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Abstract—In this paper, we address the problem of predicting
whether a student might fail a course before it starts, based
on their academic history. This study is centered on predicting
failure in the numerical methods course, which is part of the
curriculum for the bachelor’s degree in systems engineering at the
University of Cérdoba in Colombia. To tackle this problem, we
adopt classification methods from supervised machine learning.
To this end, we utilize a dataset initially collected in [1] and
subsequently expanded in [2]. This dataset is used to fit and
validate the machine learning methods employed in this study.
Our work contributes to improving the quality of the forecasting
task compared to prior research [1], [2]. This improvement
has been achieved by modifying the vector representation of
the student’s academic history, considering only the student’s
performance in mathematics, as evidenced in the admission
test called Saber 11 and prerequisite courses. The results of
the experimental validation reveal that the method based on
Gaussian processes with the Radial Basis Function achieves
mean values of accuracy, precision, recall, and harmonic mean
of 83%, 80.67%, 77%, and 76.70%, respectively. This method
has outperformed the others studied in this work. Moreover,
the prediction outcome of Gaussian processes is the probability
that a given student will fail the course, which is convenient for
designing an intervention plan to help them succeed. Therefore,
the conclusion of this study is twofold. Firstly, Gaussian processes
are the best choice to implement an intelligent system for
the prediction task studied herein. Secondly, this study finds
a clear correlation between the probability of succeeding in
the numerical methods course and the student’s competencies
in mathematics obtained before enrolling in this course. This
suggests that good training in mathematics courses is required
to succeed in the numerical methods course.

Index Terms—Machine learning; educational data mining; clas-
sification algorithm.

I. INTRODUCTION

The aim of this study is to leverage machine learning
accuracy to design an intelligent system for predicting student
failure in the numerical methods course before it even starts.
The input variables are derived from the student’s performance
in prerequisite courses that are assumed necessary for succeed-
ing in the numerical methods course within the bachelor’s
degree program in systems engineering at the University of
Coérdoba, Colombia.

Herein and in several literature references, failing a course
is often referred to as either dropping out or not passing

the course successfully. Identifying students at risk of failing
a specific course is crucial, as it enables stakeholders such
as lecturers, students, academic policymakers, and others to
take necessary precautions to prevent failure. This proactive
approach helps students avoid psychological stress, frustration,
and financial loss.

Prior research has explored various machine learning ap-
proaches to identify students at risk of course failure. These
methods include classification methods, such as artificial neu-
ral networks or multilayer perceptron [1]-[7], support vec-
tor machines [1]-[4], [8], quantum-enhanced support vector
machine [9], logistic regression [1], [4], [8], [10], decision
trees [1], [2], [4], [8], [10], [11], ensemble methods with
different classification methods [3], [6], random forest [1],
[2], [4]-[6], gradient boosting [5], extreme gradient boosting
(XGBoost) [1], [2], [5], [6], variants of gradient boosting [5],
[8], such as CatBoost [12] and LightGBM [13], and Gaussian
processes for classification [1], [2].

Much of the previously referenced literature has centered on
online courses [3], [4], [6], [7], [10], covering various topics
such as computer networking and web design [3], mathemat-
ics [10], and STEM (science, technology, engineering, and
mathematics) in general [7]. It is noteworthy that the primary
goal of these research endeavors is not to predict the risk of
failure before students begin their courses; instead, they are
focused on forecasting risk during the course development
phase. This forecasting relies on students’ activities, including
the number of course views, content downloads, and grades
achieved in assignments, tests, quizzes, projects, and other
assessments.

The objectives pursued in [1], [2], [9] align with the goals
of this study, operating within the same context of predicting
student failure in the numerical methods course based on
performance in prerequisite courses within the undergraduate
program in systems engineering at the University of Cérdoba
in Colombia. However, it is worth noting that [1] utilized a
smaller dataset compared to the one employed in this study,
which corresponds to the dataset collected in [2] and used
in [9].

In [1], the student’s performance in prerequisite courses,
including mathematics, physics, and computer programming,
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as well as their outcomes in the admission test, are used
as input variables for predicting whether they might fail the
numerical method course. In contrast, in [2], it is observed that
excluding the student’s outcomes in the admission test leads
to increased accuracy, precision, and recall in the prediction.
Furthermore, in [9], quantum machine learning is adopted;
however, this approach does not outperforms the performance
of Gaussian processes for classification as utilized in [2].

A 10-Fold Cross-Validation conducted in [2] indicates that
the Gaussian process with the Matern kernel achieves mean
values of accuracy, precision, recall, and harmonic mean of
80.45%, 83.33%, 66.5%, and 72.52%, respectively. In contrast,
our study has found far better results in terms of accuracy and
harmonic mean by reducing the input variables to only include
the student’s performance in the prerequisite mathematics
course and the outcomes of the admission test in the same
subject. With this input configuration, the Gaussian process
with the Radial Basis Function kernel yields mean values
of accuracy, precision, recall, and harmonic mean of 83%,
80.67%, 77%, and 76.79%, respectively.

The remainder of this paper is organized as follows: Sec-
tion II formalizes the problem, presents key assumptions,
outlines the representation of the input space, and introduces
the target variable. This section also presents the machine
learning methods adopted in this study, along with the vali-
dation method. Section III provides details on the dataset fea-
tures, programming language, software library, and computing
environment used during the validation process. In Section IV,
the results of the experiments are presented, followed by a
discussion in Section V. Finally, Section VI concludes the
discussion of the results, highlights the novelty of this study,
and suggests directions for future research.

II. METHODS

The problem addressed in this study is to identify regular
patterns between failing the numerical methods course and
student’s performance in prerequisite courses, as well as their
performance in the admission test. To cope with this problem,
a quantitative approach is adopted. This approach involves
quantifying student’s performance through their grades in
prerequisite courses, their scores on the admission test, and
considering the frequency of course enrollments due to previ-
ous failures.

In this study, we use a dataset initially collected in [14],
which was subsequently expanded with additional instances
in [2] and further utilized in [9]. The dataset describes input
variables for each prerequisite course as follows: the variables
x;; and x; j4o represent the highest and lowest final grades
obtained by the ith student in the jth course, respectively,
while z; ;1 denotes the number of semesters the ¢th student
has enrolled in the jth course. If the ¢th student does not
fail the jth course upon the first enrollment, x; ; and x; ;1o
will have the same value, and x; ;1 will be equal to one.
Additionally, in this study, z; ; represents the score achieved
by the 4th student in the subject of mathematics in the
admission test.

International Journal on Advances in Intelligent Systems, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/intelligent_systems/

This dataset has been collected through a survey conducted
among students of systems engineering at the University
of Cérdoba in Colombia. To safeguard the privacy of the
participants, the dataset has been anonymized, retaining only
students’ grades and admission scores. Personal information,
including identification numbers, names, gender, and economic
stratum, has been omitted.

In this study, it is assumed that only mathematics courses
are prerequisite for success in the numerical methods course.
Therefore, the prerequisite courses considered are linear alge-
bra, calculus I, II, and III. Conversely, in previous studies [2],
[9], [14], physics and computer programming courses are
also considered prerequisites, although the outcomes of the
admission test are not utilized in [2], [9], while all admission
test outcomes are used in [14]. As a result, the input space in
our study has 13 dimensions (three per prerequisite course and
the mathematics subject score of the admission test), compared
to 33 dimensions in [2], [9], and 38 dimensions in [14].

Mathematically, the ith student is represented by a D-
dimensional vector x; € X, where X C R” and D = 13,
accounting for four prerequisite courses and one additional
dimension for the mathematics subject score in the admission
test. Each component of the vector x; corresponds to a specific
input variable, detailed as follows:

e x;1: The score obtained by the student in the admission
test for mathematics, ranging from 0 to 100 (x;; € Z,

e Tz to x;13: Grades and enrollment information for
the prerequisite courses, with z;;, x; 12, and x; ;41
representing the highest final grade, lowest final grade,
and number of semesters enrolled for each course 7,
respectively. Here, j takes values of 2, 5, 8, and 11,
corresponding to calculus I, II, III, and linear algebra
courses.

¢ In Colombian universities, students are graded in the
range from O up to 5 (see student’s code of the University
of Cérdoba [15]), ie., x;; € Rand 0 < z;; < 5 for
7 =2,4,5,7,8,10,11,13.

o The number of semesters enrolled for each course j is
a natural number or zero if a the ¢th student has never
enrolled it, i.e., z;; € NU{0} for j = 3,6,9,12.

On the other hand, y; represents the target variable as-
sociated with the ith student, where y; = 1 if the student
failed the numerical methods course, and y; = 0 otherwise
(i.e., y; € {0,1}). Thus, the D denotes the dataset defined
as D = {(z;,y:)|zi € X,y; € {0,1},forall ¢ = 1,...,n},
where n represents the size of the dataset.

Given the dataset D described earlier, the problem in this
study is to determine the function g, which maps the input
variables to the target variable, i.e., g : X — {0, 1}. Once this
function is established, it may be used to predict whether a
new student, represented by the vector ' € X, might fail
the numerical methods course. Specifically, if g(z’) = 1,
the function predicts that the student might fail the course;
otherwise, if g(z’) = 0, the prediction is that the student will
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not fail. This problem falls under supervised learning and is
addressed using classification methods.

Before training various classifiers, the dataset undergoes
preprocessing. This involves centering each input variable by
removing the mean and scaling to unit variance. It is important
to note that the dataset contains no missing data, eliminating
the need for any imputation methods.

After preparing the dataset, K-fold cross-validation is em-
ployed to evaluate each classification method. This process
involves splitting the dataset D into K equal parts, denoted
as D;, where ¢ ranges from 1 to K. During each iteration,
one of the K parts is set aside as the validation set, denoted
as V;, = D;, while the remaining K — 1 parts are used for
training the classifier, represented as 73 = Ufil,#ij. This
partitioning is carried out as follows:

Vi =D, Ti=DyUD3U---UDg
Vo = Do, To=D1UD3U---UDg
Vi = Dk, Tk =D1UDsU---UDgk_3

In this study, various classification methods were validated,
including logistic regression. The latter assumes the existence
of a hyperplane that separates vectors into two classes in
a multidimensional real-valued space. This assumption is
reasonable given that the input space is a multidimensional
real-valued vector space (i.e., D = 13).

Nevertheless, other classification methods more suitable for
nonlinear classification problems are also utilized in this study,
under the assumption that there might be a more effective input
representation in a higher-dimensional space. Probabilistic
methods such as Gaussian processes (GPs) have been adopted.
Based on Bayesian inference, GPs assume that the probability
distribution of the target variable is drawn from a Gaussian or
normal distribution, hence the name of the method [16], [17].
The main advantage of this method is its ability to incorporate
prior knowledge about the problem, contributing to improved
forecasting accuracy, even with a small training dataset, as is
the case in the context of this study.

In this study, we used several kernels (a.k.a., covariant
functions) with GPs. For instance, the Radial Basis Function
kernel, which is defined as follows:

202

where x;,x; € RP are two D-dimensional vectors in real-
valued space, and the hyperparameters 7,0 € R are real
numbers that corresponds to the weight and length scale of
the kernel, respectively.

In addition, we used the Matern kernel, which is defined as
follows:

x; — x|
ka(xi,x;j) = yexp (— |j|>, (D

Y(V2vlx; — xil[)
L(v)2v—1ov

kar(xi, %) =

o (Y2 =il
v o bl
2)
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where K, (-) and T'(-) are the modified Bessel function and
the gamma function, respectively. The hyperparameter v € R
controls the smoothness of the kernel function.
Moreover, a rational quadratic kernel is utilized, which
defined as follows:
2\ —«
[E3 xz||) | .

kr iy Xj) = 1
(X Xj) ( + 20[0’2

where o is used for the same purpose as in (1), while € R
is the scale mixture parameter, such that o > 0.

Furthermore, Matern kernel and radial basis function are
combined by summing both as follows:

k(xi,%x5) = vaka(xi, X5) + varka (X4, X5), 4

where ¢ and ), are the weights assigned to the kernels.

On the other hand, the classification method based on
support vector machines (SVMs) is considered one of the most
theoretically motivated and successful in modern machine
learning practices ([18], p. 79). SVMs are based on convex op-
timization, allowing for the identification of a global maximum
solution, which is their main advantage. However, SVMs are
not well-suited for interpretation in data mining; nevertheless,
they excel in training accurate machine learning systems. For
a detailed description of this method, refer to [19].

Both SVMs and logistic regression are linear classification
methods, operating under the assumption that the input vector
space can be separated by a linear decision boundary or, in
the case of multidimensional input spaces, by a hyperplane.
However, when this assumption is not met, SVMs may be
used alongside kernel methods to handle nonlinear decision
boundaries (see [19] for further details). In this study, we
utilize the radial basis function kernel, similar to the one
presented in (1), defined as follows:

ke (xi,%x;) = exp(—v[|x; — xi%), &)

where 7 controls the radius of this spherical kernel, whose
center is x;. Additionally, polynomial and Sigmoid kernels
are used, which defined in (6) and (7), respectively. In (6),
d € N is the degree of the kernel, and v € R is the coefficient
in (7).

kp (%5, %5) = (%3, %;)" (6)

ks(x;,%;) = tanh(y(x;, X)) @)

Although support vector machines (SVMs) are considered
one of the most successful methods in modern machine
learning, multilayer perceptrons (MLPs) and their variants,
namely artificial neural networks, have emerged as the most
successful in deep learning and big data applications, particu-
larly in tasks such as speech recognition, computer vision, and
natural language processing ( [20], p. 3). In this study, MLPs
are trained using the back-propagation algorithm with cross-
entropy error minimization [21], along with the optimization
algorithm known as Adam [22]. Specifically, MLPs with one
and five hidden layers are adopted in this work.
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MLPs offer a significant advantage as they can approximate
any function for both classification and regression tasks, mak-
ing them universal approximators. However, they also have
a major drawback: the objective function, typically based on
cross-entropy error, is not convex. Consequently, the synaptic
weights obtained during training might not converge to the
optimal solution due to the presence of multiple local minima
in the objective function. The solution heavily relies on the
random initialization of synaptic weights. Additionally, MLPs
require tuning more hyperparameters compared to other learn-
ing methods such as SVMs or naive Bayes, which presents
another disadvantage.

Among the methods mentioned above, logistic regression
stands out for its interpretability. However, for the remaining
methods, interpretability is a challenge. To address this, deci-
sion trees are adopted, as they are classification algorithms
commonly used in data mining and knowledge discovery.
During decision tree training, a tree is constructed using the
dataset as input, where each internal node represents a test on
an independent variable, each branch represents the result of
the test, and leaves represent predicted classes. The tree is built
recursively, starting with the entire dataset as the root node. At
each iteration, the fitting algorithm selects the next attribute
that best separates the data into different classes. The fitting
algorithm may halt based on various criteria, such as when
all training data have been classified or when the classifier’s
accuracy or performance can no longer be improved.

Decision trees are constructed using heuristic algorithms,
often employing greedy strategies. At each node, these algo-
rithms may identify several local optimal solutions, leading
to no guarantee that the learning process will converge to the
most optimal solution. This issue is not unique to decision
trees but is also present in other algorithms, such as multilayer
perceptrons. However, it remains a primary drawback of
decision trees, as small variations in the training dataset can
cause significant changes in the tree structure.

The method of decision trees is introduced in 1984, in [23]
is delved into its details. To improve the performance of
decision trees, ensemble methods based on multiple decision
trees have been developed. These methods include Adaboost
(adaptive boosting) [24], random forest [25], and extreme
gradient boosting, which is also known as XGBoost [26].

Ultimately, so far there is no analytical method to defini-
tively determine the best machine learning approach, as
demonstrated by the No Free Lunch Theorem [27]. According
to this theorem, the predictive quality of machine learning
methods hinges on the unknown distribution of the dataset
enshrined to fit them. Consequently, experimental validation
becomes the only mean of identifying the most effective
method for addressing the problem studied in this work. The
following section details the experimental setup adopted to
empirically validate these methods.

III. EXPERIMENTAL SETTING

To fit and validate the machine learning methods outlined
in the previous section, we employed a dataset containing 103
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examples. Each example consists of 38 independent variables
along with its corresponding dependent or target variable.
However, in this study, only 13 out of the 38 independent
variables are utilized, as explained earlier. Notably, the dataset
is the same used in [2] to compare the results of both studies.

Figure 1 illustrates the proportion of positive and negative
instances in the dataset. Positive instances represent examples
where students failed the numerical methods course, while
negative instances denote cases where students passed. The
pie chart depicts that the dataset is reasonably balanced, with
a slightly higher number of negative examples due to more
students successfully passing the course.

60.19%

EEm 41 Students who failed the Numerical Methods course
62 Students who passed the Numerical Methods course

Fig. 1. Distribution of student outcomes in the numerical methods course
dataset. The figure illustrates that 41 out of 103 students who participated
in the study failed the numerical methods course (39.81% of the surveyed
students), while 62 out of 103 students passed the course (60.19% of the
sample).

The dataset has been collected through a survey conducted
on students enrolled in courses from the fifth to ninth semester
of the bachelor’s degree program in systems engineering at
the University of Cérdoba, Colombia. Due to changes in the
curriculum structure in 2018, data collection before that year
was not feasible, resulting in the dataset’s limited size.

As explained in the previous section, the students’ outcomes
from the Saber 11 test are included in the dataset used in this
study. Figure 2 shows that students who failed the numerical
methods course scored lower in the mathematics section of
the Saber 11 test than those who succeeded in the course.
Indeed, the notches of the boxplots in the figure do not overlap,
indicating that the median score of students who succeeded in
the course is significantly higher than that of students who
failed.

The number of times each student enrolls in a prerequisite
course is one of the variables in the dataset. If students succeed
in the prerequisite course on the first enrollment, this value is
equal to one; otherwise, it is greater. Students who have failed
the numerical methods course tend to enroll in prerequisite
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courses more times than those who succeed in the numerical
methods course (see Figure 3).

Saber 11 test - suject: Mathematics

80

75

70

65

60

55 A

50 A

45

40 o

T T
Succeeded Numerical Methods Failed Numerical Methods

scores

Fig. 2. Boxplots showing the scores obtained by the students in the
mathematics subject of the Saber 11 test, categorized based on success or
failure in the numerical methods course.

Enrolling in a prerequisite course several times means
that a given student has failed it with the same frequency.
However, some students who have passed prerequisite courses
on their first try have failed the numerical methods course
as well. This explains why variables related to the number
of enrollments are not sufficient to predict success in the
numerical methods course, as evidenced in Figure 3. The
boxplots in this figure illustrate that the median of each of
these aforementioned variables is equal to one for students
who have failed numerical methods.

The lowest grades attained in prerequisite courses are lower
for students who have failed the numerical methods course
compared to those who have succeeded in it (see Figure 4).
The notches of the boxplots do not overlap for most pre-
requisite courses, except for calculus III. This suggests that
performance in calculus III might not significantly contribute
to accurate predictions, while the median of the lowest grades
in other courses varies depending on whether students have
succeeded or failed the numerical methods course.

This observation aligns with the histogram of the lowest
grades achieved in calculus III shown in Figure 5, where stu-
dents who failed this prerequisite course also failed numerical
methods, whereas several students who succeeded in calculus
III on the first enrollment still failed numerical methods. Recall
that if a student succeeds in a prerequisite course on the first
enrollment, their lowest grade is at least 3; otherwise, the
lowest grade is lower than this value (see Section II).

Similarly, the highest grades in prerequisite courses for
students who succeeded in the numerical methods course are
better than the highest grades in prerequisite courses for those
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who failed the numerical methods, as illustrated in Figures 6
and 7.

Therefore, the statistics indicate that students who failed the
numerical methods course perform less effectively in prereq-
uisite courses compared to those who succeeded. Indeed, this
observation constitutes a key assumption of our study.

Besides, the validation of each classification method with
the aforementioned dataset is conducted using the Python
programming language and the open-source library Scikit-
learn [28]. Scikit-learn provides comprehensive support for
various machine learning tasks, including supervised and un-
supervised methods. The validation tests are implemented in
notebooks within the Google Colaboratory platform [29].

Furthermore, grid search and K-fold Cross-Validation (K-
Fold CV) are both utilized in combination to explore various
hyperparameter value combinations and tune the hyperparam-
eters of each model.

Finally, during K-Fold CV, a value of K = 10 is chosen,
although K = 30 is also common. However, the larger K is,
the smaller the validation set becomes, this potentially limits
the ability to test hypotheses concerning the performance of
the methods. To assess the validation outcomes, a paired t-test
is employed. The results of the validation are presented in the
next section, while an analysis of their significant differences,
based on paired t-test, is discussed in Section V.

IV. RESULTS

The results obtained from the Ten-Fold Cross-Validation
(10-Fold CV) reveal that the Gaussian process (GP) with
the Radial Basis Function (RBF) kernel attained the highest
accuracy, recall, and harmonic mean (F;). While the GP with
the RBF kernel occupies third place in terms of precision,
the method called Support Vector machines (SVM) with the
same kernel (RBF) ranks among the top three most accurate
methods, alongside the GP with the rational quadratic kernel.
Details of these results can be found in Table I.

The GP with the RBF kernel has the best trade-off between
precision and recall. This is evident in its F; score, which is
a desirable feature for an intelligent system predicting student
failure in the numerical methods course. For instance, while
SVMs with the RBF kernel achieved the highest precision,
they had lower recall compared to the GP with the same kernel.
This means that a system based on SVMs is more likely to
miss students at risk of failing the course compared to one
based on GPs.

The results regarding the F; metrics are aligned with the
confusion matrix shown in Table II, where GP with the RBF
kernel predicted that 8 out of 62 students would fail the
numerical methods course although they never did, resulting
in 8 false positive examples. Moreover, the GP predicted that
10 out of 41 students would not fail the course, although they
did, resulting in 10 false negative instances. According to the
same confusion matrix, 85 out of 103 students are classified
properly during the validation of GP.
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TABLE I
TEN-FOLD CROSS-VALIDATION RESULTS

Mean Mean

Accuracy (%)

Machine learning

method p-value

Precision (%)

Mean
F1 (%)

Mean

p-value  Recall (%) p-value p-value

Gaussian process
with the radial basis
function kernel

83.00 80.67

77.00 76.79

Gaussian process
with the Matern

kernel 81.00 0.80 81.67

0.92 69.50 0.55 73.49 0.77

Gaussian process
with a sum of radial
basis function and
Matern kernel

79.00 0.61 76.00

0.63 72.00 0.69 71.62 0.64

Gaussian process
with the dot product

kernel 76.00 0.33 70.67

0.28 72.00 0.69 68.51 0.42

Gaussian process
with the rational

quadratic kernel 80.09 0.69 77.33

0.79 67.50 0.54 69.27 0.54

Support vector
machines with the
radial basis function
kernel

80.09 0.69 85.00

0.74 55.00 0.13 63.48 0.31

Support vector
machines with the
sigmoid kernel

78.00 0.48 75.83

0.60 67.00 0.41 69.25 0.46

Support vector
machines with the
polynomial kernel
(degree = 3)

78.00 0.49 79.17

0.91 52.50 0.09 60.55 0.21

Decision tree with 72.91 0.18 75.00

gini index

0.59 59.50 0.16 61.90 0.17

Decision tree with

entropy index 66.18 0.041 59.67

0.07 54.50 0.07 5591 0.06

XGBoost 75 0.27 76.83

0.76 52.50 0.06 59.60 0.14

Adaboost with the

entropy index 62.27 0.041 56.33

0.051 52.50 0.06 53.41 0.06

Random forest with 72.09 0.16 72.50

the entropy index

0.46 52.00 0.05T 58.29 0.10

Logistic regression 69.82 0.07 70.00

0.53 27.50 0.00067 37.90 0.0057

Multilayer perceptron 69.09 0.047 62.76

with a single hidden
layer

0.06 69 0.56 61.01 0.12

Multilayer perceptron
with five hidden

layers 75.09 0.32 65.33

0.21 67.50 64.33 0.33

Paired t-test reveals the difference between means is statistically significant

TABLE I
CONFUSION MATRIX ILLUSTRATING THE PERFORMANCE OF GAUSSIAN
PROCESS CLASSIFICATION USING THE RADIAL BASIS FUNCTION KERNEL.

richness contributes to accurately predicting the probability of

course failure, demonstrating the classifier’s robust discrimi-

natory power, which is well-suited for this predictive task.
The optimal hyperparameter settings for each classifier is

determined through 10-Fold CV and grid search. To facilitate

the reproducibility of the results in future research, the hyper-

parameter settings corresponding to the outcomes presented in

Forecasted class
True class Student might not fail | Student might fail | Total
Student did not fail 54 8 62
Student failed 10 31 41
[ Total [ 64 [ 39 [ 103

l Table I are as follows:

It is noteworthy that the accuracy of the GP with the RBF
kernel aligns with the area under the Receiver Operating
Characteristics (ROC) curve, as illustrated in Figure 8. With an
area of 0.81, this result indicates that the classification method
performs much better than random guessing. The dataset’s

o Gaussian processes for classification:

Radial Basis Function kernel: v = 0.125, o = 0.5.
Matern kernel: v = 2.44 x 1074, o = 0.5, v =1.3.
Combination of Radial Basis Function and Matern
kernel: yo = 0.125, vp; = 2.44 x 1074

Rational Quadratic kernel: v = 32, o = 0.25

¢ Support Vector Machines:
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Fig. 3. Boxplots depicting the number of enrollments in each prerequisite course, categorized based on success or failure in the numerical methods course.

— Radial Basis Function kernel: C' =1, v = 0.25
— Polynomial kernel: Regularization parameter C' = 8§,
d=3
- Sigmoid kernel: Regularization parameter C' = 8192,
~v=3.05 x 107°
o Logistic regression: Regularization parameter C' = 0.01
e Decison trees: Gini and Entropy indexes.
o XGBoost: Learning rate equal to 0.0625, maximum depth
of 5 levels, 80 estimators, and Entropy index.
o Adaboost: Learning rate equal to 0.124, 50 estimators ,
and Entropy index.
o Random forest: 15 trees, minimum 2 samples per leaf,
minimum 4 samples per split, maximum depth of 8 levels.

V. DISCUSSION

Based on the validation results (see Table I), Gaussian
processes with the Radial Basis Function kernel (GPRBF)
emerged as the top-performing machine learning method in

this study. This outcome is due to the fact that there is
no hyperplane decision boundary that separates the original
input space between the two classes (i.e., students at risk of
failing and those not at risk). There is a regular pattern in
the academic history of students who fail numerical methods,
but no single variable is sufficient to accurately predict their
likelihood of failure. For instance, some students who have
failed the numerical methods course succeeded in prerequisite
courses on their first enrollment, as shown in Figure 4.
Therefore, a nonlinear method such as GPRBF is well-suited
to the problem addressed in this study.

Besides, paired t-tests are conducted on the means of each
metric obtained during validation, revealing the following
insights:

e The mean accuracy of GPRBF is far greater than one
attained through extreme gradient boosting (or XGBoost),
Adaboost, and Multilayer perceptron with a single hidden
layer.
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Fig. 4. Boxplots illustrating the lowest grades attained in each prerequisite course, categorized based on success or failure in the numerical methods course.

« A notable difference in mean precision is observed be-
tween GPRBF and Adaboost, indicating that the former
method is considerably more precise.

o The means of precision between GPRBF and Support
Vector Machines with the Radial Basis Function kernel
(SVMRBF) do not show significant differences.

Moreover, classification methods with a probabilistic nature,
such as Gaussian processes (GP), logistic regression, and
Multilayer Perceptron, offer the advantage of providing the
user with information about the probability of failing the
numerical methods course. For instance, it becomes evident
that precautions may be necessary to prevent failure for a
specific student, especially when their probability of failing is
as high as 80%, compared to another student whose probability
is approximately 58%. This underscores the suitability of GP
for implementing intelligent systems aimed at the predictive
task addressed in this study.

Students identified as being at high risk of failing the course

might benefit from support services [30]. These services may
include access to course advisors, psychologists, learning and
writing advisors, counselors, librarians, disability specialists,
and so forth. By directing these resources toward students
facing a significant risk of failure, it is possible to optimize
cost-effectiveness and ensure targeted support where it is most
needed.

Implementing pedagogical contracts between lecturers and
students presents another intervention method to support stu-
dents at high risk of failing the course. These contracts include
personalized agreements tailored to each at-risk student’s
unique needs, strengths, weaknesses, and learning style. They
establish clear goals aligned with the student’s capabilities and
offer flexibility to adapt to individual circumstances through-
out the course. By continuously adjusting the contract, edu-
cators can provide targeted support to facilitate the student’s
progress and improve their chances of success.

Thus, students with a moderate probability of failing the
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Fig. 5. Histograms displaying the lowest grades obtained in each prerequisite course, categorized based on success or failure in the numerical methods course.

course may benefit from less intensive intervention strategies.
For example, providing a variety of instructional approaches,
materials, and activities can help to engage these students and
address their learning needs effectively. It is also essential
to monitor their progress closely and refer them to available
support services within the university if necessary, ensuring
they receive the assistance required to succeed.

Furthermore, lecturers may leverage probability information
to implement differentiated instruction strategies tailored to
individual student needs. By understanding the probability of
each student failing the course, lecturers may identify areas of
weakness and adjust their teaching approach accordingly. For
instance, conducting pre-tests and quizzes allows lecturers to
determine student comprehension levels and tailor instruction
to address specific misconceptions or gaps in understanding.
Timely feedback and targeted remediation further support stu-
dent learning by providing opportunities for reinforcement and
mastery of prerequisite competencies. Research in educational

psychology has shown that personalized learning approaches
may lead to improved student outcomes and engagement [31].
Therefore, by incorporating probability-based insights into
instructional planning, instructors can create a more inclusive
and effective learning environment for all students.

Utilizing the probability of failing as a metric for student
differentiation opens up avenues for fostering collaborative
learning environments within the classroom. By identifying at-
risk students based on their probability scores, lecturers may
orchestrate peer-to-peer instructional sessions and problem-
solving activities tailored to address the specific needs of these
individuals. This approach facilitates the formation of balanced
study groups or teams, where students proficient in prerequisite
competences and skills might provide mentorship and support
to their at-risk peers. Through collaborative engagement, at-
risk students not only receive targeted assistance but also
benefit from exposure to diverse perspectives and collective
problem-solving, enhancing their overall learning outcomes.
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Fig. 6. Boxplots showing the highest grades attained in each prerequisite course, classified based on success or failure in the numerical methods course.

Additionally, at-risk students can benefit from instruction in
metacognitive strategies, including techniques for goal-setting,
self-monitoring, and reflection. By equipping the student with
these cognitive tools, they can enhance their study habits
and develop into more strategic and self-regulated learners.
These strategies empower the student to take ownership of
their learning process, identify areas for improvement, and
implement targeted interventions to address challenges they
might encounter.

In the context of this study, reporting the probability of
failing offers distinct advantages for policymakers and other
stakeholders, enabling them to design more effective interven-
tion plans than merely identifying at-risk students in advance.
This aspect positions GPRBF as superior to SVMRBF, as
the latter does not inherently provide probability information
with its predictions. However, this limitation can be addressed
by employing Platt scaling [32], which estimates probabilities
from the decision values of SVMRBE. Notably, this capability

is internally implemented in the Scikit-Learn library.

Incorporating the student’s performance in prerequisite
mathematics courses, along with their scores on the admis-
sion test in this subject, yields improved predictive quality
compared to using all scores from the admission test or
performance in prerequisite courses related to computer pro-
gramming or general science (e.g., physics) as input variables.
This suggests a significant relationship between the student’s
proficiency in mathematics and their probability of failing the
numerical methods course. It implies that the effectiveness of
training in prerequisite mathematics courses such as calculus
and linear algebra directly impacts performance in numerical
methods.

This relationship between prerequisite mathematics courses
and the numerical methods course requires a thorough review
of the content covered in prerequisite courses. This review
aims to identify key concepts, competencies, abilities, and
techniques essential for success in the numerical methods
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Fig. 7. Histograms illustrating the highest grades achieved in each prerequisite course, categorized based on success or failure in the numerical methods

course.

course.

Besides, this process entails identifying common topics,
principles, and mathematical techniques that are relevant to
both the prerequisite courses and the numerical methods
course. This may encompass subjects such as, e.g., differentia-
tion, integration, matrix operations, and so forth. Additionally,
it may be beneficial to include in the curriculum, preliminary
courses in the first semesters, which introduce foundational
mathematical concepts to facilitate the transition from high
school to university. Subjects such as set theory, number the-
ory, basic algebra, and analytical geometry might be reviewed
to ensure students are adequately prepared.

Finally, this process culminates in mapping the learning out-
comes between the numerical methods course and prerequisite
courses. This involves articulating the learning outcomes of the
numerical methods course and specifying the competences,
skills, and knowledge that students are expected to attain.

Subsequently, these learning outcomes are aligned with the
concepts and goals outlined in the prerequisite mathematics
courses.

VI. CONCLUSIONS

In conclusion, Gaussian processes for classification with the
Radial Basis Function kernel emerged as the top-performing
method for the predictive task at hand. Significantly outper-
forming XGBoost, Adaboost, and Multilayer perceptrons with
a single hidden layer, this approach demonstrates superior
predictive accuracy. Leveraging machine learning methods,
the study forecasts student failure in the numerical methods
course based on their performance in prerequisite mathematics
courses and admission test scores in the same subject.

The Gaussian processes classification method offers distinct
advantages due to its probabilistic nature, providing predic-
tions in the form of probabilities for failing the course. This
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careful hyperparameter tuning.
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