
Combinatory Logic as a Model for Intelligent Systems Based on Explainable AI

Thomas Fehlmann

Euro Project Office AG

8032 Zurich, Switzerland

E-mail: thomas.fehlmann@e-p-o.com

Eberhard Kranich

Euro Project Office

47051 Duisburg, Germany

E-mail: eberhard.kranich@t-online.de

Abstract—Directed graphs such as neural networks can be

described by Arrow Terms that link a finite set of incoming nodes

to some response node. Scott and Engeler have shown that its

powerset is a model for Combinatory Logic. This algebra is

called Graph Model of Combinatory Logic. Since Combinatory

Logic is Turing-complete, the model explains both traditional

programming logic as well as neural networks such as the brain

or Artificial Neural Networks as used in a Large Language Model.

The underlying graph model is a general model for all kinds of

knowledge. The graph model would yield a powerful AI-tool if

used as a blueprint for implementing AI. Chain of Thoughts

would come for free, and explainability with it. However, its

performance would make such a tool impractical and useless.

The paper proposes a combined approach for adding

explainability to AI and creating Intelligent Systems. It is the

strategy humans use when they try to explain their ideas. First,

the generative power of neural networks is used to produce an

idea or solution. Next, humans create a chain of thoughts that

explain such ideas to others and try to provide evidence. AI

could follow the same strategy. The architecture of such

intelligent systems consists of two distinct elements: a well-

trained artificial neural network for observing and generating

solution approaches, and a controlling engine for fact checking

and reliability assessment.

Keywords—Intelligent Systems; Chain-of-Thought (CoT);

Explainable AI (XAI); Artificial Neural Networks (ANN); Deep

Neural Network (DNN); Combinatory Logic; Quality Function

Deployment (QFD).

I. INTRODUCTION

This paper is a revised version of the author’s contribution
to the 1st International Conference on Systems Explainability,
held in Valencia, Spain, in autumn 2024 [1].

A. Short History of AI and its Philosophical Background

In the early 20th century, there were some shocking events
taking place in mathematical logic and natural science. Gödel
[2], when trying to solve some of Hilbert’s 23 problems,
detected that predicate logic, something with a long history
dating back to the ancient Greeks, is undecidable. This insight
gave birth to theoretical computer science, including the
theory of computation, founded by Turing [3]. For a modern
compilation, see Raatikainen [4].

Schönfinkel and Curry [5] developed Combinatory Logic
to avoid the problems introduced when using logical

quantifiers, and Church invented Lambda Calculus as a rival
formalism [6]. Scott and Engeler developed the Graph Model
[7], based on Arrow Terms, and proved that this is a model of
combinatory logic. This means that you can combine sets of
arrow terms to get new arrow terms, and that combinators,
accelerators, and constructors can be used to create new
elements of algebra.

Graphs in the form of neural networks appeared already at
the origins of Artificial Intelligence (AI). Its first instantiation
in modern times was the Perceptron, a network of neurons
postulated by Rosenblatt [8]. It later became a directed graph
[9]. Rosenblatt was also the first who postulated concepts,
among perception and recognition, as constituent parts of AI
[8, p. 1].

Since its origins, AI has experienced difficulties; however,
today there are many AI applications that provide value for
the user. In some areas, training an AI model is simpler and
more rewarding than finding and programming an algorithm.

For instance, AI-powered visual recognition systems excel
in recognizing and classifying objects, following the ideas
established by Rosenblatt [8]. However, they have difficulty
recognizing temporal dependencies and are unable to combine
what they have learned, although attempts have been made to
develop methods using sequential data and the ability to
capture temporal patterns. AI lacks what humans use in such
cases: a concept.

Logical skills such as inference and deduction provide
quite a challenge, as exemplified by the ARC Price challenge,
a sort of intelligence test for AI models, proposed by Chollet
[10]. A Large Language Model (LLM) easily summarizes
texts or books but it still does not understand what is written
in it, in the sense that the US National Council of English
Teachers calls Literacy, see [11], [12].

Artificial Neural Networks (ANN) can be divided into four
types: Recurrent Neural Network (RNN), Fuzzy Neural
Network (FNN), Convoluted Neural Network (CNN) and
Deep Neural Network (DNN). DNN are the most successfully
used for LLM and thus the most important type of ANN
regarding explainability because they rely on many hidden
layers. Among the rapidly developing literature, Gerven &
Bothe’s classification are a good start [13]. Natural Neural
Networks, in analogy to ANNs, are abbreviated by NNN.

IBM defines Explainable Artificial Intelligence (XAI) as
a set of processes and methods that allow human users to
comprehend and trust the results created by machine learning

68International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithms [14]. Current approaches to XAI attempt to use
statistical correlations as a basis for reasoning. From a
theoretical perspective, this is unlikely to work, because of
Gödel [2]. However, engineers try to use statistical methods
to circumvent Gödel’s undecidability. Sometimes the results
look convincing. Dallanoce [15] compiled a list of available
processes and methods for XAI.

Artificial General Intelligence (AGI) is a type of artificial
intelligence (AI) that falls within the lower and upper limits of
human cognitive capabilities across a wide range of cognitive
tasks. The creation of AGI is a primary goal of AI research
and companies such as OpenAI and Meta, but what exactly
AGI refers to is controversial [16].

Current attempts towards AGI focus on the investigation
of Chain of Thoughts (CoT). Using an LLM based on
DeepSeek with CoT enabled yields the feeling that the LLM
does some “reasoning” because it displays the intermediate
results obtained with the processing of some query [17]. The
real innovation behind DeepSeek is using a hash function to
avoid processing useless branches in an LLM. This is not what
reasoning really is, namely the use of logic based on factual
knowledge to find previously unknown answers. The hash
function is still based on statistics from a suitable training set
[18].

B. Research Questions

The aim of this paper is to recall prior work in logic and
AI to understand how neural networks work. To do this, we
investigate the following three research questions:

RQ 1: How are neural networks and especially DNNs

linked to the graph model?
RQ 2: Does CoT relate to a sequence of arrow terms?
RQ 3: Can the graph model explain AI?

The motivation for this is that we are experiencing the

fourth AI hype in sixty years and that its acceptance in society
is currently transitioning from admiration to rejection.
Because the nature of AI is poorly understood not only by
society but also by the AI research community. We believe
that the graph model is an excellent way to understand what
intelligence is, both natural and artificial. However, it is not
an answer to how to construct XAI.

C. Paper Structure

We first explain combinatory logic (Section II) and the
motivation for building a model (Section III). Then we
compare DNNs with graphs and explain how arrow schemes
represent what a DNN does and have an outlook on the
architecture of intelligent systems (Section IV). Finally, we
present the method for designing intelligent systems (Section
V) and explain how we want to go ahead (Section VI).

II. COMBINATORY LOGIC

In the past decades, there has been a lack of attention and
consequently of publications on Combinatory Logic.
Nevertheless, it explains quite a bit what artificial intelligence
can do and what not.

A. Combinatory Logic and Axiom of Choice

Combinatorial Logic is a notation that eliminates the need
for quantified variables in mathematical logic, and thus the
need to explain what the meaning of existential quantifiers
∃𝑥 ∈ 𝑀 is, see Curry [5] and [19]. Eliminating quantifiers is
an elegant way to avoid the Axiom of Choice [20] in its
traditional form. Combinatory Logic can be used as a
theoretical model for computation and as design for functional
languages (Engeler [21]); however, the original motivation for
combinatory logic was to better understand the role of
quantifiers in mathematical logic.

Combinatory logic is based on Combinators which were
introduced by Schönfinkel in 1920. A combinator is a higher-
order function that uses only functional applications, and
earlier defined combinators, to define a result from its
arguments.

The combination operation is denoted as 𝑀 • 𝑁 for all
combinatory terms 𝑀,𝑁. To make sure there are at least two
combinatory terms, we postulate the existence of two special
combinators 𝐒 and 𝐊.

They are characterized by the following two properties (1)
and (2):

 𝐊 • 𝑃 • 𝑄 = 𝑃 (1)

 𝐒 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • (𝑃 • 𝑅) (2)

𝑃, 𝑄, 𝑅 are terms in combinatory logic. The combinator 𝐊
acts as projection, and 𝐒 is a substitution operator for
combinatory terms. Equations (1) and (2) act like axioms in
traditional mathematical logic.

Like an assembly language for computers, or a Turing
machine, the 𝐒-𝐊 terms become quite lengthy and are barely
readable by humans, but they work fine as a foundation for
computer science. The power of these two operators is best
understood when we use them to define other, handier, and
more understandable combinators.

The identity combinator for instance is defined as

 𝐈: = 𝐒 • 𝐊 • 𝐊 (3)

 Indeed, 𝐈 • 𝑀 = 𝐒 • 𝐊 • 𝐊 • 𝑀 = 𝐊 • 𝑀 • (𝐊 • 𝑀) = 𝑀 .
Association is to the left. Moreover, 𝐒 and 𝐊 are sufficient to
build a Turing machine. Thus, combinatory logic is Turing-
complete. For proof, consult Barendregt [22, pp. 17-22].

B. Functionality by the Lambda Combinator

Curry’s Lambda Calculus [23] is a formal language that
can be understood as a prototype programming language. The
𝐒 -𝐊 terms implement the lambda calculus by recursively
defining the Lambda Combinator 𝐋𝐱 for a variable 𝑥 as
follows:

𝐋𝐱 • 𝑥 = 𝐈

𝐋𝐱 • 𝑌 = 𝐊 • 𝑌 if 𝑌 different from 𝑥

𝐋𝐱 • 𝑀 • 𝑁 = 𝐒 • 𝐋𝐱 • 𝑀 • 𝐋𝐱 • 𝑁

(4)

The definition holds for any term 𝐱 of combinatory logic.
Usually, on writes suggestively 𝜆𝑥.𝑀 instead of 𝐋𝐱 • 𝑀, for
any combinatory term 𝑀 . Lambda Terms 𝜆𝑥.𝑀 offer the

69International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

possibility of programmatic parametrization. Note that 𝜆𝑥.𝑀
is a combinatory term, as proofed by (4), and that this
introduces a kind of variable in combinatory logic with
precisely defined binding behavior.

The Lambda combinator allows writing programs in
combinatory logic using a higher-level language. When a
lambda term is compiled, the resulting combinatorial term
looks like machine code in traditional programming
languages.

C. The Fixpoint Combinator

Given any combinatory term 𝑍, the Fixpoint Combinator
𝐘 generates a combinatory term 𝐘 • 𝑍, called Fixpoint of 𝑍,
that fulfills 𝐘 • 𝑍 = 𝑍 • (𝐘 • 𝑍) . This means that 𝑍 can be
applied to its fixpoint as many times as wanted and still yields
back the same combinatory term.

In linear algebra, such fixpoint combinators yield an
eigenvector solution 𝐘 • 𝑍 to some problem 𝑍.

According to Barendregt in his textbook about Lambda
calculus [22, p. 12], the fixpoint combinator can be written as

 𝐘:= 𝜆𝑓. (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) • (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) (5)

Translating (5) into an 𝐒–𝐊 term demonstrates how
combinatory logic works, see [24].

When translated into arrow terms, the fixpoint combinator
contains loops. Fixpoint operations are related to infinite
loops, thus, to programming constructions that never end and
have no normal form. Applying 𝐘, or any equivalent fixpoint
combinator to a combinatory term Z, usually does not
terminate. An infinite loop can occur, and must sometimes
occur, otherwise Turing would be wrong and all finite state
machines would reach a finishing state [3].

D. A few More Sample Combinators

The following samples are taken from Zachos 1978 [25],
where all proofs are given:

• Composition:

𝐁 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • 𝑅 by
𝐁:= 𝐒 • (𝐊 • 𝐒) • 𝐊

• Exchange of arguments:
𝐂 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑅 • 𝑄 by
𝐂: = 𝐒 • (𝐁 • 𝐁 • 𝐒) • (𝐊 • 𝐊)

• Argument identification:

𝐖 • 𝑃 • 𝑄 = 𝑃 • 𝑄 • 𝑄 by
𝐖:= 𝐒 • 𝐒 • (𝐊 • 𝐈)

• Composition:
𝚽 • 𝑂 • 𝑃 • 𝑄 • 𝑅 = 𝑂 • (𝑃 • 𝑅) • (𝑄 • 𝑅) by

𝚽:= 𝐁 • (𝐁 • 𝐒) • 𝐁)
• Composition:

𝚿 • 𝑂 • 𝑃 • 𝑄 • 𝑅 = 𝑂 • (𝑃 • 𝑄) • (𝑃 • 𝑅) by
𝚿:= 𝐁 • (𝐁 • 𝐖 • (𝐁 • 𝐂)) • 𝐁 • 𝐁 • (𝐁 • 𝐁)

• Fixpoint Combinator:
𝐘 • 𝑅 = 𝑅 • (𝒀 • 𝑅) by
𝐘:= 𝐖 • 𝐒 • (𝐁 • 𝐖 • 𝐁)

There is no negation combinator, because with a negation

𝑵 we would have 𝐘 • 𝑵 = 𝑵 • (𝒀 • 𝑵). This contra-intuitive

example explains why so few people dare to work with

combinatory logic. However, it also strengthens our point

that it is highly rewarding to try it.

It is a specific human behavior to identify complicated

behavior with simple explanations, such as “Exchange of

arguments.” If you expand that combinator, it would be near

to unreadable; same with the fixpoint operator 𝐘, as shown in

[24].

III. THE GRAPH MODEL OF COMBINATORY LOGIC

The graph model is a versatile model for knowledge in all
its different forms. It is highly recursive and Turing-complete,
which means it can also be used to describe conventional
algorithmic programming. The LISP language was once
created to allow programming in a framework close to the
graph model [26].

A. A Logic Needs a Model

A Model for a logical structure is a set-theoretic
construction that has the properties postulated for the logic
and can be proved to be non-empty. Then it means that such
logic makes sense as far as it describes an existing structure
and can be used to prove something about the model.

Let ℒ be a non-empty set. Engeler [7] defined a Graph as
the set of ordered pairs:

 〈{𝑎1, 𝑎2, … , 𝑎𝑚}, 𝑏〉 (6)

with 𝑎1, 𝑎2, … , 𝑎𝑚, 𝑏 ∈ ℒ. We write {𝑎1, … , 𝑎𝑚} → 𝑏 for the
ordered pair to make notation mnemonic, i.e., referring to
directed graphs, and call them Arrow Terms. These terms
describe the constituent elements of directed graphs with
multiple origins and a single node. We refer to ℒ as
Observations, and to terms {𝑎1, … , 𝑎𝑚} → 𝑏 as Concepts, i.e.,
a non-empty finite set of arrow terms with level 1 or higher.

We extend the definition of arrow terms to a powerset by
including all formal set-theoretic objects recursively defined
as follows:

Every element of ℒ is an arrow term.

Let 𝑎1, … , 𝑎𝑚, 𝑏 be arrow terms.

Then {𝑎1, … , 𝑎𝑚} → 𝑏 is also an arrow term.
(7)

The left-hand side of an arrow term is a finite set of arrow
terms, and the right-hand side is a single arrow term. This
definition is recursive. Elements of ℒ are also arrow terms.
The arrow, where present, should suggest the ordering in a
graph, not logical imply.

B. Einstein-Notation for Arrow Terms

To avoid the many set-theoretical parenthesis, the
following notation, called Arrow Schemes, is applied, in
analogy to the Einstein notation [27, p. 6]:

• 𝑎𝑖 for a finite set of arrow terms, 𝑖 denoting some

Choice Function selecting finitely many specific

terms out of a set of arrow terms 𝑎.

• 𝑎1 for a singleton set of arrow terms; i.e., 𝑎1 = {𝑎}
where 𝑎 is an arrow term.

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎.

• 𝑎𝑖 + 𝑏𝑗 for the union of two observation sets 𝑎𝑖 ,𝑏𝑗 .

(8)

70International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The application rule for 𝑀 and 𝑁 now reads:

 𝑀 • 𝑁 = (𝑎𝑖 → 𝑏) • 𝑁 = {𝑏|∃𝑎𝑖 → 𝑏 ∈ 𝑀; 𝑎𝑖 ⊂ 𝑁} (9)

Arrow schemes always represent sets of arrow terms.
(𝑎𝑖 → 𝑏) ⊂ 𝑀 is the subset of level 1 arrow terms in 𝑀 ,
provided 𝑎𝑖 ∈ 𝑀 and 𝑏 ∈ 𝑀 . Thus, (𝑎𝑖 → 𝑏)𝑗 denotes a

concept, together with two choice functions 𝑖, 𝑗 . Each set
element has at least one arrow.

The choice function 𝑖 chooses specific observations 𝑎𝑖 out
of a (larger) set of observations 𝑎 . This is what Zhong
describes as Grounding when linking observations to real-
world objects [28]. In AI, grounding is crucial for linking AI
engines to the real world. If 𝑎 denotes knowledge, i.e., an
infinite set of arrow terms of any level, 𝑎𝑖 can become part of
a concept consisting of specific arrow terms referring to some
specific object, specified by the choice function 𝑖 . Choice
functions therefore have the power of focusing knowledge on
specific objects in specific areas. That makes choice functions
interesting for intelligent systems and AI.

There is a conjunction of choice functions, thus 𝑎𝑖,𝑗
denotes the union of a finite number of grounded arrow
schemes:

 𝑎𝑖,𝑗 = 𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ …∪ 𝑎𝑖,𝑚 =⋃𝑎𝑖,𝑘

𝑚

𝑘=1

 (10)

There is also cascading of choice functions. Assume 𝑁 =
(𝑎𝑗 → 𝑏)𝑘, then:

𝑀 = (((𝑎𝑗 → 𝑏)𝑘 → 𝑏𝑖)𝑙

→ 𝑐) and

𝑀 • 𝑁 = (𝑏𝑖𝑙 → 𝑐)
(11)

The choice function might be used for grounding an arrow
scheme to observations.

An arrow scheme without outer indices represents a
potentially infinite set of arrow terms. Thus, writing 𝑎, we
mean knowledge about an observed object. Adding an index,
𝑎𝑗, indicates such a grounded object together with a choice

function 𝑗 that chooses finitely many specific observations or
knowledge.

While on the first glimpse, the Einstein notation seems like
just another way of denoting arrow terms, for representing
such data in computers it means that the simple enumeration
of finite data sets is replaced by an intelligent choice function
providing grounding that must be computed and can be either
programmed or guessed by an intelligent system.

For practical applications, the choice function is an
important part of deep learning. It means learning by
generalization. The more choices you get on the left-hand
side, the more knowledge you acquire. The ARC price
competition for instance is easily solvable if we can generalize
our choice functions good enough, drawing conclusions from
the samples into general rules. However, generalization is not
easily available with current AI technology. Controlling
Combinators, see Section IV.C, are a workaround.

C. The Graph Model of Combinatory Logic

The algebra of observations represented as arrow terms is
a combinatory algebra and thus a model of combinatory logic.
The following definitions demonstrate how the graph model
implements Curry’s combinators 𝐒 and 𝐊 fulfilling equations
(1) and (2), following [5].

• 𝐈 = 𝑎1 → 𝑎 is the Identification, i.e., (𝑎1 → 𝑎) • 𝑏 = 𝑏

• 𝐊 = 𝑎1 → ∅ → 𝑎 selects the 1st argument:

𝐊 • 𝑏 • c = (𝑏1 → ∅ → 𝑏) • 𝑏 • c = (∅ → 𝑏) • c = b

• 𝐊𝐈 = ∅ → 𝑎1 → 𝑎 selects the 2nd argument:

𝐊𝐈 • 𝑏 • c = (∅ → 𝑐1 → 𝑐) • 𝑏 • c = (𝑐1 → 𝑐) • 𝑐 = c

• 𝐒 = (𝑎𝑖 → (𝑏𝑗 → 𝑐))
1
→ (𝑑𝑘 → 𝑏)𝑖 → (𝑎𝑖 + 𝑏𝑗,𝑖 → 𝑐)

(12)

Therefore, the algebra of observations is a model of
combinatory logic. The interested reader can find complete
proofs in Engeler [7, p. 389].

The Lambda Theorem from Barendregt [23] says that
with 𝐒 and 𝐊, an abstraction operator can be constructed that
adds algorithmic skills to knowledge represented as arrow
schemes, following equation (4).

𝑥1
𝑥2

𝑥

𝑎1

𝑎2

𝑎𝑚

𝑎1

𝑎2

𝑎𝑚

 = →
→

𝑵 = →

 • 𝑵 =

Figure 1. A Neural Network becomes a Combinatorial Algebra

As the name “graph model” suggests, arrow terms are an
algebraic way of describing neural networks. Thus, something
that nature uses to acquire and work with knowledge.

Figure 1 illustrates the effect of the combination according
to equation (9). It becomes apparent that the graph model
describes graphs indeed, with loops. Repeatedly applying
equation (9) leads to what we perceive as the “response of a
neural network”. The combination of knowledge and
combinators thus plays a significant role in AI.

However, Figure 1 is not only a picture of an abstract
graph. It can also be understood as a part of a Deep Neural
Network (DNN) – or of a Natural Neural Network (NNN).
Engeler [29] associated neuroscience with the graph model in
2019, by explaining how a brain works. He used the graph
model as an algebraic representation of NNN.

IV. TOWARDS INTELLIGENT SYSTEMS

Barceló et al. has shown in 2019 that modern neural
network architectures are Turing-complete [30]. This is also a
property of the graph model but not of every DNN. An
architecture for intelligent systems should be suitable for
using conventional algorithmic programming instead of
complex arrow notations.

71International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Solving the World Formula

Artificial neural networks learn continuously by using
corrective feedback loops to improve their predictive
analytics. Neural networks perform supervised learning tasks,
building knowledge from training data where the right answer
is provided in advance. In contrast, in unsupervised learning,
algorithms learn patterns exclusively from unlabeled data
[31]. There exist mixed forms; a famous example of semi-
supervised learning has led to the creation of ChatGPT [32].

In both cases, the principle is the same as with Six Sigma
Transfer Functions (SSTF) [33]: One has to solve an equation
(13), where the expected response is known but neither the
required controls nor the transfer function 𝑨 itself, which
cause this response, are known. Transfer functions are
abundant in technology and science – just to mention the Fast
Fourier Transform (FFT) of audio and video signals from
analog to digital [34] – and AI-enabled applications belong
also to that category. In either case, the problem to be solved
is:

 = 𝑨 (13)

The equation (13) is often called the “World Formula”
[35]. In the case of AI, the world formula describes Deep
Learning (DL), i.e., the process of parametrizing the model so
that it provides the expected answers.

In AI, the transfer function 𝑨 is usually represented as a
large sparse matrix. For small dimensions, the easiest way to
solve equation (13) is the Eigenvector method used by Saaty
for the Analytic Hierarchy Process (AHP), for decision
making method [36]. The method also works for Quality
Function Deployment (QFD) [33, p. 34].

 : Training Set 𝑨 : Achieved Goals

The Implementation

 𝑨𝑥

Convergence Gap 𝑨𝑥

“Implemented”

The Controls 𝑥 = 𝑨

“Analyze”𝑨

Goal Topic 1
Goal Topic 2
Goal Topic

Goal Topic

 : Goal Profile 𝑥: Solution Profile

C
o

nt
ro

l
𝑥

C
o

nt
ro

l
𝑥

C
o

nt
ro

l
𝑥

C
o

nt
ro

l
𝑥

C
o

nt
ro

l
𝑥

Figure 2. Solving the World Formula

The idea of the Eigenvector solution method is to calculate
the Principal Eigenvector 𝑬 with the property:

 𝑬 = 𝑨𝑨
 𝑬 (14)

The principal eigenvector exists due to the Perron-
Frobenius theorem [33, p. 365]. Setting 𝑬 = 𝑨

 𝑬 yields an
approximate solution to equation (13), using equation (14),
provided that 𝑨 𝑬 is close enough. The Euclidean
distance (15) is called the Convergence Gap:

 ‖ 𝑨 𝑬‖ (15)

The eigenvector method is not applicable for large AI
matrices, because the solution is numerical and not algebraic.
New methods suitable for large sparse matrices representing
neural networks had to be invented, see for example Hinton
[31].

The breakthrough for solving such matrices, and thus
enabling machines for deep learning, happened in 2012 and
involves breaking up those matrices into smaller pieces that
can be managed in parallel. Its impact on humanity and
society might become comparable with the FFT transform of
1977 that made the analog/digital conversion of audio and
video in real-time possible and thus stood at the origins of the
Internet of today.

 : Training Set 𝑨 : Achieved Response

The Implementation

 𝑨𝑥

Convergence Gap 𝑨𝑥

“AI Response”

The Input Vector 𝑥

“Training the Model”

Feature 1
Feature 2
Feature

Feature

C
at

eg
or

y
𝑥

C
at

eg
or

y
𝑥

C
at

eg
or

y
𝑥

C
at

eg
or

y

C
at

eg
or

y
𝑥

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

C
at

eg
or

y

Figure 3. Deep Learning as a Transfer Function

Once the neural net has been sufficiently trained, the
model can be used to predict responses not just for the training
set but for any query submitted to the AI. The convergence
gap in Figure 3, the vector distance between the true response
and the response received, is what we consider the inaccuracy,
or uncertainty, of the trained model.

B. How Arrow Schemes describe DNNs

While it is obvious how an NNN is represented by arrow
schemes, this is not equally clear for ANNs. The reason is that
directed graphs contain loops while looping in ANNs is very
restricted. There exist certain architectures for ANNs that
allow for loops, within narrow limits; however, a Multi-
Layered Perceptron (MLP) as used for LLMs does not [13].

Input D
ata

O
utput D

ata

Input Layer

Output Layer

Hidden Layers

Figure 4. Multi-Layered Perceptron as an DNN

72International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Consequently, a DNN has only a limited ability to emulate
an NNN. In principle, every arrow scheme 𝑎𝑖 → 𝑏 describes
one node in a directed but not loop-free graph. Some arrow
schemes describe algorithmic concepts such as in equation
(12) or as explained in equation (5). Other arrow schemes
simply connect observations 𝑎𝑖 to some response 𝑏. General
knowledge has many facets.

It would be wonderful if we had the ability to look at an
LLM and identify arrow schemes for each node. This would
add full explainability to AI, but unfortunately, this has no
practical value. Neither combinatory terms nor arrow schemes
have normal forms. Very often there is a wide variety of
solutions that are equivalent but widely different; not only
formally but also in effectiveness.

This makes explainability of AI difficult. The lack of
normal forms blocks all attempts to find the one sequence of
arrow schemes that explains what AI is doing. AI engineers
have no other choice than trying to train their DNNs such that
the response meets expectations but without exactly knowing
what happens. It is comforting, however, that they share the
same sad fate with neuroscientists. It is astonishing how long-
forgotten theoretical results such as the lack of a normal form
in combinatory logic yields economically relevant results,
nowadays, in the evolving AI ecosystem. Consult Lachowski
[37] for a survey of the performance challenges that occur
around combinatory logic.

However, there is a famous saying that nothing is too
difficult for the engineer (“Inventor of Anything”). Recent
findings suggest that AI is capable of recognizing chains of
thought that lead to the observation of a specific response [38].
This complements earlier findings that describe CoT as a
prompting technique [17]. Thus, there exist AI architectures
that allow us to identify at least some arrow schemes that
describe what AI does. It is not necessarily the whole truth,
just as it is not when people explain their thoughts to
colleagues. But it should be enough to convince them.

Having a complete sequence of arrow schemes describing
approximatively some DNN would lead to explainable AI that
even is able to get certified for safety-critical applications.
However, the problem with hidden layers remains. While the
QFD method uses identifiable topics for each layer [39], an
DNN has none; they remain hidden and unknown. Thus, much
of the intermediate reasoning also remains hidden. RQ 2
remains at least partially unanswered. If the input data and
response can only be captured by arrow schemes, the
intermediate steps must be guessed based on domain
knowledge, but it is not known exactly what the AI engine did
consider. AI might change behavior and create hazardous
changes to the hidden layers. Low-rank adaptation (LoRA) of
LLMs is an attempt to limit such change [40]. In QFD, on the
contrary, intermediate stages are identifiable based on their
topic; for example, when deploying customer needs, we first
go to user stories and then to testable features.

Another approach to better explainable AI is already well
established: Retrieval-Augmented Generation (RAG) might
avoid hallucinations for LLMs [41] by referencing knowledge
databases and including them into the generation of responses.
RAG impacts the architecture of intelligent systems by
connecting neural networks to knowledge databases [42].

RAG corresponds to grounding arrow schemes using the
choice function; RAG is indispensable for explainable AI.

This is the motivation for looking at AI architecture. In
some way, it must be complemented by functionality that
controls the behavior of AI. With such controls an AI-engine
can perform safety-critical tasks. When certifying an AI-
engine for safety, it is not necessary to convert all nodes of an
DNN into arrow schemes, but we can focus on the overall
result, because these results are not presented plainly but
reviewed by a controlling combinator first. If an AI fails on
such tasks, we do not have a white-box trace of all nodes
including their arrow schemes that have contributed to this
failure, but we are at least as good as with traditional safety-
preserving methods and techniques.

C. The Architecture of Intelligent Systems

Intelligent systems using AI are based upon Controlling
Combinators. Controlling combinators are derived from the
idea behind fixpoint combinators, see equation (5) but refer to
effective factual knowledge or to skills. Examples from
Engeler include controlling combinators for learning
mathematics, or for playing violin [29].

A Controlling Operator 𝐂 acts on a controlled object 𝑋 by
its application 𝐂 • 𝑋. Control means that knowledge needed to
execute a task that is represented by arrow schemes in 𝑋 is
sufficiently well-known and described. This implies the need
for a metric that measures the convergence gap. Note that 𝐂
itself a term of the graph model of combinatory logic and thus
a combinatory algebra term. Then, accomplishing control can
be formulated by (16):

 𝐂 • 𝑋 = 𝑋 (16)

The equation (16) is a theoretical statement, referring to a
potentially infinite loop. For solving practical problems, 𝑋
must be approximated by finite subterms.

Thus, the control problem is solved by a Control Sequence
𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ , a series of finite subterms and the
controlling operator 𝐂 , starting with an initial 𝑋0 and
determined by (17):

 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 , 𝑖 ∈ ℕ (17)

This is called Focusing. The details can be found in
Engeler [29, p. 299]. The controlling operator 𝐂 gathers all
faculties that may help in the solution. The inclusion operator
in equation (17) is explained by the graph model. The control
problem is a repeated process involving substitution, like
finding the fixpoint of a combinator, and thus increasing the
number of arrow schemes, and especially of choice functions,
in the resulting focusing process.

Controlling combinators both collect and use empirical
data for continuous training. Such an intelligent system
incorporates the necessary functional processes for fine-
tuning based on feedback received. For further details, please
refer to the authors' paper on solving the control problem [43].

If the “Skills Definition” in Figure 5 is a training set, the
program scheme represents Deep Learning [44]. In case the
definition is linked to some feedback or hash function as in
DeepSeek, it is Reinforcement Learning [45]. In all these

73International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cases, the controlling combinators use the convergence gap;
the measurable variation between actual behavior and
expectations and requirements. In AI, the convergence gap is
the same as in equation (15), but it is called “Loss Function”.
This term originates from Signal Theory and originally
describes the loss of fidelity in analog sound transmission.
Since the discovery of the Fast-Fourier Transform (FFT)
[34], one understands that A/D-convergence is not a loss, but
an acquisition of enough knowledge to reach a specific
threshold for high-fidelity rendering of music. Deep learning
uses the same principles.

Both come as (large) vectors and thus the Euclidean
distance is easily computable. If learning is continuous, e.g.,
by experiences, by external feedback from a tutor, or by
physical sensors, it is called an Intelligent System.
Expectations and correct answers might also come from an
external knowledge database, allowing the intelligent system
to learn autonomously.

Skills

Definition

Vector

Prompt

Convergence

Gap

Weights

Adjustment

Input D
ata

O
utput D

ata

Input Layer

Output Layer

Hidden Layers

Figure 5. Controlling Combinators for self-learning intelligent systems

The architecture for RAG now extends. Instead of
embedding the reference into response generation [42], and
hoping it works, we set up functional processes for comparing
LLM results with evidence from the knowledge database and
calculating the convergence gap.

The convergence gap of such a system fully explains its
behavior. Under well-defined conditions, such a system can
be certified, even for safety critical tasks.

It is also possible to add more than one AI engine to an
intelligent system, compare results and go forward with the
most reliable one. Insufficient training, biases, and
hallucinations therefore would become detectable.

Figure 6 shows an example of an intelligent system design
that relies on two separate visual recognition engines
analyzing the same scenario, one through a camera and the
other through a Lidar. Such architecture requires that the
reliability of each AI engine be known, under certain
conditions, such as weather. In this way, the intelligent system
can explain why it selected one or the other response.

If both AI engines provide an identical answer, this
increases the overall reliability of the intelligent system's
response significantly.

The graph model delivers the metrics for defining
controlling combinators by inclusion, and it also allows us to
combine knowledge and thus reliability correctly, by equation
(9). This is discussed in the following section.

Camera LidarWeather
Serv ice

Functional
Processes

judging
Reliability

Object
Classification

Figure 6. An Intelligent System that selects the most reliable AI response

Figure 6 shows a simple example of an intelligent system
that combines two different AI engines that are used to
visually recognize identical objects. Reliability might depend
upon illumination and weather. Figure 5 and Figure 6 both
show the importance of calculating reliability when operating
intelligent systems.

V. DESIGNING INTELLIGENT SYSTEMS

Intelligent systems rely on the capability of measuring the
quality of knowledge [46]. To this purpose, it is necessary to
consider how software can be measured. This is not so easy,
as software is not a tangible entity. The standard solution to
this measurement challenge is to measure the functionality of
software. As always in measurement theory, this is best
achieved by constructing a model for the functionality and
measuring the relevant model elements.

A. The COSMIC Model for Functionality

The COSMIC standard identifies layers. The layers’
boundaries detect the flow of data moving from one object
into another. Every Data Movement transports a Data Group,
identifying the data moved from one object to another.

Data groups hold the information needed to assess privacy
protection needs, or safety risk exposure, of data. They also
transport knowledge from one Object of Interest into another.
In certain cases, the data groups contain enough information
to allow for generating code out of a COSMIC model [47].

The constituent element of the COSMIC model is a
Functional Process. A functional process is an object together
with a set of data movements, classified as either Read or
Write, or Entry or eXit. These data movements connect the
functional process with Persistent Data Stores, or Devices
respectively Other Applications, e.g., an AI engine. They

74International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

represent the Functional User Requirements (FUR) for the
software being measured [48, p. 42].

Figure 7 is a sample Data Movement Maps according to
ISO/IEC 19761 COSMIC. The connectors represent Data
Movements. The data groups that they convey can be viewed
as a single data set. Each data group should occur in a model
only once. Its uniqueness is indicated by color-filled trapezes
at their origin. Another move of the same data group between
the same objects within a COSMIC functional process lets the
trapeze blank.

Objects of Interest: For data movement maps, we draw
four types of lifelines:

• Functional Processes: Objects that perform one or several

functional processes in the COSMIC sense.

• Persistent Data Store: Objects that persistently hold data.

• Devices: A device can be a system user or anything providing

or consuming data. They send (Entry) or receive (eXit) data

groups from or to functional processes.

• Other Applications: Other applications use functional

processes the same way as devices do; however, they typically

represent other software or systems that can be modeled the

same way using data movement maps.

Device Data Log
Functional

Process
Sensor Actuator AI Engine

1.// Move some Data

2.// Prompt AI Engine

3.// Response from AI Engine

4.// Move Data to Actuator

5.// Log Data

Trigger

Figure 7. Sample Data Movement Map

The lifeline for functional processes represents, for
example, a Virtual Machine (VM) or an Electronic Control
Unit (ECU) that performs various calculations and
implements several functional processes as defined in the
COSMIC manual [48, p. 42]. Triggers usually indicate the
starting data movement of one COSMIC functional process.
Thus, one functional process lifeline can have several triggers.
Lifelines representing persistent data stores can provide data
services for more than one functional process. LLMs, or other
AI engines appear as Another Application in the data
movement maps.

B. Assigning Reliability Scores to Objects of Interest

A typical data movement map for an intelligent system
consists of devices such as sensors, actuators, and persistent
data sources, collecting data and delivering them to a
functional process that prepares them as input to a suitable AI
engine such as a neural network, a specific knowledge base,
or some search engine. Another functional process will then
work with its response and execute recommendations using a
Generative Pretrained Translator (GPT) to communicate the
response to a user through an output device. This is necessary
because all knowledge in intelligent systems is represented by
token vectors.

However, neither sensors, actuators nor an AI tool can be
trusted 100%. Thus, data groups need to have special attribute
for this: Reliability.

If data is persistently stored, it retains its reliability. All
other data has some degree of reliability that is either known
from physical devices, by assessing an AI tool with a test set,
or by the functional processes the data groups go through.
Reliability originates from devices or other applications.
Although reliability is measured commonly by percentage
numbers, it is a standard deviation, not a linear reliability
average [49].

C. Combining Reliabilities with Regard to FUR

The data movement map describes how data groups move
through the software. The functional processes combine these
reliabilities by combining uncertainties associated with
knowledge-based actions. In our example, the reliability of the
data groups originating from the functional process in Figure
7 is the combination of the reliability of all incoming data. The
expected overall reliability of the intelligent system is
calculated from the uncertainty expectations of the output of
the functional process.

The way data is combined in functional processes depends
on the FUR that implements them. This requires an
understanding of the discipline of requirements engineering
for knowledge-processing systems [50]. As explained before,
requirements address knowledge with distinct levels of
certainty: While observations are usually not completely
certain and learning concepts will never be fully reliable, there
are rules, the so-called Lambda Concepts, that work in a
mechanical way, preserving reliability. It is not a promising
idea to implement Lambda concepts by arrow schemes. There
exist much more efficient tools: conventional programming,
that in turn also have a model expressible as arrow schemes.
Typically, in intelligent systems Lambda concepts are
implemented as programs according to rules, mostly in Python
[51].

Depending on the FUR, functional processes can also
reduce uncertainty, for instance when it selects the most
reliable response between various kinds of AI engines as
shown in Figure 6. The diverse ways of combining reliability
are discussed in more detail in [46].

D. Propagating Reliability through Functional Processes

Lambda concepts might extract one source and discard the
second or do substitution. Such operations might keep
uncertainty unchanged by a functional process. Functional
processes that implement Lambda concepts combine
according to the 𝑀𝑎𝑥 principle, which preserves the
maximum reliability of the different input data groups and
propagates the maximum degree of knowledge reliability,
while the normal combination of different uncertainties
usually increases uncertainty and is called the 𝐶𝑜 𝑏
principle. Since subsequent uncertainties can correct the initial
uncertainty of data groups from the first source, the reliability
is expected to decrease only according to the expected value
obtained with the statistical sensitivity analysis, which means
that the reliability decreases at a lower rate than with naive
multiplication.

75International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let 𝑢𝑖 be the uncertainty of the 𝑖th input in a functional
process with 𝑛 input data groups. The uncertainty of the output
of this functional process is:

 𝑢𝐶𝑜𝑚𝑏 = √∑𝑢𝑖
2

𝑖=1

 (18)

This is the Euclidean distance between the uncertainties of
the input data groups. Thus, the reliability propagation follows
the same statistical rules as the profiles in Six Sigma transfer
functions [33, p. 34].

1. Uncertainty

Radius

Certainty

Uncertainties

2. Uncertainty

Radius

Figure 8. Combination of Uncertainties originating from AI input

The Reliability of a functional process with 𝑛 input data
movements carrying data groups with uncertainties
𝑢1, 𝑢2, … , 𝑢 is defined as:

 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡 (𝑢1, 𝑢2, … , 𝑢) = 𝑢𝐶𝑜𝑚𝑏 (19)

With graphical visualization (Figure 8) we aim to explain
the statistical methods used without going into formalisms.
The figure proofs equation (19) in the special case of three
dimensions (𝑛 =).

Assume there are some uncertainties originating from the
first input source. The response range in the 𝑛-dimensional
space of all responses is produced by some functional process.
By combining this with the uncertainty originating from the
second input source, it is unknown where the second
uncertainty builds over the previous partial response.

Thus, the bundle of outcomes with an encompassing
second uncertainty radius representing the expected
uncertainty of a functional process with two inputs combined
can correct part of the first. Expected uncertainties thus must
be combined by using equation (19).

Reliability of a data group might change when originating
from different functional processes. Also, a functional process
might produce more than one data group as an eXit or Write
data movement with different reliabilities, dependent from the
data group.

E. Making an LLM Reliable

Not if we combine with a source of information with
known reliability. We should set up a functional process
connecting The LLM with some factual repository such as
Wolfram|Alpha, or whatever is suitable for its topics. Best we
feed the facts to the LLM and let the LLM apply its pretrained
conversational capabilities as a transformer to transfer factual
knowledge into arguments and explanations. Then the
reliability combines from the reliability of the facts with the
reliability of the LLM as a transformer and we can chain it
with a Lambda concept that checks whether the LLM has kept
well to the original facts. Thus, the FUR we have against the
LLM is that we expect it to reproduce available facts with a
known reliability. Here we assume 95%. As a further
assumption, Wolfram|Alpha has been measured to be 98%
reliable in the chosen context.

In Figure 9, there are two functional processes, one
feeding the facts to the LLM and one comparing results. The
persistent store serves for logging results, learning, and for
communication between the two functional processes. The
data movement map explains how the data groups are moved
from one object to another.

User Wolfram|Alpha Furnish Query LLM Compare Result Answer Query

1.// Query

Query

2.// Store Query

3.// Get Topic

4.// Topic

5.// Get Facts

6.// Store Facts

7.// Ask Query

8.// Feed Knowledge

9.// Generated AI

Response

10.// Get facts

11.// Controlled Response

12.// Remember Response

Figure 9. Data Movement Map for Combining LLM with Wolfram|Alpha

The Compare Result functional process in Figure 8
combines uncertainties according to the statistical methods
explained in equations (18) and (19) as follows:

 √ %2 + %2 = . % (20)

With regard to equation (19), this yields a reliability of
9 .6% for the query functionality represented in Figure 9.
Figure 9 and the equation (20) have been created and
computed using an Excel-based tool from the authors, which
is available to interested reader [33].

F. The Future of AI: Intelligent Systems

The current hype with AI is suffering from the same
problem earlier attempts had: QFD, Expert Systems, and
many other machine-based reasoning and decision tools could
not explain how reliable they are. You could believe them or
not; and sometimes, the non-believers proved to be true.

76International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The new ability to build LLMs with recognizable CoT still
does not answer the question, how reliable they are. Taking
the graph model as an explanation of reliability, recognizing
that knowledge and algorithmic processing are from the same
source, namely the graph model, shows a way how to build
intelligent systems with known reliability. It makes AI-based
decisions and process control suitable for legal assessment and
technical certification.

It is obvious that the reliability of a data group might
change during operations of an intelligent system. Functional
processes can calculate reliability, keep a log trace of it, and
use it to guide processing through all programming steps in
the data movement map.

In theory, intelligent systems consist of a controlling
combinator, in most cases realized by implementing some
functional processes, and an ANN part, typically
implementing an LLM that is trained on the specific
knowledge domain. This reflects equations (16) and (17).
Obviously, both parts, the controlling combinator and the
knowledge acquisition combinator. Both can be described as
arrow schemes in the graph model, but they are implemented
differently, in the most effective way. It is indeed not
necessary to train an LLM to do reasoning, because a
controlling combinator implementing functional processes in
Python are much more effective. Explaining, maintaining, and
improving such a controlling combinator is much easier in
Python (or any other suitable programming environment) than
training an LLM. However, it is possible to train an LLM in
logical reasoning, but this is not needed. It is much more
straightforward, and way more effective, to use Engeler’s
controlling combinator as a design paradigm for intelligent
systems.

VI. CONCLUSION AND FUTURE WORK

Like humans, the result of any ANN is as unreliable as any
result from an uneducated NNN. Without logical foundations,
logical reasoning, and feedback from the environment,
humans are also just hallucinating.

Intelligent systems can do better, except getting feedback
and learning from it. The key is to combine combinators
representing neural networks with combinators doing logical
derivations. This is primarily a design principle, but secondly
also an operating paradigm.

In this paper, we have provided evidence for:

RQ 1: DNNs can be represented in the graph model
of combinatory logic as well as any other
neural network, including the brain or QFD;

RQ 2: CoT does not relate to a defined and unique
sequence of arrow schemes because of
missing normal form, but can be explained
using other arrow schemes, such as QFD;

RQ 3: Intelligent systems explain how AI behavior
can be controlled.

The graph model of combinatorial logic does not provide
an alternative for implementing AI, but it is an excellent guide
and theoretical foundation for what can be done with AI, for

explaining AI, but also for learning where AI meets its limits.
The current step forward is collecting several designs of
intelligent systems with controlling combinators, finding
methods for measuring reliability and defining suitable
convergence gaps. This work in progress of the authors is
shared with interested parties; the authors have no institution
or sponsor to help with this [52].

It is possible that ANNs can learn logical reasoning based
on facts. However, combining AI engines with feedback loops
originating from reality requires much less effort. Testing AI
results for feasibility and physical soundness using traditional
programming methods creates trustworthiness and adds
credibility and explainability to AI results.

It remains the idea that AI could be explained by searching
for arrow schemes that provide the same responses. Since
combinatory logic does not have normal forms, this seems
feasible. It could be used as a validation process for AI.
However, for now, this is a future research project.

ACKNOWLEDGMENT

The authors would like to thank Lab42 in Davos for asking
excellent questions and promoting the ARC Challenge [10],
now ARC Prize [53], and to the anonymous reviewers who
helped to improve this paper. Special thanks to Erwin Engeler
for his suggestions and availability for valuable discussions
with his former student.

REFERENCES

[1] T. M. Fehlmann and E. Kranich, "The Graph Model of Combinatory
Logic as a Model for Explainability," in ThinkMind Digital Library
https://www.thinkmind.org, Valencia, Spain, Proc. Int. Conf. Systems
Explainability (EXPLAINABILITY 2024), pp. 40-46, 2024..

[2] K. Gödel, "Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I," Monatshefte für
Mathematik und Physik, vol. 38, no. 1, pp. 173-198, 1931.

[3] A. Turing, "On computable numbers, with an application to the
Entscheidungsproblem," Proceedings of the London Mathematical
Society, vol. 42, no. 2, pp. 230-265, 1937.

[4] P. Raatikainen, "Gödel’s Incompleteness Theorems," in The Stanford
Encyclopedia of Philosophy, E. N. Zalta, Ed., 2020.

[5] H. Curry and R. Feys, Combinatory Logic, Vol. I, Amsterdam: North-
Holland, 1958.

[6] A. Church, "The Calculi Of Lambda Conversion," Annals Of
Mathematical Studies 6, 1941.

[7] E. Engeler, "Algebras and Combinators," Algebra Universalis, vol.
13, pp. 389-392, 1981.

[8] F. Rosenblatt, "The Perceptron: A Perceiving and Recognizing
Automaton (Project PARA)," Cornell Aeronautical Laboratory, Inc.,
Buffalo, 1957.

[9] M. Minsky and S. Papert, Perceptrons: An Introduction to
Computational Geometry, 2nd edition with corrections ed., Cambridge,
MA: The MIT Press, 1972.

[10] F. Chollet, "On the Measure of Intelligence," arXiv:1911.01547
[cs.AI], Cornell University, Ithaca, NY, 2019.

[11] K. Wijekumar, B. J. Meyer, and P. Lei, "High-fidelity implementation
of web-based intelligent tutoring system improves fourth and fifth
graders content area reading comprehension," Computers &
Education, vol. 68, pp. 366-379, 2013.

77International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] A. Peterson, "Literacy is More than Just Reading and Writing,"
National Council of Teachers of English, 23 March 2020. [Online].
Available: https://ncte.org/blog/2020/03/literacy-just-reading-
writing/. [Accessed 14 May 2025].

[13] M. v. Gerven and S. Bohte, "Artificial Neural Networks as Models of
Neural Information Processing," in Frontiers in Computational
Neuroscience, Lausanne, 2017.

[14] IBM TechXchange Community, "What is explainable AI?," IBM
Reserach, Available at: https://www.ibm.com/topics/explainable-ai.
[Accessed 15 May 2025].

[15] F. Dallanoce, "Explainable AI: A Comprehensive Review of the Main
Methods," Medium.com, San Francisco, California, 2022.

[16] M. R. Morris, J. Sohl-Dickstein, N. Fiedel, T. Warkentin, and A.
Dafoe, "Levels of AGI for Operationalizing Progress on the Path to
AGI," arXiv:2311.02462v4 [cs.AI], Cornell University, 2024.

[17] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, "Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models," arXiv:2201.11903v6 [cs.CL], Cornell
University, 2023.

[18] S. Xu, W. Xie, L. Zhao, and P. He, "Chain of Draft: Thinking Faster
by Writing Less," arXiv:2502.18600v2, Cornell University, Ithaca,
NY, 2025.

[19] H. Curry, J. Hindley, and J. Seldin, Combinatory Logic, Vol. II,
Amsterdam: North-Holland, 1972.

[20] T. M. Fehlmann and E. Kranich, "Intuitionism and Computer Science
– Why Computer Scientists do not Like the Axiom of Choice," Athens
Journal of Sciences, vol. 7, no. 3, pp. 143-158, 2020.

[21] T. M. Fehlmann and E. Kranich, "A General Model for Representing
Knowledge - Intelligent Systems Using Concepts," Athens Journal of
Sciences, vol. 11, pp. 1-18, 2024.

[22] H. Barendregt and E. Barendsen, Introduction to Lambda Calculus,
Nijmegen: University Nijmegen, 2000.

[23] H. P. Barendregt, "The Type-Free Lambda-Calculus," in Handbook of
Math. Logic, vol. 90, J. Barwise, Ed., Amsterdam, North Holland,
1977, pp. 1091 -1132.

[24] T. M. Fehlmann and E. Kranich, "The Fixpoint Combinator in
Combinatory Logic - A Step towards Autonomous Real-time Testing
of Software?," Athens Journal of Sciences, vol. 9, no. 1, pp. 47-64,
2022.

[25] E. Zachos, "Kombinatorische Logik und S-Terme," ETH Dissertation
6214, Zurich, 1978.

[26] Lisp-Community, "Common Lisp," 2015. [Online]. Available:
https://lisp-lang.org/. [Accessed 15 May 2025].

[27] T. M. Fehlmann, Autonomous Real-time Testing – Testing Artificial
Intelligence and Other Complex Systems, Berlin, Germany: Logos
Press, 2020.

[28] V. Zhong, J. Mu, L. Zettlemoyer, E. Grefenstette, and T. Rocktäschel,
"Improving Policy Learning via Language Dynamics Distillation,"
arXiv:2210.00066v1, Cornell University, 2022.

[29] E. Engeler, "Neural algebra on "how does the brain think?","
Theoretical Computer Science, vol. 777, pp. 296-307, 2019.

[30] P. Barceló, J. Pérez, and J. Marinković, "On the Turing Completeness
of Modern Neural Network Architectures," arXiv: 1901.03429v1
[cs.LG], Cornell University, Ithaca, NY, 2019.

[31] G. Hinton, "A Practical Guide to Training Restricted Boltzmann
Machines," in Neural Networks: Tricks of the Trade, Springer Lecture
Notes in Computer Science, vol 7700. Berlin, Heidelberg, 2012, pp.
599-619.

[32] S. Wolfram, What is ChatGPT doing ... and Why Does it Work?,
Champaign, IL: Wolfram Media, Inc., 2023.

[33] T. M. Fehlmann, Managing Complexity – Uncover the Mysteries with
Six Sigma Transfer Functions, Berlin, Germany: Logos Press, 2016.

[34] J. W. Cooley and J. W. Tukey, "An algorithm for the machine
calculation of complex Fourier series," Mathematics of Computation,
vol. 19, pp. 297-301, 17 August 1964.

[35] T. M. Fehlmann and E. Kranich, "The World Formula and the
Theorem of Perron-Frobenius: How to Solve (Almost All) Problems
of the World," Athens Journal of Sciences, vol. 10, no. 2, pp. 95-110,
2023.

[36] T. L. Saaty and J. M. Alexander, Conflict Resolution: The Analytic
Hierarchy Process, New York, NY: Praeger, Santa Barbara, CA, 1989.

[37] Ł. Lachowski, "On the Complexity of the Standard Translation of
Lambda Calculus into Combinatory Logic," Reports on Mathematical
Logic, vol. 53, pp. 19-42, 2018.

[38] Z. Jin and W. Lu, "Self-Harmonized Chain of Thought,"
arXiv:2409.04057v1 [cs.CL], Cornell University, 2024.

[39] T. M. Fehlmann and E. Kranich, "How to Explain Artificial
Intelligence to Humans - Learning from Quality Function
Deployment," in EuroSPI, Munich, 2024.

[40] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, "LoRA: Low-Rank Adaptation of Large Language
Models," arXiv:2106.09685v2 [cs.CL], Cornell University, Ithaca,
NY, 2021.

[41] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M.
Wang, and H. Wang, "Retrieval-Augmented Generation for Large
Language Models: A Survey," arXiv:2312.10997v5 [cs.CL] , Cornell
University, 2024.

[42] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H.
Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
"Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks," arXiv:2005.11401v4 [cs.CL], Cornell University, 2021.

[43] T. M. Fehlmann and E. Kranich, "Making Artificial Intelligence
Intelligent - Solving the Control Problem for Artificial Neural
Networks by Empirical Methods," in Human Systems Engineering
and Design (IHSED2024): Future Trends and Applications. AHFE
(2024) International Conference, Split, 2024.

[44] M. Ganaie, M. Hu, A. Malik, M. Tanveer and P. Suganthan,
"Ensemble deep learning: A review," arXiv:2104.02395 [cs.LG],
Cornell University, Ithaca, NY, 2022.

[45] DeepSeek-AI, "DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning," arXiv:2501.12948v1, Cornell
University, Ithaca, NY, 2025.

[46] T. M. Fehlmann and E. Kranich, "Measuring the Quality of Intelligent
Systems," in Intelligent Systems and Applications, vol. 1066, K. Arai,
Ed., IntelliSys 2024, Amsterdam, Lecture Notes in Networks and
Systems, Springer, Cham, 2024, pp. 438-455.

[47] A. Oriou, E. Bronca, B. Bouzid, O. Guetta, and K. Guillard, "Manage
the automotive embedded software development with automation of
COSMIC," in IWSM Mensura 2014, Rotterdam, 2014.

[48] COSMIC Measurement Practices Committee, "The COSMIC
Functional Size Measurement Method – Version 4.0.2 – Measurement
Manual," The COSMIC Consortium, Montréal, 2017.

[49] L. S. Jutte, K. L. Knight, B. C. Long, J. R. Hawkins, S. S. Schulthies,
and E. B. Dalley, "The Uncertainty (Validity and Reliability) of Three
Electrothermometers in Therapeutic Modality Research," Journal of
Athletic Training, vol. 40, no. 3, pp. 207-210, 2005.

[50] T. M. Fehlmann and E. Kranich, Requirements Engineering for
Cyber-Physical Products, Systems, Software and Services Process
Improvement. EuroSPI 2023 ed., Vols. Systems, Software and
Services Process Improvement. EuroSPI 2023, M. Yilmaz, C. P. A.
Riel and R. Messnarz, Eds., Grenoble: Communications in Computer
and Information Science, Springer, Cham, 2023.

[51] S. F. Python, "Python Setup and Usage," 2001-2024. [Online].
Available: https://docs.python.org/3/using/index.html. [Accessed 27
April 2024].

[52] T. M. Fehlmann, "Intelligent Systems - A Recollection," Euro Project
Office AG, 9 May 2024. [Online]. Available:
https://web.tresorit.com/l/AXX78#FaBkGqfY2cF_JsVmX70_ng.

[53] Lab 42, "ARC Price," Mike Knoop, Davos and San Francisco, 2024.

78International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

