contributed to this 
failure, but we are at least as good as with traditional safety-
preserving methods and techniques. 

C. The Architecture of Intelligent Systems 

Intelligent systems using AI are based upon Controlling 
Combinators. Controlling combinators are derived from the 
idea behind fixpoint combinators, see equation (5) but refer to 
effective factual knowledge or to skills. Examples from 
Engeler include controlling combinators for learning 
mathematics, or for playing violin [29].  

A Controlling Operator 𝐂 acts on a controlled object 𝑋 by 
its application 𝐂 • 𝑋. Control means that knowledge needed to 
execute a task that is represented by arrow schemes in 𝑋 is 
sufficiently well-known and described. This implies the need 
for a metric that measures the convergence gap. Note that 𝐂 
itself a term of the graph model of combinatory logic and thus 
a combinatory algebra term. Then, accomplishing control can 
be formulated by (16): 

 𝐂 • 𝑋 = 𝑋 (16) 

The equation (16) is a theoretical statement, referring to a 
potentially infinite loop. For solving practical problems, 𝑋 
must be approximated by finite subterms.  

Thus, the control problem is solved by a Control Sequence 
𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆  , a series of finite subterms and the 
controlling operator 𝐂 , starting with an initial 𝑋0 and 
determined by (17): 

 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 , 𝑖 ∈ ℕ (17) 

This is called Focusing. The details can be found in 
Engeler [29, p. 299]. The controlling operator 𝐂 gathers all 
faculties that may help in the solution. The inclusion operator 
in equation (17) is explained by the graph model. The control 
problem is a repeated process involving substitution, like 
finding the fixpoint of a combinator, and thus increasing the 
number of arrow schemes, and especially of choice functions, 
in the resulting focusing process.  

Controlling combinators both collect and use empirical 
data for continuous training. Such an intelligent system 
incorporates the necessary functional processes for fine-
tuning based on feedback received. For further details, please 
refer to the authors' paper on solving the control problem [43]. 

If the “Skills Definition” in Figure 5 is a training set, the 
program scheme represents Deep Learning [44]. In case the 
definition is linked to some feedback or hash function as in 
DeepSeek, it is Reinforcement Learning [45]. In all these 
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cases, the controlling combinators use the convergence gap; 
the measurable variation between actual behavior and 
expectations and requirements. In AI, the convergence gap is 
the same as in equation (15), but it is called “Loss Function”. 
This term originates from Signal Theory and originally 
describes the loss of fidelity in analog sound transmission. 
Since the discovery of the Fast-Fourier Transform (FFT) 
[34], one understands that A/D-convergence is not a loss, but 
an acquisition of enough knowledge to reach a specific 
threshold for high-fidelity rendering of music. Deep learning 
uses the same principles. 

Both come as (large) vectors and thus the Euclidean 
distance is easily computable. If learning is continuous, e.g., 
by experiences, by external feedback from a tutor, or by 
physical sensors, it is called an Intelligent System. 
Expectations and correct answers might also come from an 
external knowledge database, allowing the intelligent system 
to learn autonomously. 
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Figure 5. Controlling Combinators for self-learning intelligent systems  

The architecture for RAG now extends. Instead of 
embedding the reference into response generation [42], and 
hoping it works, we set up functional processes for comparing 
LLM results with evidence from the knowledge database and 
calculating the convergence gap.  

The convergence gap of such a system fully explains its 
behavior. Under well-defined conditions, such a system can 
be certified, even for safety critical tasks. 

It is also possible to add more than one AI engine to an 
intelligent system, compare results and go forward with the 
most reliable one. Insufficient training, biases, and 
hallucinations therefore would become detectable.  

Figure 6 shows an example of an intelligent system design 
that relies on two separate visual recognition engines 
analyzing the same scenario, one through a camera and the 
other through a Lidar. Such architecture requires that the 
reliability of each AI engine be known, under certain 
conditions, such as weather. In this way, the intelligent system 
can explain why it selected one or the other response. 

If both AI engines provide an identical answer, this 
increases the overall reliability of the intelligent system's 
response significantly. 

The graph model delivers the metrics for defining 
controlling combinators by inclusion, and it also allows us to 
combine knowledge and thus reliability correctly, by equation 
(9). This is discussed in the following section.  

Camera LidarWeather
Serv ice

Functional
Processes

judging
Reliability

Object
Classification

  

Figure 6. An Intelligent System that selects the most reliable AI response 

Figure 6 shows a simple example of an intelligent system 
that combines two different AI engines that are used to 
visually recognize identical objects. Reliability might depend 
upon illumination and weather. Figure 5 and Figure 6 both 
show the importance of calculating reliability when operating 
intelligent systems. 

V. DESIGNING INTELLIGENT SYSTEMS 

Intelligent systems rely on the capability of measuring the 
quality of knowledge [46]. To this purpose, it is necessary to 
consider how software can be measured. This is not so easy, 
as software is not a tangible entity. The standard solution to 
this measurement challenge is to measure the functionality of 
software. As always in measurement theory, this is best 
achieved by constructing a model for the functionality and 
measuring the relevant model elements. 

A. The COSMIC Model for Functionality 

The COSMIC standard identifies layers. The layers’ 
boundaries detect the flow of data moving from one object 
into another. Every Data Movement transports a Data Group, 
identifying the data moved from one object to another.  

Data groups hold the information needed to assess privacy 
protection needs, or safety risk exposure, of data. They also 
transport knowledge from one Object of Interest into another. 
In certain cases, the data groups contain enough information 
to allow for generating code out of a COSMIC model [47]. 

The constituent element of the COSMIC model is a 
Functional Process. A functional process is an object together 
with a set of data movements, classified as either Read or 
Write, or Entry or eXit. These data movements connect the 
functional process with Persistent Data Stores, or Devices 
respectively Other Applications, e.g., an AI engine. They 
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represent the Functional User Requirements (FUR) for the 
software being measured [48, p. 42].  

Figure 7 is a sample Data Movement Maps according to 
ISO/IEC 19761 COSMIC. The connectors represent Data 
Movements. The data groups that they convey can be viewed 
as a single data set. Each data group should occur in a model 
only once. Its uniqueness is indicated by color-filled trapezes 
at their origin. Another move of the same data group between 
the same objects within a COSMIC functional process lets the 
trapeze blank. 

Objects of Interest: For data movement maps, we draw 
four types of lifelines: 

• Functional Processes: Objects that perform one or several 

functional processes in the COSMIC sense.  

• Persistent Data Store: Objects that persistently hold data.  

• Devices: A device can be a system user or anything providing 

or consuming data. They send (Entry) or receive (eXit) data 

groups from or to functional processes. 

• Other Applications: Other applications use functional 

processes the same way as devices do; however, they typically 

represent other software or systems that can be modeled the 

same way using data movement maps. 

Device Data Log
Functional

Process
Sensor Actuator AI Engine

1.// Move some Data

2.// Prompt AI Engine

3.// Response from AI Engine

4.// Move Data to Actuator

5.// Log Data

Trigger

 

Figure 7. Sample Data Movement Map 

The lifeline for functional processes represents, for 
example, a Virtual Machine (VM) or an Electronic Control 
Unit (ECU) that performs various calculations and 
implements several functional processes as defined in the 
COSMIC manual [48, p. 42]. Triggers usually indicate the 
starting data movement of one COSMIC functional process. 
Thus, one functional process lifeline can have several triggers. 
Lifelines representing persistent data stores can provide data 
services for more than one functional process. LLMs, or other 
AI engines appear as Another Application in the data 
movement maps. 

B. Assigning Reliability Scores to Objects of Interest 

A typical data movement map for an intelligent system 
consists of devices such as sensors, actuators, and persistent 
data sources, collecting data and delivering them to a 
functional process that prepares them as input to a suitable AI 
engine such as a neural network, a specific knowledge base, 
or some search engine. Another functional process will then 
work with its response and execute recommendations using a 
Generative Pretrained Translator (GPT) to communicate the 
response to a user through an output device. This is necessary 
because all knowledge in intelligent systems is represented by 
token vectors. 

However, neither sensors, actuators nor an AI tool can be 
trusted 100%. Thus, data groups need to have special attribute 
for this: Reliability. 

If data is persistently stored, it retains its reliability. All 
other data has some degree of reliability that is either known 
from physical devices, by assessing an AI tool with a test set, 
or by the functional processes the data groups go through. 
Reliability originates from devices or other applications. 
Although reliability is measured commonly by percentage 
numbers, it is a standard deviation, not a linear reliability 
average [49]. 

C. Combining Reliabilities with Regard to FUR 

The data movement map describes how data groups move 
through the software. The functional processes combine these 
reliabilities by combining uncertainties associated with 
knowledge-based actions. In our example, the reliability of the 
data groups originating from the functional process in Figure 
7 is the combination of the reliability of all incoming data. The 
expected overall reliability of the intelligent system is 
calculated from the uncertainty expectations of the output of 
the functional process. 

The way data is combined in functional processes depends 
on the FUR that implements them. This requires an 
understanding of the discipline of requirements engineering 
for knowledge-processing systems [50]. As explained before, 
requirements address knowledge with distinct levels of 
certainty: While observations are usually not completely 
certain and learning concepts will never be fully reliable, there 
are rules, the so-called Lambda Concepts, that work in a 
mechanical way, preserving reliability. It is not a promising 
idea to implement Lambda concepts by arrow schemes. There 
exist much more efficient tools: conventional programming, 
that in turn also have a model expressible as arrow schemes. 
Typically, in intelligent systems Lambda concepts are 
implemented as programs according to rules, mostly in Python 
[51]. 

Depending on the FUR, functional processes can also 
reduce uncertainty, for instance when it selects the most 
reliable response between various kinds of AI engines as 
shown in Figure 6. The diverse ways of combining reliability 
are discussed in more detail in [46]. 

D. Propagating Reliability through Functional Processes 

Lambda concepts might extract one source and discard the 
second or do substitution. Such operations might keep 
uncertainty unchanged by a functional process. Functional 
processes that implement Lambda concepts combine 
according to the 𝑀𝑎𝑥  principle, which preserves the 
maximum reliability of the different input data groups and 
propagates the maximum degree of knowledge reliability, 
while the normal combination of different uncertainties 
usually increases uncertainty and is called the 𝐶𝑜 𝑏 
principle. Since subsequent uncertainties can correct the initial 
uncertainty of data groups from the first source, the reliability 
is expected to decrease only according to the expected value 
obtained with the statistical sensitivity analysis, which means 
that the reliability decreases at a lower rate than with naive 
multiplication.  
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Let 𝑢𝑖  be the uncertainty of the 𝑖th input in a functional 
process with 𝑛 input data groups. The uncertainty of the output 
of this functional process is: 

 𝑢𝐶𝑜𝑚𝑏 = √∑𝑢𝑖
2

 

𝑖=1

  (18) 

This is the Euclidean distance between the uncertainties of 
the input data groups. Thus, the reliability propagation follows 
the same statistical rules as the profiles in Six Sigma transfer 
functions [33, p. 34]. 

1. Uncertainty

Radius

Certainty

Uncertainties

2. Uncertainty

Radius

 

Figure 8. Combination of Uncertainties originating from AI input 

The Reliability of a functional process with 𝑛 input data 
movements carrying data groups with uncertainties 
𝑢1, 𝑢2, … , 𝑢  is defined as:  

 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡 (𝑢1, 𝑢2, … , 𝑢 ) =   𝑢𝐶𝑜𝑚𝑏  (19) 

With graphical visualization (Figure 8) we aim to explain 
the statistical methods used without going into formalisms. 
The figure proofs equation (19) in the special case of three 
dimensions (𝑛 =  ).  

Assume there are some uncertainties originating from the 
first input source. The response range in the 𝑛-dimensional 
space of all responses is produced by some functional process. 
By combining this with the uncertainty originating from the 
second input source, it is unknown where the second 
uncertainty builds over the previous partial response. 

Thus, the bundle of outcomes with an encompassing 
second uncertainty radius representing the expected 
uncertainty of a  functional process with two inputs combined 
can correct part of the first. Expected uncertainties thus must 
be combined by using equation (19). 

Reliability of a data group might change when originating 
from different functional processes. Also, a functional process 
might produce more than one data group as an eXit or Write 
data movement with different reliabilities, dependent from the 
data group. 

E. Making an LLM Reliable 

Not if we combine with a source of information with 
known reliability. We should set up a functional process 
connecting The LLM with some factual repository such as 
Wolfram|Alpha, or whatever is suitable for its topics. Best we 
feed the facts to the LLM and let the LLM apply its pretrained 
conversational capabilities as a transformer to transfer factual 
knowledge into arguments and explanations. Then the 
reliability combines from the reliability of the facts with the 
reliability of the LLM as a transformer and we can chain it 
with a Lambda concept that checks whether the LLM has kept 
well to the original facts. Thus, the FUR we have against the 
LLM is that we expect it to reproduce available facts with a 
known reliability. Here we assume 95%. As a further 
assumption, Wolfram|Alpha has been measured to be 98% 
reliable in the chosen context.  

In Figure 9, there are two functional processes, one 
feeding the facts to the LLM and one comparing results. The 
persistent store serves for logging results, learning, and for 
communication between the two functional processes. The 
data movement map explains how the data groups are moved 
from one object to another. 

User Wolfram|Alpha Furnish Query LLM Compare Result Answer Query

1.// Query

Query

2.// Store Query

3.// Get Topic

4.// Topic

5.// Get Facts

6.// Store Facts

7.// Ask Query

8.// Feed Knowledge

9.// Generated AI

Response

10.// Get facts

11.// Controlled Response

12.// Remember Response

 

Figure 9. Data Movement Map for Combining LLM with Wolfram|Alpha 

The Compare Result functional process in Figure 8 
combines uncertainties according to the statistical methods 
explained in equations (18) and  (19) as follows: 

 √ %2 +  %2 =  . % (20) 

With regard to equation (19), this yields a reliability of 
9 .6% for the query functionality represented in Figure 9. 
Figure 9 and the equation (20) have been created and 
computed using an Excel-based tool from the authors, which 
is available to interested reader [33]. 

F. The Future of AI: Intelligent Systems 

The current hype with AI is suffering from the same 
problem earlier attempts had: QFD, Expert Systems, and 
many other machine-based reasoning and decision tools could 
not explain how reliable they are. You could believe them or 
not; and sometimes, the non-believers proved to be true. 
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The new ability to build LLMs with recognizable CoT still 
does not answer the question, how reliable they are. Taking 
the graph model as an explanation of reliability, recognizing 
that knowledge and algorithmic processing are from the same 
source, namely the graph model, shows a way how to build 
intelligent systems with known reliability. It makes AI-based 
decisions and process control suitable for legal assessment and 
technical certification. 

It is obvious that the reliability of a data group might 
change during operations of an intelligent system. Functional 
processes can calculate reliability, keep a log trace of it, and 
use it to guide processing through all programming steps in 
the data movement map. 

In theory, intelligent systems consist of a controlling 
combinator, in most cases realized by implementing some 
functional processes, and an ANN part, typically 
implementing an LLM that is trained on the specific 
knowledge domain. This reflects equations (16) and (17). 
Obviously, both parts, the controlling combinator and the 
knowledge acquisition combinator. Both can be described as 
arrow schemes in the graph model, but they are implemented 
differently, in the most effective way. It is indeed not 
necessary to train an LLM to do reasoning, because a 
controlling combinator implementing functional processes in 
Python are much more effective. Explaining, maintaining, and 
improving such a controlling combinator is much easier in 
Python (or any other suitable programming environment) than 
training an LLM. However, it is possible to train an LLM in 
logical reasoning, but this is not needed. It is much more 
straightforward, and way more effective, to use Engeler’s 
controlling combinator as a design paradigm for intelligent 
systems. 

VI. CONCLUSION AND FUTURE WORK  

Like humans, the result of any ANN is as unreliable as any 
result from an uneducated NNN. Without logical foundations, 
logical reasoning, and feedback from the environment, 
humans are also just hallucinating.  

Intelligent systems can do better, except getting feedback 
and learning from it. The key is to combine combinators 
representing neural networks with combinators doing logical 
derivations. This is primarily a design principle, but secondly 
also an operating paradigm. 

In this paper, we have provided evidence for: 

RQ 1: DNNs can be represented in the graph model 
of combinatory logic as well as any other 
neural network, including the brain or QFD; 

RQ 2: CoT does not relate to a defined and unique 
sequence of arrow schemes because of 
missing normal form, but can be explained 
using other arrow schemes, such as QFD; 

RQ 3: Intelligent systems explain how AI behavior 
can be controlled. 

The graph model of combinatorial logic does not provide 
an alternative for implementing AI, but it is an excellent guide 
and theoretical foundation for what can be done with AI, for 

explaining AI, but also for learning where AI meets its limits. 
The current step forward is collecting several designs of 
intelligent systems with controlling combinators, finding 
methods for measuring reliability and defining suitable 
convergence gaps. This work in progress of the authors is 
shared with interested parties; the authors have no institution 
or sponsor to help with this [52]. 

It is possible that ANNs can learn logical reasoning based 
on facts. However, combining AI engines with feedback loops 
originating from reality requires much less effort. Testing AI 
results for feasibility and physical soundness using traditional 
programming methods creates trustworthiness and adds 
credibility and explainability to AI results. 

It remains the idea that AI could be explained by searching 
for arrow schemes that provide the same responses. Since 
combinatory logic does not have normal forms, this seems 
feasible. It could be used as a validation process for AI. 
However, for now, this is a future research project. 
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