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Abstract— The deployment of a swarm of robots in domains, 

such as mine clearance or search and rescue operations, 

requires that they are self-adaptive in order that they may 

adjust to unforeseen events and up to date information. Much 

of the research on swarm self-adaptation focuses on the 

adaptation of individual swarm behaviour, however a top-

down approach may allow a swarm to adjust its behaviour on 

the basis of the combined knowledge of the swarm. This 

research looks at producing a decentralised autonomic 

manager to handle such adaptation in a task of foraging 

robots, by adjusting the range over which robots broadcast 

help requests based on the perceived density of the swarm. 

First, the robots are tasked with recognising the initial 

situation, before responding to two possible events which alter 

the scenario, namely the destruction of a proportion of the 

swarm, and a change in the effective communication range. A 

centralised system is first developed as an idealised system with 

full swarm knowledge, and then a decentralised version is 

created to perform the same role on a per-robot basis, using 

only the information available to it. The performance of the 

swarm using each autonomic manager is compared against the 

performance when using a fixed broadcast range identified to 

be most suitable for the initial circumstances. It is found that 

both approaches are capable of recognising the initial 

situation, and of responding to events, however the 

effectiveness of the response may depend upon additional 

parameters not taken into account here. The decentralised 

autonomic manager presented is also found to require the 

ability to dynamically alter its own parameters in order to be 

of use. 

Keywords- Swarm robotics; Self-adaptation; Autonomic 

Computing; Simulation. 

I.  INTRODUCTION 

This paper is an extended version of the work published 
in [1], extending those results and presenting further 
research. 

A swarm of robots, in which the aggregate behaviour of 
many relatively simple individuals combines to create a 
more complex set of behaviours [2], can have applications in 
areas, such as mine clearance [3], search and rescue [4] and 
space exploration [5][6]. A robot swarm can reduce the 
demands on any single robot, may accomplish the task more 
quickly, and can be deployed where sending humans is too 
dangerous, difficult, or costly.  

The ability to self-adapt, that is to adjust behaviour in 
response to newly acquired information without the need for 
external guidance, is a requirement of a robotic swarm [7]. 
Unforeseen events may occur that require adjustment, and 
factors, such as distance and time, may restrict the ability of 

a human operator to act successfully. Self-adaptation can be 
applied to the swarm in a variety of ways [8], including the 
development of emergent behaviours [9], evolutionary 
systems [10] and swarm-level decision making [11]. 

Autonomic Computing concepts [12][13] can be used for 
swarm-self adaptation. At the swarm level, an Autonomic 
Manager (AM) employing a control loop, such as the 
Monitor, Analyse, Plan, Execute system described by [12] 
can be used to allow the swarm to assess the current situation 
and take any action necessary, as seen in Figure 1. This may 
be implemented in either a centralised manner, with 
individual robots communicating with a central command 
unit, or in a decentralised manner with each robot using its 
own control loop in order to modify its own behaviour in 
response to shared information and experience. 

The objective of this work is to explore the potential for 
using swarm-level self-adaptation in a swarm of robots to 
improve performance in a foraging task, specifically the time 
it takes the swarm to complete the task which may often be 
an application priority, such as in search and rescue. 

Robot swarms are typically decentralised in nature [3], 
and a similarly decentralised approach for the swarm’s self-
adaptation is desired. Initially, a centralised approach is used 
as an exploratory stage to determine if an AM provides any 
benefits. This is followed by an implementation of a 
decentralised approach to performing the same self-
adaptation. As the centralised AM exists only to explore self-
adaptation options, it will not take a more active role in 
coordinating the swarm in its task. 

Each approach to the AM aims to achieve performance 
improvement through the modification of the range at which 
individual robots communicate with their neighbours for 

 
 

Figure 1.  MAPE-K loop, as used by an autonomic component. The 

loop proceeds through each of the four stages in turn. 
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assistance. The swarm is tasked with deciding the 
appropriate communication range, and then two unforeseen 
events are introduced. The first, robot destruction, tests the 
swarm’s ability to react to the sudden change in swarm size, 
such as a loss of robots in a search and rescue task due to the 
hazardous environment. The second, a change to 
communications quality, represents a situation where the 
ability of the robots to communicate with each other may be 
hampered by a change in environmental conditions. 

The rest of this paper is structured as follows. Section II 
discusses related work in swarm-level adaptation. Section III 
describes the simulation and the foraging task used. Section 
IV explains how the two approaches to autonomic 
management have been applied to the swarm, while Section 
V describes the test scenarios. Section VI reports the results 
and explores the implications, and Section VII concludes the 
paper with a summary, and any future research directions. 

II. RELATED WORK 

The location where adaptation is applied to a swarm is 
important when considering the intended goal. Much of the 
research in adaptation focuses on the level of the individual 
agent, where the resulting swarm performance is affected by 
the aggregate of these individual behaviours [8]. This level 
of adaptation can have a dramatic impact on performance, 
but it is difficult for any single robot to take advantage of 
information that is only available when viewing the larger 
picture, or to make decisions affecting the behaviour of 
other members of the swarm, such as cooperation or 
communication.  

Adaptation at the swarm level can counter some of these 
problems. [14] describes an approach to moderating the size 
of the swarm in order to reduce degraded performance due 
to congestion. Robots keep track of the conflicts that occur 
when two robots attempt to occupy the same cell. If the 
number of conflicts crosses a threshold, virtual pheromones 
can be deposited at the entrance in order to instruct robots to 
leave or join the area. Hence, the swarm can adjust its size 
based on the combination of each robot’s collision tracking 
data. 

In [15], a group of unmanned aerial vehicles (UAVs) are 
patrolling an area defined by a set of cells, with the aim of 
ensuring that cells are visited often enough during the 
mission. Individual UAVs decide their next target on the 
basis of values assigned to the cells by a central system 
based on UAV visitation. Different strategies for assigning 
those values are explored, and so the central system 
becomes an effective behaviour adaptation method for the 
group. 

As discussed in Section I, autonomic concepts may be 
used for swarm self-adaptation. [16] describes an adaptation 
pattern in which one robot in the swarm takes on the role of 
an AM, running a control loop with visibility of the whole 
system. In the case study presented, the swarm was tasked 
with exploring an unknown area. Robots communicate their 
positional and explorational information with the AM, 
which can direct them to underexplored areas. Recognising 
that a centralised system may be a bottleneck, a 
decentralised variant is also used in which the robots share 

the information with their neighbours. Both approaches 
perform much better than a basic pheromone-based 
approach. 

A partially distributed approach described in [17] uses a 
group of UAVs, together with communication base stations 
taking on the role of AMs, engaged in a search task. If one 
of the UAVs leaves the active area and loses the 
communication link, the base stations are able to recognise 
the failure and reposition themselves in order to retrieve the 
UAV, while also minimising disruption to the rest of the 
swarm. 

In a previous paper [8], cooperation strategies for 
swarms were investigated to determine the potential for 
using an AM to select between them based on the situation. 
Here, we build on that research by using the Help 
Recruitment strategy, exploring the potential for using an 
AM to modify the broadcast range parameter in order to 
improve performance, and then creating a decentralised 
implementation to achieve that. 

III. SIMULATION OF FORAGING ROBOTS 

This research employs a time-stepped simulation of a 
heterogeneous swarm of agents, engaged in a variant of a 
foraging task, as in a previous work [8]. The following 
subsections describe the simulation and task, the behaviour 
of the robots, and how communications and energy are 
handled by the simulation. 

A. Simulation and Foraging Task 

The simulation presents a world consisting of a 
rectangular grid, in which several items and robots are 
placed at random. Each item or robot may be one of two 
possible types, represented by their colours, as shown in 
Figure 2. A single cell may contain only one item, however 
it can contain any number of robots. Each cell can therefore 
be considered to represent an area much larger than the 
footprint of a single robot, and thus the simulation may 
ignore potential collisions between robots. 

The simulation is updated in a time-stepped manner. 

 
 

Figure 2.  A portion of the world state during a simulation. The 

colour of a robot (face) or item (cross) indicates its type. 
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Each tick of the update loop, all robots are updated in turn, 
for a fixed time delta. Hence, when measuring the time 
taken for the swarm to complete a task, it is the number of 
ticks of the simulation that must be measured, rather than 
the real time taken for the simulation to complete, which 
may be impacted by factors such as the simulation playback 
speed, host platform, and so forth. 

The robots are given the task of foraging the items, with 
each robot capable only of foraging an item that matches its 
own type and occupies the same cell. The task ends once all 
items have been successfully foraged. Each item is foraged 
in the position found, with no requirement to return the item 
to a home base – this process is therefore analogous to 
applications, such as the analysis of mineral deposits, or 
environmental cleanup. 

B. Robot Behaviour 

The behaviour of the robots follows the Help 
Recruitment strategy developed in [8]. Figure 3 is a state 
machine diagram showing the states and transitions 
employed by the robots in this strategy. 

A robot begins in the Explore state. Each tick of the 
simulation, the robot first checks for an item in the current 
cell, and if none are found, it selects a random adjacent cell 
to move into. If an item is found, the robot will transition to 
the Forage state. 

In the Forage state, the robot first checks the item to see 
if it matches the robot’s type. If it does, the item is 
successfully foraged and the robot resumes exploration. 
However, if the type does not match, the robot broadcasts an 

initial help message to neighbouring robots, stating that it 
has found an item of a given type, and requires assistance 
from suitable robots. After sending the message, it moves to 
the Wait For Offers state. 

A robot remains in the Wait For Offers state for two 
ticks, listening for responses from other robots. After this 
period, the robot will select the offer from the nearest robot 
and send an assignment message to them, before resuming 
exploration. If no offers have been received, exploration is 
resumed with no assignment. 

A robot receiving a help request will only respond to it if 
it matches the type, and is in the Explore state. In this case, 
the robot sends a offer message to the robot requesting help, 
and moves to the Wait For Assignment state, where it can 
remains for up to three simulation ticks before resuming 
exploration. If it receives an assignment message in this 
time, it then moves to the Respond state. 

In the Respond state, the robot moves directly towards 
the location of the item to be foraged, but continues to check 
the cells it passes through, sending help requests if 
necessary. The robot continues responding until it arrives at 
the target destination, where it can forage the item if it is 
still present, or resume exploration if another robot has 
foraged the item ahead of it. 

In this way, robots are able to cooperate. Where a robot 
is unable to forage an item it finds, it can recruit a nearby 
robot to carry out the task instead. As reported in [8], 
engaging in this cooperation increases the performance of 
the swarm compared to having no cooperation in place. 

 

Figure 3.  State Machine for the Help Recruitment cooperation strategy. 
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C. Communication and Energy 

Communication within the simulation works by queuing 
each message, and processing all messages at the end of 
each simulation tick. Each message has a point of origin and 
a range, and this is used to ensure that it is sent to all robots 
within range. Each robot stores the received messages in a 
list, and will process them at the beginning of their next 
simulation tick, but before doing so it will shuffle the list in 
order to avoid the update order of robots affecting the 
underlying behaviour. 

To explain why this is necessary, consider a robot 
requesting help, and receiving a response from two robots 
the same distance away. If the list of received messages is 
not shuffled, the first of these robots to be updated by the 
simulation would always be the robot selected to assist. 
When the message list is shuffled, the second robot has an 
equal chance of being selected.  

Communications within the simulation are further 
affected by a global quality setting, represented as a 
percentage. The effective range of each message is then 
determined by multiplying the message’s intended broadcast 
range by this percentage expressed as a value between 0 and 
1, hence a value of 50% results in a message only reaching 
half the distance it intended. This is a very simple approach, 
however it allows for the conditions faced by the robots to 
change in a way that requires recognition and action. 

The energy expended by each robot is measured by 
assigning each action a cost, in arbitrary units. Each robot 
has an upkeep cost of 1 unit per tick, which is incurred in 
addition to the costs of actions taken. Foraging an item costs 
1 unit, while movement costs 1 unit per cell moved, or 1.41 
units when moving diagonally. The energy cost of 
communications depends on the maximum range of the 
broadcast, prior to the effects of the global communications 
quality setting. This is applied using the power law stated in 
(1), where r is the range of the broadcast in cells. 

 
 cost = 0.01 × r2 (1) 

 
Measuring the energy expended by the robots is 

included as a means of exploring the potential impacts of 
using increased broadcast ranges within the swarm. 

IV. AUTONOMIC ROBOTS 

When robots require assistance, they send a help message 
with a broadcast range set prior to the mission. However, as 
robots that receive a message will pause awaiting 
assignment, messages that reach a higher number of potential 
helpers may have a negative impact on the performance of 
the swarm. In addition, as the energy costs of broadcasting 
for help increase exponentially with distance, shorter 
broadcasts are preferred. 

A preliminary study was carried out to determine best 
performing broadcast range for each robot density. The 
foraging task was conducted using a variety of swarm sizes 
and broadcast ranges, and selecting the best performing 
range for each swarm size. The density of each robot type 
was calculated as in (2), 

 
   = r / A, (2) 

 
where δ is the density of robots of a given type, r is the 
number of robots of that type, and A is the area of the map in 
square cells. Using this information allowed a plot of ideal 
broadcast range against density, as shown in Figure 4. Fitting 
an approximate trend line to the plot leads to an equation for 
determining the broadcast range to use based on the density 
of the smallest group of robots, as in (3). 

 
 range = 2.6594 × min

-0.46 (3) 
   

The broadcast range used by the robots in the swarm may 
be set prior to the mission based on the known densities and 
operating area, however if an event occurs which changes 
these parameters mid-mission, or the parameters are not 
known ahead of time, then it is necessary to give the swarm 
the ability to manage the broadcast range itself. 

This has been accomplished in two ways, employing 
either a centralised or a decentralised system. The following 
subsections describe how these approaches work. 

A. Centralised Autonomic Manager 

In the centralised approach, each robot sends a pulse 
message to a Central Autonomic Manager (CAM) every 16 
simulation ticks, containing its type, exploration 
information, and the maximum distance from which it 
received messages from neighbours since the last pulse.  

With the same period, the CAM can use the data to 
determine the composition of the swarm, estimate the area 
of the map, and detect any changes in communications 
quality.  

Composition is determined simply by counting the 
number of received messages from each type of robot since 
the last period.  

The area of the map is calculated by having each robot 
keep track of the rectangular bounds within which it has 
thus far explored. As each is received by the CAM, it 
updates its own rectangular bound, increasing it in size on 
each axis as needed to contain the latest information. The 

 

Figure 4.  Derivation of the ideal broadcast range function. The 

points indicate the best performing range for the given density, based 

on mean ticks to completion. 
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area of this rectangle will then approximate the area of the 
map within which the robots operate. 

To detect changes in communications quality, the robots 
are required to send out local pulse messages with a range of 
8 cells. Each pulse contains the position of the robot that 
sent it. Between each update to the CAM, a robot keeps 
track of the maximum distance of a received pulse, and that 
information is sent in its message to the CAM. The CAM 
similarly tracks the maximum pulse range received. As a 
randomly scattered swarm may expect to receive pulses up 
to the expected range of 8 cells, a lower value can be used to 
indicate a drop in communications quality, with the 
perceived quality being calculated as in (4), where rangemax 
is the maximum received pulse range, and the denominator 
of 8 is the broadcast range of any given pulse. 

 
 

quality = rangemax / 8 (4) 

The CAM uses the information obtained each period to 
calculate the density of each robot type within the world, 
and thus the ideal broadcast range using (3). This is then 
divided by the perceived communications quality in order to 
compensate, or if the quality is zero, the CAM can instruct 
the robots to avoid sending help requests to avoid wasted 
energy and time. 

B. Decentralised Autonomic Manager 

In the decentralised approach, each robot has a 
Decentralised Autonomic Manager (DAM), which only 
sends a local pulse every 32 ticks with a fixed broadcast 
range of 8 cells, containing the sending robot type. Between 
each pulse, a robot updates a count for each robot type from 
which it receives a pulse message. 

For each period, the robot calculates a density value as 
in (2), with the area used being that of a circle with the same 
radius as the pulse messages. If this density is non-zero, it is 
then used to calculate an ideal broadcast range using (3), 
which the robot uses for any subsequent help requests. 
However, if no messages were received, the calculated 
density is zero, so the robot sets the broadcast range at twice 
the pulse range, reasoning that no robots are within the pulse 
range, but may potentially lie just outside it. 

The DAM does not attempt to determine the 
communications quality. Instead, it is assumed that if the 
quality drops, the number of received messages from other 
robots may also drop, resulting in a lower density of robots 
in the local area and a corresponding increase in attempted 
broadcast range.  

It can be noted that this approach does not take into 
account swarm-level knowledge, and is instead localised 
adaptation based on the knowledge available to individual 
robots. However, there is some degree of knowledge about 
the swarm as each robot is aware of the composition of their 
local neighbourhood. The focus here is on implementing a 
method by which the robots can correctly adjust their 
broadcast range without relying on any central system. 

V. TEST SCENARIOS 

In determining the viability of the two autonomic 
approaches, three sets of tests were conducted for each of 

autonomic approach. First, the performance of the swarm 
was measured in a set of fixed scenarios. Second, the ability 
of the AMs to react to a sudden drop in the number of 
robots in the swarm was tested. The third test was to 
determine the AMs’ abilities to react to a change in 
communications quality. 

Each of the tests was conducted in a 128x128 map, 
seeded with 256 items which were equally distributed 
between red and white types. Each of the setups within a 
test scenario was run 100 times to obtain a sample of results, 
and the performance of the swarm was measured based on 
the simulation ticks taken to successfully forage all items. In 
addition to performance data, the energy costs for the entire 
swarm have been measured to determine the relative 
efficiency by which the robots complete the task. 

The following subsections describe each of the test 
scenarios. 

A. Autonomic Manager Performance 

To test the hypothesis that the autonomic managers used 
are capable of determining a suitable broadcast range for the 
swarm and perform no worse than the appropriate fixed 
range for a given swarm density, tests were performed 
comparing the swarm using a set fixed broadcast ranges, 
and then using each autonomic manager. 

The fixed broadcast ranges used were 4, 8, 16, 24, 32, 
40, 48, 56 and 64 cells. The tests were repeated with 64, 128 
and 256 robots, always equally distributed between the two 
types.  

The mean time taken by the swarm over the 100 runs 
was then compared across each test setup, with the best 
performing fixed broadcast range identified, and then 
compared to both the centralised and decentralised 
autonomic approaches. 

B. Robot Destruction 

To test the ability of the autonomic managers to 
recognise a sudden change in the swarm composition, an 
event was set up to occur after 300 simulation ticks, in 
which an equal number of robots of each type are removed 
from the simulation. This has the effect of decreasing the 
density of the swarm, which the AMs should be able to 
detect and react accordingly. 

The test with 256 robots was run in four scenarios, with 
the percentage of robots destroyed in each scenario being 
25%, 50%, 75% and finally 90%. These tests were carried 
out using the best performing fixed broadcast range 
identified in the autonomic manager performance tests 
described previously, and also with each AM. 

The mean time taken by the swarm over the 100 runs 
was then compared across each test setup, and also 
compared to the corresponding fixed broadcast range test 
with no robot destruction, so it may be seen how the robot 
destruction affects performance, and the impact of using an 
autonomic manager. 

C. Communications Quality Change 

To test the ability of the autonomic managers to react to 
a change in the communications quality, an event was set up 
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to occur after 300 simulation ticks, in which the 
communications quality was changed from its initial setting 
to another value. This has the effect of either reducing or 
increasing the effective broadcast range of the robots, and 
the AMs should be able to adjust. 

The test with 256 robots was run in four scenarios, with 
the communications quality changes being 100%-25%, 
25%-100%, 100%-0% and 0%-100%. 

As in the robot destruction scenario, these tests were 
carried out using the best performing fixed broadcast range 
identified in the AM Performance scenario, and then with 
each AM. 

The mean time taken by the swarm over the 100 runs 
was then compared across each test setup, and also 
compared to the corresponding fixed broadcast range test 
without any change in communications quality, so it may be 
seen how the change affects performance, and the impact of 
using an autonomic manager. 

VI. RESULTS 

The following subsections discuss the results of the three 
main test scenarios, followed by an additional focus on the 
DAM pulse period, and an overall summary. 

A. Autonomic Manager Performance 

  Figure 5 shows the simulation ticks taken for task 
completion by swarms of 64, 128 and 256 robots 
respectively, and the energy costs for the 256-robot swarm. 
Independent t-tests were performed between the identified 
best broadcast range for each swarm size, against the 
performances of both the CAM and DAM, and the results of 
this are summarised in Table I. 

It can be seen that the CAM is capable in each case of 
performing as well as the best performing fixed broadcast 
range, completing the task in a similar time. It can also be 
seen that while the performance of the swarm does not 
appear to degrade with higher broadcast ranges, the energy 
cost does increase, and so using a CAM may be more 
efficient than simply selecting a high broadcast range. 
However, it should be noted that the cost of 
communications between a CAM and individual robots has 
not been factored in during this work. 

The results show that the DAM with a pulse range of 8 
cells does not perform as well when the swarm size is low. 
The pulse messages sent between robots to facilitate the 
DAM approach will be subject to the same performance 
degradation as the help broadcast messages, in lower robot 
densities.  

 
 

(a) Ticks (64 robots) (b) Ticks (128 robots) 

  
(c) Ticks (256 robots) (d) Energy (256 robots) 

  

Figure 5.  Ticks taken for a each swarm of robots to complete the task (a-c), and energy usage for the 256-robot swarm (d), for each broadcast range 

tested, and the two AMs. Circles represent outliers in the data. 
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Figure 6 shows the performance of swarms of 64 and 
128 robots, with a variety of DAM configurations with 
pulse ranges set between 8 and 64 cells. These results show 
that an increase of the pulse range to 16 cells will correct 
this problem for these swarm sizes. Table I includes the 
results of t-tests comparing the performance of a fixed 
broadcast range to the DAM with pulse ranges of 8 and 16 
cells. 

This suggests that some means of adjusting the pulse 
range dynamically based on the local robot densities may be 
useful to allow the swarm to not only adapt its help 
broadcast range, but also its own autonomic processes. 

B. Robot Destruction 

Figure 7 shows the performance of the swarm for the 
robot destruction scenario, for 25%, 50%, 75% and 90% of 
robots destroyed. Independent t-tests were performed 
between the identified best broadcast range from the 
previous subsection, and the performances of both the CAM 
and DAM, and the results of this are summarised in Table 
II. 

Comparing the performance of the swarm in the two 
fixed-range scenarios shows that the destruction of robots 
has a detrimental impact on the swarm’s performance, as 
can be expected as reducing the size of the swarm means 
fewer robots are left to complete the same task. 

The results show that for the cases where 25% and 50% 
of robots are destroyed, the CAM performs as well as the 
fixed broadcast range but confers no advantages to the 
swarm. However, as the number of robots destroyed 
increases, the CAM starts to show its worth, completing the 
task faster in both the 75% and 90% destruction scenarios. 
Throughout, the energy cost correlates with the 
performance. 

As more robots are destroyed, it appears that the CAM’s 
ability to increase the help broadcast range, and therefore 
increase the chances of remaining robots successfully 
signalling for other robots to assist in foraging an item, 
results in an improvement in the swarm’s performance over 
retaining the original fixed broadcast range. 

As with the AM Performance tests, the results for the 
DAM show that a pulse range of just 8 cells does not allow 
it to improve performance, and in fact it performs worse 
than even a fixed broadcast range. Figure 8 shows the 
performance of the swarm using a variety of DAMs with 
pulse ranges set from 8 to 64 cells, and compares against the 
fixed broadcast range and the CAM. It can be seen that 
increasing the pulse range to 24 cells would produce similar 

TABLE I.  AM PERFORMANCE T-TEST RESULTS 

Swarm 

Size 

Ideal 

Range 

Fixed Range CAM Deg. Of 

Freedom 
t-statistic p-value 

Mean SD Mean  SD 

64 56 4151.59 1031.553 4153.54 1044.386 198 -0.013 0.989 

128 40 2022.26 564.917 2024.05 596.051 198 -0.022 0.983 

256 24 936.90 267.334 983.77 248.969 198 -1.283 0.201 

    DAM8    

64 56 4151.59 1031.553 6230.53 2347.897 135.847 -8.107 0.000 

128 40 2022.26 564.917 2382.46 809.580 176.932 -3.649 0.000 

256 24 936.90 267.334 948.82 250.759 198 -0.325 0.745 

    DAM16    

64 56 4151.59 1031.553 4024.84 1152.987 198 0.819 0.414 

128 40 2022.26 564.917 1987.78 611.588 198 0.414 0.679 

256 24 936.90 267.334 945.80 258.645 198 -0.239 0.811 

 
 
 

 
(a) 64 robots 

 
(b) 128 robots 

Figure 6.  Ticks taken for each swarm to complete the task, 

comparing performance of the DAM with various pulse ranges. 

Circles represent outliers in the data. 
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performance to the CAM, again highlighting the need for 
the ability to dynamically change this value. 

C. Communications Quality Change 

Figure 9 shows the performance of the swarm in the 
communications quality change scenarios. Independent t-
tests were run comparing the fixed range performance with 
that where the AM is active, and the results are summarised 
in Table III. The equivalent tests comparing energy usage 
are shown in Table IV. 

It is only when the communications quality drops from 
100% to 25% that the CAM confers any advantage to the 
swarm, performing better than the fixed broadcast range, 
and performing as well as the swarm without any change in 
communications quality, suggesting it is successful in 

counteracting the reduction in effective broadcast range. It 
can also be seen that despite an effective four-fold increase 
in the broadcast range it uses, which amounts to a 16-fold 
increase in the cost of each broadcast, the energy 
requirements are still lower than using a fixed broadcast 
range. 

In the other scenarios, we do not see any benefit to using 
a CAM. In the 25%-100% change, the CAM is actually less 
efficient than using a fixed broadcast range, despite taking 
the same amount of time to complete the task. To explain 
this, it is likely that during the first 300 ticks of the 
simulation, where the communications quality is reduced to 
25%, there are much more items in the world for robots to 
find, meaning a much higher chance of an item being found 
by a robot of the wrong type, and therefore many more help 

  
(a) 25% (b) 50% 

  
(c) 75% (d) 90% 

  

Figure 7.  Ticks taken by the swarm to complete the task during the Robot Destruction scenario. Circles represent outliers in the data. 

TABLE II.  ROBOT DESTRUCTION T-TEST RESULTS 

Destroyed 

Robots / % 

R24 CAM  Deg. of 

Freedom 
t-statistic p-value 

Mean Std. Dev. Mean  Std. Dev. 

25 1187.51 342.602 1150.36 303.995 198 0.811 0.418 

50 1630.59 617.813 1811.13 606.876 198 -2.085 0.038 

75 3664.05 1709.930 3041.41 1226.075 179.516 2.959 0.004 

90 11196.18 5458.347 7974.65 2753.011 146.305 5.270 0.000 

   DAM8    

90 11196.18 5458.347 13930.47 5191.608 198 -3.630 0.000 

   DAM24    

90 11196.18 5458.347 7831.72 2820.210 148.341 5.476 0.000 
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requests being sent. In the 100%-25% scenario, there are 
fewer items remaining in the world by the time the 
communications quality drops, and so fewer help requests 
are sent. 

In the cases where the communications quality begins or 
ends at 0%, no statistical differences can be seen between 

the CAM and the fixed broadcast range. This is likely 
because at 0% communications quality, no cooperation is 
possible, and the performance of the swarm is dominated by 
the random search for items. 

Focusing on the 100%-25% scenario for the DAM, we 
again see that the 8 cell pulse range is detrimental to the 
performance of the swarm. Figure 10 shows the 
performance of the swarm with a variety of DAMs with 
pulse ranges set between 8 and 64 cells. It can be seen that a 
pulse range of 40 cells performs best in this scenario. As 
with the other test cases, this highlights the need for a 
dynamic pulse range. 

D. Decentralised AM Pulse Period 

The above results show that adjusting the broadcast 
range of the DAM can have an impact on the performance 
of the swarm. In light of this, it is necessary to investigate 
the effects of the only other parameter in the DAM, that of 
the period between pulses. 

To test this, a swarm of 128 robots, each equipped with 
a DAM set to a broadcast range of 8 cells, was tested in the 
standard performance scenario, using periods of 8, 16, 24, 
32, 40, 48, 56 and 64 ticks. A one-way ANOVA test was 
used to determine if any statistical difference exists between 
the resulting sets of data using the period as the independent 

 

Figure 8.  Ticks taken for the swarm during the 90% Robot 

Destruction scenario, for each DAM configuration. Circles represent 

outliers in the data. 

 
 
 

  
(a) 100%-25% (b) 25%-100% 

  
(c) 100%-0% (d) 0%-100% 

  

Figure 9.  Ticks taken by the swarm to complete the task during the Communications Quality Change scenario. Circles represent outliers in the data. 
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value. 
Figure 11 shows the performance and energy cost of the 

swarm in completing this task, and the one-way ANOVA 
test showed there is no statistically significant difference in 
the data (F(7, 792) = [0.578], p = 0.774). 

As such, the period with which the pulse broadcasts are 
sent does not appear to have any impact on the performance 
of the DAM. However, further tests may be useful to 
explore the impact of the period when using other broadcast 
ranges or swarm sizes. 

E. Summary 

The results above show that the presence of an 
Autonomic Manager can have benefits for the performance 
of the swarm, however it is possible for the AM to reduce 
performance in some circumstances, and these will require 
further investigation to determine what other parameters 
may be affecting the swarm’s performance. If the AM can 
be developed to account for these further variables, it may 
be able to counter their effects. 

For example, if estimates of the density of items in the 
world can be made by the AM, this can be used to reduce 
the communication range when the item density is high, 
avoiding interruptions that occur during the help broadcasts 
which may lead to poorer performance. 

It can also be seen that the idealised Centralised 
Autonomic Manager produces a performance that can be 
replicated by a decentralised approach, without the 
problems associated with having a central bottleneck for the 
swarm. However, the pulse range used by the system for 
allowing robots to detect neighbours needs to be dynamic 
for the DAM to account for unknowns either in the initial 

TABLE III.  COMMUNICATIONS QUALITY T-TEST RESULTS (TICKS) 

Quality 

Change 

R24 CAM  Deg. of 

Freedom 
t-statistic p-value 

Mean Std. Dev. Mean  Std. Dev. 

100 – 25% 1314.86 518.360 944.96 239.680 139.481 6.477 0.000 

25 – 100% 1015.27 268.303 980.89 286.952 198 0.875 0.383 

100 – 0% 1663.61 706.816 1724.27 625.697 198 -0.643 0.521 

0 – 100% 1108.01 276.859 1132.90 302.442 198 -0.607 0.545 

   DAM8    

100 – 25% 1314.86 518.360 1572.25 612.837 198 -3.207 0.002 

   DAM32    

100 – 25% 1314.86 518.360 1031.65 358.278 198 4.494 0.000 

   DAM40    

100 – 25% 1314.86 518.360 947.32 254.206 143.958 6.367 0.000 

TABLE IV.  COMMUNICATIONS QUALITY T-TEST RESULTS (ENERGY) 

Quality 

Change 

R24 / 1000 CAM / 1000  Deg. of 

Freedom 
t-statistic p-value 

Mean Std. Dev. Mean  Std. Dev. 

100 – 25% 746.49 292.797 563.98 136.668 140.184 5.648 0.000 

25 – 100% 574.95 151.535 730.59 163.040 198 -6.993 0.000 

100 – 0% 943.32 399.203 986.42 356.575 198 -0.805 0.422 

0 – 100% 627.33 156.363 646.28 172.379 198 -0.814 0.417 

   DAM8    

100 – 25% 746.49 292.797 899.07 349.310 198 -3.348 0.001 

   DAM32    

100 – 25% 746.49 292.797 687.40 231.925 198 1.582 0.115 

   DAM40    

100 – 25% 746.49 292.797 684.42 176.740 162.689 1.815 0.071 

 

 

Figure 10.  Ticks taken for the swarm during the 100%-25% 

communications quality scenario, fore each DAM configuration. 

Circles represent outliers in the data. 
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situation, or that arise through events that occur during the 
mission. 

VII. CONCLUSION AND FUTURE WORK 

This research used a simulation of a robotic swarm 
equipped with two different autonomic management 
capabilities, able to manage the performance of the swarm 
through adjustment of the intra-swarm communication range. 

A centralised approach was used as an idealised situation 
in which a central system has full knowledge of the swarm 
with which to act, as a means of investigating the potential 
for improving performance through the use of an AM. 
Further to this, a decentralised approach was developed that 
allowed individual robots to monitor their own environment 
and select an appropriate broadcast range without requiring 
any central component. 

The findings show that a centralised AM is capable of 
finding an appropriate broadcast range when given a task 
where the map size and number of robots in the swarm is not 
initially known to the AM, and must be deduced from 
information gathered by the individual robots. 

When a robot destruction event occurs, the centralised 
AM proves beneficial to the swarm when the robot loss is 
high, capable of completing the task faster than using a fixed 
broadcast range. No benefit is seen when the robot loss is 
low. 

In the event of a change in communications quality, the 
centralised AM is capable of improving performance when 
the quality drops from high to low without dropping out 
entirely, but not when the quality starts low and increases. 
This is likely due to the increased item density during the 
early stages of the task, and it is worth exploring this factor 
to see how the AM might measure and take item density into 
account. 

A centralised system has problems that have not been 
replicated directly in this work, such as the potential for the 
central AM to be a bottleneck on performance, the need and 
energy cost required for individual robots to maintain a link 
to the central AM, and reduced autonomy of any one robot. 
To counter this, a fully decentralised approach was 
developed and tested. 

The decentralised approach was found to be capable of 
matching the performance of the centralised system, despite 
robots not having complete knowledge of the swarm, 
achieved only by tracking local pulse messages sent by 
neighbouring robots to estimate the swarm density. The 
findings however show that a means of dynamically 
adjusting the range of these pulse messages is required for 
the decentralised AM to reach the desired performance, 
while the pulse period does not appear to have an effect. 

Future work will investigate methods to allow the 
dynamic adjustment of the pulse range, as well as exploring 
other scenarios in which a decentralised autonomic manager 
may be of use to a swarm, and the possibility of sharing 
decisions made by individual robots in order to help guide 
other robots, thus restoring the concept of swarm-level 
knowledge that is not present in the current decentralised 
approach. Additional work may also explore other situations 
that may affect performance, such as more complex maps 
containing obstacles, differing distributions of robot types, 
more complexity in the foraging task, on-board batteries that 
drain and require recharging, and further events that may 
occur to unexpectedly change the world state. 
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