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Abstract—For fire departments, having enough firefighters
available during a shift is obviously an important require-
ment. Nevertheless, just like in any organization, having too
many firefighters standby is not desirable from a financial
point of view. Despite the fact that fire departments can
and should not be run like production companies, at least
for staffing purposes, forecasting the number of incidents
that each fire station has to handle is highly relevant.
In this paper, we develop models to create a forecast
for the number of incidents that each fire station in
the Dutch safety region Amsterdam-Amstelland has to
handle for specific incident types and deal with major
and small incidents. Previous studies mainly focused on
multiplicative models containing correction factors for the
weekday and time of year. Our main contribution is to
incorporate the influence of different weather conditions
in the categories of wind, temperature, rain, and visibility.
Rain and wind typically have a strong linear influence,
while temperature mainly has a non-linear influence. We
show that an ensemble model has the best predictive
performance.

Keywords–incident forecasting; fire department planning;
generalized linear models; ensemble models; severe weather
conditions.

I. INTRODUCTION

As for most organizations, the ability to accurately
forecast demand is of “paramount importance” for emer-
gency services, fire departments included [1][2]. In the
1970s, the Fire Department of the City of New York
and The New York City-Research And Development
(RAND) Institute jointly conducted various groundbreak-
ing studies [3]. More recent academic interest seems
to be focused more on ambulance services. While
there are obvious similarities between emergency service
providers, they differ in (the number of) incident types,
demand characteristics, and operational logistics.

Nevertheless, the problems that fire departments have
to deal with, like loss of coverage and the degradation

of response times, are similar. The same is true for
possible gains. At a strategic and tactical level, improved
forecasting of workload leads to a better placement of
base stations, and improved staffing and scheduling. At
an operational level, one may pro-actively relocate units
to maximize coverage and minimize response times dur-
ing major incidents [4]. All things considered, efficient
planning of emergency service resources is crucial.

Demand is an important factor when models are being
developed to improve the performance of emergency
service providers. It is, however, not uncommon that,
for instance, call arrival rates are estimated using ad-
hoc or rudimentary methods such as averages based on
historical data [5]. This may ultimately lead to a degra-
dation of performance, or over- or under-staffing [6].
In most cases, reducing response times is an important
performance measure since this increases the survival
rate of victims [7][8].

Numerous papers have been written on forecasting
forest or wildfire occurrences, many of those using
weather variables and vegetation types as part of their
model [9]. Forest fire forecasting is no longer a study
in academia alone. In fact, in the United States, e.g.,
the National Interagency Coordination Center operates
a predictive service which provides decision support to
the United States Forest Service, which facilitates pro-
active management and planning of fire assets on both
operational and tactical levels [10].

Although the scale of wildfire occurrences in the
Netherlands is smaller than in many other parts of
the world, it is mainly the greater interrelationship of
different types of infrastructure, i.e., the wildland-urban
interface, that causes concern and even lead to surface
fuel models for the Netherlands [11]. For a more urban
environment, like the conurbation of Western Holland,
which also includes Amsterdam, forest fire occurrences
are not very common.
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The occurrence of certain types of incidents which fire
departments in urban settings typically respond to also
correlate with weather conditions. As such, incorporating
this information into the planning process of emergency
services yields important advantages over current prac-
tice. Typical weather and storm-related incidents that
fire departments in the Netherlands respond to are fallen
trees, potentially falling debris that needs securing (roofs,
construction work, scaffolding), and water damage. An-
other important factor is that the weather also impacts
fire department operations by overwhelming available
resources.

At least in the Netherlands, to the best of our knowl-
edge, there are no known applications of forecasting
algorithms that are used in practice at fire departments,
being urban or specialized forest services. Given this,
we aim to provide an easily applicable model that can
be put to use for a general fire department when dealing
with severe weather conditions. Therefore, we quantify
and model the fact that - under these conditions - fire
departments experience an increased amount of incidents,
which in itself leads to an increased amount of deploy-
ments.

The organization of this paper is as follows. In Sec-
tion II, we describe the data used to obtain the forecasts.
Section III describes the models used for forecasting. In
Section IV, we analyze the performance of the models
and state the insights. Finally, in Section V, we conclude
and address a number of topics for further research.

II. DATA

The available data contains one row for each incident
that happened in the region Amsterdam-Amstelland from
January 2008 up until April 2016. The most interesting
information includes the incident’s start- and end time,
location, incident type, the concerned fire station, and the
number of fire trucks used. Since the size of incidents
matters for the number of people you need, the focus is
on forecasting the number of trucks needed.

A. Major and small incidents

The vast majority of incidents require only one or
otherwise just a few trucks. Therefore, it makes sense
to distinguish between ‘major’ and ‘small’ incidents.
Major incidents are mostly due to coincidences that are
hard to predict. Specifically, they do not rely on bad
weather conditions or a particular time of the year in the
Netherlands, for example, as with forest fires in countries
with a tropical climate. This arouses the expectation
that the inter-incident times of major incidents can be
modeled as a Poisson process.

To test the Poisson assumption, we apply the
Kolmogorov-Smirnov (KS) test on the inter-incident
times in cases when more than k trucks are needed for
several values of k. The KS-test shows that if we define
an incident as ‘major’ when at least k = 6 trucks are
used, then the KS-test does not reject exponentially of
the inter-incident times (approximate p-value = 0.429).
However, for values of k < 6, the KS-test doubts (or
rejects) this exponentially (approximate p-value = 0.073
and 0.002 when at least k = 5 and k = 4 trucks are
used, respectively. Hence, according to this result, we
define an incident to be major when at least six trucks
are needed.

Figure 1. Total number of trucks used for small incidents per day.
* Peaks caused due to an increased amount of incidents around

New Year’s Eve.

Next, we focus on the small incidents. Small inci-
dents are probably easier to predict, since bad weather
conditions often cause many small incidents to happen
(like fallen trees, water damage, or police/ambulance
assistance at traffic accidents). To study this, we first omit
all incidents on December 31 and January 1. There are
extremely many incidents around New Year’s Eve as can
be seen on Figure 1, mainly caused by fireworks-related
incidents. These conditions do not occur in the rest of
the year, therefore we model these days separately as
described in the modeling section.

After elimination we find that not all outliers in
Figure 1 are New Year’s days. In fact, the only five days
that, for the amount of trucks used per day (>138), on
par with New Year’s day are days with severe weather
conditions as can be seen in Table I.

On these days with severe weather conditions only
0.46%, instead of an average 1.72%, of incidents are
major incidents. Without a clear reason to assume that
the frequency of major incidents on this particular type
of days is lower, there must be another explanation rather
than chance. If so certain circumstances cause many
small incidents to happen, like those caused by severe
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TABLE I. WEATHER CONDITIONS ON THE FIVE DAYS THAT
COULD COMPETE WITH NEW YEAR’S DAYS IN TERMS OF

AMOUNT OF TRUCKS USED.

Highest windspeed (km/h) Total rainfall (mm)
Date (day) Trucks Overall Worst hour Overall Worst hour

28/10/2013 (Mon.) 345 79.2 111.6 3 10.7
24/12/2013 (Tue.) 147 64.8 111.6 2.3 6.8
28/07/2014 (Mon.) 179 28.8 43.2 12.6 60.5
31/03/2015 (Tue.) 174 64.8 100.8 3.8 7.9
25/07/2015 (Sat.) 355 72 100.8 5.8 19.7

weather conditions. Data from the fire department on
incident types that happened on days with severe weather
conditions further support this finding.

B. Seasonal patterns

There are clear seasonal patterns in the data for the
number of trucks needed throughout each year, week, and
day. The plots in Figure 2 illustrate this. The pattern in
Figure 2c depicts the activity cycle that an average person
goes through every day of the week. The week pattern
(Figure 2b) differs per type of incident and looks a little
different throughout the year. The pattern in Figure 2a
can be included in the model in a more subtle way than
taking factors per month. The problem here is that, for
instance, the differences between the beginning and end
of January are considerable. We correct for this by using
a Loess-smoothed function over the factors per week. We
will include all these patterns in our model.

C. Weather variables

Besides the time-dependent components, we want to
know which weather variables we must include in our
model. Therefore, we use the Pearson correlation test to
determine which weather conditions have a significant
influence on the number of trucks we need. The results
of these tests are summarized in Table II.

TABLE II. PEARSON’S PRODUCT-MOMENT CORRELATION
TESTS BETWEEN SOME WEATHER VARIABLES AND THE
NUMBER OF TRUCKS USED FOR SMALL INCIDENTS PER

DAY.

Category Variable p-value Correlation

Wind
Average wind speed (FG) < 10−12 0.132
Maximum hourly mean wind speed (FHX) < 10−15 0.177
Maximum wind gust (FXX) < 10−15 0.189

Temperature Average temperature (TG) 0.6897 0.007
Boolean: 1 if average > 0 (TG>0) < 10−8 0.105

Rainfall *
Rainfall duration (DR) 0.0004 0.061
Total rainfall (RH) < 10−15 0.151
Maximum hourly rainfall (RHX) < 10−12 0.132

Visibility **
Minimum visibility (VVN) 0.2217 -0.014
Boolean: 1 if minimum < 200m (VVN<2) 0.2893 0.010

* In 0.1 mm and -1 for <0.05 mm; ** On 0-89 scale, where 0: <100 m, 89: >70 km.

We can see from this that the minimum visibility and
the average temperature both have no significant (direct)

(a) Year pattern: higher during summer and winter.

(b) Week pattern: peak on Friday.

(c) Day pattern: low at night, high at midday.

Figure 2. Seasonal patterns: the given percentages represent relative
differences with respect to the average (in blue).

influence. However, if we consider a variable indicating
whether it was on average freezing on that day, then this
does have predictive value. Obviously, we also have to
include some variables indicating the amount of rainfall
and wind. However, the variables within these categories
are highly correlated (sample correlation around 0.9) and,
therefore, we may exclude some of them to simplify our
model.

D. Fireworks-related incidents

It is a tradition in the Netherlands to celebrate New
Year’s Eve with fireworks. Only then, the general public
is allowed to light fireworks. Fireworks need to comply
with legal standards, and may only be sold during the
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last three days of the year at licensed shops.
Over the years, fire departments in the Netherlands

have seen a slow but steady rise in fireworks-related
incidents [12]. Most common incident types that fire
departments respond to during New Year’s Eve are
dumpster fires, outside fires and vehicle fires. Also more
serious incidents happen, like in 2020 a fire in an Arnhem
flat that left two members of a family dead, and two
other family members critically injured. The fire began
in the ground floor hallway of a high-rise apartment
building and was identified to be caused by fireworks.
A family of four were found trapped in an elevator,
which shut down as the building lost electricity due to
the fire. Noteworthy, but not related to New Year’s Eve,
is the Enschede fireworks disaster of May 13, 2000. A
catastrophic explosion in a fireworks depot, situated in a
residential area of the eastern Dutch city of Enschede,
essentially obliterated the neighborhood of Roombeek
[13].

In 2014, in an attempt to mitigate the nuisance caused
by fireworks-related incidents on New Year’s Eve, the
Dutch government reduced the time window in between
the public was allowed to set off fireworks. This reduced
time window was set to 6 pm on December 31 to 2 am
on January 1, while before it was allowed starting from
10 am on December 31.

Figures 3 and 4 show the average number of trucks
used for small incidents per hour around New Year’s Eve
before and after New Year’s Eve 2014/2015, respectively.
The reduced time window, and possible relation between
fireworks and small incidents, seems to be reflected in the
average number of trucks used per hour as well. Further-
more, it seems that the reduction has only compressed
all incidents into a smaller time window, as the average
total number of trucks per hour has increased at certain
periods. These preliminary findings however need further
research to find out whether this is a coincidence or not.

Figure 3. Average number of trucks used for small incidents per
hour around New Year’s Eve before 2014/2015.

III. MODELS

In this section, we will create a model that predicts
directly the number of trucks that each fire station needs.

Figure 4. Average number of trucks used for small incidents per
hour around New Year’s Eve after 2014/2015.

In the previous section, we have shown that the major
incidents (with at least six trucks needed) are very hard
to predict and that we can best model them by an
(inhomogeneous) Poisson process. We also showed that
the daily pattern of the number of trucks used for small
incidents is quite standard. So, if we know for some
day how many trucks are needed in total, we can quite
accurately extract from this how many trucks are needed
per hour. Therefore, we will try to forecast the number
of trucks needed per day per fire station.

Fire departments in general have a variety of incident
types they respond to. Not all of them occur frequently
enough to make a good forecast on. Since these in this
aspect have little value, they are eliminated and the
remaining incident types are clustered based on their
correlation with certain weather variables.

TABLE III. INCIDENT CLUSTERS AND CORRELATION WITH
RESPECT TO WIND SPEED, TEMPERATURE, RAINFALL,

AND VISIBILITY.

Cluster Type Wind Temp. Rain Visib. # p/day

1 Outside fire -0.135 0.09 -0.193 0.075 3.46

2

Animal in water -0.088 0.134 -0.058 0.013

1.65
Animal assistance -0.072 0.129 -0.088 0.069
Person in water -0.041 0.056 -0.023 0.009
Locked out -0.006 0.159 -0.043 0.062

3 Contamination / nuisance - -0.228 0.038 -0.111 2.52

4
Locked in elevator - -0.088 0.021 -0.015

8.16Automated alarm - -0.069 0.051 -0.037

5
Fire rumor - -0.103 - -

3.57Inside fire - -0.038 - -
General assistance water - -0.019 - -

6 Police assistance 0.048 -0.062 0.026 - 1.34

7
Ambulance assistance - -0.065 - -0.039

8.55Vehicle in water - -0.042 - -0.025
Reanimation - -0.086 - -0.008

8 General assistance 0.063 0.079 0.057 0.052 2.28

9 Storm- and water damages 0.319 0.028 0.279 - 2.10

In total, we now have nine different incident clusters in
our dataset, some of which occur much more/less often
than others. In Table III, we show the correlation with
respect to one variable of each four weather categories.
Looking at these correlations in detail, we can see that
these are often in line with our expectations. For instance,
high wind speed and rainfall obviously increase the
number of incidents due to ‘storm and water damage’
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(type 9) and decrease the likelihood of ‘outside fires’
occurring (type 1).

We will estimate, for each incident type t, a model that
predicts the number of trucks used for small incidents
yt,d on date d, i.e.,

yt,d = ft,d · gt,d · xt,d.

Here, ft,d is a correction factor for the week number
based on a Loess-smoothed function as in Figure 5,
and gt,d is a weekday factor as in Figure 2b. Both
are computed separately for each incident type. Finally,
the term xt,d contains all remaining information. This
includes the average level, dependencies on the weather,
a possible trend and dependencies on all other variables
that we are currently not considering, but which do exist
in reality.

Figure 5. The year pattern per week (in black) together with its
Loess-smoothed variant (α = 0.3).

A. Linear regression model

The first attempt to model xt,d is by means of the
linear regression model (LM)

xt,d = β0 + β1 · d+ β2 · windspeedd + β3 · temperatured
+ β4 · rainfalld + β5 · visibilityd + εt,d,

where εt,d is assumed to have expectation zero and some
finite variance. Note that this model includes an intercept
(β0), a linear trend (β1 · d) and (at most) four weather
variables.

B. Generalized Linear Model

Our second model, a Generalized Linear Model
(GLM) arises from an observation that the largest outlier
neither has the highest wind speed nor the most rainfall.
However, the combination of wind and rainfall might be
the cause. It may, therefore, be a good idea to include
also cross-effects in our model, i.e.,

xt,d = β0 + β1 · d+ β2 · windspeedd + β3 · temperatured
+ β4 · rainfalld + β5 · visibilityd
+ β6 · windspeedd · temperatured
+ β7 · windspeedd · rainfalld
+ β8 · windspeedd · visibilityd
+ β9 · temperatured · rainfalld
+ β10 · temperatured · visibilityd
+ β11 · rainfalld · visibilityd
+ εt,d.

Here, εt,d is again a residual term with zero expectation
and some finite variance. Note that this is not a GLM as
one may know from the literature: the only feature that
causes it to be generalized is that it now also handles the
cross-term relations between the weather variables.

C. Random Forests

The Random Forest (RF) algorithm is a machine
learning algorithm that can be used for both classification
and regression tasks. Compared to LM and GLM it
has a large computation time, but RF is often used in
practice since it generally has great performance. It will,
therefore, be worth a try to implement this algorithm for
our regression problem.

As input, the algorithm needs a T × (K + 1)-matrix
with K explanatory variables and one observation vari-
able (in this case xt,d), all of sample size T . In the
first iteration of the algorithm, a sample of size T is
drawn with replacement from the input matrix. On this
sample, a decision tree (DT) algorithm is executed. This
procedure is repeated N times, yielding N decision
trees. When a new sample comes in, we can take all
N predictions for this sample and average these to get
the final prediction.

D. Performance measures

To evaluate the different models, we create a train
and a test set. The train set contains all data up until
2015/06. The test set contains all data from 2015/07
onwards. This holds for all incident types, so all test
sets contain exactly nine months of data and the quality
of the forecasts can, therefore, be compared easily. We
will measure the quality of a forecast on n samples using
the Mean Absolute Percentage Error (MAPE), assuming
yt > 0,
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Here, yt is the true value in time period t and ŷt is
the prediction.

E. Fireworks-related modeling

All models from the previous sections are based on
data without both major incidents and all incidents on
New Year’s Eve. Since New Year’s Eve, in terms of
amount of small incidents, is far from normal, we can
not just make a forecast for those days with the current
models. Using an ensemble method, a forecast for all
occurrences of New Year’s Eve in our dataset was made.
With the real amount of trucks used subtracted from this,
we assume that this result approximates the number of
fireworks-related incidents.

Table IV shows the correlation between some weather
variables and fireworks-related incidents. These incidents
occur more often on a cold New Year’s Eve with little
wind and rain.

TABLE IV. CORRELATION BETWEEN WEATHER VARIABLES
AND FIREWORKS-RELATED INCIDENTS.

Variable Correlation p-value

Windspeed (FG) -0.679 0.003
Temperature (TG) -0.667 0.003
Rainfall (DR) -0.575 0.016
Visibility (VVN) -0.407 0.104

Besides the fact that our dataset only holds 17 New
Year’s Eves, we also found out that due to policy changes
the time window for setting off fireworks has been
changed. Therefore, only two New Year’s Eves in our
dataset are completely representative for future ones.
Based on these limitations we implement a simple linear
model with just an intercept and four weather variables.

The results of estimating the model on all New Year’s
Eves are given in Table V, including p-values of two-
sided t-tests to test the null hypothesis that the true
parameter equals zero.

If we estimate the model just on the first twelve New
Year’s Eves and leave the last five for testing, we get
a MAPE of 0.349. Due to too little New Year’s Eves

TABLE V. PARAMETER ESTIMATES OF A LINEAR MODEL
FOR FIREWORKS-RELATED INCIDENTS.

Variable Estimate p-value

Intercept 219.158 0.000
Windspeed (FG) -0.607 0.352
Temperature (TG) -0.565 0.198
Rainfall (DR) 0.041 0.941
Visibility (VVN) -0.405 0.519

in our dataset we are unable to make a very accurate
forecast in this particular occasion. This may very well
also be the reason for the lack of significant predictive
power by the weather variables. Since New Year’s Eve
from many different perspectives is not a regular day,
certainly agreed upon by the fire department, we chose
to use this simple estimation thus not to spend more time
trying to improve upon this model.

IV. RESULTS

In this section, we will compare the performance of
the different models and evaluate the insights derived
from them. The results on the MAPE and wMAPE values
are given in Table VI. These performance measures are
based on the total daily number of trucks used for small
incidents (over all fire stations and types). This enables
us to compare all models through one value. It is also
interesting to see how significant a parameter is on a 1
to 5 scale, as in Table VII for LM, Table VIII for GLM,
and Table IX for RF. Here, we assign 1 when the p-value
< 0.001 (very significant) until 5 when the p-value ≥ 0.1
(not significant).

TABLE VI. PERFORMANCE MEASURES OF THE MODELS.

Model MAPE wMAPE
LM 0.1886 0.1924
GLM 0.1865 0.1880
RF 0.2006 0.2019

A. Linear regression model

For the linear model, comparing Table VII to Table III,
we observe that when a weather variable has significant
predictive power for some type, then their mutual corre-
lation is relatively high as well. This is a nice result, but
unfortunately, the reverse is not true. For instance, type 3
is highly correlated with one of the temperature variables,
but this variable does not have predictive power for this
type, which is surprising.

If we look at Table VII in more detail, it stands out that
several types have no weather variables with significant
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TABLE VII. SIGNIFICANCE OF ESTIMATED PARAMETERS
FOR LM.

Type cluster (see Table III))
Variable 1 2 3 4 5 6 7 8 9 Avg

Intercept 1 1 1 1 1 4 1 1 1 1.33
Trend 1 5 1 4 3 5 5 5 5 3.78

Wind speed 1 5 5 3 5 5 5 5 1 3.89
Temperature 3 4 5 1 2 5 5 5 5 3.89
Rainfall 1 3 5 5 5 5 5 4 1 3.78
Visibility 5 4 5 4 5 5 5 5 5 4.78

Scaling: 1: p < 0.001, 2: p < 0.01, 3: p < 0.05, 4: p < 0.1, 5: p < 1

predictive power. Opposed to type 3, this is not surprising
for types 6 and 7, since their correlations to the weather
variables are relatively low as well. On the other hand,
types 1 and 9 are well predicted by the amount of wind
and rainfall, which is intuitively explainable as well.

Since the wMAPE is higher, we conclude that the
LM is not very good at predicting relatively busy days
(compared to predicting average days). However, the fire
brigade is, of course, more interested in when they have
busy days. They are prepared for average days anyway.

B. Generalized Linear Model

Recall that the GLM model is an expanded version of
the linear model, so it could be at least as good. The
question is how much value it adds to the linear model.
Comparing the significance of the variables in Table VIII
to that of LM in Table VII, we observe that, in general,
the single weather variables have lost some importance
in favor of cross-term variables they partition in. Type
1 is an excellent example of this. Here, the temperature
had some predictive power in the LM, but now it turns
out that it is mainly the combination with the amount
of rainfall that matters. In addition, also wind speed and
rainfall turn out to be less predictive on their own than
the LM indicated. It is their cross-term effect that is
important. Looking at the average column on the right,
we also see that the intercept has lost some importance.
Apparently, a bigger part can be modeled by the weather
after adding some cross-term variables. Of all weather
variables, it is even the case that two cross-term variables
have the most predictive power.

Noting the influence of the cross-term variables, we
expect that the performance of the GLM is better than
that of the LM. If we compute the results for the totals
per day, we still see that the wMAPE is somewhat higher
than the MAPE, but compared to their equivalents of the
LM, they are slightly better (about 2%).

TABLE VIII. SIGNIFICANCE OF ESTIMATED PARAMETERS
FOR GLM.

Type cluster (see Table III))
Variable 1 2 3 4 5 6 7 8 9 Avg

Intercept 1 2 1 1 1 5 1 2 3 1.89
Trend 1 5 1 4 3 5 5 5 5 3.78

Wind speed 3 5 5 5 5 5 5 5 1 4.33
Temperature 5 5 5 3 2 5 5 5 4 4.33
Rainfall 5 3 5 5 5 5 5 5 1 4.33
Visibility 5 5 4 5 5 5 5 5 5 4.89

Wind*Temp. 5 5 5 5 5 5 5 5 5 5.00
Wind*Rain 3 3 5 5 5 5 5 5 1 4.11
Wind*Visib. 5 3 5 4 5 5 5 5 5 4.67
Temp.*Rain 2 3 5 5 5 5 5 5 1 4.00
Temp.*Visib. 5 5 5 5 5 5 5 5 5 5.00
Rain*Visib. 5 5 5 5 5 5 5 3 5 4.78

Scaling: 1: p < 0.001, 2: p < 0.01, 3: p < 0.05, 4: p < 0.1, 5: p < 1

TABLE IX. IMPORTANCE W.R.T. TOTAL DECREASE IN RSS.

Type cluster (see Table III))
Variable 1 2 3 4 5 6 7 8 9 Avg

Wind speed 4 2 4 1 3 2 2 4 1 2.56
Temperature 1 1 1 3 2 1 1 1 3 1.56
Rainfall 3 4 3 2 1 4 4 3 2 2.89
Visibility 2 3 2 4 4 3 3 2 4 3.00

C. Random Forests

Different from the previous models, the RF algorithm
does not estimate a parameter for each variable. We,
therefore, have to find another measure for the im-
portance of each variable. We will consider the ‘RSS-
ranking’ for this purpose.

In the RF algorithm, in each decision node, the algo-
rithm splits the remaining sample based on a decision
rule on the variable that reduces the standard deviation
most. In other words, it tries to improve the fit of the
model to the training data as much as possible, i.e.,
the biggest decrease in residual sum of squares (RSS)
between the fitted model and the observation data in the
training set. Hence, we can measure the importance of a
variable based on the total decrease in RSS from splitting
on this variable. Table IX shows the results of the RSS
ranking. As in the previous models, visibility is often
the least important variable. However, the biggest differ-
ence is that in this case, the temperature is remarkably
important.

When we compare the results of RF to the previous
models, we see that, in general, RF gives the worst
results. However, the effort for running this model is
perhaps not in vain. When diving deeper into the results,
we discover that the RF has the best wMAPE for type
9, which may be an indication that this algorithm is
better in predicting busy days. This is confirmed by the
plot of the predictions for type 9 of both GLM and RF
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in Figure 6. Obviously, the RF algorithm recognizes
much better than GLM when the weather conditions are
risky and likely to cause many incidents to happen.

(a) Generalized Linear Model

(b) Random Forest

Figure 6. Forecasts (in blue) of the number of trucks used for small
incidents of type 9, including the upper bound of its 95%-prediction

interval (in red).

D. Ensemble model

From the previous discussion, we conclude that GLM
gives the best results when we look at the totals per day,
but it is worse in predicting busy days than RF. Motivated
by this, we propose to use ensemble averaging (EA),
defined by

EA = γ · RF + (1− γ) · GLM,

for some constant γ ∈ [0, 1].
We have to determine the optimal value of γ to use in

order to get the best results. Since GLM initially gives
the best results, and we only need RF to be able to predict
the busy days a bit better, we may expect that we have
to put more weight on GLM, i.e., that γ < 0.5. When
we vary γ from 0 to 1, both the MAPE = 0.1853 and
the wMAPE = 0.1860 take their minimum in γ∗ = 0.2
(which is better than GLM individually; when compared
with γ = 0).

TABLE X. CAPACITY NEEDED PER DAY AND FIRE STATION
WITH CERTAINTY THIS CAPACITY SUFFICES THAT DAY.

Avg cap. needed % of days 2 needed Available
Fire station 90% 95% 99% 90% 95% 99% cap. 1?

Aalsmeer 0.14 0.17 0.27 0.0% 0.0% 0.0% No
Amstelveen 0.44 0.53 0.80 0.0% 0.3% 3.3% No
Anton 0.40 0.48 0.73 0.0% 0.0% 0.3% No
Diemen 0.12 0.15 0.25 0.0% 0.0% 0.0% No
Dirk 0.34 0.41 0.64 0.0% 0.0% 0.7% No
Driemond 0.04 0.05 0.10 0.0% 0.0% 0.0% Yes
Duivendrecht 0.17 0.20 0.30 0.0% 0.0% 0.0% No
Hendrik 0.59 0.71 1.07 0.7% 1.7% 67.7% No
IJsbrand 0.19 0.24 0.38 0.0% 0.0% 0.0% Yes
Landelijk Noord 0.04 0.06 0.11 0.0% 0.0% 0.0% Yes
Nico 0.35 0.42 0.64 0.0% 0.0% 0.3% No
Osdorp 0.42 0.51 0.77 0.0% 0.0% 1.0% No
Ouderkerk a/d Amstel 0.06 0.08 0.13 0.0% 0.0% 0.0% Yes
Pieter 0.41 0.50 0.75 0.0% 0.0% 1.7% Yes
Teunis 0.28 0.34 0.53 0.0% 0.0% 0.0% No
Uithoorn 0.12 0.15 0.25 0.0% 0.0% 0.0% No
Victor 0.28 0.34 0.51 0.0% 0.0% 0.0% No
Willem 0.30 0.36 0.55 0.0% 0.0% 0.0% No
Zebra 0.23 0.28 0.44 0.0% 0.0% 0.0% Yes

E. Practical implication

After the forecasts are complete, we extract from them
the capacity we expect each fire station to need each day.
For this, we want to have some certainty that the capacity
is satisfying for that day. Different from a confidence
interval, which only measures the uncertainty of the
forecast, a prediction interval includes, in addition, the
variability of the number of incidents in real life. We can,
therefore, use the upper bound of the prediction interval
to ensure that the predicted capacity will be satisfactory
with, for instance, 95% certainty.

The 100(1 − α)%-prediction interval for the GLM
model y = Xᵀβ + ε for a future observation y0 can
be computed as [14]

ŷ0 ± t(1−α/2)n−k σ̂
√
xᵀ0(X

ᵀX)−1x0 + 1,

where ŷ0 is the predicted value for y0, t(1−α/2)n−k is the
(1−α/2)-quantile of the t-distribution with n−k degrees
of freedom, n is the number of samples in the training
set, and k is the number of variables in the model.

For the RF algorithm, we have N decision trees, which
all yield one prediction for each future observation. The
variability of these N individual predictions captures
the uncertainty of the final prediction (the average of
the individuals). In order to capture the variability of
the observations, we need again our assumption on the
residuals. In this case, we will use this by adding to each
of the N individual predictions a random value, drawn
from the empirical distribution of the residuals in the
training set. Then, the resulting N values include all the
variation we need. Their (α/2)- and (1−α/2)-quantiles
together directly form the desired prediction interval.

If we combine all these results, we get Table X that
gives the needed capacity for each fire station. From this,
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we can conclude that, on an average day, (almost) all fire
stations only need a capacity of one truck. Only if we
want to be 99% sure that the capacity suffices, we need a
capacity of two trucks at station ‘Hendrik’ on an average
day. Then ‘Amstelveen’ also needs a capacity of two on
some days. Moreover, ‘Pieter’ does not have the required
capacity in 1.7% of the days (see in red).

V. CONCLUSIONS AND DISCUSSION

In this paper, we developed a model to create a forecast
on the number of incidents that each fire station in
Amsterdam-Amstelland has to handle. Here, special in-
terest went to the influence of several weather conditions
and to the issue of dealing with the low number of
incidents.

The answer is split into two parts. The forecasts cre-
ated for the small incidents can be done reasonably well
by EA. Major incidents can be modeled by an inhomo-
geneous Poisson process. Concerning the weather, (the
combination of) rain and wind on average had the most
influence in the linear models and temperature appeared
to contain mostly non-linear relations with the number
of incidents. As expected beforehand, the visibility has
the least predictive power among those four weather
variables.

The current implementation computes a different
model per type-cluster and subsequently divides the total
prediction over the fire stations. One enhancement for
further research that certainly seems logical is to make
an estimate per region instead of per station. Incidents
happen at a certain place in a certain region, not where
a truck of a certain fire station happened to be in
the vicinity of. An added benefit is that we can more
accurately use the characteristics of separate regions. For
example, a region with many big and/or old trees may be
more at risk during days with severe weather conditions.
To expand on that even further, this risk can subsequently
be adjusted for seasons (e.g., spring vs. winter) and/or
regions (e.g., different tree types) with more or less
leaves on the trees, making them respectively more or
less prone to falling over due to wind gusts.

Some of these characteristics can be captured by first
dividing the prediction per type-cluster over all regions
according to a certain weight. As a proof of concept
we calculated the share of each region in the number
of trucks used for small incidents per type-cluster, of
which the results can be found in Table XII. Using the
LM of Section III-A we calculated the results per region,
as shown in Table XI. As expected, we find that - in
terms of wMAPE - when fewer incidents happen, it gets
harder to make a good forecast. When we calculate the

TABLE XI. QUALITY OF LM FORECASTS PER REGION IN
TERMS OF WMAPE AND AVERAGE NUMBER OF TRUCKS

USED FOR SMALL INCIDENTS PER DAY.

Region wMAPE Avg # trucks

External 1.766 0.2
Center 0.321 16.2
Harbor area 0.371 10.2
North 0.414 7.3
East 0.634 4.2
South 0.576 5.4
Southeast 0.370 9.0
Average 0.636 7.5

totals per day we observe that MAPE(LM2) = 0.1887
and wMAPE(LM2) = 0.1919, which is in line with our
previous finding for the results of the LM as shown in
Table VI. Note that in both cases we used the same
models for the type-clusters, which not surprisingly led to
similar results. Future research should be able to generate
a model which can be applied to each separate region,
while still taking all different incident types into account,
and come up with a way to divide the prediction over all
fire stations.
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