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Abstract—This work presents physically based simulation of
energy distribution and substance composition for dynamic fluid
transport problems. The main addressed problem is the stability
of the algorithms for solving the resulting systems of differential-
algebraic equations. The challenges encountered include system
degeneration, the appearance of stochastic degrees of freedom,
jumps in thermodynamic functions during phase transitions,
and proper scaling of equations. The proposed solution is the
identification and optimal configuration of solver parameters,
strongly affecting the stability and speed of the simulation.
Such parameters include regularizing and weighting constants,
dimensioning of dynamic terms and startup procedure, the size of
the integration step and their total number. The main output of
the paper is the optimal choice of these parameters that allows to
speed up significantly the dynamic simulation of fluid transport
for realistically large network scenarios.

Keywords-simulation and modeling; mathematical and numeri-
cal algorithms and methods; mixing flows; pipeline fluid transport;
stability.

I. INTRODUCTION

This work extends the results of our conference paper [1],
which considered modeling of mixing flows in dynamic fluid
transport simulation. The extension includes a more precise
implementation of heaters and coolers, as well as a detailed
stability analysis of dynamic simulation with mixing flows.

The contributions of the study: this paper continues a
series of our works on modeling of fluid transport networks.
Previous works presented stationary [2] and dynamic [3]
modeling of fluid transport networks limited to a single chem-
ical composition and constant temperature. In addition, some
aspects of stationary modeling of mixing fluids of different
compositions and/or temperatures were considered in [4]. In
this paper, flow mixing modeling will be considered in more
detail, with special emphasis on the thermodynamic layer
of the model. In particular, dynamic mixing equations and
algorithms for their solving will be presented. The developed
approach is implemented in our Multi-phYsics Network Sim-
ulator (MYNTS) [5], which is used to solve actual transport

scenarios for natural gas [6], hydrogen [7], carbon dioxide [8],
water [9] and other fluids.

State-of-the-art: fluid transport modeling is based on the
conservation of mass flows in the form of dynamic Kirchhoff
equations; Darcy-Weisbach pipeline pressure drop formula,
with empirical friction term by Nikuradse [11] and Hofer [12];
equation of state computation by simplified analytical models
by Papay [13], Peng-Robinson [14] and Soave-Redlich-Kwong
[15] or more complex ISO-norm models AGA8-DC92 [16]
and GERG2008 [17]–[19].

A number of previous studies [20]–[26] considered mod-
eling of pipeline fluid transport, both at the universal mathe-
matical level [20], and in various application scenarios. Such
scenarios include transport of natural gas [21] [23], steam
transport in oil refineries [22], carbon dioxide transport [24]–
[26]. All these works are characterized by the presentation
of transport equations as laws of conservation of mass, mo-
mentum and energy. In the presence of various substances,
conservation of molar flows is added, while the general
relations of thermodynamics of open systems [27] regulate
the relations of energy and temperature.

The main problem: a common drawback of existing
solutions is the closed nature of modeling within blackbox
systems. If it is necessary to change the modeling, modify
or introduce new equations and variables, the system must
be reprogrammed. In addition, existing systems experience
difficulties in solving large realistic network problems in
the presence of numerical instabilities. The novelty of our
approach consists in transparent modeling, where the user
can freely change the equations and experiment with different
forms of representing physical processes in fluid transport
networks. We also pay special attention to the stability and
performance of solution algorithms, which is especially im-
portant for realistic scenarios with a large number of elements.

The aim of this work: to extend transparent and numer-
ically stable modeling to mixing flows present in realistic
fluid transport scenarios. In our early works [2], [4]–[10] an
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implementation for a stationary solver was considered. The
main strategy for ensuring stability was a gradual sophisti-
cation of the modeling, from a pure pipe system with linear
equations for control elements, constant temperature and fluid
composition, to a full problem with nonlinear control elements
and physical distribution of temperature and fluid composition.
At each step, the solution was used as a starting point for
the next step. The disadvantage of this approach is that
simplified modeling does not always yield a physical solution
and sometimes gives a bad starting point for the next iterations.
Also, theoretically, direct solution of stationary equations does
not always yield a limit point of a stable attractive type, it
can also yield a repulsive or saddle point. Dynamic modeling
automatically finds stationary points of the attracting type,
and can also have richer asymptotics, including runaways,
limit cycles and random behavior. All this means that the
dynamic solver is advantageous, also for solving stationary
problems. The key point of our research is to understand
how to use the dynamic solver most optimally, in a stable
operation mode. Previously [3] we studied only the pressure-
massflow subsystem, with constant chemical composition and
temperature. Now we study the stability of the dynamic solver
for the full system, including mixing flows and temperature
modeling.

In this work, Section II presents the modeling of mix-
ing flows incorporating molar and temperature relationships.
Section III describes the numerical experiments performed
using the developed methods. Section IV considers extended
modeling of heaters and coolers. In Section V, extended
stability analysis of the full dynamical solver is performed.
Section VI summarizes the main results and conclusions of
the work.

II. MODELING OF MIXING FLOWS

This section describes the details of modeling of mixing
flows, consisting of modeling fluid molar composition and
temperature distribution.

A. Molar fluid composition

A fluid transport network is described by a directed graph
consisting of nodes and edges connecting them. The graph is
described by an incidence matrix Ine, in which each edge e
has nonzero entries for the nodes n that this edge connects;
−1 for the node that edge comes from, +1 for the node that
edge enters. Mixing fluid flows are described by following
equations

Vn∂ρn/∂t =
∑

e Ineme, (1)
Vn∂(ρnµ

−1
n )/∂t =

∑
e Inemeµ

−1
e , (2)

Vn∂(ρnµ
−1
n xn)/∂t =

∑
e Inemeµ

−1
e xe, (3)

where Vn is the volume assigned to the node; ρn represents
the mass density at the node; t denotes time; the sum applies
to all edges adjacent to the node; me is the mass flow in an
edge, considered positive if the direction of flow coincides
with the direction of the edge, and negative otherwise; µn/e

is the molar mass assigned to both the node and the edge;
xn/e are the mole fractions of the components that make up
the fluid.

Physically, the above equations describe various conserva-
tion laws. In particular, (1) is the dynamic Kirchhoff equation
and describes the conservation of mass. Here, Vnρn on the
left side, with Vn representing a time-independent volume,
describes the mass of fluid in the node. The sum on the right
side accounts for the mass flow into the node, minus the flow
out. Equation (2) describes the conservation of the total molar
amount of a fluid, where Vnρnµ

−1
n represents the number of

moles in a node, and the sum on the right side is the total molar
flow in the node. Finally, (3) describes the molar conservation
for each component, Vnρnµ

−1
n xn represents the number of

moles of a given component in a node, and the sum is the
molar flow of that component. Equations (1) and (2) are valid
in the absence of chemical reactions between the components
of the fluid.

The x-vector may also include other quantities to which
linear molar mixing applies, such as the molar heat value Hm,
and linear approximations (Tc, Pc) used in certain equations
of state for critical temperature and critical pressure, among
others. Alternatively, such quantities can be calculated in post-
processing as a linear combination over the molar composition.
Explicit inclusion in the mixing equation allows these quan-
tities to be calculated even when the determination of molar
composition is disabled.

The conservation equations of type (1)–(3) are standard, can
be found in a textbook, e.g., eq. (4.1) in [27]. Now we will
rewrite them in a more convenient form, resolved with respect
to derivatives:

Vnρn∂µ
−1
n /∂t =

∑′
e Ineme(µ

−1
e − µ−1

n ), (4)
Vnρnµ

−1
n ∂xn/∂t =

∑′
e Inemeµ

−1
e (xe − xn), (5)∑′

e =
∑

e,Ineme>0, (6)

where the sum is taken over the flows incoming to the node.
To prove it, it is necessary to perform the differentiation in (2)
and take into account (1), which will result in (4), in which
the sums are taken over all flows, incoming and outgoing.
Further, if one takes into account that µ−1

e for an outgoing
flow is equal to µ−1

n at a node, the sum can be reduced to the
incoming flows. The proof for (5) is similar. The condition of
equality of mixed quantities in the node and in the outgoing
flow can also be used to reduce the total number of variables.
Namely, one can completely eliminate the variables in the edge
e, replacing them with the values in the upstream node n′,
µ−1
e → µ−1

n′ , xe → xn′ . When time derivatives are set to
zero, these equations are reduced to stationary formula (see
eq. (13) in [4]).

Boundary conditions: µ = µset, x = xset are fixed to the
specified values in the network entry nodes. The system of (4)–
(6) and boundary conditions is closed. Its stationary part on the
right side of the equations is non-degenerate if all nodes are
connected to at least one entry node in the upstream direction.
A complete dynamical system can be non-degenerate even if
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this rule is violated, for example, if all flows are zero. In
this case, the dynamic term ensures the preservation of the
transported quantities, keeping them at the starting values.

Startup algorithm: at entry nodes, the transported values
are initialized to set values to satisfy the boundary conditions.
In all other nodes, values are initialized to default values,
which are either specified by the user or averaged over all
set values. As a part of the general procedure [3], the initial
pressures are set to a constant, the initial flows are set to zero
and all fluid composition-dependent quantities, such as density
ρ, are calculated from the appropriate equations of state.
This procedure provides a smooth startup, with all equations
initially satisfied. Then, fluid starts to propagate from entries to
the neighbor nodes with growing massflow, replacing default
values with current ones.

Vn-definition: in accordance with the discretization
scheme formulated in [3], each pipe contributes half of its
volume to the end nodes, and all other elements contribute a
nominally specified volume V0.

Linearity of the system: with known m-flows, the µ−1-
subsystem (4) is linear; also, for known m and µ−1, the
x-subsystem (5) is linear. This property is convenient for
controlling convergence, since each linear subsystem in the
non-degenerate case is solvable in one iteration. The following
algorithm is used to integrate the equations.

Algorithm (simulation workflow):

init;
repeat{ mumix; xmix; Tmix; PM; t+=dt; }

Here, init represents the initialization of all variables
according to the startup algorithm described above. mumix
is the solution of the µ−1-subsystem, xmix is the solution
of the x-subsystem, Tmix is the solution of the temperature
subsystem formulated below, and PM is the solution of the
pressure-massflow subsystem as formulated in [3]. In this way,
it is possible not only to find the dynamic evolution of the
system, but also to determine the stationary solution. For the
last goal, it is necessary to integrate the system with as large
steps as possible until stationarity is achieved. The most stable
method suitable for this purpose is time discretization of the
implicit Euler type: ∂v/∂t → (v− vprev)/dt, for all dynamic
variables v, where vprev is the value from the previous step,
dt is the integration step. For a detailed study of dynamic
processes, more sophisticated finite-difference schemes [28]
[29] can be used.

B. Temperature modeling

The starting point is the law of conservation of energy for
open systems (see, for example, eq. (4.14) in [27]):

Vn∂(ρnµ
−1
n Un)/∂t =

∑
e Inemeµ

−1
e He, (7)

where U is the molar internal energy, H = U + Pµ/ρ is the
molar enthalpy, and P is the pressure. The equation is similar
to the conditions of molar mixing in (3). The difference is that
the derivative of the nodal internal energy is on the left side,
and the total enthalpy flow in the node is on the right side.

Physically, with each flow, internal energy is introduced into
the node, as well as the work of the fluid against the pressure
in the node. This work can be combined with internal energy,
giving enthalpy on the right side of the equation. On the left
side, under the derivative, there is still nodal internal energy. In
general case, other terms can be present in the conservation
law, vanishing for simple mixing in the node. In particular,
no additional work is performed in the node, and due to the
assumed absolute thermal insulation of the node, heat transfer
becomes zero. Possible processes with additional work and
heat transfer are assigned to special edge elements and are
described below.

We rewrite equation (7) as follows:

Vnρnµ
−1
n ∂Hn/∂t− Vn∂Pn/∂t =

=
∑′

e Inemeµ
−1
e (He −Hn), (8)

the derivation is similar to (5), also here the nodal internal
energy is re-expressed in terms of enthalpy and pressure in
the node.

Boundary conditions: H = Hset, enthalpy is fixed to the
specified value in entry nodes. Alternatively, one can use the
condition T = Tset, which fixes the temperature at the entry
nodes.

In addition, according to eq. (4.14) in [27], gravitational
and kinetic terms can be added to the internal energy and
enthalpy: H → H+µgh+µv2/2, where g is the acceleration
of free fall, h is the height, and v is the speed of translational
motion of the fluid. To calculate the kinetic term, one needs
to know the diameter, which is not available for all types
of elements. For example, a compressor is a very complex
structure to be described by a single diameter. Also, at nodes
where many edges join, complex internal motion occurs,
which does not coincide with the simple translational motion
described by a kinetic term with a single diameter. On the other
hand, for the transport of gases, the kinetic term is usually
significantly less than the internal energy, for translational
velocities significantly lower than the speed of sound. In our
simulation, we made it possible to optionally turn off the
kinetic term in the temperature equations.

In (8), Hn represents the nodal value, and He represents the
edge downstream value. The difference from x-mixing is that
here the edge downstream value in the general case cannot be
replaced by the upstream nodal value, since there are elements
that change the enthalpy value. The system cannot be reduced
to a purely nodal one; in addition, the system also includes
the temperature T of the fluid.

HT -constraint:

H = Hmod(P, T, x), (9)
H = Hmod(P, Tprev, x) + cp(T − Tprev), (10)

where Hmod is the thermodynamic model for enthalpy, cp =
∂Hmod/∂T is the molar heat capacity calculated at point
(P, Tprev, x). Equations (9)–(10) and (H,T ) variables are
introduced per node and edge.
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The first equation relates enthalpy and temperature accord-
ing to the thermodynamic model used. We use GERG2008
[17]–[19] as a concrete implementation of such relation. For
software-technical reasons, it cannot be used directly; its call
once per internal iteration produces too many total calls of
GERG2008 module, resulting in significant slowdown. In ad-
dition, the equation is nonlinear, violating the desired linearity
property of the Tmix subsystem. The second equation is a
linearization of the first, it can be used in internal iterations,
with a less frequent update of the coefficients. When using
the workflow formulated above, (m,P, ρ) in all mix phases
are considered as fixed parameters, updated in PM-phase. For
Hmod and cp, updates occur immediately before the start of
the Tmix phase.

Default element equation:

He = me > 0?Hn1 : Hn2 (11)

formulates isenthalpic process [27], where the edge enthalpy
is taken from the upstream node, similar to x-mixing. In this
and further equations, the edge e goes from node n1 to node
n2, conditions are written in C-notation: x?y:z = if(x) then y;
else z. This model is applied to the most of element types, in
particular, to valves, regulators, resistors and shortcuts; while
the exceptional types are listed below.

Pipe equation:

(me > 0?(Hn1 −He)µ
−1
n1 : (Hn2 −He)µ

−1
n2 )|me| =

= πDLcht(Te − Tsoil), (12)

the change of enthalpy over the pipe is equal to a heat
exchange with the soil, eq. (33.3) in [30]. Here Tsoil is soil
temperature, D is pipe diameter, L is pipe length, and cht is
heat transfer coefficient. The pipe should have sufficiently fine
subdivision to model the heat exchange appropriately.

Compressor equation:

me > 0?(Te − Tn1((|Pn2/Pn1|(κ−1)/κ − 1)/η +

+1)zn1/zn2) : (He −Hn2) = 0, (13)

for positive flow, the change of temperature is described
by eq. (38.51) in [30], or a similar formula (eq. (13-31))
without z-correction from [31]; otherwise, isenthalpic process
is used. Here κ is isentropic exponent, η is efficiency, z
is compressibility factor. This basic model is designed for
gas transport, while for liquids, e.g., CO2 pumps, customer-
specific models can be used.

Coolers and heaters:

me > 0?(Aset > 0?(Te − Tset) : (He −Hn1))

: (He −Hn2) = 0, (14)

at the simplest modeling level, we implement these elements
by clamp formulas: Te = min(Tn1, Tset) for coolers and Te =
max(Tn1, Tset) for heaters. These formulas are piecewise-
linear. Their linearization leads to the common formula above
and the active set flag described by the following algorithm.

Algorithm (active set):

Figure 1. Test network N1.

cooler:
if(Aset==1&&He>Hn1) then Aset=0
if(Aset==0&&Te>Tset) then Aset=1

heater:
if(Aset==1&&He<Hn1) then Aset=0
if(Aset==0&&Te<Tset) then Aset=1

Here Aset = 1 corresponds to an active mode, Aset = 0 to
a standby mode. The algorithm is applied after Tmix-phase,
its convergence is tracked.

III. NUMERICAL EXPERIMENTS

We performed a series of simulations on networks of
different complexity levels to study in detail the effects of
flow mixing, integration stability, and iteration convergence.

N1 network: the network shown in Figure 1 contains 100
nodes, 111 edges and is used for numerical experiments with
the transport of natural gas and hydrogen. Detailed settings of
supplies in the considered scenario are presented in Table I.
Selected time discretization is dt = 3 · 104s, nsteps = 100.
The network has a simple Y-shaped topology, with two supply
nodes n99_gm and n56_gm, as well as a mixing node n89,
where the flows from the supplies come together, and the rest
of the network, ending with the most distant exit node n76.

Figure 2a shows the evolution of inverse molar mass. Fig-
ure 2b presents molar heat value, and Figure 2c demonstrates
molar fraction of CH4, representative for chemical compo-
sition in the considered test scenario. In all these plots, the
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Figure 2. Simulation results (see text for details).

values in supply nodes n99_gm and n56_gm are kept constant
at set values. In stationary solution, the simple topology of
the network leads to a single mixed state, formed in node
n89 and propagated downstream to the rest of the network.
In the evolution, the values in all nodes tend either to supply
values or to this mixed state. Interestingly, in the startup of
the evolution, the curves perform several large oscillations
between the boundary states, before they relax at the stationary
state. This happens due to a complex distribution of flows at
the startup phase.

Note that the graphs Figure 2a and Figure 2c have an
identical shape, and Figure 2b has the same shape vertically
reflected. This happens because there are only two supplies
in the network, and the default composition is a linear com-
bination of them. As a result, the trajectory of the system
in x-space is limited to a 1-dimensional subspace. Graphs
Figure 2a-c are projections of this trajectory to different
directions and therefore have the same shape.

Figure 2d shows temperature dependence in selected nodes.
During startup evolution, strong heating occurs due to the
inverse Joule-Thomson (JT) effect and the influence of the
∂P/∂t-term in (8). With further evolution, the temperature
in nodes close to supplies tends to the corresponding constant
temperature values of the incoming fluid. In more detail, in the
considered scenario, after each supply there is a compressor
station, the outlet temperature of which is regulated by a
cooler. The outlet temperature of the cooler is set to the same
value as that of the corresponding supply. The temperature
in network nodes remote from the supply tends to a constant
value, slightly below Tsoil = 283.15K, due to the influence
of the JT-effect.

N85 networks set: contains 85 realistic natural gas net-
works, obtained for benchmarking from our industrial partner.
The networks are highly resolved, containing up to 4 thou-
sands of nodes each. We used these networks for numerical
experiments testing the stability of simulation with a different
implementation of heaters. Unlike coolers, which usually
control their own output temperature, heaters must control the
temperature in an adjacent element, the regulator. In dynamic
formulation of the problem, especially at low flows, heaters

TABLE I
SUPPLY SETTINGS IN VARIOUS SCENARIOS

scenario entry composition temperature
N1 nat.gas n99_gm 87% CH4, 1% C2H6, 303.15K

1% C3H8, 1% CO2,
10% N2

N1 nat.gas n56_gm 85% CH4, 3% C2H6, 293.15K
1% C3H8, 1% CO2,

10% N2

dyn-pipe H2 n0000 95% H2, 5% N2 313.15K
dyn-pipe CO2 n0000 95% CO2, 3% N2, 313.15K

2% O2

TABLE II
TESTING VARIOUS IMPLEMENTATIONS OF HEATERS

ON N85 NETWORKS SET

implementation of heaters num. of divergent cases
disabled 3

local 0
nonlocal 85
joined 2

do not have time to regulate their temperature in order to
constantly ensure the set temperature values in the regulator.
This leads to divergences. We have tested several options for
implementation of heaters, shown in Table II. For disabled
heaters, 3 scenarios out of 85 are divergent. For the most stable
implementation option, when heaters control their own local
temperature, all scenarios are convergent. If the heaters try to
control the temperature nonlocally, in the attached regulators,
all scenarios diverge, making such implementation impossible.
For our selected option, the heaters are joined with regulators,
the unified element controls its own output temperature, 2
scenarios out of 85 are divergent, slightly better than the
complete disabling of the heaters.

Hydrogen and carbon dioxide pipelines: this is one of our
standard test cases, L = 150km, D = 0.5m horizontally laid
pipeline, transporting gaseous H2 or CO2 in liquid or super-
critical phase. The case supports variable spatial discretiza-
tion, for the considered scenario selected to nsubdiv = 50.
Time discretization is the same as for N1 network. Supply
setting is presented in Table I. The considered scenario has
a single fluid composition and is used mainly for testing of
the temperature modeling. The dynamic simulation starts from
Tsoil = 283.15K and a different Tset = 313.15K at the
pipeline entry. The simulation converges to stationary solution
with nearly exponential fall of temperature from Tset to Tsoil.
For CO2, an observed stronger deviation from the exponent
is due to JT-effect and the nonlinear enthalpy model.

Convergence of iterations: in our implementation, we
use the globally convergent Newton’s solver with Armijo
line search rule [32], applied at every time step. For linear
problems, it just forwards the solution to the underlying sparse
linear solver, that for non-degenerate problems converges in 1
iteration. Due to proper initialization, at the first time step
all phases converge in 0 iteration, just keeping the starting
values. This provides a good method to test that all variables
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are correctly initialized. At the second time step, all mix
phases also converge in 0 iteration, while in the last PM
phase the network filling begins, and PM phase starts to
increase its iteration number. For N1 network and H2/CO2

pipe scenarios, all mix phases are solved in 1 iteration on
intermediate timesteps, as it should be for non-degenerate
linear systems; and in 0 iteration at the last timesteps, due to
convergence to stationary solution. For large N85 networks,
Tmix phase can have intermediately 2-3 iterations, indicating
the remaining degeneracy or the disbalance of scaling factors
in Tmix system. This effect will be studied in more details in
Section V.

The numerical experiments performed show that the primary
purpose of this work has been fully achieved, the modeling
has been extended to include mixing flows and is working for
scenarios of varying complexity. The modeling in our system
is presented in open text form, as a list of variables and
equations, which both we and the users can freely modify.
This distinguishes us from the existing solutions, in which
the modeling is usually hardcoded within the system. We also
provide numerical stability of the modeling and the solution
algorithms, which allows us to solve large realistic scenarios
in fluid transport simulation.

IV. EXTENDED MODELING OF HEATERS AND COOLERS

The nonlocal control case is especially difficult to model,
when the point with the controlled temperature is not at the
heater or cooler output, but in another area of the network,
for example, when a temperature sensor is placed there. As
shown by the numerical experiments, a direct generalization
of the control equations to this case is unstable. At the same
time, there is a workaround with the transfer of the temperature
control function to the element for which the controlled tem-
perature is local. Although this approach works, it would be
desirable to obtain a more realistic modeling, in particular, one
that reproduces the correct intermediate temperatures between
the heater/cooler and the sensor position. In this section, we
consider the extension of modeling necessary for this.

The required diagram for the heater is shown in Figure 3a.
It consists of three branches: on – the temperature at the
controlled point is maintained at the required value: Tc = Tset,
the heater is on: Te > Tn1; standby – the temperature at
the controlled point exceeds the required value: Tc > Tset,
the heater is off: Te = Tn1; an additional max branch is
introduced – the temperature at the controlled point is less than
the required value: Tc < Tset, the heater operates at maximum:
Te = Tmax. The reason for introducing an additional branch
is that in some cases the set control goal is unachievable. An
example is a vanishingly small flow, when the contribution of
the heated fluid from the heater has virtually no effect on the
temperature at the controlled point. Also, due to a network
configuration error, the controlled point may be outside the
influence zone of the heater, for example, behind a closed
valve. If there is no max branch in the control equation, then,
in the case of a decrease in the controlled temperature below

Figure 3. Construction of minmax formulas for heaters and coolers (see text
for details).

the required value, the heater will try to heat the fluid more and
more, eventually leading to simulation divergence. Introducing
the max branch in this case gives a physically reasonable
alternative scenario with a limited temperature. For cooler the
modification is similar, here the min branch is introduced, as
shown in Figure 3i. Extended control equations are as follows:

heater:
max(min(Tset − Tc, Tmax − Te), Tn1 − Te) = 0, (15)

cooler:
max(min(Tc − Tset, Te − Tmin), Te − Tn1) = 0, (16)

where Te is the local temperature in the heater/cooler; Tn1 is
the temperature at the heater/cooler inlet; Tc is the temperature
at the controlled node/edge, at the sensor location; Tset is the
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set temperature at that location; Tmax/min are the temperature
limits at the heater/cooler, by default set to Tmin = 223.15K,
Tmax = 423.15K. Note that the formulas are now piecewise
linear rather than linear. It is not possible to preserve the
overall linearity of the simulation, but the new simulation is
more stable and does not require convergence of the active set
iterations.

We will now provide a detailed derivation of the minmax
formulas. Similar formulas are used in other parts of our
simulation, and their derivation uses a similar procedure.
First, let us consider the heater simulation, represented by the
diagram in Figure 3a. Next, in Figure 3b the zero level of the
function z = min(Tc − Tset, Te − Tn1) is marked with a bold
line, dividing the plane into regions of positive and negative
values of this function. In Figure 3c we break this line to the
desired shape of the diagram, consisting of two pieces:

(z ≤ 0&Te = Tmax)|(z = 0&Te ≤ Tmax). (17)

In Figure 3d we use the coordinates (−z, Tmax − Te), trans-
form it to the standard representation

(−z ≥ 0&Tmax − Te = 0)|(−z = 0&Tmax − Te ≥ 0), (18)

equivalent to the equation min(−z, Tmax − Te) = 0. After
substitutions and algebraic transformations we obtain

min(−min(Tc − Tset, Te − Tn1), Tmax − Te) = 0, (19)
max(min(Tc − Tset, Te − Tn1), Te − Tmax) = 0, (20)

hereinafter denoted as formula1.
Alternatively, in Figure 3e, we start constructing the diagram

from the other end, considering the zero level of the function
z = min(Tset − Tc, Tmax − Te); in Figure 3f we obtain the
form

(z ≤ 0&Te = Tn1)|(z = 0&Te ≥ Tn1); (21)

in Figure 3g in coordinates (−z, Te − Tn1) reduced to the
standard form

(−z ≥ 0&Te − Tn1 = 0)|(−z = 0&Te − Tn1 ≥ 0); (22)

or min(−z, Te−Tn1) = 0. Now, after trivial algebra we obtain
another formula:

min(−min(Tset − Tc, Tmax − Te), Te − Tn1) = 0, (23)
max(min(Tset − Tc, Tmax − Te), Tn1 − Te) = 0, (24)

hereinafter denoted as formula2.
It is interesting that these two formulas give an equivalent

representation of the diagram shape in Figure 3a, but are
not absolutely identical. In the special, physically important
case Tn1 > Tmax, when the input temperature exceeds the

maximum limit, these formulas give different results, shown
in Figure 3h. Indeed, in formula1:

max(min(Tc − Tset, Te − Tn1), Te − Tmax) = 0, (25)
Tn1 > Tmax ⇒ Te − Tn1 < Te − Tmax, (26)

case1: Tc − Tset ≥ Te − Tn1, (27)
max(Te − Tn1, Te − Tmax) = Te − Tmax = 0; (28)

case2: Tc − Tset < Te − Tn1, (29)
max(Tc − Tset, Te − Tmax) = Te − Tmax = 0, (30)

case1 and case2 produce the same answer. In formula2:

max(min(Tset − Tc, Tmax − Te), Tn1 − Te) = 0, (31)
Tn1 > Tmax ⇒ Tn1 − Te > Tmax − Te; (32)

case1: Tset − Tc ≥ Tmax − Te, (33)
max(Tmax − Te, Tn1 − Te) = Tn1 − Te = 0; (34)

case2: Tset − Tc < Tmax − Te, (35)
max(Tset − Tc, Tn1 − Te) = Tn1 − Te = 0, (36)

here we also get a horizontal line on Figure 3h, but a differ-
ent one. Physically, in the special case under consideration,
formula1: Te = Tmax < Tn1 leads to the fact that the heater
cools the fluid, so here we should choose the answer Te = Tn1,
described by formula2.

Let’s move on to considering cooler, with the diagram shape
shown in Figure 3i. Interestingly, it coincides with the diagram
for heater, up to the redesignations Tn1 → Tmin, Tmax →
Tn1. Thus, instead of repeating the derivation, we can make
such a redesignation in the answer for heater and obtain two
formulas:

formula1:
max(min(Tc − Tset, Te − Tmin), Te − Tn1) = 0; (37)

formula2:
max(min(Tset − Tc, Tn1 − Te), Tmin − Te) = 0. (38)

For the special case Tn1 < Tmin, formula2: Te = Tmin > Tn1

would mean that the cooler heats the fluid, so for physical
reasons the answer Te = Tn1 described by formula1 should
be chosen here.

V. EXTENDED STABILITY ANALYSIS

Stability analysis of fluid transport simulations was per-
formed in our previous works, for the stationary case in [2],
[10], for the dynamic case in [3]. In these works only the
PM phase of the simulation was analyzed. Stability analysis
for mixing flows modeling will be performed in this section.
The main challenge is the configuration of the dynamic solver
for solving stationary problems by integrating to a stationary
state, while ensuring the stability of the simulation for realistic
large-size networks. First, we present the main results for the
PM phase, then we move on to the analysis of mixing phases.
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Figure 4. (a)-(c): working diagrams for control elements; (d),(e): possible
degenerations of the system; reprinted from [3] by permission (copyright IOP).

PM phase: the main problem for the stability of the
simulations is represented by regulators, compressors and flap-
traps. The behavior of these elements is given by the diagrams
shown in Figure 4a-c. The polyhedral surfaces for regulators
and compressors are represented by complex minmax formulas
given in [2], the specific form of which is not important for us
now. What is important is that combinations of several such
elements can be located on certain faces of the surfaces that
conflict with each other. For example, in a stationary simu-
lation, two regulators in series on QH-face actually impose
the equation Q = QH twice, with one equation wasted, and
one unconstrained degree of freedom appears in the system.
This degree of freedom corresponds to the undefined pressure
at the intermediate point, P-undefined conflict, see Figure 4d.
Similarly, two regulators in parallel on PH-face impose the
equation P2 = PH twice, with one equation wasted, and
the balance of flows through the regulators is undefined, Q-
undefined conflict, see Figure 4e. The described conflicts are
not limited to series and parallel connections. The problem
is also represented by a long pipe, at the beginning and
end of which there are QH-regulators; Y-connection of 3
PH-regulators; conflict between the regulator and Pset/Qset
boundary condition at entry or exit; etc. In addition, during
the solution process, the working point can change the face
on the control diagram, so during the simulation, the described
conflicts can spontaneously arise in any part of the network.

For numerical simulations, these conflicts lead to degen-
eration of the system, the appearance of zero eigenvalues in
the Jacobian matrix [2], [10], which leads to divergence of
the solver. The general approach to solving this problem is to
regularize the equations, to reformulate them as follows:

freg = (1− ϵs)f + ϵs(P1 − P2 −RsQ)− ϵd∂m/∂t, (39)

where in the first term f are the original control equations.
The second term represents the linear resistor equation, the
coefficient 0 ≤ ϵs ≤ 1 is chosen so that the regularization

can be completely removed at ϵs = 0 or, conversely, the
control equation can be deformed to a linear resistor at
ϵs = 1. This type of regularization is static, independent of
time derivatives. The third term contains the time derivative
and represents dynamic regularization. When choosing the
implicit Euler finite difference scheme, this term takes the form
−ϵd(m − mprev)/dt, with ϵd > 0. Here Q and m represent
the flow in different normalizations and are proportional to
each other with a positive coefficient. The common signs in
this formula are chosen so that the derivatives of the result
with respect to the variables (P1, P2,m) have the signature
(+,−,−), which, according to [2], is necessary for the con-
vergence of the PM phase of the simulation.

The dynamic term in (39) contains only the m-variable
and effectively regularizes only the Q-undefined conflict. The
regularization of the P-undefined conflict is performed by the
dynamic term Vn∂ρn/∂t in the Kirchhoff equation (1). This
term is able to describe the evolution of the density and
the associated pressure even in situations where the control
equations do not capture them. The regularizing parameter
here is the nodal volume Vn > 0, which can also be replaced
by one freely adjustable value V1 > 0, without changing the
stationary result.

In practice, the use of static regularization leads to the
undesirable effect of shifting the solution from the faces of the
control equation, violating the control conditions Q = QH ,
P = PH . These violations are controlled by the regularizing
parameter ϵs; for small values, the equation is too singular to
solve, and for large values, the physically desirable conditions
will be violated. As a tradeoff value, we chose ϵs = 10−3,
corresponding to 0.1% violation of the control equations and
an acceptable level of convergence of the simulations. In the
case of divergences, if the cause can be traced back to the
control equations via residuals, the user is advised to increase
the parameter to ϵs = 10−2.

For dynamic regularization, the time derivatives vanish as
the stationary solution is reached. Therefore, the dynamic
regularizers are switched off in the stationary limit, and
no violations of the control equations occur. The limiting
factor here is the too slow convergence of the solution for
large values of the regularizer. Also, the equations include
combinations of ϵd/dt, V1/dt, so for integration with a large
step, it is also necessary to artificially increase the regularizing
parameters. In our numerical experiments, we varied the
described parameters in wide limits and investigated their
influence on the simulation stability.

The choice of regularizing parameters was carried out on
large natural gas simulations of the N85 type described above
and is illustrated by the graphs in Figure 5. At first, we
included only the PM phase and investigated its stability
separately. Figure 5a shows the idealized case of ϵs = 1, when
all control equations are replaced by linear resistors. In this
experiment, all nodal volumes were also replaced by a single
value of V1. As a result, very fast collective convergence of all
simulations below the nominal value res = 1% is obtained.
This numerical experiment shows that in the PM phase we
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Figure 5. Extended stability analysis (see text for details).

have taken all causes of divergence under control. In Figure 5b
we set the nodal volumes to their actual values. The result is
still acceptable, but the convergence rate varies from one test
case to another. This indicates the advantage of choosing one
value for all nodal volumes. In Figure 5c we chose the values
ϵs = 10−3, ϵd = 30bar/(kg/s2), V1 = 300m3, dt = 3 · 105s.
The configuration is still acceptable, with only 3 out of 85
cases diverged. In this figure, the two initial plateaus corre-
spond to the starting procedure [3] of changing the boundary
conditions, first raising all Psets from the starting one to the
desired values, then all Qsets. In the second part, we also
made a continuous deformation of the regularizing parameter
from ϵs = 1 to ϵs = 10−3. At the end of this interval, the
system approaches a singularity, so the characteristic residual
peaks are visible in the figure. In Figure 5c, we changed
ϵd = 3 · 103bar/(kg/s2), V1 = 30m3, and as a result, all

simulations went below the nominal threshold. This time, the
convergence is slower, but the peak after the starting procedure
that generated divergences has disappeared.

Mixing phases: instabilities are present only in the Tmix
phase, the others work without problems. Stabilization can be
done using dynamic regularization

freg = f + ϵH∂H/∂t (40)

with the coefficient ϵH > 0, when choosing the sign for the
original equation ∂f/∂H > 0. Due to the identity ∂H/∂T =
cp > 0, which relates this derivative to the heat capacity,
the regularizing term can be reexpressed in via temperature:
ϵH∂H/∂t → ϵT∂T/∂t, with a new regularizing parameter
ϵT > 0. A static regularizing term can also be added to this
expression, for example, ϵs(T − Tsoil). This term can lead
to physically undesirable effects, for example, a temperature
of Tsoil can be established at the output of a low-flow
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regulator, despite the existing thermal insulation. Therefore,
if dynamic regularization works, we try to refrain from using
static regularization. Note that for moderate-sized systems, the
described simulations very rarely lead to divergences and can
be used directly. For large systems, such as the N85 set used
in our tests, the problems are potentiated, and the simulations
require special stabilizing measures. Below, we will analyze
in detail the available equations and the instabilities associated
with them.

Enthalpy mix equation: it already has time derivatives
and does not require additional regularization. When switching
off the dynamic terms in (8), the remaining stationary system
can be degenerate. The problem occurs for m = 0, in particu-
lar, at the starting conditions. Also, since in this equation only
flows entering a node are included in the sum, the problem
occurs for all subgraphs not connected to Tset-nodes in the
upstream direction. Physically, this singularity means a T-
undefined state in the stationary limit for such subgraphs.
The dynamic terms resolve this ambiguity, however, for small
Vn/dt the regularization is weak, the system matrix is close
to singular. An important tuning factor is the nodal volume. It
is also possible to equip both dynamic terms in (8) with free
coefficients. This allows one to further strengthen the contri-
bution of the ∂Hn/∂t term, as well as to weaken or disable
the ∂Pn/∂t term. According to our numerical experiments,
removal of ∂Pn/∂t term improves overall stability.

Temperature equation: when using the linearized version
of the simulation, equation (10) has a new type of problem.
In fact, it describes a Newton iteration in the temperature
variable. Although Newton’s method is used in the inner
iteration, at each integration step, it has been specially stabi-
lized there [32], while the outer iteration described by (10) is
unstabilized. It is widely known that the unstabilized Newton’s
method produces divergences. As shown in Figure 5e above,
the sequence of tangents to the curve may go to infinity
if the starting point is chosen poorly. The simplest way to
overcome this problem is to increase the slope of the lines
above the tangent position, which is equivalent to introducing
a coefficient H = Hmod+c1cp(T −Tprev), c1 > 1. As shown
in Figure 5e below, this can enforce convergence. Although
the convergence rate of such an iteration may be slower than
Newton’s, it turns out to be more stable. Another way to
stabilize is to use the original nonlinear equation (9). In a case
when there is a closed analytical formula for this equation, it
can be used directly. Of course, this will lead to nonlinearity
of the Tmix phase and an increase in the number of internal
iterations for its solution, the advantage of this approach is
better stability of the simulation.

Compressors: in equation (13) a problem similar to
the temperature equation arises. In this equation, there is a
strong coupling with the PM-phase, in particular, through
the z-coefficients present in it. An increase in Te at a given
iteration leads to an increase in zn2 at the next iteration, which
through the formula (13) triggers a decrease in Te at the next
iteration. Under strong coupling, this iteration sequence can
loop or diverge. Figure 5f illustrates the possible behavior

of a one-dimensional iteration, showing prototypical examples
of instability. The simple solution proposed in [4] consists in
introducing a weighting procedure: T = Teqw+Tprev(1−w),
with a constant 0 ≤ w ≤ 1. In this case, the new value of
the variable is not taken directly from the equation, but is
weighted with the previous iteration. In practical applications,
this approach allows stabilizing looped or diverging iterations
that arise due to strong coupling. After rewriting the weighting
procedure as the equation (T−Teq)w+(T−Tprev)(1−w) = 0
and comparing the stabilizing terms (T −Tprev)/dt ∼ ∂T/∂t,
it becomes clear that the weighting method is completely
equivalent to both dynamic regularization and the stabilization
of the Newton iteration presented above, up to a redefinition
of the coefficients. Another method for stabilizing the com-
pressor equation is to substitute analytical expressions for z-
coefficients, if any, into (13).

Coolers and heaters: equations (15)-(16) have problems
similar to compressors. For example, if the heater was in
standby at the previous iteration and at the controlled point Tc

becomes slightly less than Tset, then the heater goes into max
mode. If the flow through the heater is small, this may lead
to a small increase in Tc over Tset, and the heater is forced
to return to standby. This may lead to iteration loops. The
solution here is also dynamic regularization or the equivalent
weighting procedure.

Pipes: equation (12) already contains a regularizing term
of the static type ∼ (T − Tsoil), so the temperature modeling
of pipes is stable. A necessary condition is the presence of a
physically reasonable heat exchange coefficient.

Default element equation: in the simple-looking equation
(11) the strongest instability is located. When passing through
the value me = 0, the edge enthalpy He jumps between the
nodal values Hn1 and Hn2. Changes in the sign of the flow can
occur both at intermediate steps and at the end of integration.
A specific example is small numerical fluctuation of the flow
in network sections with zero stationary flow. In this case, a
unique situation arises when in the final, physically stationary
state there are randomly fluctuating variables of undamped
amplitude. The jumps are experienced by both the variables
themselves and by the residuals of equations defining them,
see Figure 5g, which shows the residual of Tmix phase for
one scenario N85.1. The residuals use the maximum norm
over the equations, as a result of this definition, the jumps can
be separate or merging into a plateau. At the same time, the
residual of the PM phase shown in Figure 5h does not have
such jumps, and repeats the shape of the residual of the pure
PM phase shown in Figure 5c.

A detailed analysis shows that the stochastic edge degrees
of freedom (He, Te) formed in the system decouple from the
nodal (Hn, Tn). Indeed, coupling is carried out by means
of equation (8), in which He are multiplied by me. Thus,
the jumps of He at me = 0 are suppressed. The PM phase
includes only the nodal values of Tn, so the stochastic degrees
of freedom are decoupled from the PM phase as well. In
practice, the Tmix phase residual shown in Figure 5i for the
entire N85 set is so noisy that it becomes unusable. The PM
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phase residual, Figure 5j, can be used as successfully as for
the pure PM phase. Indirectly, the PM residual also controls
the nodal values of the Tmix phase, via the strong coupling
Tn/Pn in the equations of state. The edge values of the Tmix
phase undergo jumps around me = 0, which arise due to their
definition as edge downstream values and are not physically
important. Thus, our current recommendation is to ignore the
Tmix residual and use only the PM residual to control the
convergence of the simulation.

Looking at this issue in even more detail, jumps occur
in all edge equations where the separation into me > 0
and me < 0 branches is used, and they are also suppressed
by the me-factor in the nodal coupling. The introduction of
branches is necessary, otherwise degeneracies arise in the
system. As an example, consider the compressor equation
Te = Tn1a, a > 1, in the stationary limit. For me > 0,
the outlet temperature is further transferred to Tn2 = Te via
the nodal coupling (8). Negative flow through the compressor
is possible due to ϵs-regularization for infeasible solutions,
both at the intermediate and final integration steps. If the
compressor equation remains the same for me < 0, then nodal
coupling will lead to Tn1 = Te, an overdetermined equation
on Te, and no condition on Tn2. As a result, the stationary
system will become degenerate, and the stationary solver will
diverge. There are additional regularizers for the dynamic
solver, but their efficiency will be reduced if they have to
suppress a more degenerate stationary system. Introducing the
isenthalpic branch into the equations ensures non-degeneracy
of the system, and it also generates jumps in the solution. Note
that suppressing jumps in the edge equations by introducing
dynamic damping or weighting procedures does not work here,
it only reduces the amplitude of the jumps by a factor of w.
The value w = 0.5 is practically acceptable for stabilization in
our numerical experiments; for smaller values, the convergence
of integration becomes too slow.

Figure 5j shows the PM residual for simulations with values
ϵs = 10−3, ϵd = 30bar/(kg/s2), V1 = 0.3m3. Charac-
teristic is the loss of the collective convergence property,
which was present for pure PM simulations. This property
is a consequence of single-phase modeling, in which the
convergence of the solution at the previous iteration leads
to convergence at the next one, with small variations due
to small dynamic terms. In the full simulation, mix phases
are involved in the iterative process, and the convergence of
the outer iterative loop is decisive for the convergence of the
simulation. In Figure 5k, we increased ϵs = 10−2, which
resulted in the absence of the residual peak at the end of
the startup procedure, which also led to better stability of
the inner iterations and a decrease in runtime. In Figure 5l,
with ϵs = 10−3, ϵd = 3 · 103bar/(kg/s2), V1 = 30m3 were
increased. Here, as for the pure PM simulation, convergence
became slower, but the stability of the simulation has been
improved.

Phase transitions: should be considered, in particular, for
CO2 transport [8]. The problem is the presence of a jump in
the function W (T ) for pure substances or a rapid change in

this function in the presence of small impurities. This leads
to the failure of the Newtonian method, both in internal and
external iterations. Dynamic regularization or weighting do not
help here. In this case, jumps also occur in nodal variables,
propagate to the PM phase and break the convergence of
the simulation altogether. Usually, scenarios without phase
transitions are considered in applications, CO2 is transported
in a liquid/supercritical dense phase or in a gaseous phase.
In the absence of phase transitions, the simulation does not
have problems of the described type. In order to prevent phase
transitions also for all intermediate states on the integration
path, the simulation should be started with (Pstart, Tstart)
values in the region of the expected solution.

FE-nodes: Figures 5m-o show the behavior of FE-
nodes, Qset-supplies without specified mix quantities. For such
supplies, the mix quantities are assumed to be taken from
the incoming flow. The experiments are done on N1 test
network. In Figure 5m, a normal operation is shown, where
the added flow is less than for a downstream exit, and the mix
quantities are taken from the incoming flow. Figure 5n shows
an overflow scenario, where the added flow prevails, and there
are no incoming, but only outgoing flows. In this case, in
stationary problem, the mix value is undefined. The dynamic
modeling has the time-derivative term, making the problem
non-degenerate even in this case. The resulting mix values are
defined by the history of integration. Typically they remain at
the starting default values, different from the mixed state of
the normal operation mode. Figure 5o shows a boundary case,
when the added flow exactly equals the exit flow. In this case,
two different mixed states are formed.

Downstream mismatch: in the PM phase there is a
problem of a different type, see Figure 5p. The upper part
of the figure shows a pipe, with nodal values of pressure,
temperature, compressibility and density (P1, T1, z1, ρ1) and
(P2, T2, z2, ρ2). Consider the section of the pipe immediately
adjacent to the downstream node. By continuity, the pressure
at this point coincides with the nodal P2. Otherwise, the
pressure jump would create a non-zero force that would act
on a vanishingly small mass of the section and lead to infinite
acceleration. The temperature in the section, however, may
differ from the nodal one, due to a possible inflow of fluid
of a different temperature into the node. Compressibility and
density depend on temperature and may also not coincide with
the nodal values. As already mentioned, PM modeling uses
only nodal values for the mentioned quantities. In particular,
the PM equation for pipes includes their nodal average. The
described mismatch can lead to a local variation of the result
near the downstream node. One possible solution would be to
introduce edge quantities (T, z, ρ) and a state equation relating
them. In fact, this is not a very good idea, since these quantities
have random jumps around m = 0, and the stochastic behavior
would penetrate into the PM phase. Another, simpler solution
is shown in the lower part of the figure. To improve the
accuracy of the simulation, long pipes should be split into
smaller ones. This procedure can include two short segments,
say ∆L = 1m, at the beginning and end of the pipe. As a
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result, the downstream mismatch problem will be concentrated
in these segments. At the same time, since the pressure drop
on short pipe segments is negligible, the influence of the
described problem on the result will be excluded. In addition
to pipes, the problem can occur in compressors (13), if there
is z-correction in their equation. On the other hand, in real
scenarios, a cooler is usually installed immediately after the
compressor, and the described problem does not arise. When
using stand-alone compressors or pumps, it is recommended to
insert a short section of pipe immediately after them to avoid
possible downstream mismatch.

Scaling: Newton’s method, in particular the stabilization
algorithms [32] used in it, are sensitive to the scaling of
equations. For optimal operation of these algorithms, all our
equations were scaled so that their variation in the working
region of the variable change was of the same value, nominally
chosen as 100 units. As a result of such normalization, the
residuals of the equations become dimensionless quantities
measuring the current absolute value of the equation as a
percentage of its variation in the working region. Further, the
residuals are maximized over the equations and characterize
the convergence of the solution phases. For a detailed char-
acterization of the convergence, two residuals are introduced,
for the inner and outer iterations. The residual at the end of
the inner Newton iteration measures the convergence of each
integration step. The residual at the beginning of the inner
Newton iteration measures the convergence of the integration
steps to a stationary solution. When the stationary solution
is reached, the variables begin to converge to constant values,
and the equations also stop changing. In this case, the residual
at the beginning of the inner iteration becomes small, ideally
less than the stop-criterion tol = 10−5%, so that the inner
iterations should not even start, or less than the acceptable
threshold tol2 = 1%.

Clamping: is another technically necessary procedure.
In all equations, such quantities as v = (P, T, z, ρ) must
be clamped into the physical domain of change: v →
min(max(v, vmin), vmax). In the process of solving, such
quantities may go beyond the physical domain, for example,
become negative. This may happen for infeasible problems
that have no solution in the physical domain, as well as for
stationary feasible problems at intermediate iterations. Accord-
ing to the general strategy [2], we maintain convergence of
the solver in these domains as well, to ensure stability and
localize possible infeasibility. As an example, consider the
mixing equation (4) with a dynamic term ∼ ρn∂µ

−1
n /∂t.

If ρn becomes negative during the solution, this term will
effectively undergo a time reversal, which will immediately
lead to divergence of the integrator. Clamping ρn into the
positive domain solves the problem. Clamping should be
carefully introduced into all equations, however, one should
not overdo it. Consider the compressor equation Te = Tn1a,
a > 1. Here one can enter clamping to the Tn1, a, or a
combined Tn1a term. One cannot enter clamping to the Te

term, since this equation is the definition of Te. In the case of
Te clamping, when it is triggered, the Te dependence drops

TABLE III
FINE-TUNING PROCEDURE

id div1 div2 div3 runtime, s
235 3 14 3 73
239 1 5 3 67
240 0 3 0 78
258 4 14 3 47
259 5 14 7 32
260 1 14 6 43
261 9 21 15 34
262 4 17 2 73
263 2 13 6 72
266 1 14 6 32
267 4 17 6 52
268 4 17 9 32
269 2 13 6 47
270 2 13 7 33
271 2 16 6 45
275 0 9 0 55
276 1 2 2 49
277 13 46 16 109
278 2 9 11 38
279 1 1 11 31
280 22 44 58 44
281 0 13 0 37
282 0 12 1 31
283 9 40 17 56

TABLE IV
FINE-TUNING RESULTS

par id=281 id=282
n 25 25

dt, s 6 · 104 6 · 103
t1, s 3 · 105 3 · 104
t2, s 6 · 105 6 · 104

tend, s 1.5 · 106 1.5 · 105
ϵs 10−3 10−3

ϵd, bar/(kg/s
2) 30 30

V1,m3 0.3 0.3
w 0.5 0.5

out of the equation, which will lead to degeneration. We also
experimented with introducing clamping to all T variables not
in the equations, but between the integration steps. At first
glance, this eliminates the need to introduce T -clamping in
numerous equations. However, this leads to a deeper problem.
If at the current integration step the solution of the equations
is located outside the T -clamps, and a clamp is applied before
the next step, then the starting point of the next step will no
longer satisfy the equations. This can increase the residual
and unnecessarily trigger additional iterations. Therefore, we
recommend avoiding the use of clamps and any solution-
modifying algorithms between the integration steps.

Fine-tuning: after we have found parameter values with
satisfactory convergence characteristics, see Figure 5j-l, we
fine-tune the parameters to achieve optimal runtime while
maintaining acceptable stability. To do this, we introduce
the following characteristics: div1 – number of cases with
divergent Newton iteration at the last integration step; div2
– number of cases with divergent Newton iteration at any
integration step; div3 – number of cases that do not reach
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stationarity after integration, at nominal level res = 1%.
The runtime value is averaged over all cases from the N85
set, convergent or not. Simulations were performed on i7-
14700K CPU computer. The values of div1-3 and runtime
should be minimized. As the analysis shows, the values div1-
2 are correlated with each other, see Figure 5q, they are
also weakly correlated with div3. Also, the value div3 is
weakly anticorrelated with runtime. For the analysis, one graph
Figure 5r is sufficient, representing numerical experiments in
coordinates (runtime,div3). The best solution marked with a
line in the figure marks the tradeoff boundary, the Pareto front,
on which these criteria cannot be simultaneously reduced. The
characteristics of the stationary simulator are marked with
a cross in the figure. It is evident from the graph that the
dynamic solver clearly overperforms the stationary one.

In greater detail, the characteristics of fine-tuning runs are
given in Table III. The first three lines (235-240) correspond
to the configuration of Figure 5j-l. Next, we chose the point
(235) and optimized the dynamic schedule described by three
parameters (n, dt, t1), the number of integration steps, the step
size, and the time of the first startup phase. The dependent
parameters are (t2 = 2t1, tend = ndt), the time of the
second startup phase, and the total integration time. At the
beginning (258-259), we decreased n from the starting value
n = 100 to n = 50, 25, which corresponds to a shortening of
the integration interval tend with fixed (dt, t1). Then (260-
261), we increased dt → dt a and decreased n → n/a,
a = 2, 4, which corresponds to more sparse integration with
constant (t1, tend). If we consider weighting as equivalent
to dynamic damping, then changing dt above corresponds to
changing the weight from the initial w = 0.5 to w = 0.67, 0.8.
Next (262–263) we increased dt → dt a simultaneously with
(t1, tend) → (t1, tend)a, a = 2, 4, with n remaining constant,
which is equivalent to decreasing the dynamic damping in all
equations; in this case, w was varied as described above. The
system has an exact symmetry: scaling the step dt and the
coefficients of dynamic terms such as (V1, ϵd) simultaneously
does not change the equations. The three transformations
described exhaust the space of variables (n, dt, t1). In sub-
sequent experiments (266-271) we considered combinations
of these transformations corresponding to their cross-effects.
Next, we selected 3 points (258,259,266) on the Pareto front
(runtime,div3) as the most promising candidates. For them, we
decreased (dt, t1, tend) → (dt, t1, tend)/a, a = 10, 102, 103,
with n remaining constant. This corresponds to an increase
in dynamic damping in the equations and was done to catch
a solution with strong damping like Figure 5l. In this case,
w = 0.5 was not changed, since it is already strong enough.

Table IV presents two optimal configurations (281,282), the
first column corresponds to enhanced stability div1-3=(0,13,0)
and runtime=37s, the second – to acceptable stability div1-
3=(0,12,1) and the shortest runtime=31s. These solutions are
also shown in Figure 5s-t. Based on the results of the analysis,
the user can independently select the required mode and has
a sufficient number of handles for detailed adjustment of the
convergence.

VI. CONCLUSION

This paper considered the modeling of mixing flows in
dynamic simulation of pipeline fluid transport. Mixed charac-
teristics include molar mass, heat value, chemical composition
and temperature of the transported fluids. In the absence of
chemical reactions, the modeling is based on the universal con-
servation laws for molar flows and total energy. The modeling
leads to a system of differential algebraic equations, including
linear molar mixing formulas, nonlinear temperature-energy
relationships, and piecewise-linear element equations for cool-
ers and heaters. In one approach, for nonlinear relations, lin-
earization is carried out in the vicinity of the previous integra-
tion step, piecewise-linear relations are reduced to linear ones
using the active set method. The resulting sequence of linear
systems is solved by a sparse linear solver, typically in one
iteration per integration step. In alternative implementation,
exact minmax formulas for coolers and heaters are used,
solution is performed by a stabilized Newtonian solver. The
functionality and stability of the developed approach have been
tested in a number of realistic network scenarios.

Numerical experiments on the moderate size N1 network
allow us to follow the mixing processes in detail, including the
evolution of molar mass, heat value, chemical composition,
and temperature. Experiments on the N85 set of large-scale
natural gas networks demonstrate the stability of the developed
methods and its sensitivity to such details as nonlocality of
equations used in the implementation of heaters. Hydrogen
and carbon dioxide pipeline scenarios are also used for testing
the temperature modeling and the convergence of simulation.

Based on numerous simulations, the stability of the dynamic
solver was studied in detail. The factors affecting stability and
runtime were identified, and their optimal configuration was
selected. Each equation was analyzed separately, as well as
their full set. The challenges encountered during the analysis
include

• system degeneration,
• the appearance of stochastic degrees of freedom,
• jumps in thermodynamic functions on phase transitions,
• proper scaling of equations.

Parameters that greatly affect the stability and speed of simu-
lation were identified. These include

• regularizing and weighting constants,
• dimensioning of dynamic terms and startup procedure,
• the size of the integration step,
• the total number of the integration steps.

The optimal choice of these parameters allowed us to acceler-
ate significantly the dynamic simulation of fluid transport for
realistically large network scenarios.

Our further research includes fine-tuning the underlying
sparse linear solvers, adaptive choice of the number of in-
tegration steps, and hardware acceleration.
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