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Abstract—In this paper, we present spatial motion planner in 

3D environments based on Deep Reinforcement Learning 

(DRL) algorithms. We tackle 3D motion planning problem by 

using Deep Reinforcement Learning (DRL) approach, which 

learns agent’s and environment constraints. Spatial analysis 

focuses on visibility analysis in 3D setting an optimal motion 

primitive considering agent’s dynamic model based on fast and 

exact visibility analysis for each motion primitives. Based on 

optimized reward function, which consist of generated 3D 

visibility analysis and obstacle avoidance trajectories, we 

introduce DRL formulation, which learns the value function of 

the planner and generates an optimal spatial visibility 

trajectory. We demonstrate our planner in simulations for 

Unmanned Aerial Vehicles (UAV) in 3D urban environments. 

Our spatial analysis is based on a fast and exact spatial 

visibility analysis of the 3D visibility problem from a viewpoint 

in 3D urban environments. We present DRL architecture 

generating the most visible trajectory in a known 3D urban 

environment model, as time-optimal one with obstacle 

avoidance capability.  

 

  
Keywords - Deep Reinforcement Learning; Visibility; 3D; 

Spatial analysis; Motion Planning. 

I.  INTRODUCTION AND RELATED WORK 

Spatial clustering in urban environments is a new spatial 

field from trajectory planning aspects [1]. The motion and 

trajectory planning fields have been extensively studied over 

the last two decades [2][4][6]. The main effort has focused 

on finding a collision-free path in static or dynamic 

environments, i.e., in moving or static obstacles, using 

roadmap, cell decomposition, and potential field methods 

[11]. 

The path-planning problem becomes an NP-hard one, 

even for simple cases such as time-optimal trajectories for a 

system with point-mass dynamics and bounded velocity and 

acceleration with polyhedral obstacles [7]. 

Path planning algorithms can be distinguished as local 

and global planners. The local planner generates one, or a 

few, steps at every time step, whereas the global planner uses 

a global search to the goal over a time-spanned tree. 

Examples of local (reactive) planners are [9][14]. These 

planners are too slow, do not guarantee safety and neglect 

spatial aspects. 

Efficient solutions for an approximated problem were 

investigated by LaValle and Kuffner, addressing non-

holonomic constraints by using the Rapidly Random Trees 

(RRT) method [15][16]. Over the years, many other semi-

randomized methods were proposed, using evolutionary 

programming [5][18]. 

The randomized sampling algorithms planner, such as 

RRT, explores the action space stochastically. The RRT 

algorithm is probabilistically complete, but not 

asymptotically optimal [13]. The RRT* planner challenges 

optimality by a rewiring process each time a node is added to 

the tree. However, in cluttered environments, RRT* may 

behave poorly since it spends too much time deciding 

whether to rewire or not. 

Overall, only a few works have focused on spatial 

analysis characters integrated into trajectory planning 

methods such as visibility analysis or spatial clustering 

methods [11]. 

Analyzing pedestrian's mobility from a spatial point of 

view mainly focused on route choice [3], simulation model 

[19] and agent-based modeling [12]. 

The efficient computation of visible surfaces and 

volumes in 3D environments is not a trivial task. The 

visibility problem has been extensively studied over the last 

twenty years, due to the importance of visibility in GIS and 

Geomatics, computer graphics and computer vision, and 

robotics. Accurate visibility computation in 3D environments 

is a very complicated task demanding a high computational 

effort, which could hardly have been done in a very short 

time using traditional well-known visibility methods.  

The exact visibility methods are highly complex, and 

cannot be used for fast applications due to their long 

computation time. Previous research in visibility 

computation has been devoted to open environments using 

Digital Elevation Model (DEM), representing raster data in 

2.5D (Polyhedral model), and do not address, or suggest 

solutions for dense built-up areas.  

Most of these works have focused on approximate 

visibility computation, enabling fast results using 

interpolations of visibility values between points, calculating 
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point visibility with the Line of Sight (LOS) method [7]. 

Lately, fast and accurate visibility analysis computation in 

3D environments has been presented [10]. 

In this paper, we present unique spatial trajectory 

planning method based on DRL algorithm based on exact 

visibility analysis in urban environment. The generated 

trajectories are based on visibility motion primitives as part 

of the planned trajectory, which takes into account exact 3D 

visible volumes analysis clustering in urban environments. 

The proposed planner includes obstacle avoidance 

capabilities, satisfying dynamics' and kinematics' agent 

model constraints in 3D environments, using Velocity 

Obstacles (VO) in 3D for Unmanned Aerial Vehicle (UAV) 

model.  

In the following sections, we first introduce the DRL 

algorithm and method and our extension for a spatial 

analysis case, such as 3D visibility. Later on, we present the 

our planner, using VO method and planner model. In the last 

part of the paper, with planner simulation using DRL 

method. 

 

II. PROBLEM STATEMENT 

We consider the basic visibility problem in a 3D urban 
environment, consisting of 3D buildings modeled as 3D 

cubic parameterization max

min

1

( , , )
N

h

i h

i

C x y z
=

= , and viewpoint  

V(x0, y0, z0).   
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h
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describing a 3D urban environment model 
 
 
Compute: 

• Trajectory, which consist of optimal set of all visible 
points, i.e., most visible points of 

max

min

1
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h

i h

i

C x y z
=

= , from starting point ,qs, to the 

goal, qg, without collision. 
 

This problem seems to be solved by conventional 
geometric methods, but as mentioned before, it demands a 
long computation time. We introduce a fast and efficient 
computation solution for a schematic structure of an urban 
environment that demonstrates our method based on Deep 
Reinforcement Learning method (DRL). 

On the first part, we present the DRL algorithm, 
formulated to our planning problem, and the visibility 
analysis along with obstacles avoidance planner. 

III. DEEP REINFORCEMENT LEARNING (DRL) 

ALGORITHM 

In most Deep Reinforcement Learning (DRL) systems, 

the state is basically agent’s observation of the environment. 

At any given state the agent chooses its action according to a 

policy. Hence, a policy is a road map for the agent, which 

determines the action to take at each state. Once the agent 

takes an action, the environment returns the new state and 

the immediate reward. Then, the agent uses this information, 

together with the discount factor to update its internal 

understanding of the environment, which, in our case, is 

accomplished by updating a value function. Most methods 

are using the use well-known simple and efficient greedy 

exploration method maximizing Q-value. 

In case of velocity planning space as part of spatial 

analysis planning, each possible action is a possible velocity 

in the next time step, which also represent a viewpoint. The 

Q-value function is based on greedy search velocity, with 

greedy local search method. Based on that, TD and SARSA 

methods for DRL can be used, generating visible trajectory 

in 3D urban environment. 

 

A. Markov Decision Processes (MDP) 

The standard Reinforcement Learning set-up can be 

described as a MDP   as can be seen in Figure 1, consisting 

of: 

• A finite set of states S, comprising all possible 

representations of the environment. 

• A finite set of actions A, containing all possible 

actions available to the agent at any given time. 

• A reward function R = ψ(st ,at ,st+1), determining 

the immediate reward of performing an action at 

from a state st, resulting in st+1. 

• A transition model T(st , at , st+1) = p(st+1| st ,at), 

describing the probability of transition between 

states st and st+1when performing an action at. 

 

Figure 1. Standard Reinforcement Learning Methology  

B. Temporal Difference Learning  

Temporal-difference learning (or TD) interpolates ideas 

from Dynamic Programming (DP) and Monte Carlo 

methods. TD algorithms can learn directly from raw 

experiences without any model of the environment.  

Whether in Monte Carlo methods, an episode needs to 

reach completion to update a value function, Temporal-

difference learning can learn (update) the value function 

within each experience (or step). The price paid for being 
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able to regularly change the value function is the need to 

update estimations based on other learned estimations 

(recalling DP ideas). Whereas in DP a model of the 

environment’s dynamic is needed, both Monte Carlo and TD 

approaches are more suitable for uncertain and unpredictable 

tasks.  

Since TD learns from every transition (state, reward, 

action, next state, next reward) there is no need to 

ignore/discount some episodes as in Monte Carlo algorithms. 

 

C. Spatial Planning Using DRL  

In this section, we present DRL approach based on the 

proposed spatial planning method. It considers that the value 

function f related to each point x. The spatial planner seeks to 

obtain the trajectory T* that based on visibility motion 

primitives set as part of the planned trajectory, which takes 

into account exact 3D visible volumes analysis clustering in 

urban environments, based on optimizing value function f 

along T.  

The generated trajectories are then represented by a set of 

discrete configuration points: 

 

T = {x1,x2,··· ,xN}                             (1) 

 

    Without loss of generality, we can assume that the value 

function for each point can be expressed as a linear 

combination of a set of sub-value functions, that will be 

called features c(x) = ∑ cj fj(x). The cost of path T is then 

the sum of the cost for all points in the path. Particularly, in 

the Velocity Obstacles as will be presented later on, the 

value is the sum of the sub-values of moving between pairs 

of states in the path: 

 

(2) 

 

Based on number of demonstration trajectories D, D = 

{ζ1,ζ2,··· ,ζD}, by using DRL, weights ω can be set for 

learning from demonstrations and setting similar planning 

behavior. As was shown by [23,24], this similarity is 

achieved when the expected value of the features for the 

trajectories generated by the planner is the same as the 

expected value of the features for the given demonstrated 

trajectories: 

                        (3) 

     Applying the Maximum Entropy Principle [25] to the 

DRL problem leads to the following form for the probability 

density for the trajectories returned by the demonstrator: 

                           (4) 

Z(ω) is a normalization function that does not depend on ζ. 

One way to determine ω is maximizing the log-likelihood of 

the demonstrated trajectories under the previous model: 

L(D|ω) = −Dlog(Z(ω))        +∑  (−𝑤𝑇𝑓(𝜁𝑖))𝐷
𝑖=1       (5) 

    

The gradient of the previous log-likelihood with respect to 

ω is given by: 

       (6) 

 

      As mentioned in [23], this gradient can be intuitively 

explained. If the value of one of the features for the 

trajectories returned by the planner are higher from the value 

in the demonstrated trajectories, the corresponding weight 

should be increased to increase the value of those 

trajectories. 

     The main problem with the computation of the previous 

gradient is that it requires to compute the expected value of 

the features E(f(ζ)) for the generative distribution (4).  

     We suggest setting large amount of D cased, setting the 

relative w values for our planner characters. 

TABLE I.  DRL PLANNER PSEUDO CODE 

DRL Planner  
Setting Trajectory S Examples D, D= T*.init (xinit); 

Calculate function features Weight, w  

fD ← AverageFeatureCount(D); 

w ← random_init(); 

Repeat 

                   for each T* do 

           for VelocityObstacles_repetitions do 

       ζi ← getVOstarPath(T*,ω) 

      f(ζi) ← calculeFeatureCounts(ζi) 

  end for 

              fVO (T*)←∑ 𝑓(
𝑉𝑂_𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠
𝑖=1  ζi))/VO_repetitions 

            end for 

           fVO ←( ∑ 𝑓𝑉𝑂
𝑆
𝑖=1 )/s 

          ∇𝐿 ← fVO - fD 

                    w ←UpdatedWeigths (∇𝐿)            
 Until convergence 

Return w  

 

 

IV. UAV MODEL 

We introduce an Unmanned Aerial Vehicle (UAV) 

model, based on the well-known simple car and Dubins 

airplane [26]. Dubins airplane [27] model extends Dubins 
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car model with continuous change of altitude without 

reverse gear, avoiding sudden altitude speed rate variation. 

Our UAV model includes kinematic and dynamic 

constraints which ignore pitch and roll rotation or winds 

disturbances.  

A. Kinematic Constraints 

We use a simple UAV model with four dimensions, each 

configuration is ( , , , )q x y z = , when , ,x y z  are the 

coordinates of the origin, and   is the orientation, in x-y 

plane relative to x-axis, as can be seen in Figure 2 for a 

simple car-like model. 

The steering angle is denoted as  . The distance 

between front and rear axles is equal to L. The kinematic 

equations of a simple UAV model can be written as: 

 

,

cos ,

sin ,

tan

s

s

z

s

x u

y u

z u

u u







=

=

=

=

 
(7) 

 

Where su is the speed parallel to x-y plane, climb rate 

(speed parallel to z-axis) is zu and the control on steering 

angle
 
u . We denote the control vector as ( , , )s zu u u u= . 

Each of the controllers is bounded,
max max[ , ]u   −

where 
max / 2  , the speed 

min max[ , ]s s su u u and climb 

rate
max max[ , ]z z zu u u − . 

min 0su  , so UAV cannot stop. 

 

 
Figure 2. The Simple Car Model. The z-axis can be changed for a Simple 

-Airplane (Source [26]) 

 

B. Dynamic Constraints 

The UAV model has to take into account the dynamic 

constraints, preventing instantaneous changes (increase or 

decrease) of the control vector ( , , )s zu u u u= . 

UAV model also includes dynamic constraints,

[ , ]s s su a a − , [ , ]z z zu a a − and [ , ]u a a   − . 

 

V. ANALYTIC VISIBILITY COMPUTATION 

A. Analytic Solution for a Single Object 

In this section, we first introduce the visibility solution 
from a single point to a single 3D object. This solution is 
based on an analytic expression, which significantly 
improves time computation by generating the visibility 
boundary of the object without the need to scan the entire 
object’s points. 

Our analytic solution for a 3D building model is an 
extension of the visibility chart in 2D introduced by Elber et 
al. [26] for continuous curves. For such a curve, the 
silhouette points, i.e., the visibility boundary of the object, 
can be seen in Figure 3: 

            

Figure 3. Visible Silhouette Points SC
V  from viewpoint  V  to curve C(t) 

(source: [26]). 

The visibility chart solution was originally developed for 
dealing with the Art Gallery Problem for infinite viewpoint; 
it is limited to 2D continuous curves using multivariate 
solver [26], and cannot be used for on-line application in a 
3D environment. 

Based on this concept, we define the visibility problem in 
a 3D environment for more complex objects as: 

     

3D model parameterization is
co s

( , )
n tzC x y , and the 

viewpoint is given as
0 0 0( , , )V x y z . Solutions to equation (8) 

generate a visibility boundary from the viewpoint to an 
object, based on basic relations between viewing directions 
from V to 

co s
( , )

n tzC x y  using cross-product characters. 

A three-dimension urban environment consists mainly of 
rectangular buildings, which can hardly be modeled as 
continuous curves. Moreover, an analytic solution for a 
single 3D model becomes more complicated due to the 
higher dimension of the problem and is not always possible. 
Object parameterization is therefore a critical issue, allowing 
us to find an analytic solution and, using that, to generate the 
visibility boundary very fast. 

1) 3D Building Model: Most of the common 3D City 

Models are based on object-oriented topologies, such as 3D 

Formal Data Structure (3D FDS), Simplified Spatial Model 

(SSS) and Urban Data Model (UDM) [26]. These models 

are very efficient for web-oriented applications. However, 

the fact that a building consists of several different basic 

 

 

co s co s 0 0 0'( , ) ( ( , ) ( , , )) 0
n t n tz zC x y C x y V x y z − =   (8) 
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0 maxCi

zV Z h =                                  (12) 

          
                (a)                            (b)                            (c) 

 

 

features makes it almost impossible to generate analytic 

representation. A three-dimension building model should 

be, on the one hand, simple enabling analytic solution, and 

on the other hand, as accurate as possible. We examined 

several building object parameterizations, and the preferred 

candidate was an extended n order sphere coordinates 

parameterization, even though such a model is a very 

complex, and will necessitate a special analytic solution. We 

introduce a model that can be used for analytic solution of 

the current problem. The basic building model can be 

described as: 
 
 
 
 
 
 
  This mathematical model approximates building 

corners, not as singular points, but as continuous curves. This 
building model is described by equation (9), with the lower 
order badly approximating the building corners, as depicted 
in Figure 4. Corner approximation becomes more accurate 
using n=350 or higher. This approximation enables us to 
define an analytic solution to the problem. 
 

Figure 4. Topside view of the building model using equation (2) - (a) n=50; 

(b) n=200; (c) n=350.  

We introduce the basic building structure that can be 
rotated and extracted using simple matrix operators (Figure 
4). Using a rotation matrix does not affect our visibility 
algorithm, and for simple demonstration of our method we 
present samples of parallel buildings. 

 
 
 
            
 
                                 

Figure 5. A Three-dimension Analytic Building Model with Equation (8), 

where max

min

9

0

h

hz
=

=
 

2) Analytic Solution for a Single Building: In this part 

we demonstrate the analytic solution for a single 3D 

building model. As mentioned above, we should integrate 

building model parameterization to the visibility statement. 

After integrating eqs. (8) and (9): 

 

 

 

 

 

 

 
 

where the visibility boundary is the solution for these 
coupled equations. As can be noticed, these equations are not 
related to Z axis, and the visibility boundary points are the 
same ones for each x-y surface due to the model's 
characteristics. Later on, we treat the relations between a 
building's roof and visibility height in our visibility 
algorithm, as part of the visibility computation. 

The visibility statement leads to two polynomial N order 
equations, which appear to be a complex computational task. 
The real roots of these polynomial equations are the solution 
to the visibility boundary. These equations can be solved 
efficiently by finding where the polynomial equation 
changes its sign and cross zero value; generating the real 
roots in a very short time computation (these functions are 
available in Matlab, Maple and other mathematical programs 
languages). Based on the polynomial cross zero solution, we 
can compute a fast and exact analytic solution for the 
visibility problem from a viewpoint to a 3D building model. 
This solution allows us to easily define the Visible Boundary 
Points. 

Visible Boundary Points (VBP) - we define VBP of the 
object i as a set of boundary points j=1..Nbound of the visible 
surfaces of the object, from viewpoint V(x0, y0, z0). 

 
 
 
 
 
 
 
 
 
Roof Visibility – The analytic solution in equation (10) 

does not treat the roof visibility of a building. We simply 
check if viewpoint height V(z0) is lower or higher than the 
building height 

maxCi

h and use this to decide if the roof is 

visible or not: 
 
 
If the roof is visible, roof surface boundary points are 

added to VBP. Roof visibility is an integral part of VBP 
computation for each building.  

Two simple cases using the analytic solution from a 
visibility point to a building can be seen in Figure 6. The 
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visibility point is marked in black, the visible parts colored in 
red, and the invisible parts colored in blue. The visible 
volumes are computed immediately with very low 
computation effort, without scanning all the model’s points, 
as is necessary in LOS-based methods for such a case. 

 

 
 

Figure 6. Visibility Volume computed with the Analytic Solution. 

Viewpoint is marked in black, visible parts colored in red, and invisible 

parts colored in blue. VBP marked with yellow circles - (a) single building; 

(b) two non-overlapping buildings. 

B. Visibility Computation in Urban Environments 

In the previous sections, we treated a single building 
case, without considering hidden surfaces between buildings, 
i.e., building surface occluded by other buildings, which 
directly affect the visibility volumes solution. In this section, 
we introduce our concept for dealing with these spatial 
relations between buildings, based on our ability to rapidly 
compute visibility volume for a single building generating 
VBP set. 

Hidden surfaces between buildings are simply computed 
based on intersections of the visible volumes for each object. 
The visible volumes are defined easily using VBP, and are 
defined, in our case, as Visible Pyramids. The invisible 
components of the far building are computed by intersecting 
the projection of the closer buildings' VP base to the far 
building's VP base.  

1) The Visible Pyramid (VP): we define VPi
j=1..Nsurf(x0, 

y0, z0) of the object i as a 3D pyramid generated by 

connecting VBP of specific surface j to a viewpoint V(x0, y0, 

z0).  Maximum number of Nsurf for a single object is three. 

VP boundary, colored with green arrows, can be seen in 

Figure 6. The intersection of VPs allows us to efficiently 

compute the hidden surfaces in urban environments, as can 

be seen in the next sub-section. 

2) Hidden Surfaces between Buildings: As we 

mentioned earlier, invisible parts of the far buildings are 

computed by intersecting the projection of the closer 

buildings' VP to the far buildings' VP base.  
For simplicity, we demonstrate the method with two 

buildings from a viewpoint V(x0, y0, z0) one (denoted as the 
first one) of which hides, fully or partially, the other (the 
second one). 

As can be seen in Figure 7, in this case, we first compute 
VBP for each building separately, VBP1

1..4, VBP2
1..4, based 

on these VBPs, we generate VPs for each building, VP1
1, 

VP2
1. After that, we project VP1

1 base to VP2
1 base plane, as 

seen in Figure 8, if existing. At this point, we intersect the 
projected surface in VP2

1 base plane and update VBP2
1..4 and 

VP2
1 (decreasing the intersected part). 
 

            

Figure 7. A Visible Pyramid from a viewpoint (marked as a black point) to 

VBP of a specific surface 

 

Figure 8. Generating VP - (a) VP1
1 boundary colored in green arrows; (b) 

VP2
1 boundary colored in purple lines; (c) the two buildings - VP1

1in green 

and VP2
1 in purple, from the viewpoint. 

 
                   (a)                                         (b) 

 
(c) 
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Figure 9. Projection of VP1
1 to VP2

1 base plane marked with dotted lines. 

The intersected part is the invisible part of the second 
building from viewpoint V(x0, y0, z0)  hidden by the first 
building, which is marked in white in Figure 9.  
   In the case of a third building, in addition to the buildings 
introduced in Figure 9, the projected VP will only be the 
visible ones, and the VBP and VP of the second building will 
be updated accordingly.  

We demonstrated a simple case of an occluded building. 
A general algorithm for more a complex scenario, which 
contains the same actions between all the combinations of 
VP between the objects, is detailed in the next sub-section. 
Projection and intersection of 3D pyramids can be done with 
simple computational geometry elements, which demand a 
very low computation effort.  

                    

Figure 10. Computing Hidden Surfaces between Buildings by using the 

Visible Pyramid Colored in White on VP2
1  Base Plane. 

C. Viewpoint Invisibility Value 

Planning UAVs visible trajectory is based on the ability 

to accumulate the visibility value of each viewpoint 

explored as part of the planner algorithm. We calculate the 

exact invisible value of a specific viewpoint, i.e., the total 

sum of the invisible surfaces and roofs from viewpoint. 

We divide point invisibility value into Invisible Surfaces 

Value (ISV) and Invisible Roofs Value (IRV). This 

classification allows us to plan delicate and accurate 

trajectory upon demand. We define ISV and IRS as the total 

sum of the invisible roofs and surfaces (respectively).  

Invisible Surfaces Value (ISV) of a viewpoint is defined 

as the total sum of the invisible surfaces of all the objects in 

a 3D environment, as described in equation (13): 

 

1.. 1

1.. 10 0 0

1

( , , )
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j Nbound
i
j Nbound

i

N
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i

ISV x y z IS
= −

= −

=

=   (13) 

In the same way, we define Invisible Roofs Value (IRV) 

value as the total sum of all the invisible roofs surfaces:  

 

0 0 0

1

( , , )
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j Nbound
i
j Nbound

i

N
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VP
i

IRV x y z IS
=

=

=

=   (14) 

VI. DEEP REINFORCEMENT LEARNING (DRL) PLANNER 

Our planner, as described in Table 1, based on DRL 

method, generate visible sequence of optimal-visible 

waypoints as a candidate trajectory. We extend previous 

planners which take into account kinematic and dynamic 

constraints [26][27] and present a local planner for UAV 

with these constraints, which for the first time generates fast 

and exact visible trajectories based on analytic solution. The 

fast and efficient visibility analysis of our method presented 

above, allows us to generate the most visible trajectory from 

a start state to the goal state in 3D urban environments, and 

demonstrates our capability, which can be extended to real 

performances in the future. We assume knowledge of the 

3D urban environment model and use the well-known 

Velocity Obstacles (VO) method to avoid collision with 

buildings presented as static obstacles.  

For obstacle avoidance capability, at each time step, the 

planner computes the next eighth Attainable Velocities 

(AV). The safe nodes not colliding with buildings, i.e., 

nodes outside Velocity Obstacles [25], are explored. The 

planner computes the cost for these safe nodes and chooses 

the node with the lowest cost. Trajectory can be 

characterized by the most visible roofs only, surfaces only, 

or another combination of these kinds of visibility types. We 

repeat this procedure while generating the most visible 

trajectory. 

A. Velocity Obstacles 

The Velocity Obstacles (VO) [25] is a well-known 

method for obstacle avoidance in static and dynamic 

environments, used in our planner to prevent collision 

between UAV and the buildings (as static obstacles), as part 

of the trajectory planning method. 

The VO represents the set of all colliding velocities of 

the UAV with each of the neighboring obstacles, in our case 

static obstacles - buildings. Each building is bounded by 

cylinder instead of circle in 2D case [25] and mapped as 

static obstacle into the UAV's velocity space.  

We introduce the velocity obstacles of a planar circular 

obstacle, B, which is moving at a constant velocity bv , as a 

cone in the velocity space of UAV ,A, reduced to a point by 

correspondingly enlarging obstacle B.  

Each point in VO represents a velocity vector that 

originates at A. Any velocity of A that penetrates VO is a 

colliding velocity that would result in a collision between A 

and B at some future time. Figure 10 shows two velocities 

of A: one that penetrates VO,
1av , and is hence a colliding 

velocity, and one that does not,
2av . 

All velocities of A that are outside of VO are safe as 

long as B stays on its current course or in our case a static 
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one. The velocity obstacles thus allows us to determine if a 

given UAV velocity will cause a collision. 

B. Attainable Velocities  

Based on the dynamic and kinematic constraints, UAVs 

velocities at the next time step are limited. At each time step 

during the trajectory planning, we map the Attainable 

Velocities (AV), the velocities set at the next time step 

t + , which generate the optimal trajectory, as is well-

known from Dubins theory [27]. 

 

 
Figure 11. Linear Velocity Obstacles 

 
We denote the allowable controls as ( , , )s zu u u u= as 

U , where V U . 

We denote the set of dynamic constraints bounding 

control's rate of change as ( , , ) 's zu u u u U=  . 

Considering the extremals controllers as part of the 

motion primitives of the trajectory cannot ensure time-

optimal trajectory for Dubin's airplane model [27], but is 

still a suitable heuristic based on time-optimal trajectories of 

Dubin - car and point mass models. 

We calculate the next time step's feasible velocities
 

~

( )U t + , between ( , )t t + : 

~

( ) { | ( ) '}U t U u u u t U + =  =    (15) 

Integrating 
~

( )U t + with UAV model yields the next 

eight possible nodes for the following combinations: 

 
~

min

,
~ ~

max max max

~ max

( ) ( )

( ) ( ) tan , ( ) tan ( ) tan

( )( )

s
s s s

z s s s

z z z

U t u u t a

U t U t u u t u t u a

u u t aU t

 



 

  



 
+  + 

  
+ = + = − +  

    −+   
 

(16) 

 

At each time step, we explore the next eight AV at the 

next time step as part of our tree search. Each node ( , )q q


,where ( , , , )q x y z = , consist of the current UAVs 

position and velocity at the current time step. At each state, 

the planner computes the set of Attainable Velocities (AV), 
~

( )U t + , from the current UAV velocity, ( )U t , as shown 

in Figure 12. We ensure the safety of nodes by computing a 

set of Velocity Obstacles (VO).  

In Figure 12, nodes inside VO, marked in red, are 

inadmissible. Nodes out of VO are further evaluated; safe 

nodes are colored in blue. The safe node with the lowest 

cost, which is the next most visible node, is explored in the 

next time step. This is repeated while generating the most 

visible trajectory. 

Attainable velocities profile is similar to a trunked cake 

slice, as seen in Figure 12, due to the Dubins airplane model 

with one time step integration ahead. Simple models 

attainable velocities, such as point mass, create rectangular 

profile [25].   

 

 

 

Figure 12. Tree Search Method. Attainable Velocities marked in Blue and 

Red Circles; Nodes inside VO (marked Red) are Inattainable; Nodes 

outside VO, Colored in Blue with Lowest Cost, are Explored 

 

C. Cost Function 

Our search is guided by minimum invisible parts from 

viewpoint V to the 3D urban environment model. The cost 

function for each node is a combination of IRV and ISV, 

with different weights as functions of the required task.  

The cost function is computed for each safe node

( , )q q VO


 , i.e., node outside VO, considering UAV 

position at the next time step ( ( ), ( ), ( ))x t y t z t  + + +  

as viewpoint: 

 
( ( )) ( ( )) ( ( ))w q t ISV q t IRV q t    + =  + +  +  (17) 

 

Where ,  are coefficients, effecting the trajectory 

character. The cost function ( ( ))w q t + produces the total 

sum of invisible parts from the viewpoint to the 3D urban 

environment, meaning that the velocity at the next time step 
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with the minimum cost function value is the most visible 

node in our local search. 

 

 

D. Planner Neural Network 

 

In our DRL model, we are using fully-connected layers, 

consisting of: 

• the state space of 37 dimensions 

• Two hidden layers (64 nodes each) 

• An output of four actions 

Our network structure can be seen in Figure 13. 

 

 

Figure 13. DRL planner network model based on fully-connected layers 

E. Simulation Results 

We have implemented the presented algorithm and 

tested some urban environments. We computed the visible 

trajectories using our DRL planner, as described above. We 

used the proposed UAV model with several types of 

trajectories consisting of roof and surfaces visibility, based 

on the introduced visibility computation method. Obstacle 

avoidance capability tested by VO method.  

The initial parameters values are: ( 0) 10su t = = [m/s], 

zu  ( 0) 5[deg]t = = . UAV dynamic and kinematic 

constraints are
max / 4 = , 

max 0.3[ / ]zu m s= . 
min 1su =

[m/s], 
max 15su = [m/s]. 

In the following figures the start and goal points are 

marked, in number of scenarios with various start’s and 

goal’s points location. 

 
 

Figure 14. Trajectory Planning in Urban Environment Using DRL. Start 

and Goal Points with Scenario Demonstration. 

 

Figure 15. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 

 

Figure 16. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 
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Figure 17. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 

 

 
 

Figure 18. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 

 

VII. CONCLUSIONS 

In this paper, we present spatial motion planner in 3D 

environments based on Deep Reinforcement Learning (DRL) 

algorithms. We tackled 3D motion planning problem by 

using Deep Reinforcement Learning (DRL) approach, which 

learns agent’s and environment constraints.  

Spatial analysis focuses on visibility analysis in 3D setting 

an optimal motion primitive considering agent’s dynamic 

model based on fast and exact visibility analysis for each 

motion primitives. Based on optimized reward function, 

which consist of generated 3D visibility analysis and 

obstacle avoidance trajectories, we introduced DRL 

formulation, which learns the value function of the planner 

and generates an optimal spatial visibility trajectory.  

We demonstrated our planner in simulations for 

Unmanned Aerial Vehicles (UAV) in 3D urban 

environments.  

Our spatial analysis is based on a fast and exact spatial 

visibility analysis of the 3D visibility problem from a 

viewpoint in 3D urban environments.  

We presented DRL architecture generating the most 

visible trajectory in a known 3D urban environment model, 

as time-optimal one with obstacle avoidance capability. 
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