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Abstract—Continuous Kernels have been a recent development
in convolutional neural networks. Such kernels are used to
process data sampled at different resolutions as well as irregularly
and inconsistently sampled data. Convolutional neural networks
have the property of translational invariance (e.g., features are
detected regardless of their position in the measurement domain),
which is unsuitable if the position of detected features is relevant
for the prediction task. However, the capabilities of continuous
kernels to process irregularly sampled data are still desired.
This article introduces the continuous feature network, a novel
method utilizing continuous kernels, for detecting global features
at absolute positions in the data domain. Through a use case
in processing multiple spatially resolved reflection spectroscopy
data, which is sampled irregularly and inconsistently, we show
that the proposed method is capable of processing such data
directly without additional preprocessing or augmentation as is
needed using comparable methods. In addition, we show that
the proposed method is able to achieve a higher prediction
accuracy than a comparable network on a dataset with position-
dependent features. Furthermore, a higher robustness to missing
data compared to a benchmark network using data interpolation
is observed, which allows the network to adapt to sensors with
a failure of individual light emitters or detectors without the
need for retraining. The article shows how these capabilities
stem from the continuous kernels used and how the number
of available kernels to be trained affects the model. Finally, the
article proposes a method to utilize the introduced method as a
base for an interpretable model usable for explainable AI.

Index Terms—machine learning; neural nets; continuous ker-
nel; irregularly sampled data; reflection spectroscopy

I. INTRODUCTION

This article is an extended version of the conference pa-
per “Utilizing Continuous Kernels for Processing Irregularly
and Inconsistently Sampled Data With Position-Dependent
Features” [1] presented at the ICAS 2023 conference. Com-
mon machine learning methods assume that data is sampled
consistently. That is, each instance of sampled data has the
same shape and each data point always represents the same
value. However, in real-world applications, data might of-
ten be sampled inconsistently due to factors like production

inaccuracies of sensors measuring the data. In some cases,
certain data points may be missing from the measurement
as well. To facilitate such incomplete data, imputation of
missing data points can be used to reconstruct the data [2].
Some methods also employ neural networks to reconstruct or
correct data [3]. For certain types of network architectures,
such as convolutional neural networks (CNN) [4], continuous
kernels have been utilized to circumvent the need for special
preprocessing and to handle irregularly and inconsistently
sampled data directly instead [5] [6] [7]. Convolutional neural
networks have the property of translational invariance, which
is ill-suited to data expected to exhibit features at consistent
absolute positions within the data sampling domain. Common
examples of this type of data include spectral data, both
optical and acoustic, where the relevant features may be
intensity peaks at specific, consistent wavelengths rather than
a wavelength-invariant feature of the intensity curve’s shape.

Certain types of spectrometry, such as multiple spatially
resolved reflection spectroscopy (MSRRS, [8]), produce such
data with position-dependant features, sampled both irregu-
larly and inconsistently. An MSRRS-based sensor consists
of several light emitters of different wavelengths, as well
as several light detectors. These yield brightness values for
all emitter-detector combinations, which have discrete emitter
wavelengths and emitter-detector distance. An example of data
from such a sensor can be seen in Figure 1. Figure 1a shows
how such data is sampled irregularly due to the discrete
nature of available emitters and detectors. Figure 1b shows
one possible cause of inconsistently sampled data in MSRRS-
based sensors. Due to production inaccuracies, it is possible
that the wavelength of individual light emitters is slightly
shifted, and the measured data points represent a different
value in the measurement domain. Another possible cause of
inconsistent data can be seen in Figure 1c, where data from
one detector is unavailable.

To process irregularly and inconsistently sampled data with
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(a) Data from multiple spatially resolved reflection spectroscopy is only available at
irregular intervals in the measurement domain.
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(b) Production inaccuracies cause different emitter wavelengths for different devices.
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(c) Individual detectors might fail, causing data to only be available inconsistently.

Fig. 1. Example of irregular and inconsistent data from a possible multiple
spatially resolved reflection spectroscopy sensor arrangement. The data

consists of relative brightness at discrete wavelengths and emitter-detector
distances.

position-dependent features directly, a novel method is pro-
posed in this paper. It has been shown that neural networks,
such as sinusoidal representation networks (SIRENs) [9], can

be used as functions parametrized through their learnable pa-
rameters, making them suitable for use as continuous kernels.
These kernels are shown to be capable of modeling global,
long-term dependencies [5]. By utilizing such continuous ker-
nels outside of the context of convolutional neural networks,
our method is capable of directly processing irregularly and
inconsistently sampled data with position-dependent features.

The rest of the article is organized as follows. Section II de-
tails the current state-of-the-art regarding continuous kernels.
Section III discusses the definition of a continuous kernel.
Section IV introduces the new continuous feature networks
utilizing continuous kernels. Section V introduces the exper-
imental setup to evaluate the proposed method. The results
are shown in Section VI, where the efficacy of the proposed
method for processing spectroscopy data is discussed. Sec-
tion VII discusses continuous feature networks as interpretable
models for explainable AI. The conclusion closes the article.

II. RELATED WORK

Previous work on continuous kernels focuses primarily on
applications in CNNs to handle irregularly sampled data.
In [5], continuous kernels are utilized to process various types
of sequential data, including irregularly sampled sequences.
The article contains an in-depth analysis of different types
of continuous kernel parametrizations. [6] uses continuous
kernels for convolutional neural networks to process non-
grid bound data, such as representations of atoms in chem-
istry. In [7], continuous kernels are used to perform three-
dimensional convolution on point clouds. However, as these
articles all discuss the usage of continuous kernels for convo-
lution in typical CNN architectures featuring certain degrees
of translational invariance, the methods discussed are not
well suited for use with data containing position-dependent
features.

Using neural networks to represent a continuous function
parametrized through the learnable parameters of the network,
called implicit neural representation, has been previously
analyzed by [10] [11] to model signed distance functions,
which are required for shape representation of 3D geometry.
In [9], a network architecture called SIREN is proposed as an
implicit neural representation for generic data, including audio,
images, and signed distance functions. Such implicit neural
representations are useful to serve as continuous kernels [5].

III. DEFINITION OF CONTINUOUS KERNELS

At its core, a continuous kernel is a function that assigns
a weight to a data point at any given position [6]. Unlike in
previous applications in CNNs, however, the position supplied
to the kernel in our methods is an absolute position in the
domain rather than a relative position to a convolution point.

To be able to represent continuous variants of typical weight
kernels, the kernel function needs to be parametrizable with
learnable parameters in such a way that the kernel function can
ideally approximate any arbitrary function. It has been shown
that multi-layer perceptrons (MPL) using sine nonlinearities,
such as SIREN networks, can be used for such purposes.
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Formalities

Small letters denote scalars, and small bold letters denote
vectors. Capital letter variants of the former denote a set of the
respective type. Subscripts on values indicate an index of the
value within a containing set; superscripts indicate an index
to the element of a vector.

Definition

Let pi ∈ P ⊂ Rn be the position of the value di ∈ D ⊂
R of the i-th data point of the set of data points D in an
n-dimensional domain. A continuous kernel in the proposed
architecture is now defined as a function

ψ : Rn 7→ R (1)

assigning a weight value to any position pi in the domain. As
shown in [5], such functions can be modeled and parameter-
ized using implicit neural representations, such as MLPs using
sine nonlinearities like SIREN [9]. In the proposed method,
such an MLP serves as the function ψ. The MLP has n input
neurons to input the absolute position pi ∈ R of a data point in
the domain and one output neuron representing the assigned
weight for the data point. The remaining model parameters
of the kernel are the number and size of hidden layers in the
MLP, which can be adjusted to the problem to be learned. The
MLP serving as the weight function ψ of a continuous kernel
is not trained separately but rather as part of the final network
that the continuous kernel is used in.

IV. CONTINUOUS FEATURE NETWORK

Figure 2 shows the general structure of the proposed ar-
chitecture. Part I shows the set of input data points to the
model, each representing a value at a specific position within
the measurement domain. In the proposed method, the first
layer of the architecture, called the continuous feature layer,
contains multiple independent continuous kernels (see part II).

For each of the independent kernels, the input consisting
of an arbitrary number of data points is weighed using the
kernel. Additionally, the input data might be sampled unevenly.
To compensate for an uneven distribution of samples, the
local density of the sampled data points in the measurement
domain is calculated (omitted in Figure 2). In the proposed
method, kernel density estimation, where the kernel size is a
learnable parameter, was used, but other methods for point
density estimation can be used as well. Each data point is
weighted by the inverse local density of data points at its
position as proposed in [7]. The data points weighted by both
the kernel and the inverse point density are shown in part III
and are formally expressed in Equation (2).

For each kernel, the weighted data points are reduced to a
single value as defined in Equations (3) and (4) and as shown
in part IV. Here, a sum is used as the reduction operation, but
other reductions, such as calculating the mean of the values,
are also considerable. Combining the reduced value of each
kernel into a vector results in an output feature vector of a
fixed size depending on the number of independent kernels in
the continuous feature layer.

Since the continuous feature layer reduces the input of
arbitrary size to a latent vector of a fixed and predetermined
size, the continuous feature layer can be followed with a
typical neural network architecture, such as a multi-layer feed-
forward network (see part V). The output of this MLP then
serves as the output of the entire network as depicted in
part VI. We call the proposed combination of a continuous
feature layer followed by a multi-layer feed-forward network
a continuous feature network. The continuous feature layer,
as described, has three main model parameters: The number
of kernels and the two parameters defining the shape of the
kernels, being the number and the size of its hidden layers.

Formal Definition

Let the set Ψ be the set of multiple, independent continuous
kernels ψk used in the continuous feature layer. In this set,
each ψk represents one feature possibly present in the sampled
data. Let di ∈ D be the i-th data point in the input dataset
D with the position pi ∈ P in the measurement domain. Let
ρ(pi) denote the local density of sampled data at position pi

in the domain. Then we define the weighted data points for
each kernel as

wi,k := di · ψk(pi) ·
1

ρ(pi)
(2)

...k

II
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Fig. 2. Overview of a continuous feature network.
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The components of the resulting fixed-size latent feature
vector v are defined as follows:

vk(D,P ) :=
∑
i

(wi,k) (3)

=
∑
i

(
di · ψk(pi) ·

1

ρ(pi)

)
(4)

As the fixed size feature vector v is a function of the data
points and their position, the feature vector can be expressed
as a function of the following type:

v : Ri,Ri×n 7→ Rk (5)

v describes the feature vector with a fixed size k as a reduction
of an input of arbitrary size i for the data and i × n for the
data’s position for any i. Since the size of the feature vector
v is fixed and does not depend on the input size i, the feature
vector can be used as the input to a classical neural network
architecture, such as a multi-layer feed-forward network, for
an arbitrary input size i without the need to retrain the network.

V. EXPERIMENTAL SETUP

The method is tested with a dataset from an MSRRS-
based sensor as described in [8]. The data was measured in
vivo, alongside a reference measurement of the carotenoid
concentration in the skin on a scale ranging from 0 to 12. The
datasets for training and testing are entirely distinct, having
measured a different group of test subjects using a different
set of MSRRS-based sensors.

The measured spectroscopic data is well suited for the
use of continuous kernels and continuous feature networks as
proposed in Section IV. This is because the MSRRS-based
optical data is yielded in the shape of a relative brightness
given for certain discrete wavelengths and certain discrete
distances between light-emitter-detector pairs. These discrete
wavelengths and distances are neither sampled at regular
intervals nor always at the same exact wavelengths. Due
to production inaccuracies for the sensors, slight differences
in the wavelength of the emitters exist. However, the peak
wavelengths are known for each sensor’s emitters and can thus
be accurately supplied as the position data for the continuous
feature layer. In addition, it is expected that the relevant data
in this type of spectral data is encoded in the position of the
features (here, the absorption wavelengths of the carotenoids)
rather than the shape of features to be detected, rendering the
proposed method suitable.

Evaluation Architectures

To evaluate the method, a continuous feature network with
a continuous feature layer containing 64 continuous kernels is
used. Each kernel is made up of a SIREN network, containing
three hidden layers of 48 nodes with sine nonlinearities each.
The continuous feature layer is followed by a hidden feed-
forward layer with 64 nodes, followed by an output layer with
one output for the predicted carotenoid concentration. This
network has approximately 320k parameters.

For a comparison network, we use a multi-layer feed-
forward neural network using a similar amount of parame-
ters. This feed-forward network has one input node for each
emitter-detector pair, followed by a hidden layer of 256 nodes,
followed by another hidden layer of 128 nodes, followed by
an output layer with one output for the predicted carotenoid
concentration for a total of approximately 375k parameters.

In addition, a continuous feature layer without any sub-
sequent network was examined. Instead, a simple learned
weighted sum of the components of the latent feature vector
was used as the model output.

A convolution-based model was also investigated, but it
has proved unable to produce meaningful predictions of the
carotenoid concentration in human skin and is thus omitted
from further analysis in this article.

All networks were trained using the ADAM optimizer [12]
and implemented using the LibTorch bindings of the PyTorch
framework [13].

VI. EXPERIMENTAL RESULTS

Figure 3 shows the accuracy of the proposed continuous
feature network architecture compared to the accuracy of the
comparison network. To show the ability of the continuous
feature network to handle inconsistently sampled data, the
prediction accuracy of the network was measured with the
data of certain detectors withheld during inference. For each
sample of data in the test set the detectors whose data was
withheld were picked randomly, according to the number of
detectors disabled.

For the continuous feature network and continuous feature
layer, the missing data points were simply removed from
the input vector. Due to the nature of the continuous feature
network, it is capable of processing the shorter input vector
without the need to retrain the model. For the multi-layer feed-
forward network, the data was interpolated from the data of
other detectors with a similar wavelength and emitter-detector
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Fig. 3. The mean square prediction error (lower is better) of the continuous
feature network, a continuous feature layer with no follow-up network, and
the multi-layer feed-forward network with the data of a different number of

detectors withheld.
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Fig. 4. A histogram of the prediction error of the continuous feature
network at different numbers of light detectors whose data was withheld.

distance. This is needed as the feed-forward network is inca-
pable of handling the shorter input vector without retraining.
If no other data was available with a similar wavelength and
distance, the value was set to 0 for the feed-forward network.

The results show that the continuous feature network outper-
forms the similarly-sized multi-layer feed-forward network for
all investigated numbers of detectors whose data was withheld.
The continuous feature network is able to achieve a mean
square error of 19% lower compared to the multi-layer feed-
forward network for the full set of input data. The improved
prediction accuracy can be explained both by the high suitabil-
ity of continuous feature networks for MSRRS data allowing
an improved abstraction of the relationship between optical
data and the reference carotenoid concentration in human skin,
as well as because the continuous feature network is able
to incorporate the actual measured wavelengths of the light
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Fig. 5. A histogram of the prediction error of the multi-layer feed-forward
network at different numbers of light detectors whose data was withheld.

emitters for each sensor as the position of the input data points.
In addition, we see that the continuous feature network is able
to give a stable prediction with more data missing compared
to the multi-layer feed-forward network. While the continuous
feature layer without a subsequent network is unable to achieve
a similar prediction accuracy compared to the full continuous
feature network, it retains its resilience against missing data.
The observed mean square error is only slightly increasing
with 50% of the data missing. Compared to the multi-layer
feed-forward network, the measurement results show that the
resilience against missing data is yielded by the use of the
continuous kernels in the continuous feature layer for initial
data input. Built into a slightly deeper model architecture
like the proposed continuous feature network, the continuous
kernels in the continuous feature layer are a powerful tool for
processing irregularly and inconsistently sampled data.
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Fig. 6. A histogram of the prediction error of a continuous feature layer
followed by a simple weighted sum instead of a fully trained follow-up

network at different numbers of light detectors whose data was withheld.

The ability of the continuous feature layer and network
to adapt to fewer data being available can be seen in more
detail in Figures 4, 5, and 6. Figure 4 shows a histogram
of the prediction error of the continuous feature network
with a different amount of data being withheld. The detectors
whose data was withheld from the continuous feature network
were picked randomly. As the graph shows, while the amount
of highly accurate precision lowers with more data being
withheld, the amount of predictions with a large error (> 2.4)
is not increasing significantly in contrast to the multi-layer
feed-forward network. The multi-layer feed-forward network
quickly encounters an increase in predictions with a large
error (> 2.4) once the amount of withheld data from disabled
detectors increases to or above 25%, in addition to a reduction
in highly accurate predictions as seen in Figure 5. This contrast

shows that the continuous feature network is capable of
adapting to a lower amount of data being available without the
need for retraining. The slight increase of predictions with a
large error occurring for the continuous feature network when
no data is withheld is presumed to be due to a combination
of inaccurate input data point density estimation and slight
overfitting and will be subject to further investigation.

Figure 6 shows a histogram of the prediction error for the
continuous feature layer with no subsequent network. Com-
pared to the full continuous feature network, the continuous
feature layer only has less highly accurate predictions when
the full amount of data is available. Instead, the number of
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moderately accurate predictions increases, while the number
of predictions with a large error slightly increases as well.
Similar to the full continuous network, the measurements show
that with less and less data being available, the continuous
feature layer without subsequent network is also capable of
keeping the number of predictions with a large error low, with
only a slight increase being observable, compared to the large
increase of the multi-layer feed-forward network.

Influence of the Number of Kernels Used

One important parameter of the continuous feature network
is the number of continuous kernels used in the continuous
feature layer. As can be seen in Figure 7, a larger number of
kernels will result in a better prediction of carotenoids in the
test dataset. This is visible both in the reducing mean square
error shown in Figure 7a, as well as in the reducing number of
predictions with a large error (> 2.4) seen in Figure 7b. One
interesting observation is that the number of predictions with
a large error increases specifically for situations with many
kernels used in the network as well as with few, especially
no detectors having their data withheld. This supports the
assumption that the slight increase in predictions with a large
error, as observed before, may be caused by overfitting, espe-
cially in the larger networks. For this reason, analysis of the
efficacy of anti-overfitting techniques such as dropout [14] for
the use with continuous feature layers and continuous feature
networks is interesting for future research. Once the network
gets sufficiently large, the overall increase in prediction quality
is able to outperform the increasing effect of overfitting when
all data is available.

VII. POTENTIAL FOR EXPLAINABLE AI

A side effect of the continuous feature layer is the resulting
potential for explainable AI. As continuous kernels represent
weights for each position in the measurement domain, we
can deduct levels of importance of certain regions within the
measurement domain from the encoded weights. The average
of the absolute value of the weights over all kernels might
be used as a measure of the importance of the data at certain
points in the measurement domain. This may allow the use of
the learned continuous kernels as an interpretable model [15].

Figure 8 shows three such kernels. They are taken from the
continuous feature layer with no subsequent network, trained
on predicting the carotenoid concentration in human skin, as
presented in Figures 3 and 6 from Section VI. Figure 8a
shows two kernels whose outputs have some of the highest
weights in the learned network and thus have some of the
highest influence. Figure 8b shows a kernel whose output has
a negative weight with one of the highest absolute values.
Since the output of this model is directly acquired from a
weighted sum of the activated outputs of the continuous feature
layer, it is possible to infer meaning directly from the learned
kernels. In the positive kernels shown in Figure 8a, a high
value in the kernel (here bright yellow/white) means that an
emitter-detector pair with the corresponding wavelength and
distance will have a high impact, and a high brightness will
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(b) A kernel whose output has a large negative weight. Red areas imply high
weight, blue areas imply low weight.

Fig. 8. Kernels from a continuous feature layer whose outputs are combined
in a weighted sum, trained to predict carotenoids in human skin.

High-weight areas in positively weighted kernels increase the final value
when more light is detected, while high-weight areas in negatively weighted

kernels decrease the final value when more light is detected.
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thus increase the final value. At the same time, in the negative
kernel Figure 8b, a high value (here red) means that an emitter-
detector pair with the corresponding wavelength and distance
will have a high impact, and a high brightness will thus
decrease the final value. The positive kernels show that more
light detected at various wavelengths will increase the final
value, except for light at low distances and wavelengths around
400 nm to 600 nm. Similarly, the negative kernel shows that
especially more light being detected at low distances and
wavelengths between 400 nm to 500 nm will decrease the
final value. This is plausible, as the main detection targets
are carotenoids. It is known that carotenoids have a high
absorption, especially between 450 nm and 500 nm [16]. It
is thus expected that if more light in this absorption band
is reaching the light detectors, fewer carotenoids seem to
be present to absorb it, and thus the predicted carotenoid
concentration is lowered, as the negative kernel shown in
Figure 8b will cause.

This shows that kernel interpretability is an interesting
feature of continuous feature layers. Combining kernel inter-
pretability with more tools of explainable AI, especially to
enable model interpretability for models with more complex
networks following the continuous feature layer, are an inter-
esting topic for future research.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes the continuous feature network, a novel
method to process irregularly and inconsistently sampled data
with position-dependent features, such as optical or acoustic
spectra. In addition, the continuous feature network is shown
to outperform a comparable multi-layer feed-forward network
with a 19% lower mean square error on predicting carotenoid
concentration in human skin from optical multiple spatially
resolved reflection spectroscopy data. This shows that the
continuous feature network performed better at abstracting the
relationship between the optical MSRRS data and the refer-
ence carotenoid concentration. Furthermore, this paper shows
that the continuous feature network is capable of making stable
predictions of carotenoid concentration in human skin with up
to 50% of the data from the optical detectors withheld, while
a comparable multi-layer feed-forward network exhibits a sig-
nificant increase in predictions with a large error from 25% of
the data withheld. Furthermore, it is shown that this reliability
is caused by the continuous feature layer itself instead of the
subsequent network. Additionally, it is shown how the num-
ber of continuous kernels affects the model’s resilience and
adaptability against missing data, as well as its overall ability
to perform accurate predictions of carotenoid concentrations
from optical data. Other potential use cases include similar
types of data where samples may be irregular and features
are position-dependent in the measurement domain, including
other types of spectra, such as audio. Additionally, an approach
to utilize continuous feature networks as interpretable models
for explainable AI is introduced and shown in the example of
the prediction of carotenoids.
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